51
|
Nan Y, Wu C, Zhang YJ. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation. Viruses 2018; 10:v10040196. [PMID: 29662014 PMCID: PMC5923490 DOI: 10.3390/v10040196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
52
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
53
|
Sultan H, Kumai T, Fesenkova VI, Fan AE, Wu J, Cho HI, Kobayashi H, Harabuchi Y, Celis E. Sustained Persistence of IL2 Signaling Enhances the Antitumor Effect of Peptide Vaccines through T-cell Expansion and Preventing PD-1 Inhibition. Cancer Immunol Res 2018; 6:617-627. [PMID: 29483127 DOI: 10.1158/2326-6066.cir-17-0549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/09/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
Abstract
Peptide vaccines can be a successful and cost-effective way of generating T-cell responses against defined tumor antigens, especially when combined with immune adjuvants such as poly-IC. However, strong immune adjuvants can induce a collateral increase in numbers of irrelevant, nonspecific T cells, which limits the effectiveness of the peptide vaccines. Here, we report that providing prolonged IL2 signaling in the form of either IL2/anti-IL2 complexes or pegylated IL2 overcomes the competitive suppressive effect of irrelevant T cells, allowing the preferential expansion of antigen-specific T cells. In addition to increasing the number of tumor-reactive T cells, sustained IL2 enhanced the ability of T cells to resist PD-1-induced negative signals, increasing the therapeutic effectiveness of the vaccines against established tumors. This vaccination strategy using peptides and sustained IL2 could be taken into the clinic for the treatment of cancer. Cancer Immunol Res; 6(5); 617-27. ©2018 AACR.
Collapse
Affiliation(s)
- Hussein Sultan
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Valentyna I Fesenkova
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Aaron E Fan
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Juan Wu
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia.
| |
Collapse
|
54
|
Sim GC, Wu S, Jin L, Hwu P, Radvanyi LG. Defective STAT1 activation associated with impaired IFN-γ production in NK and T lymphocytes from metastatic melanoma patients treated with IL-2. Oncotarget 2017; 7:36074-36091. [PMID: 27153543 PMCID: PMC5094984 DOI: 10.18632/oncotarget.8683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/11/2016] [Indexed: 11/25/2022] Open
Abstract
High dose (HD) IL-2 therapy has been used for almost two decades as an immunotherapy for metastatic melanoma. IL-2 promotes the proliferation and effector function of T and NK cells through the tyrosine phosphorylation and activation of signal transducer and activator of transcription factors (STAT), especially STAT5. However, whether any defects in STAT activation exist in T and NK lymphocytes from melanoma patients are under debate. Here, we measured the extent of HD IL-2-induced phosphorylation of STAT5 and STAT1 in lymphocyte subsets from metastatic melanoma patients and healthy controls at a single cell level using flow cytometry. We found no defects in IL-2-induced STAT5 phosphorylation and induction of proliferation in T and NK cell subsets in vitro. This was confirmed by measuring ex vivo STAT5 activation in whole blood collected from patients during their first bolus HD IL-2 infusion. IL-2 also induced STAT1 phosphorylation via IFN-γ receptors in T and NK cell subsets through the release of IFN-γ by CD56hi and CD56lo NK cells. Further analysis revealed that melanoma patients had a sub-optimal STAT1 activation response linked to lower IL-2-induced IFN-γ secretion in both CD56hi and CD56low NK cell subsets. STAT1 activation in response to IL-2 also showed an age-related decline in melanoma patients not linked to tumor burden indicating a premature loss of NK cell function. Taken together, these findings indicate that, although STAT5 activation is normal in metastatic melanoma patients in response to IL-2, indirect STAT1 activation is defective owing to deficiencies in the NK cell response to IL-2.
Collapse
Affiliation(s)
- Geok Choo Sim
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Immunology, Moffitt Cancer Center, Tampa, FL 22612, USA
| | - Sheng Wu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Jin
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laszlo G Radvanyi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Immunology, Moffitt Cancer Center, Tampa, FL 22612, USA
| |
Collapse
|
55
|
Villarino AV, Sciumè G, Davis FP, Iwata S, Zitti B, Robinson GW, Hennighausen L, Kanno Y, O'Shea JJ. Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. J Exp Med 2017; 214:2999-3014. [PMID: 28916644 PMCID: PMC5626390 DOI: 10.1084/jem.20150907] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Giuseppe Sciumè
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Fred P Davis
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Shigeru Iwata
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Beatrice Zitti
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
56
|
Wu Y, Tian Z, Wei H. Developmental and Functional Control of Natural Killer Cells by Cytokines. Front Immunol 2017; 8:930. [PMID: 28824650 PMCID: PMC5543290 DOI: 10.3389/fimmu.2017.00930] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are effective in combating infections and tumors and as such are tempting for adoptive transfer therapy. However, they are not homogeneous but can be divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with disparate phenotypes and functions in diverse tissues. The development and functions of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 3 ligand (FL), kit ligand (KL), interleukin (IL)-3, IL-10, IL-12, IL-18, transforming growth factor-β, and common-γ chain family cytokines, which operate at different stages by regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine that regulates NK cell development or that shapes different NK cell functions remain unclear. In this review, we attempt to describe the characteristics of each cytokine and the existing protocols to expand NK cells using different combinations of cytokines and feeder cells. A comprehensive understanding of the role of cytokines in NK cell development and function will aid the generation of better efficacy for adoptive NK cell treatment.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
57
|
Tan TCJ, Knight J, Sbarrato T, Dudek K, Willis AE, Zamoyska R. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells. Proc Natl Acad Sci U S A 2017; 114:E6117-E6126. [PMID: 28696283 PMCID: PMC5544288 DOI: 10.1073/pnas.1700939114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.
