51
|
Shou M, Norcross R, Sandig G, Lu P, Li Y, Lin Y, Mei Q, Rodrigues AD, Rushmore TH. Substrate specificity and kinetic properties of seven heterologously expressed dog cytochromes p450. Drug Metab Dispos 2003; 31:1161-9. [PMID: 12920172 DOI: 10.1124/dmd.31.9.1161] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Seven dog cytochromes p450 (p450s) were heterologously expressed in baculovirus-Sf21 insect cells. Of all enzymes examined, CYP1A1 exhibited high 7-ethoxyresorufin O-deethylase activity (low Km enzyme, 1 microM). CYP2B11 and CYP3A12 effectively catalyzed the N1-demethylation and C3-hydroxylation of diazepam (and its derivatives), whereas CYP3A12 and CYP2D15 catalyzed exclusively the N- and O-demethylation, respectively, of dextromethorphan. However, no saturation velocity curves for the N-demethylation of dextromethorphan (up to 500 microM) were achieved, suggesting a high Km for CYP3A12. In contrast to CYP3A12, the CYP2D15-dependent O-demethylation of dextromethorphan was a low Km process (Km = 0.7 microM), similar to that in dog liver microsomes (Km = 2.3 microM). CYP2D15 was also capable of metabolizing bufuralol (1'-hydroxylation), with a Km of 3.9 microM, consistent with that obtained with dog liver microsomes. CYP3A12 was shown to primarily oxidize testosterone at 16alpha-, 2alpha/2beta-, and 6beta-positions. Selectivity of CYP3A12 was observed toward testosterone 6beta-(Km = 83 microM) and 2alpha/2beta-hydroxylations (Km = 154 microM). However, the 16alpha-hydroxylation of testosterone was catalyzed by CYP2C21 also (Km = 6.4 microM for CYP2C21). Therefore, the 6beta- and 16alpha-hydroxylation of testosterone can potentially be employed as markers of CYP3A12 and CYP2C21 (at low concentration), respectively. CYP2C21 was also capable of catalyzing diclofenac 4'-hydroxylation, although some activity was detected with CYP2B11. Surprisingly, none of the p450s selectively metabolized (S)-mephenytoin 4'-hydroxylation. The results described herein are a first step toward the systematic evaluation of a panel of dog p450s and the development of dog p450 isoenzyme-selective marker substrates, as well as providing useful information on prediction and extrapolation of the results from in vitro to in vivo and from dog to human.
Collapse
Affiliation(s)
- Magang Shou
- Department of Drug Metabolism, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Weaver R, Graham KS, Beattie IG, Riley RJ. Cytochrome P450 inhibition using recombinant proteins and mass spectrometry/multiple reaction monitoring technology in a cassette incubation. Drug Metab Dispos 2003; 31:955-66. [PMID: 12814974 DOI: 10.1124/dmd.31.7.955] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detailed cytochrome P450 (P450) inhibition profiles are now required for the registration of novel molecular entities. This method uses combined substrates (phenacetin, diclofenac, S-mephenytoin, bufuralol, and midazolam) with combined recombinant P450 enzymes (CYP1A2, 2C9, 2C19, 2D6, and 3A4) in an attempt to limit interactions with other more minor P450s and associated reductases. Kinetic analysis of single substrate with single P450 (sP450) yielded apparent Km values of 25, 2, 20, 9, and 3 microM, for CYP1A2, 2C9, 2C19, 2D6, and 3A4, respectively. Combined substrates with combined P450s (cP450) yielded apparent Km values of 65, 4, 19, 7, and 2 microM. Selectivity of the substrates for each P450 isoform was checked. Phenacetin proved to be the least selective substrate. However, the ratio of the various P450s was modified in the final assay such that metabolism of phenacetin by other enzymes was approximately 20% of the metabolism by CYP1A2. IC50 determinations with alpha-naphthoflavone (0.04 microM), sulfaphenazole (0.26 microM), tranylcypromine (9 microM), quinidine (0.02 microM), and ketoconazole (0.01 microM) were similar for sP450 and cP450 enzymes. The assay was further evaluated with 11 literature compounds and 52 in-house new chemical entities, and the data compared with radiometric/fluorescent values. The overall protein level of the assay was reduced from the original starting point, as this led to some artificially high IC50 measurements when compared with existing lower protein assays (radiometric/fluorometric). This method offers high throughput P450 inhibition profiling with potential advantages over current radiometric or fluorometric methods.
Collapse
Affiliation(s)
- Richard Weaver
- Physical & Metabolic Science, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough UK LE11 5RH.
| | | | | | | |
Collapse
|
53
|
Zhang W, Ramamoorthy Y, Tyndale RF, Sellers EM. Interaction of buprenorphine and its metabolite norbuprenorphine with cytochromes p450 in vitro. Drug Metab Dispos 2003; 31:768-72. [PMID: 12756210 DOI: 10.1124/dmd.31.6.768] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Buprenorphine is a thebaine derivative used in the treatment of heroin and other opiate addictions. In this study, the selective probe reactions for each of the major hepatic cytochromes P450 (P450s) were used to evaluate the effect of buprenorphine and its main metabolite norbuprenorphine on the activity of these P450s. The index reactions used were CYP1A2 (phenacetin O-deethylation), CYP2A6 (coumarin 7-hydroxylation), CYP2C9 (diclofenac 4'-hydroxylation), CYP2C19 (omeprazole 5-hydrxoylation), CYP2D6 (dextromethorphan O-demethylation), CYP2B6 (7-ethoxy-4-trifluoromethyl-coumarin 7-deethylation), CYP2E1 (chlorzoxazone 6-hydroxylation), and CYP3A4 (omeprazole sulfoxidation). Buprenorphine exhibited potent, competitive inhibition of CYP2D6 (Ki 10 +/- 2 microM and 1.8 +/- 0.2 microM) and CYP3A4 (Ki 40 +/- 1.6 microM and 19 +/- 1.2 microM) in microsomes from human liver and cDNA-expressing lymphoblasts, respectively. Compared with buprenorphine, norbuprenorphine demonstrated a lower inhibitory potency with CYP2D6 (22.4% inhibition at 20 microM norbuprenorphine) and CYP3A4 (13.6% inhibition at 20 microM) in microsomes from human cDNA-expressing lymphoblast cells. Furthermore, buprenorphine was shown to be a substrate of CYP2D6 (Km = 600 microM; Vmax = 0.40 nmol/min/mg protein) and CYP3A4 (Km = 36 microM; Vmax = 0.19 nmol/min/mg protein). The present in vitro study suggests that buprenorphine and its major metabolite norbuprenorphine are inhibitors of CYP2D6 and CYP3A4; however, at therapeutic concentrations they are not predicted to cause potentially clinically important drug interactions with other drugs metabolized by major hepatic P450s.
Collapse
Affiliation(s)
- Wenjiang Zhang
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
54
|
Greenblatt DJ, Von Moltke LL, Giancarlo GM, Garteiz DA. Human cytochromes mediating gepirone biotransformation at low substrate concentrations. Biopharm Drug Dispos 2003; 24:87-94. [PMID: 12619053 DOI: 10.1002/bdd.340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biotransformation of gepirone to 1-(2-pyrimidinyl)-piperazine (1-PP) and 3'-OH-gepirone, as well as two other hydroxylated metabolites, was studied in vitro using a human liver microsomal preparation and heterologously expressed human CYP3A4 and CYP2D6. The focus was on a low range of gepirone concentrations (1000 nM and below). Liver microsomes formed 1-PP and 3'-OH-gepirone with similar reaction velocities. Two other hydroxylated metabolites (2-OH- and 5-OH-gepirone) were also formed, but pure reference standards were not available for purposes of quantitative analysis. The CYP3A inhibitor ketoconazole completely eliminated 1-PP formation, reduced 3'-OH-gepirone formation to less than 20% of control, and reduced 2-OH-gepirone formation to 7% of control. All metabolites were formed by expressed CYP3A4; however, CYP2D6 formed 3'-OH- and 5-OH-gepirone, but not 1-PP or 2-OH-gepirone. Based on estimated relative abundances of the two isoforms in human liver, CYP3A4 was predicted to account for more than 95% of net clearance of gepirone in vivo at low concentrations approaching the therapeutic range. CYP2D6 would account for less than 5% of net clearance. The findings are consistent with previous in vitro studies of gepirone using higher substrate concentrations.
Collapse
Affiliation(s)
- David J Greenblatt
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Tufts-New England Medical Center, Boston MA 02111, USA.
| | | | | | | |
Collapse
|
55
|
Abstract
A resurgence in the use of medical herbs in the Western world, and the co-use of modern and traditional therapies is becoming more common. Thus there is the potential for both pharmacokinetic and pharmacodynamic herb-drug interactions. For example, systems such as the cytochrome P450 (CYP) may be particularly vulnerable to modulation by the multiple active constituents of herbs, as it is well known that the CYPs are subject to induction and inhibition by exposure to a wide variety of xenobiotics. Using in vitro, in silico, and in vivo approaches, many herbs and natural compounds isolated from herbs have been identified as substrates, inhibitors, and/or inducers of various CYP enzymes. For example, St. John's wort is a potent inducer of CYP3A4, which is mediated by activating the orphan pregnane X receptor. It also contains ingredients that inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. Many other common medicinal herbs also exhibited inducing or inhibiting effects on the CYP system, with the latter being competitive, noncompetitive, or mechanism-based. It appears that the regulation of CYPs by herbal products complex, depending on the herb type, their administration dose and route, the target organ and species. Due to the difficulties in identifying the active constituents responsible for the modulation of CYP enzymes, prediction of herb-drug metabolic interactions is difficult. However, herb-CYP interactions may have important clinical and toxicological consequences. For example, induction of CYP3A4 by St. John's wort may partly provide an explanation for the enhanced plasma clearance of a number of drugs, such as cyclosporine and innadivir, which are known substrates of CYP3A4, although other mechanisms including modulation of gastric absorption and drug transporters cannot be ruled out. In contrast, many organosulfur compounds, such as diallyl sulfide from garlic, are potent inhibitors of CYP2E1; this may provide an explanation for garlic's chemoproventive effects, as many mutagens require activation by CYP2E1. Therefore, known or potential herb-CYP interactions exist, and further studies on their clinical and toxicological roles are warranted. Given that increasing numbers of people are exposed to a number of herbal preparations that contain many constituents with potential of CYP modulation, high-throughput screening assays should be developed to explore herb-CYP interactions.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
56
|
Racha JK, Zhao ZS, Olejnik N, Warner N, Chan R, Moore D, Satoh H. Substrate Dependent Inhibition Profiles of Fourteen Drugs on CYP3A4 Activity Measured by A High Throughput LCMS/MS Method with Four Probe Drugs, Midazolam, Testosterone, Nifedipine and Terfenadine. Drug Metab Pharmacokinet 2003; 18:128-38. [PMID: 15618727 DOI: 10.2133/dmpk.18.128] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CYP3A4 enzyme is known for its atypical inhibition kinetics; ligand inhibition can differ depending upon the probe drug used. A high throughput-LCMS/MS CYP3A4 inhibition assay with four substrate drugs was developed to minimize the potential oversight of CYP3A4 inhibition. The assay uses a 96-well format, human liver microsomes, and four CYP3A4 substrate drugs, midazolam, testosterone, nifedipine and terfenadine. After incubation of the individual substrate with human liver microsomes, the reaction is stopped by solid phase extraction and the four probe metabolites produced are pooled and measured by LCMS/MS with multiple-ion-monitoring mode. Using this assay, the IC(50) values of fourteen compounds recognized as substrates/inhibitors of CYP3A4, were measured for the CYP3A4 catalyzed-metabolism of probe drugs. IC(50) values were also obtained for the common set of compounds by the microtiter plate fluorescent assays with cDNA-expressed CYP3A4. Comparison of the results from the two methods suggests that decision making should be cautiously executed to predict drug interaction potential caused by inhibition of CYP3A4 considering the gap between the two assays and various other factors.