Collapse
Affiliation(s)
- Thomas C J Tan
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - John Knight
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Thomas Sbarrato
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Kate Dudek
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
58
|
Niu B, Guo D, Liu Z, Han X, Wang X. Characterization of porcine cytokine inducible SH2-containing protein gene and its association with piglet diarrhea traits. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1689-1695. [PMID: 28728394 PMCID: PMC5666171 DOI: 10.5713/ajas.16.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/21/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The cytokine inducible SH2-containing protein (CISH), which might play a role in porcine intestine immune responses, was one of the promising candidate genes for piglet anti-disease traits. An experiment was conducted to characterize the porcine CISH (pCISH) gene and to evaluate its genetic effects on pig anti-disease breeding. METHODS Both reverse transcription polymerase chain reaction (RT-PCR) and PCR were performed to obtain the sequence of pCISH gene. A pEGFP-C1-CISH vector was constructed and transfected into PK-15 cells to analysis the distribution of pCISH. The sequences of individuals were compared with each other to find the polymorphisms in pCISH gene. The association analysis was performed in Min pigs and Landrace pigs to evaluate the genetic effects on piglet diarrhea traits. RESULTS In the present research, the coding sequence and genomic sequence of pCISH gene was obtained. Porcine CISH was mainly localized in cytoplasm. TaqI and HaeIII PCR restriction fragment length polymorphism (RFLP) assays were established to detect single nucleotide polymorphisms (SNPs); A-1575G in promoter region and A2497C in Intron1, respectively. Association studies indicated that SNP A-1575G was significantly associated with diarrhea index of Min piglets (p<0.05) and SNP A2497C was significantly associated with the diarrhea trait of both Min pig and Landrace piglets (p<0.05). CONCLUSION This study suggested that the pCISH gene might be a novel candidate gene for pig anti-disease traits, and further studies are needed to confirm the results of this preliminary research.
Collapse
Affiliation(s)
- Buyue Niu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150001, China
| | - Zhiran Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
59
|
Gillinder KR, Tuckey H, Bell CC, Magor GW, Huang S, Ilsley MD, Perkins AC. Direct targets of pSTAT5 signalling in erythropoiesis. PLoS One 2017; 12:e0180922. [PMID: 28732065 PMCID: PMC5521770 DOI: 10.1371/journal.pone.0180922] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
Erythropoietin (EPO) acts through the dimeric erythropoietin receptor to stimulate proliferation, survival, differentiation and enucleation of erythroid progenitor cells. We undertook two complimentary approaches to find EPO-dependent pSTAT5 target genes in murine erythroid cells: RNA-seq of newly transcribed (4sU-labelled) RNA, and ChIP-seq for pSTAT5 30 minutes after EPO stimulation. We found 302 pSTAT5-occupied sites: ~15% of these reside in promoters while the rest reside within intronic enhancers or intergenic regions, some >100kb from the nearest TSS. The majority of pSTAT5 peaks contain a central palindromic GAS element, TTCYXRGAA. There was significant enrichment for GATA motifs and CACCC-box motifs within the neighbourhood of pSTAT5-bound peaks, and GATA1 and/or KLF1 co-occupancy at many sites. Using 4sU-RNA-seq we determined the EPO-induced transcriptome and validated differentially expressed genes using dynamic CAGE data and qRT-PCR. We identified known direct pSTAT5 target genes such as Bcl2l1, Pim1 and Cish, and many new targets likely to be involved in driving erythroid cell differentiation including those involved in mRNA splicing (Rbm25), epigenetic regulation (Suv420h2), and EpoR turnover (Clint1/EpsinR). Some of these new EpoR-JAK2-pSTAT5 target genes could be used as biomarkers for monitoring disease activity in polycythaemia vera, and for monitoring responses to JAK inhibitors.
Collapse
Affiliation(s)
- Kevin R. Gillinder
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Hugh Tuckey
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Charles C. Bell
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Graham W. Magor
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Stephen Huang
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Melissa D. Ilsley
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Andrew C. Perkins
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
60
|
Contreras-Kallens P, Terraza C, Oyarce K, Gajardo T, Campos-Mora M, Barroilhet MT, Álvarez C, Fuentes R, Figueroa F, Khoury M, Pino-Lagos K. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci 2017; 1417:35-56. [PMID: 28700815 DOI: 10.1111/nyas.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies.
Collapse
Affiliation(s)
- Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudia Terraza
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Teresa Barroilhet
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carla Álvarez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ricardo Fuentes
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
61
|
Beldi-Ferchiou A, Skouri N, Ben Ali C, Safra I, Abdelkefi A, Ladeb S, Mrad K, Ben Othman T, Ben Ahmed M. Abnormal repression of SHP-1, SHP-2 and SOCS-1 transcription sustains the activation of the JAK/STAT3 pathway and the progression of the disease in multiple myeloma. PLoS One 2017; 12:e0174835. [PMID: 28369102 PMCID: PMC5378363 DOI: 10.1371/journal.pone.0174835] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Sustained activation of JAK/STAT3 signaling pathway is classically described in Multiple Myeloma (MM). One explanation could be the silencing of the JAK/STAT suppressor genes, through the hypermethylation of SHP-1 and SOCS-1, previously demonstrated in MM cell lines or in whole bone marrow aspirates. The link between such suppressor gene silencing and the degree of bone marrow invasion or the treatment response has not been evaluated in depth. Using real-time RT-PCR, we studied the expression profile of three JAK/STAT suppressor genes: SHP-1, SHP-2 and SOCS-1 in plasma cells freshly isolated from the bone marrows of MM patients and healthy controls. Our data demonstrated an abnormal repression of such genes in malignant plasma cells and revealed a significant correlation between such defects and the sustained activation of the JAK/STAT3 pathway during MM. The repressed expression of SHP-1 and SHP-2 correlated significantly with a high initial degree of bone marrow infiltration but was, unexpectedly, associated with a better response to the induction therapy. Collectively, our data provide new evidences that substantiate the contribution of JAK/STAT suppressor genes in the pathogenesis of MM. They also highlight the possibility that the decreased gene expression of SHP-1 and SHP-2 could be of interest as a new predictive factor of a favorable treatment response, and suggest new potential mechanisms of action of the therapeutic molecules. Whether such defect helps the progression of the disease from monoclonal gammopathy of unknown significance to MM remains, however, to be determined.