Collapse
Affiliation(s)
- Jagdish K Racha
- Non-Clinical Drug Safety Department, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA.
| | | | | | | | | | | | | |
Collapse
|
57
|
Bajpai M, Esmay JD. In vitro studies in drug discovery and development: an analysis of study objectives and application of good laboratory practices (GLP). Drug Metab Rev 2002; 34:679-89. [PMID: 12487146 DOI: 10.1081/dmr-120015690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In vitro drug metabolism studies play a dual role along the path from drug discovery to preclinical development. By analyzing the objectives of each type of study the question of whether to apply good laboratory practices (GLP) requirements is clarified. This review outlines the various in vitro techniques available and categorizes the goals for which they are applied as either supporting drug discovery or influencing decisions of clinical safety. Based on this categorization it is proposed that studies performed to explore the utility of a potential drug candidate be conducted non-GLP, while studies used to support IND and post-IND submissions be considered for GLP.
Collapse
Affiliation(s)
- Manoj Bajpai
- Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Mail Stop 1-1-A, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
58
|
Andrews J, Abd-Ellah MF, Randolph NL, Kenworthy KE, Carlile DJ, Friedberg T, Houston JB. Comparative study of the metabolism of drug substrates by human cytochrome P450 3A4 expressed in bacterial, yeast and human lymphoblastoid cells. Xenobiotica 2002; 32:937-47. [PMID: 12487724 DOI: 10.1080/00498250210163289] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The aim was to compare the metabolic activity of human CYP3A4 expressed in bacteria (E. coli), yeast (S. cerevisiae) and human lymphoblastoid cells (hBl), with the native CYP3A4 activity observed in a panel of human livers. 2. Three CYP3A4 substrates were selected for study: dextromethorphan (DEM), midazolam (MDZ) and diazepam (DZ). The substrate metabolism in each of the four systems was characterized by deriving the kinetic parameters K(m) or S(50), V(max) and intrinsic clearance (CL(int)) or maximum clearance (CL(max)) from the kinetic profiles; the latter differing by 100-fold across the three substrates. 3. The K(m) or S(50) for the formation of metabolites 3-methoxymorphinan (MEM), 1'-hydroxymidazolam (1'-OH MDZ) and 3-hydroxydiazepam (3HDZ) compared well in all systems. For CYP3A4-mediated metabolism of DEM, MDZ and DZ, the V(max) for hBl microsomes were generally 2-9-fold higher than the respective yeast and human liver microsomes and E. coli membrane preparations, resulting in greater CL(int) or CL(max). In the case of 3HDZ formation, non-linear kinetics were observed for E. coli, hBl microsomes and human liver microsomes, whereas the kinetics observed for S. cerevisiae were linear. 4. The use of native human liver microsomes for drug metabolic studies will always be preferable. However, owing to the limited availability of human tissues, we find it is reasonable to use any of the recombinant systems described herein, since all three recombinant systems gave good predictions of the native human liver enzyme activities.
Collapse
Affiliation(s)
- J Andrews
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, UK.
| | | | | | | | | | | | | |
Collapse
|
59
|
Hagen N, Olsen AK, Andersen JV, Tjørnelund J, Hansen SH. Characterization of mixtures of recombinant human cytochrome p450s as a screening model for metabolic stability in drug discovery. Xenobiotica 2002; 32:749-59. [PMID: 12396272 DOI: 10.1080/00498250210147124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Recombinant human cytochrome p450 (rhCYP) has become an important screening model in drug metabolism studies due to the high cost of human and animal hepatic tissue. Until now, rhCYPs have been evaluated and used as separate forms, but a mixture of CYP forms comparable with the human liver could be of value in early drug discovery. 2. In the present study, rhCYP2C9, rhCYP2D6 and rhCYP3A4 co-expressed with reductase in Escerichia coli were mixed and evaluated with regards to kinetic properties (K(m) and V(max)). Furthermore, antioxidant was added to investigate whether a free radical scavenger would affect the kinetic parameters. Results were compared with data obtained in human liver microsomes (HLM). 3. Results showed a good correlation between mixed rh CYP data and HLM data for K(m) and V(max). K(m) varied < 3-fold between matrices for CYP2C9 and CYP3A4, whereas the K(m) for CYP2D6 varied up to 4.5-fold. V(max) differed up to 3-fold between matrices for the CYP forms investigated. However, the discrepancy in V(max) may depend on the anticipated level of each form in HLM. The addition of antioxidant increased V(max) for CYP2C9 and CYP2D6 by 75 and 50%, respectively, whereas V(max) for CYP3A4 was unchanged. 4. In conclusion, the rhCYP mixture shows promising results as a predictor of CYP kinetic parameters. Furthermore, addition of antioxidant can in certain cases increase catalytic activity.
Collapse
Affiliation(s)
- N Hagen
- Department of Analytical and Pharmaceutical Chemistry, The Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
60
|
Zou L, Harkey MR, Henderson GL. Effects of intrinsic fluorescence and quenching on fluorescence-based screening of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2002; 9:263-267. [PMID: 12046870 DOI: 10.1078/0944-7113-00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To evaluate the effects of intrinsic (natural) fluorescence and quenching as confounding variables in fluorescence-based enzyme inhibition assays of natural products, we measured the fluorescence and quenching properties of 25 components of popular herbal products. The analyses were performed under conditions typically employed in drug-drug interaction studies that use c-DNA-derived P450 isoforms and surrogate fluorogenic substrates. Four of the 25 compounds tested (isorhamnetin, quercetin, vitexin, and yangonin) fluoresced or quenched sufficiently to interfere with these assays. Intrinsic fluorescence had a greater effect on these assays than quenching and for one compound, yangonin, was sufficient to mask inhibition and potentially produce a false negative result. Quenching had less of an effect on these assays, but was significant enough for one compound, quercetin, to mimic "weak" inhibition. Therefore, because intrinsic fluorescence or quenching could render some natural products unsuitable for testing in certain fluorometric assays, it would be prudent to include an evaluation of these properties in experimental protocols.
Collapse
Affiliation(s)
- L Zou
- Department of Medical Pharmacology and Toxicology, School of Medicine, University of California, Davis 95616, USA
| | | | | |
Collapse
|
61
|
Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM. Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos 2002; 30:314-8. [PMID: 11854151 DOI: 10.1124/dmd.30.3.314] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interactions of a panel of antifungal agents with cytochromes P450 (P450s), as a means of predicting potential drug-drug interactions, have not yet been investigated. The objective of this study was to evaluate the specificity and selectivity of five antifungal agents using selective probe reactions for each of the eight major P450s. The index reactions used were phenacetin O-deethylation (for CYP1A2), coumarin 7-hydroxylation (CYP2A6), diclofenac 4'-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 7-ethoxy-4-trifluoromethylcoumarin deethylation (CYP2B6), chlorzoxazone 6-hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A4). Five antifungal agents that include an imidazole moiety (clotrimazole, miconazole, sulconazole, tioconazole, and ketoconazole) were examined in cDNA-expressing microsomes from human lymphoblast cells or human liver microsomes. All inhibitors studied demonstrated nonselective inhibition of P450s. Ketoconazole seemed to be the most selective for CYP3A4, although it also inhibited CYP2C9. High-affinity inhibition was seen for CYP1A2 (sulconazole and tioconazole K(i), 0.4 microM), CYP2B6 (miconazole K(i), 0.05 microM; sulconazole K(i), 0.04 microM), CYP2C19 (miconazole K(i), 0.05 microM; sulconazole K(i), 0.008 microM; tioconazole K(i), 0.04 microM), CYP2C9 (sulconazole K(i), 0.01 microM), CYP2D6 (miconazole K(i), 0.70 microM; sulconazole K(i), 0.40 microM), CYP2E1 (tioconazole K(i), 0.4 microM), and CYP3A4 (clotrimazole K(i), 0.02 microM; miconazole K(i), 0.03 microM; tioconazole K(i), 0.02 microM). Therefore, this class of compounds is likely to result in significant drug-drug interactions in vivo.
Collapse
Affiliation(s)
- Wenjiang Zhang
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
62
|
Aardema MJ, MacGregor JT. Toxicology and genetic toxicology in the new era of "toxicogenomics": impact of "-omics" technologies. Mutat Res 2002; 499:13-25. [PMID: 11804602 DOI: 10.1016/s0027-5107(01)00292-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unprecedented advances in molecular biology during the last two decades have resulted in a dramatic increase in knowledge about gene structure and function, an immense database of genetic sequence information, and an impressive set of efficient new technologies for monitoring genetic sequences, genetic variation, and global functional gene expression. These advances have led to a new sub-discipline of toxicology: "toxicogenomics". We define toxicogenomics as "the study of the relationship between the structure and activity of the genome (the cellular complement of genes) and the adverse biological effects of exogenous agents". This broad definition encompasses most of the variations in the current usage of this term, and in its broadest sense includes studies of the cellular products controlled by the genome (messenger RNAs, proteins, metabolites, etc.). The new "global" methods of measuring families of cellular molecules, such as RNA, proteins, and intermediary metabolites have been termed "-omic" technologies, based on their ability to characterize all, or most, members of a family of molecules in a single analysis. With these new tools, we can now obtain complete assessments of the functional activity of biochemical pathways, and of the structural genetic (sequence) differences among individuals and species, that were previously unattainable. These powerful new methods of high-throughput and multi-endpoint analysis include gene expression arrays that will soon permit the simultaneous measurement of the expression of all human genes on a single "chip". Likewise, there are powerful new methods for protein analysis (proteomics: the study of the complement of proteins in the cell) and for analysis of cellular small molecules (metabonomics: the study of the cellular metabolites formed and degraded under genetic control). This will likely be extended in the near future to other important classes of biomolecules such as lipids, carbohydrates, etc. These assays provide a general capability for global assessment of many classes of cellular molecules, providing new approaches to assessing functional cellular alterations. These new methods have already facilitated significant advances in our understanding of the molecular responses to cell and tissue damage, and of perturbations in functional cellular systems. As a result of this rapidly changing scientific environment, regulatory and industrial toxicology practice is poised to undergo dramatic change during the next decade. These advances present exciting opportunities for improved methods of identifying and evaluating potential human and environmental toxicants, and of monitoring the effects of exposures to these toxicants. These advances also present distinct challenges. For example, the significance of specific changes and the performance characteristics of new methods must be fully understood to avoid misinterpretation of data that could lead to inappropriate conclusions about the toxicity of a chemical or a mechanism of action. We discuss the likely impact of these advances on the fields of general and genetic toxicology, and risk assessment. We anticipate that these new technologies will (1) lead to new families of biomarkers that permit characterization and efficient monitoring of cellular perturbations, (2) provide an increased understanding of the influence of genetic variation on toxicological outcomes, and (3) allow definition of environmental causes of genetic alterations and their relationship to human disease. The broad application of these new approaches will likely erase the current distinctions among the fields of toxicology, pathology, genetic toxicology, and molecular genetics. Instead, a new integrated approach will likely emerge that involves a comprehensive understanding of genetic control of cellular functions, and of cellular responses to alterations in normal molecular structure and function.