Collapse
Affiliation(s)
- Asma Beldi-Ferchiou
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Nour Skouri
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Cyrine Ben Ali
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Ines Safra
- Institut Pasteur de Tunis, Laboratory of Molecular and Cellular Hematology, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
| | | | - Saloua Ladeb
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Karima Mrad
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- Salah Azaiez Institute, Department of Pathology, Tunis, Tunisia
| | - Tarek Ben Othman
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mélika Ben Ahmed
- Institut Pasteur de Tunis, Laboratory of Clinical Immunology, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
62
|
Jeffery HC, Jeffery LE, Lutz P, Corrigan M, Webb GJ, Hirschfield GM, Adams DH, Oo YH. Low-dose interleukin-2 promotes STAT-5 phosphorylation, T reg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol 2017; 188:394-411. [PMID: 28176332 PMCID: PMC5422719 DOI: 10.1111/cei.12940] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
CD4+CD25highCD127lowforkhead box protein 3 (FoxP3+) regulatory T cells (Treg) are essential for the maintenance of peripheral tolerance. Impaired Treg function and an imbalance between effector and Tregs contribute to the pathogenesis of autoimmune diseases. We reported recently that the hepatic microenvironment is deficient in interleukin (IL)−2, a cytokine essential for Treg survival and function. Consequently, few liver‐infiltrating Treg demonstrate signal transducer and activator of transcription‐5 (STAT‐5) phosphorylation. To establish the potential of IL‐2 to enhance Treg therapy, we investigated the effects of very low dose Proleukin (VLDP) on the phosphorylation of STAT‐5 and the subsequent survival and function of Treg and T effector cells from the blood and livers of patients with autoimmune liver diseases. VLDP, at less than 5 IU/ml, resulted in selective phosphorylation of STAT‐5 in Treg but not effector T cells or natural killer cells and associated with increased expression of cytotoxic T lymphocyte antigen‐4 (CTLA‐4), FoxP3 and CD25 and the anti‐apoptotic protein Bcl‐2 in Treg with the greatest enhancement of regulatory phenotype in the effector memory Treg population. VLDP also maintained expression of the liver‐homing chemokine receptor CXCR3. VLDP enhanced Treg function in a CTLA‐4‐dependent manner. These findings open new avenues for future VLDP cytokine therapy alone or in combination with clinical grade Treg in autoimmune liver diseases, as VLDP could not only enhance regulatory phenotype and functional property but also the survival of intrahepatic Treg.
Collapse
Affiliation(s)
- H C Jeffery
- Centre for Liver Research and National Institute for Health Research Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - L E Jeffery
- Institute of Metabolism and Systems Research, University of Birmingham, UK
| | - P Lutz
- Centre for Liver Research and National Institute for Health Research Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - M Corrigan
- Centre for Liver Research and National Institute for Health Research Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - G J Webb
- Centre for Liver Research and National Institute for Health Research Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - G M Hirschfield
- Centre for Liver Research and National Institute for Health Research Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - D H Adams
- Centre for Liver Research and National Institute for Health Research Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Y H Oo
- Centre for Liver Research and National Institute for Health Research Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
63
|
O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies. Leukemia 2017; 31:2132-2142. [PMID: 28074064 PMCID: PMC5629373 DOI: 10.1038/leu.2017.4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
Abstract
The signal transducer and activator of transcription 5 (STAT5) regulates differentiation, survival, proliferation and transformation of hematopoietic cells. Upon cytokine stimulation, STAT5 tyrosine phosphorylation (pYSTAT5) is transient, while in diverse neoplastic cells persistent overexpression and enhanced pYSTAT5 are frequently found. Post-translational modifications might contribute to enhanced STAT5 activation in the context of transformation, but the strength and duration of pYSTAT5 are incompletely understood. We found that O-GlcNAcylation and tyrosine phosphorylation act together to trigger pYSTAT5 levels and oncogenic transcription in neoplastic cells. The expression of a mutated hyperactive gain-of-function (GOF) STAT5 without O-GlcNAcylation resulted in decreased tyrosine phosphorylation, oligomerization and transactivation potential and complete loss of oncogenic transformation capacity. The lack of O-GlcNAcylation diminished phospho-ERK and phospho-AKT levels. Our data show that O-GlcNAcylation of STAT5 is an important process that contributes to oncogenic transcription through enhanced STAT5 tyrosine phosphorylation and oligomerization driving myeloid transformation. O-GlcNAcylation of STAT5 could be required for nutrient sensing and metabolism of cancer cells.