Collapse
Affiliation(s)
- Marilyn J Aardema
- Miami Valley Laboratories, The Procter & Gamble Co., P.O. Box 538707, Cincinnati, OH 45253, USA.
| | | |
Collapse
|
63
|
Venkatakrishnan K, Von Moltke LL, Greenblatt DJ. Human drug metabolism and the cytochromes P450: application and relevance of in vitro models. J Clin Pharmacol 2001; 41:1149-79. [PMID: 11697750 DOI: 10.1177/00912700122012724] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cytochromes P450 (CYPs) constitute a superfamily of hemoprotein enzymes that are responsible for the biotransformation of numerous xenobiotics, including therapeutic agents. Studies of the biochemical and enzymatic properties of these enzymes and their molecular genetics and regulation of gene expression and activity have greatly enhanced our understanding of several aspects of clinical pharmacology such as pharmacokinetic variability, drug toxicity, and drug interactions. This review evaluates the major human hepatic drug-metabolizing CYP enzymes and their clinically relevant substrates, inhibitors, and inducers. Also discussed are the molecular bases and clinical implications of genetic polymorphisms that affect the CYPs. Much of the information on the specificity of substrates and inhibitors of the CYP enzymes is derived from in vitro studies using human liver microsomes and heterologously expressed CYP enzymes. These methods are discussed, and guidelines are provided for designing enzyme kinetic and reaction phenotyping studies using multiple approaches. The strengths, weaknesses, and discrepancies among the different approaches are considered using representative examples. The mathematical models used in predicting the pharmacokinetic clearance of a drug from in vitro estimates of intrinsic clearance and the principles of quantitative in vitro-in vivo scaling of metabolic drug interactions are also discussed.
Collapse
Affiliation(s)
- K Venkatakrishnan
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, New England Medical Center Hospital, Boston, MA 02111, USA
| | | | | |
Collapse
|
64
|
Venkatakrishnan K, Schmider J, Harmatz JS, Ehrenberg BL, von Moltke LL, Graf JA, Mertzanis P, Corbett KE, Rodriguez MC, Shader RI, Greenblatt DJ. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 2001; 41:1043-54. [PMID: 11583471 DOI: 10.1177/00912700122012634] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relative contribution of cytochrome P450 3A (CYP3A) to the oral clearance of amitriptyline in humans has been assessed using a combination of in vitro approaches together with a clinical pharmacokinetic interaction study using the CYP3A-selective inhibitor ketoconazole. Lymphoblast-expressed CYPs were used to study amitriptyline N-demethylation and E-10 hydroxylation in vitro. The relative activity factor (RAF) approach was used to predict the relative contribution of each CYP isoform to the net hepatic intrinsic clearance (sum of N-demethylation and E-10 hydroxylation). Assuming no extrahepatic metabolism, the model-predicted contribution of CYP3A to net intrinsic clearance should equal the fractional decrement in apparent oral clearance of amitriptyline upon complete inhibition of the enzyme. This hypothesis was tested in a clinical study of amitriptyline (50 mg, p.o.) with ketoconazole (three 200 mg doses spaced 12 hours apart) in 8 healthy volunteers. The RAF approach predicted CYP2C19 to be the dominant contributor (34%), with a mean 21% contribution of CYP3A (range: 8%-42% in a panel of 12 human livers). The mean apparent oral clearance of amitriptyline in 8 human volunteers was decreased from 2791 ml/min in the control condition to 2069 ml/min with ketoconazole. The average 21% decrement (range: 2%-40%) was identical to the mean value predicted in vitro using the RAF approach. The central nervous system (CNS) sedative effects of amitriptyline were slightly greater when ketoconazole was coadministered, but the differences were not statistically significant. In conclusion, CYP3A plays a relatively minor role in amitriptyline clearance in vivo, which is consistent with in vitro predictions using the RAF approach.
Collapse
Affiliation(s)
- K Venkatakrishnan
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Satoh T, Fujita KI, Munakata H, Itoh S, Nakamura K, Kamataki T, Itoh S, Yoshizawa I. Studies on the interactions between drugs and estrogen: analytical method for prediction system of gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase. Anal Biochem 2000; 286:179-86. [PMID: 11067738 DOI: 10.1006/abio.1999.4775] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To establish a prediction system for drug-induced gynecomastia in clinical fields, a model reaction system was developed to explain numerically this side effect. The principle is based on the assumption that 50% inhibition concentration (IC(50)) of drugs on the in vitro metabolism of estradiol (E2) to its major product 2-hydroxyestradiol (2-OH-E2) can be regarded as the index for achieving this purpose. By using human cytochrome P450s coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli as the enzyme, the reaction was examined. Among the nine enzymes (CYP1A1, 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) tested, CYP3A4 having a V(max)/K(m) (ml/min/nmol P450) value of 0.32 for production of 2-OH-E2 was shown to be the most suitable enzyme as the reagent. The inhibitory effects of ketoconazole, cyclosporin A, and cimetidine toward the 2-hydroxylation of E2 catalyzed by CYP3A4 were obtained, and their IC(50) values were 7 nM, 64 nM, and 290 microM, respectively. The present results suggest that IC(50) values thus obtained can be substituted as the prediction index for gynecomastia induced by drugs, considering the patients' individual information.