Collapse
|
64
|
Abstract
STAT5 plays a critical role in the development and function of many cell types. Here, we review the role of STAT5 in the development of T lymphocytes in the thymus and its subsequent role in the differentiation of distinct CD4 + helper and regulatory T-cell subsets.
Collapse
Affiliation(s)
- David L. Owen
- Center for Immunology, Masonic Cancer Center, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A. Farrar
- Center for Immunology, Masonic Cancer Center, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
65
|
Roles of SMC Complexes During T Lymphocyte Development and Function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:17-42. [DOI: 10.1016/bs.apcsb.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
66
|
Shatrova AN, Mityushova EV, Vassilieva IO, Aksenov ND, Zenin VV, Nikolsky NN, Marakhova II. Time-Dependent Regulation of IL-2R α-Chain (CD25) Expression by TCR Signal Strength and IL-2-Induced STAT5 Signaling in Activated Human Blood T Lymphocytes. PLoS One 2016; 11:e0167215. [PMID: 27936140 PMCID: PMC5172478 DOI: 10.1371/journal.pone.0167215] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
The expression of the IL-2R α-chain (IL-2Rα) is regulated at the transcriptional
level via TCR- and IL-2R-signaling. The question is how to precede in time the
activation signals to induce the IL-2Rα expression in native primary T cells. By
comparing the effects of selective drugs on the dynamics of CD25 expression
during the mitogen stimulation of human peripheral blood lymphocytes, we
identified distinct Src- and JAK-dependent stages of IL-2Rα upregulation. PP2, a
selective inhibitor of TCR-associated Src kinase, prevents CD25 expression at
initial stages of T cell activation, prior to the cell growth. This early IL-2Rα
upregulation underlies the T cell competence and the IL-2 responsiveness. We
found that the activated with “weak” mitogen, the population of blood
lymphocytes has some pool of competent CD25+ cells bearing a high affinity
IL-2R. A distinct pattern of IL-2R signaling in resting and competent T
lymphocytes has been shown. Based on the inhibitory effect of WHI-P131, a
selective drug of JAK3 kinase activity, we concluded that in quiescent primary T
lymphocytes, the constitutive STAT3 and the IL-2-induced prolonged STAT5
activity (assayed by tyrosine phosphorylation) is mostly JAK3-independent. In
competent T cells, in the presence of IL-2 JAK3/STAT5 pathway is switched to
maintain the higher and sustained IL-2Rα expression as well as cell growth and
proliferation. We believe that understanding the temporal coordination of
antigen- and cytokine-evoked signals in primary T cells may be useful for
improving immunotherapeutic strategies.
Collapse
Affiliation(s)
- Alla N. Shatrova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Elena V. Mityushova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Irina O. Vassilieva
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Nikolay D. Aksenov
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Valery V. Zenin
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Nikolay N. Nikolsky
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Irina I. Marakhova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
- * E-mail:
| |
Collapse
|
67
|
Lee WWL, Teo TH, Lum FM, Andiappan AK, Amrun SN, Rénia L, Rötzschke O, Ng LFP. Virus infection drives IL-2 antibody complexes into pro-inflammatory agonists in mice. Sci Rep 2016; 6:37603. [PMID: 27886209 PMCID: PMC5122839 DOI: 10.1038/srep37603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/01/2016] [Indexed: 01/03/2023] Open
Abstract
The use of IL-2/JES6-1 Ab complex (IL-2 Ab Cx) has been considered as a potential therapeutic for inflammatory diseases due to its selective expansion of regulatory T cells (Tregs) in mice. Here, IL-2 Ab Cx was explored as a therapeutic agent to reduce joint inflammation induced by chikungunya virus, an alphavirus causing debilitating joint disease globally. Virus-infected mice treated with IL-2 Ab Cx exhibited exacerbated joint inflammation due to infiltration of highly activated CD4+ effector T cells (Teffs). Virus infection led to upregulation of CD25 on the Teffs, rendering them sensitive towards IL2 Ab Cx. Ready responsiveness of Teffs to IL-2 was further demonstrated in healthy human donors, suggesting that the use of IL-2 Ab Cx in humans is not suitable. Changes in IL-2 sensitivity during active virus infection could change the responsive pattern towards the IL-2 Ab Cx, resulting in the expansion of pro-inflammatory rather than anti-inflammatory responses.
Collapse
Affiliation(s)
- Wendy W. L. Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Anand K. Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
68
|
Lykken EA, Li QJ. The MicroRNA miR-191 Supports T Cell Survival Following Common γ Chain Signaling. J Biol Chem 2016; 291:23532-23544. [PMID: 27634043 DOI: 10.1074/jbc.m116.741264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
To ensure lifelong immunocompetency, naïve and memory T cells must be adequately maintained in the peripheral lymphoid tissues. Homeostatic maintenance of T cells is controlled by tonic signaling through T cell antigen receptors and common γ chain cytokine receptors. In this study, we identify the highly expressed microRNA miR-191 as a key regulator of naïve, memory, and regulatory T cell homeostasis. Conditional deletion of miR-191 using LckCre resulted in preferential loss of peripheral CD4+ regulatory T cells as well as naïve and memory CD8+ T cells. This preferential loss stemmed from reduced survival following deficient cytokine signaling and STAT5 activation. Mechanistically, insulin receptor substrate 1 (Irs1) is a direct target of miR-191, and dysregulated IRS1 expression antagonizes STAT5 activation. Our study identifies a novel role for microRNAs in fine-tuning immune homeostasis and thereby maintaining the lymphocyte reservoir necessary to mount productive immune responses.