Collapse
Affiliation(s)
- T Satoh
- Hokkaido College of Pharmacy, Otaru, Hokkaido, 047-0264, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Shimada T, Tsumura F, Gillam EM, Guengerich FP, Inoue K. Roles of NADPH-P450 reductase in the O-deethylation of 7-ethoxycoumarin by recombinant human cytochrome P450 1B1 variants in Escherichia coli. Protein Expr Purif 2000; 20:73-80. [PMID: 11035953 DOI: 10.1006/prep.2000.1302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four human cytochrome P450 1B1 (CYP1B1) allelic variants were purified from membranes of Escherichia coli in which respective CYP1B1 cDNAs and human NADPH-P450 reductase cDNA have been introduced. Purified CYP1B1 variants were used to reconstitute 7-ethoxycoumarin O-deethylation activities with purified rabbit liver or recombinant (rat) NADPH-P450 reductase in the phospholipid vesicles and compared with those catalyzed by CYP1B1 enzymes in the membranes of E. coli in monocistronic (by adding the reductase) and bicistronic (without addition of extra reductase) systems. In the bicistronic system, the ratio of expression of NADPH-P450 reductase to CYP1B1 proteins was found to range from 0.2 to 0.5. Purified CYP1B1 enzymes (under optimal reconstitution conditions) catalyzed 7-ethoxycoumarin O-deethylation at rates one-third to one-fourth of those catalyzed by membranes of E. coli coexpressing CYP1B1 and the reductase proteins. Full catalytic activities in reconstituted systems were achieved with a twofold molar excess of NADPH-P450 reductase to CYP1B1; in membranes of E. coli with the monocistronic CYP1B1 construct, an eightfold molar excess of reductase to CYP1B1 was required. However, in membranes of bicistronic constructs, there was no additional stimulation of 7-ethoxycoumarin O-deethylation by extra NADPH-P450 reductase, despite the fact that the molar ratio of expression levels of reductase to CYP1B1 was <0.5. These results suggest that NADPH-P450 reductase produced in the bacterial membranes is more active in interacting with CYP1B1 proteins in the bicistronic system than the reductase added to artificial phospholipid vesicles or bacterial membranes.
Collapse
Affiliation(s)
- T Shimada
- Osaka Prefectural Institute of Public Health, 3-69 Nakamichi 1-chome, Higashinari-ku, Osaka, 537-0025, Japan.
| | | | | | | | | |
Collapse
|
67
|
Ekins S, Ring BJ, Grace J, McRobie-Belle DJ, Wrighton SA. Present and future in vitro approaches for drug metabolism. J Pharmacol Toxicol Methods 2000; 44:313-24. [PMID: 11274898 DOI: 10.1016/s1056-8719(00)00110-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The 1980s through 1990s witnessed the widespread incorporation of in vitro absorption, distribution, metabolism, and excretion (ADME) approaches into drug development by drug companies. This has been exemplified by the integration of the basic science of cytochrome P450s (CYPs) into most drug metabolism departments so that information on the metabolic pathways of drugs and drug-drug interactions (DDIs) is no longer an academic exercise, but essential for regulatory submission. This has come about due to the application of a variety of new technologies and in vitro models. For example, subcellular fractions have been widely used in metabolism studies since the 1960s. The last two decades has seen the increased use of hepatocytes as the reproducibility of cell isolations improved. The 1990s saw the rejuvenation of liver slices (as new slicers were developed) and the utilization of cDNA expressed enzymes as these technologies matured. In addition, there has been considerable interest in extrapolating in vitro data to in vivo for parameters such as absorption, clearance and DDIs. The current philosophy of drug development is moving to a 'fail early--fail cheaply' paradigm. Therefore, in vitro ADME approaches are being applied to drug candidates earlier in development since they are essential for identifying compounds likely to present ADME challenges in the latter stages of drug development. These in vitro tools are also being used earlier in lead optimization biology, in parallel with approaches for optimizing target structure activity relationships, as well as identification of DDI and the involvement of metabolic pathways that demonstrate genetic polymorphisms. This would suggest that the line between discovery and development drug metabolism has blurred. In vitro approaches to ADME are increasingly being linked with high-throughput automation and analysis. Further, if we think of perhaps the fastest available way to screen for successful drugs with optimal ADME characteristics, then we arrive at predictive computational algorithms, which are only now being generated and validated in parallel with in vitro and in vivo methods. In addition, as we increase the number of ADME parameters determined early, the overall amount of data generated for both discovery and development will increase. This will present challenges for the efficient and fast interpretation of such data, as well as incorporation and communication to chemistry, biology, and clinical colleagues. This review will focus on and assess the nature of present in vitro metabolism approaches and indicate how they are likely to develop in the future.
Collapse
Affiliation(s)
- S Ekins
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Drop Code 0730, Indianapolis, IN 46285, USA.
| | | | | | | | | |
Collapse
|
68
|
Bhagwat SV, Boyd MR, Ravindranath V. Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 2000; 59:573-82. [PMID: 10660123 DOI: 10.1016/s0006-2952(99)00362-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have investigated cytochrome P450 (P450) and associated monooxygenase activities in human brain mitochondria isolated from eight regions of four human brain samples obtained at autopsy. P450-associated monooxygenase activities including aminopyrine N-demethylase (APD), 7-ethoxycoumarin O-deethylase (ECD), p-nitrophenol hydroxylase (PNPH), and N-nitrosodimethylamine N-demethylase (ND-MAD) were detectable in the mitochondria from human brain regions. Immunoblot experiments using antisera to purified rat liver microsomal P450, namely P4502B1/2, P4501A1/2, and P4502E1, revealed immunoreactive bands in isolated mitochondria from different regions of the human brain. The antibody to P4502B1/2 and P4501A1/2 inhibited the human brain mitochondrial APD and ECD activities, respectively. The addition of antiserum to microsomal NADPH cytochrome P450 reductase did not affect the mitochondrial P450-associated monooxygenase activities, although it completely inhibited the corresponding activities in brain microsomes. Overall, the present study demonstrates, in human brain mitochondria, the presence of multiple forms of P450 belonging to the 1A, 2B, and 2E subfamilies that are involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- S V Bhagwat
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | |
Collapse
|
69
|
Yin H, Racha J, Li SY, Olejnik N, Satoh H, Moore D. Automated high throughput human CYP isoform activity assay using SPE-LC/MS method: application in CYP inhibition evaluation. Xenobiotica 2000; 30:141-54. [PMID: 10718122 DOI: 10.1080/004982500237749] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
1. A high throughput screening (HTS) method for the evaluation of the seven major human hepatic CYP isoform activities was developed on a 96-well format, with automation. The method utilized pooled human liver microsomes and seven probe substrates, generic conditions for incubation, reaction termination and metabolite extraction with solid phase extraction (SPE) plates. Metabolites from the seven reactions were pooled and quantified using a generic liquid chromatography and tandem mass spectrometry (LCMS/MS) method. 2. The HTS method was validated based on Km values obtained, which were in agreement with literature data. 3. The isoform inhibition profiles of ketoconazole, quinidine, sulfaphenazole, tranylcypromine, alpha-naphthoflavone, and 4-methylpyrazole against CYPs 3A4, 2D6, 2C9, 2A6 land 2C19), 1A2 and 2E1, respectively, were obtained by this HTS method. Graphically obtained IC50 values are in agreement with literature reported values. 4. The HTS method represents a significant efficiency and selectivity improvement over traditional methods, and can be used for CYP inhibition assay and can be extended for liver activity profiling.
Collapse
Affiliation(s)
- H Yin
- Drug Metabolism and Pharmacokinetics, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA
| | | | | | | | | | | |
Collapse
|
70
|
Greenblatt DJ, von Moltke LL, Harmatz JS, Shader RI. Human cytochromes mediating sertraline biotransformation: seeking attribution. J Clin Psychopharmacol 1999; 19:489-93. [PMID: 10587282 DOI: 10.1097/00004714-199912000-00001] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Henderson GL, Harkey MR, Gershwin ME, Hackman RM, Stern JS, Stresser DM. Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci 1999; 65:PL209-14. [PMID: 10574228 DOI: 10.1016/s0024-3205(99)00407-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Because little is known about the interactions between herbal products and standard medications, the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of c-DNA expressed cytochrome P450 isoforms were studied in in vitro experiments. Increasing concentrations of ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 and eleutherosides B and E were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit the metabolism of the surrogate substrates by 50%) was estimated and this value compared with that obtained for positive control inhibitory drugs furafylline, sulfaphenazole, tryanylcypromine, quinidine, and ketoconizole. Of the components tested, three ginsenosides (Rd, Rc, and Rf) modified the activity of the recombinant enzymes. Ginsenoside Rd produced weak inhibitory activity against the surrogate substrates for CYP3A4 and CYP2D6 and even weaker inhibitory activity against the surrogate substrates for CYP2C19 and CYP2C9. The IC50 values of 58 and 74 uM for the two substrates for CYP3A4 are orders of magnitude higher than that for the potent inhibitor ketoconazole used as a positive control. Ginsenoside Rc produced an increase in the activity of CYP2C9 (70% at 200 uM) and ginsenoside Rf produced an increase in the activity of CYP3A4 (54% at 200 uM). The biological significance of this is unclear at this time. Enzyme "activation", the process by which direct addition of one compound to an enzyme enhances the rate of reaction of the substrate, has been observed in a number of cases with P450 enzymes; however, a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrate cannot be ruled out. In summary, these studies suggest that the ginsenosides and eleutherosides tested are not likely to inhibit the metabolism of coadministered medications in which the primary route of elimination is via cytochrome P450; the potential of ginsenosides to enhance the catalysis of certain substrates requires further investigation.
Collapse
Affiliation(s)
- G L Henderson
- Center for Complementary and Alternative Medicine Research in Asthma and Allergy, University of California, Davis 95616, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Gelboin HV, Krausz KW, Gonzalez FJ, Yang TJ. Inhibitory monoclonal antibodies to human cytochrome P450 enzymes: a new avenue for drug discovery. Trends Pharmacol Sci 1999; 20:432-8. [PMID: 10542439 DOI: 10.1016/s0165-6147(99)01382-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- H V Gelboin
- Laboratory of Molecular Carcinogenesis, National Institute of Health, National Cancer Institute, Building 37, Room 3E24, 37 Convent Drive, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
73
|
Greenblatt DJ, von Moltke LL, Harmatz JS, Shader RI. Human cytochromes and some newer antidepressants: kinetics, metabolism, and drug interactions. J Clin Psychopharmacol 1999; 19:23S-35S. [PMID: 10507506 DOI: 10.1097/00004714-199910001-00003] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The appearance of selective serotonin reuptake inhibitor antidepressants in the mid-1980s caused the discipline of clinical psychopharmacology to refocus attention to the topics of drug metabolism and drug interactions. This article reviews the metabolic profiles of some newer antidepressants, the clinical implications of metabolic properties, and research methodology that can be applied in determining which specific human cytochromes P450 (CYP) mediate metabolic pathways. Also reviewed are the relative activities of various new antidepressants as inhibitors of CYPs, and the benefits and drawbacks of in vivo and in vitro methodologies for identification and quantitation of drug interactions.