Collapse
Affiliation(s)
- Erik Allen Lykken
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | - Qi-Jing Li
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
69
|
Naderi M, Hashemi M, Safdari A, Bahari G, Taheri M. Association of genetic polymorphisms of CISH with the risk of pulmonary tuberculosis in Zahedan, Southeast Iran. Braz J Infect Dis 2016; 20:379-383. [PMID: 27266592 PMCID: PMC9427600 DOI: 10.1016/j.bjid.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND In the current study we aimed to find out the impact of cytokine-inducible Src homology 2 domain protein (CISH) gene polymorphisms on the risk of pulmonary tuberculosis (PTB) in a sample of Iranian population. MATERIALS AND METHODS Polymorphisms of CISH rs2239751, rs414171, and rs6768300 were determined in 200 PTB patients and 200 healthy subjects using T-ARMS-PCR or PCR-RFLP method. RESULTS The results showed that rs414171 A>T genotypes significantly decreased the risk of PTB (OR=0.16, 95% CI=0.10-0.27, p<0.0001, AT vs AA; OR=0.31, 95% CI=0.14-0.68, p<0.0001, TT vs AA; OR=0.19, 95% CI=0.12-0.29, p<0.0001, AT+TT vs AA; OR=0.29, 95%CI=0.20-0.42, p<0.0001, T vs A). For rs6768300, the findings indicated that this variant decreased the risk of PTB (OR=0.52, 95% CI=0.33-0.82, p=0.005, CG vs GG; OR=0.57, 95% CI=0.38-0.87, p=0.012, C vs G). No significant association was observed between CISH rs2239751 polymorphism and risk/protection of PTB. CONCLUSION Our findings indicated that CISH rs414171 and rs6768300 variants might be associated with protection from PTB.
Collapse
Affiliation(s)
- Mohammad Naderi
- Zahedan University of Medical Sciences, Research Center for Infectious Diseases and Tropical Medicine, Zahedan, Iran
| | - Mohammad Hashemi
- Zahedan University of Medical Sciences, School of Medicine, Department of Clinical Biochemistry, Zahedan, Iran.
| | - Abolhassan Safdari
- Zahedan University of Medical Sciences, Research Center for Infectious Diseases and Tropical Medicine, Zahedan, Iran
| | - Gholamreza Bahari
- Zahedan University of Medical Sciences, School of Medicine, Department of Clinical Biochemistry, Zahedan, Iran
| | - Mohsen Taheri
- Zahedan University of Medical Sciences, Genetics of Noncommunicable Disease Research Center, Zahedan, Iran
| |
Collapse
|
70
|
Diamantopoulos PT, Sofotasiou M, Georgoussi Z, Giannakopoulou N, Papadopoulou V, Galanopoulos A, Kontandreopoulou E, Zervakis P, Pallaki P, Kalala F, Kyrtsonis MC, Dimitrakopoulou A, Vassilakopoulos T, Angelopoulou M, Spanakis N, Viniou NA. Prognostic significance of signal transducer and activator of transcription 5 and 5b expression in Epstein-Barr virus-positive patients with chronic lymphocytic leukemia. Cancer Med 2016; 5:2240-8. [PMID: 27367207 PMCID: PMC5055175 DOI: 10.1002/cam4.804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/24/2016] [Accepted: 05/20/2016] [Indexed: 01/16/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins have been intensively studied in hematologic malignancies, and the efficacy of agents against STATs in lymphomas is already under research. We investigated the expression of total STAT5 and STAT5b in peripheral blood samples of patients with chronic lymphocytic leukemia (CLL) in correlation with the presence of Epstein-Barr Virus (EBV) and its major oncoprotein (latent membrane protein 1, LMP1). The EBV load was measured in the peripheral blood by real-time PCR for the BXLF1 gene and the levels of LMP1 by PCR and ELISA. Western blotting was performed for total STAT5 and STAT5b in protein extracts. STAT5b was only expressed in patients (not in healthy subjects) and STAT5 but particularly STAT5b expression was correlated with the presence of the virus (77.3% vs. 51.2%, P = 0.006 for STAT5b) and to the expression of LMP1 (58.3% vs. 21.6%, P = 0.011 for STAT5b). Moreover, the expression of STAT5b and the presence of EBV and LMP1 were strongly negatively correlated with the overall survival of the patients (log-rank test P = 0.011, 0.015, 0.006, respectively). Double positive (for EBV and STAT5b) patients had the lowest overall survival (log-rank test P = 0.013). This is the first report of a survival disadvantage of EBV+ patients with CLL, and the first time that STAT5b expression is correlated with survival. The correlation of STAT5 expression with the presence of the virus, along with our survival correlations defines a subgroup of patients with CLL that may benefit from anti-STAT agents.
Collapse
Affiliation(s)
- Panagiotis T Diamantopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece.