Collapse
Affiliation(s)
- D J Greenblatt
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and New England Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|
74
|
von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Venkatakrishnan K, Duan SX, Fogelman SM, Harmatz JS, Shader RI. Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol Psychiatry 1999; 46:839-49. [PMID: 10494454 DOI: 10.1016/s0006-3223(98)00353-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Biotransformation of citalopram (CT), a newly available selective serotonin reuptake inhibitor antidepressant, to its principal metabolite, desmethycitalopram (DCT), and the capacity of CT and DCT to inhibit human cytochromes P450, were studied in vitro. METHODS Formation of DCT from CT was evaluated using human liver microsomes and microsomes from cDNA-transfected human lymphoblastoid cells. Cytochrome inhibition by CT and DCT in liver microsomes was studied using isoform-specific index reactions. RESULTS Formation of DCT from CT in liver microsomes had a mean apparent K(m) of 174 mumol/L. Coincubation with 1 mumol/L ketoconazole reduced reaction velocity to 46 to 58% of control values, while omeprazole, 10 mumol/L, reduced velocity to 80% of control. Quinidine produced minimal inhibition. DCT was formed from CT by heterologously expressed human P450-2D6, -2C19, -3A4. After accounting for the relative abundance of individual cytochromes, 3A4 and 2C19 were estimated to make major contributions to net reaction velocity, with a possible contribution of 2D6 at therapeutic CT concentrations. CT and DCT themselves produced negligible inhibition of 2C9, 2E1, and 3A, and only weak inhibition of 1A2, 2C19, and 2D6. CONCLUSIONS Formation of DCT from CT is mediated mainly by P450-3A4 and 2C19, with an additional contribution of 2D6. CT at therapeutic doses in humans may produce a small degree of inhibition of P450-1A2, -2C19, and -2D6, but negligible inhibition of P450-2C9, -2E1, and -3A.
Collapse
Affiliation(s)
- L L von Moltke
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Von Moltke LL, Greenblatt DJ, Granda BW, Duan SX, Grassi JM, Venkatakrishnan K, Harmatz JS, Shader RI. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br J Clin Pharmacol 1999; 48:89-97. [PMID: 10383565 PMCID: PMC2014868 DOI: 10.1046/j.1365-2125.1999.00953.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS To determine the human cytochromes mediating biotransformation of the imidazopyridine hypnotic, zolpidem, and the clinical correlates of the findings. METHODS Kinetic properties of zolpidem biotransformation to its three hydroxylated metabolites were studied in vitro using human liver microsomes and heterologously expressed individual human cytochromes. RESULTS The metabolic product termed M-3 accounted for more than 80% of net intrinsic clearance by liver microsomes in vitro. Microsomes containing human cytochromes CYP1A2, 2C9, 2C19, 2D6, and 3 A4 expressed by cDNA-transfected human lymphoblastoid cells mediated zolpidem metabolism in vitro. The kinetic profile for zolpidem metabolite formation by each individual cytochrome was combined with estimated relative abundances based on immunological quantification, yielding projected contributions to net intrinsic clearance of: 61% for 3 A4, 22% for 2C9, 14% for 1A2, and less than 3% for 2D6 and 2C19. These values were consistent with inhibitory effects of ketoconazole and sulfaphenazole on zolpidem biotransformation by liver microsomes. Ketoconazole had a 50% inhibitory concentration (IC50 ) of 0.61 microm vs formation of the M-3 metabolite of zolpidem in vitro; in a clinical study, ketoconazole coadministration reduced zolpidem oral clearance by approximately 40%, somewhat less than anticipated based on the IC50 value and total plasma ketoconazole levels, but much more than predicted based on unbound plasma ketoconazole levels. CONCLUSIONS The incomplete dependence of zolpidem clearance on CYP3A activity has clinical implications for susceptibility to metabolic inhibition.
Collapse
Affiliation(s)
- L L Von Moltke
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Moody GC, Griffin SJ, Mather AN, McGinnity DF, Riley RJ. Fully automated analysis of activities catalysed by the major human liver cytochrome P450 (CYP) enzymes: assessment of human CYP inhibition potential. Xenobiotica 1999; 29:53-75. [PMID: 10078840 DOI: 10.1080/004982599238812] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Fully automated inhibition screens for the major human hepatic cytochrome P450s have been developed and validated. Probe assays were the fluorometric-based ethoxyresorufin O-deethylation for CYP1A2 and radiometric analysis of erythromycin N-demethylation for CYP3A4, dextromethorphan O-demethylation for CYP2D6, naproxen O-demethylation for CYP2C9 and diazepam N-demethylation for CYP2C19. For the radiometric assays > 99.7% of 14C-labelled substrate was routinely extracted from incubations by solid-phase extraction. 2. Furafylline, sulphaphenazole, omeprazole, quinidine and ketoconazole were identified as specific markers for the respective CYP1A2 (IC50 = 6 microM), CYP2C9 (0.7 microM), CYP2C19 (6 microM), CYP2D6 (0.02 microM) and CYP3A4 (0.2 microM) inhibition screens. 3. For the radiometric methods, a two-point IC50 estimate was validated by correlating the IC50 obtained with a full (seven-point) assay (r2 = 0.98, p < 0.001). The two-point IC50 estimate is useful for initial screening, while the full IC50 method provides more definitive quantitation, where required. 4. IC50 determined for a series of test compounds in human liver microsomes and cytochrome P450 cDNA-expressed enzymes were similar (r2 = 0.89, p < 0.001). In particular, the CYP1A2, CYP2D6 and CYP3A4 screens demonstrated the flexibility to accept either enzyme source. As a result of incomplete substrate selectivity, expressed enzymes were utilized for analysis of CYP2C9 and CYP2C19 inhibition. Good agreement was demonstrated between IC50 determined in these assays to IC50 published by other laboratories using a wide range of analytical techniques, which provided confidence in the universality of these inhibition screens. 5. These automated screens for initial assessment of P450 inhibition potential allow rapid determination of IC50. The radiometric assays are flexible, sensitive, robust and free from analytical interference, and they should permit the identification and eradication of inhibitory structural motifs within a series of potential drug candidates.
Collapse
Affiliation(s)
- G C Moody
- Department of Physical & Metabolic Sciences, Astra Charnwood, Loughborough, UK
| | | | | | | | | |
Collapse
|