| | - Maria Sofotasiou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Nefeli Giannakopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Vasiliki Papadopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Elina Kontandreopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Panagiotis Zervakis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Paschalina Pallaki
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Fani Kalala
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Marie-Christine Kyrtsonis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Aglaia Dimitrakopoulou
- Department of Immunology and Histocompatibility, Laikon General Hospital, Athens, Greece
| | - Theodoros Vassilakopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Maria Angelopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Spanakis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
71
|
Gotthardt D, Putz EM, Grundschober E, Prchal-Murphy M, Straka E, Kudweis P, Heller G, Bago-Horvath Z, Witalisz-Siepracka A, Cumaraswamy AA, Gunning PT, Strobl B, Müller M, Moriggl R, Stockmann C, Sexl V. STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discov 2016; 6:414-29. [PMID: 26873347 DOI: 10.1158/2159-8290.cd-15-0732] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Natural killer (NK) cells are tightly regulated by the JAK-STAT signaling pathway and cannot survive in the absence of STAT5. We now report that STAT5-deficient NK cells can be rescued by overexpression of BCL2. Our experiments define STAT5 as a master regulator of NK-cell proliferation and lytic functions. Although NK cells are generally responsible for killing tumor cells, the rescued STAT5-deficient NK cells promote tumor formation by producing enhanced levels of the angiogenic factor VEGFA. The importance of VEGFA produced by NK cells was verified by experiments with a conditional knockout of VEGFA in NK cells. We show that STAT5 normally represses the transcription of VEGFA in NK cells, in both mice and humans. These findings reveal that STAT5-directed therapies may have negative effects: In addition to impairing NK-cell-mediated tumor surveillance, they may even promote tumor growth by enhancing angiogenesis. SIGNIFICANCE The importance of the immune system in effective cancer treatment is widely recognized. We show that the new signal interceptors targeting the JAK-STAT5 pathway may have dangerous side effects that must be taken into account in clinical trials: inhibiting JAK-STAT5 has the potential to promote tumor growth by enhancing NK-cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva M Putz
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Grundschober
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elisabeth Straka
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petra Kudweis
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria. Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Agnieszka Witalisz-Siepracka
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Abbarna A Cumaraswamy
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick T Gunning
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Birgit Strobl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Mathias Müller
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria. Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Christian Stockmann
- PARCC Paris - Centre de recherche Cardiovasculaire à l'HEGP Inserm - UMR 970, Paris, France
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
72
|
Villarino A, Laurence A, Robinson GW, Bonelli M, Dema B, Afzali B, Shih HY, Sun HW, Brooks SR, Hennighausen L, Kanno Y, O'Shea JJ. Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. eLife 2016; 5. [PMID: 26999798 PMCID: PMC4856466 DOI: 10.7554/elife.08384] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/13/2022] Open
Abstract
The transcription factor STAT5 is fundamental to the mammalian immune system. However, the relationship between its two paralogs, STAT5A and STAT5B, and the extent to which they are functionally distinct, remain uncertain. Using mouse models of paralog deficiency, we demonstrate that they are not equivalent for CD4+ 'helper' T cells, the principal orchestrators of adaptive immunity. Instead, we find that STAT5B is dominant for both effector and regulatory (Treg) responses and, therefore, uniquely necessary for immunological tolerance. Comparative analysis of genomic distribution and transcriptomic output confirm that STAT5B has fargreater impact but, surprisingly, the data point towards asymmetric expression (i.e. paralog dose), rather than distinct functional properties, as the key distinguishing feature. Thus, we propose a quantitative model of STAT5 paralog activity whereby relative abundance imposes functional specificity (or dominance) in the face of widespread structural homology. DOI:http://dx.doi.org/10.7554/eLife.08384.001 The immune system in mammals is one of the most complex networks in the animal kingdom. One way that its many components communicate is via proteins called cytokines, which are released by cells and detected by receptors on the surface of other cells. This leads to the activation of signals inside the responding cells that alter the activity of genes and, ultimately, direct how they behave. STAT5 is a signal protein that is activated when certain cytokines bind to receptors on the cell surface. Consequently, it is an attractive target for drug therapies that seek to alter immune responses and there is keen interest in understanding how it works. It is an unusual protein in that there are two versions – termed STAT5A and STAT5B – that are produced by two separate genes. Together, STAT5A and STAT5B are fundamental to the immune system but there is considerable debate about whether they perform the same job or have distinct roles. Villarino et al. used a combination of genetic and genomic approaches to investigate how both versions of STAT5 work in mice. The experiments show that STAT5B plays a much bigger role in immune cells than STAT5A. Unexpectedly, the experiments indicate that the disparity is not due to differences in protein activity, but is caused by differences in the amount of these proteins in cells. Villarino et al.’s findings resolve longstanding questions about the relationship between STAT5A and STAT5B within the immune system. A logical next step is to find the molecular mechanisms responsible for causing different amounts of STAT5A and STAT5B to be produced in immune cells. Future work will also compare the roles of STAT5A and STAT5B in non-immune cells and explore whether it might be possible to develop therapies that specifically target one version and not the other. DOI:http://dx.doi.org/10.7554/eLife.08384.002
Collapse
Affiliation(s)
- Alejandro Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Michael Bonelli
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Barbara Dema
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Behdad Afzali
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Hong-Wei Sun
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen R Brooks
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
73
|
Reduction of CRKL expression in patients with partial DiGeorge syndrome is associated with impairment of T-cell functions. J Allergy Clin Immunol 2016; 138:229-240.e3. [PMID: 26875746 DOI: 10.1016/j.jaci.2015.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 10/07/2015] [Accepted: 10/28/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Partial DiGeorge syndrome (pDGS) is caused by deletion of the 22q11.2 region. Within this region lies CrK-like (CRKL), a gene encoding an adapter protein belonging to the Crk family that is involved in the signaling cascade of IL-2, stromal cell-derived factor 1α, and type I interferon. Although recurrent infections can be observed in patients with deletion of chromosome 22 syndrome, the immune pathogenesis of this condition is yet not fully understood. OBJECTIVE We aimed to investigate the role of CRKL in T-cell functional responses in patients affected with pDGS. METHODS Protein expression levels and phosphorylation of CRKL were evaluated in patients with pDGS. T-cell functional assays in vitro and gene-silencing experiments were also performed. RESULTS CRKL protein expression, as well as its phosphorylation, were reduced in all patients with pDGS, especially on IL-2 stimulation. Moreover, T cells presented impaired proliferation and reduced IL-2 production on anti-CD3/CD28 stimulation and decreased c-Fos expression. Finally, CRKL silencing in Jurkat T cells resulted in impaired T-cell proliferation and reduced c-Fos expression. CONCLUSIONS The impaired T-cell proliferation and reduction of CRKL, phosphorylated CRKL, and c-Fos levels suggest a possible role of CRKL in functional deficiencies of T cells in patients with pDGS.
Collapse
|
74
|
Abrahimi P, Qin L, Chang WG, Bothwell ALM, Tellides G, Saltzman WM, Pober JS. Blocking MHC class II on human endothelium mitigates acute rejection. JCI Insight 2016; 1. [PMID: 26900601 DOI: 10.1172/jci.insight.85293] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell-mediated destruction in vivo. We conclude that human CD8+ TEM-mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules.
Collapse
Affiliation(s)
- Parwiz Abrahimi
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William G Chang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
75
|
Abstract
Signal transducers and activators of transcription 5 (STAT5a and STAT5b) are highly homologous proteins that are encoded by 2 separate genes and are activated by Janus-activated kinases (JAK) downstream of cytokine receptors. STAT5 proteins are activated by a wide variety of hematopoietic and nonhematopoietic cytokines and growth factors, all of which use the JAK-STAT signalling pathway as their main mode of signal transduction. STAT5 proteins critically regulate vital cellular functions such as proliferation, differentiation, and survival. The physiological importance of STAT5 proteins is underscored by the plethora of primary human tumors that have aberrant constitutive activation of these proteins, which significantly contributes to tumor cell survival and malignant progression of disease. STAT5 plays an important role in the maintenance of normal immune function and homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, which share a common gamma chain (γ(c)) in their receptor complex. STAT5 critically mediates the biological actions of members of the γ(c) family of cytokines in the immune system. Essentially, STAT5 plays a critical role in the function and development of Tregs, and consistently activated STAT5 is associated with a suppression in antitumor immunity and an increase in proliferation, invasion, and survival of tumor cells. Thus, therapeutic targeting of STAT5 is promising in cancer.
Collapse
Affiliation(s)
- Aradhana Rani
- Department of Biomedical Sciences, University of Westminster , London, United Kingdom
| | - John J Murphy
- Department of Biomedical Sciences, University of Westminster , London, United Kingdom
| |
Collapse
|
76
|
Bingham KN, Lee MD, Rawlings JS. The Use of Flow Cytometry to Assess the State of Chromatin in T Cells. J Vis Exp 2015:e53533. [PMID: 26709948 PMCID: PMC4694037 DOI: 10.3791/53533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During a proper immune response, quiescent T cells become activated upon antigen presentation to their antigen-specific T cell receptor. This leads to clonal proliferation of only those T cells that bear a receptor that recognizes the antigen. Chromatin decondensation is a hallmark of T cell activation and is required for T cells to acquire the ability to proliferate after antigen engagement. This change in chromatin condensation can be detected using antibodies raised against histone proteins. These antibodies cannot bind to their epitopes in naïve T cells as well as they can in activated T cells. We describe how to simultaneously stain T cell-specific surface markers, track viability with a fixable dead cell stain, and measure chromatin status via intracellular staining of Histone H3 proteins. Stained cells are analyzed by flow cytometry and chromatin condensation status is measured as the mean fluorescence intensity (MFI) of the Histone H3 stain. Chromatin decondensation during T cell activation is demonstrated as an increase in the MFI
Collapse
|
77
|
Chien MW, Lin MH, Huang SH, Fu SH, Hsu CY, Yen BLJ, Chen JT, Chang DM, Sytwu HK. Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25. J Biol Chem 2015; 290:29329-44. [PMID: 26468284 DOI: 10.1074/jbc.m115.674671] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/16/2023] Open
Abstract
Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis.
Collapse
Affiliation(s)
- Ming-Wei Chien
- From the Graduate Institute of Life Sciences, Department and Graduate Institute of Microbiology and Immunology
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology
| | | | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology
| | - Chao-Yuan Hsu
- From the Graduate Institute of Life Sciences, Department and Graduate Institute of Microbiology and Immunology
| | - B Lin-Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053 Taiwan
| | | | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490 Taiwan and
| | - Huey-Kang Sytwu
- From the Graduate Institute of Life Sciences, Department and Graduate Institute of Microbiology and Immunology,
| |
Collapse
|
78
|
Liberal R, Grant CR, Holder BS, Cardone J, Martinez-Llordella M, Ma Y, Heneghan MA, Mieli-Vergani G, Vergani D, Longhi MS. In autoimmune hepatitis type 1 or the autoimmune hepatitis-sclerosing cholangitis variant defective regulatory T-cell responsiveness to IL-2 results in low IL-10 production and impaired suppression. Hepatology 2015; 62:863-75. [PMID: 25953611 DOI: 10.1002/hep.27884] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/03/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Defective immune regulation plays a permissive role enabling effector cells to initiate and perpetuate tissue damage, eventually resulting in autoimmune disease. Numerical and functional regulatory T-cell (Treg) impairment has been previously reported in autoimmune liver disease (AILD; including autoimmune hepatitis and autoimmune sclerosing cholangitis ASC). However, in these early reports, Tregs were phenotypically defined as CD4(+) CD25(+) or CD4(+) CD25(high) cells. In the current study, we reexamined phenotypic and functional properties of Tregs by adopting a more refined definition of these cells that also includes negativity or low level of expression of CD127. We studied 43 AILD patients and 22 healthy subjects (HSs) and found that CD4(+) CD25(+) CD127(-) Tregs were decreased in the former. This decrease was more marked in patients with active disease than in those in remission. In AILD, Treg frequencies correlated inversely with parameters of disease activity and were not affected by immunosuppressive treatment. We also document, for the first time, that, in AILD, bona-fide Tregs produce less interleukin (IL)-10 and are impaired in their ability to suppress CD4(+) CD25(-) target cell proliferation, a feature that in HSs, but not in AILDs, is dependent, at least in part, on IL-10 secretion. Decreased IL-10 production by Tregs in AILD is linked to poor responsiveness to IL-2 and phospho signal transducer and activator of transcription 5 up-regulation. CONCLUSION Tregs are numerically impaired in AILD, this impairment being more prominent during active disease. Notably, defective IL-10 production, resulting from low Treg responsiveness to IL-2, contributes to Treg functional impairment.
Collapse
Affiliation(s)
- Rodrigo Liberal
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Charlotte R Grant
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Beth S Holder
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - John Cardone
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Marc Martinez-Llordella
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Yun Ma
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Michael A Heneghan
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Giorgina Mieli-Vergani
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.,Pediatric Liver, GI & Nutrition Center, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Diego Vergani
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Maria Serena Longhi
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| |
Collapse
|
79
|
Sckisel GD, Bouchlaka MN, Monjazeb AM, Crittenden M, Curti BD, Wilkins DEC, Alderson KA, Sungur CM, Ames E, Mirsoian A, Reddy A, Alexander W, Soulika A, Blazar BR, Longo DL, Wiltrout RH, Murphy WJ. Out-of-Sequence Signal 3 Paralyzes Primary CD4(+) T-Cell-Dependent Immunity. Immunity 2015; 43:240-50. [PMID: 26231116 DOI: 10.1016/j.immuni.2015.06.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/13/2015] [Accepted: 06/29/2015] [Indexed: 01/20/2023]
Abstract
Primary T cell activation involves the integration of three distinct signals delivered in sequence: (1) antigen recognition, (2) costimulation, and (3) cytokine-mediated differentiation and expansion. Strong immunostimulatory events such as immunotherapy or infection induce profound cytokine release causing "bystander" T cell activation, thereby increasing the potential for autoreactivity and need for control. We show that during strong stimulation, a profound suppression of primary CD4(+) T-cell-mediated immune responses ensued and was observed across preclinical models and patients undergoing high-dose interleukin-2 (IL-2) therapy. This suppression targeted naive CD4(+) but not CD8(+) T cells and was mediated through transient suppressor of cytokine signaling-3 (SOCS3) inhibition of the STAT5b transcription factor signaling pathway. These events resulted in complete paralysis of primary CD4(+) T cell activation, affecting memory generation and induction of autoimmunity as well as impaired viral clearance. These data highlight the critical regulation of naive CD4(+) T cells during inflammatory conditions.
Collapse
Affiliation(s)
- Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Myriam N Bouchlaka
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Arta M Monjazeb
- Department of Radiation-Oncology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Marka Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA; The Oregon Clinic, Portland, OR 97220, USA
| | - Brendan D Curti
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA; The Oregon Clinic, Portland, OR 97220, USA
| | - Danice E C Wilkins
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kory A Alderson
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Can M Sungur
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Erik Ames
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Abhinav Reddy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Warren Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia
| | - Athena Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriner's Hospitals for Children - Northern California, Sacramento, CA 95817, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation and the University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Dan L Longo
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Robert H Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
80
|
Ali AK, Nandagopal N, Lee SH. IL-15-PI3K-AKT-mTOR: A Critical Pathway in the Life Journey of Natural Killer Cells. Front Immunol 2015; 6:355. [PMID: 26257729 PMCID: PMC4507451 DOI: 10.3389/fimmu.2015.00355] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022] Open
Abstract
Among numerous cytokines modulating natural killer (NK) cell function, interleukin 15 (IL-15) exerts a broad range of effect from development and homeostasis, to activation of mature NK cells during infection. Its significance is further highlighted by clinical trials in which IL-15 is being used to boost the proliferation and anti-tumor response of NK cells. Among the signal transduction pathways triggered by the engagement of IL-15 receptor with its ligand, the PI3K–AKT–mTOR pathway seems to be critical for the IL-15-mediated activation of NK cells, therefore being responsible for efficient anti-viral and anti-tumor responses. This review provides an overview of the role of IL-15 at multiple stages of NK cell life journey. Understanding the pathway by which IL-15 conveys critical signals for the generation of NK cells with efficient effector functions, in combination with established protocols for NK cell expansion ex vivo, will undoubtedly open new avenues for therapeutic applications for immunomodulation against infections and cancers.
Collapse
Affiliation(s)
- Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Neethi Nandagopal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
81
|
Grishkan IV, Tosi DM, Bowman MD, Harary M, Calabresi PA, Gocke AR. Antigenic Stimulation of Kv1.3-Deficient Th Cells Gives Rise to a Population of Foxp3-Independent T Cells with Suppressive Properties. THE JOURNAL OF IMMUNOLOGY 2015; 195:1399-1407. [PMID: 26150529 DOI: 10.4049/jimmunol.1403024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/12/2015] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS that has been linked with defects in regulatory T cell function. Therefore, strategies to selectively target pathogenic cells via enhanced regulatory T cell activity may provide therapeutic benefit. Kv1.3 is a voltage-gated potassium channel expressed on myelin-reactive T cells from MS patients. Kv1.3-knockout (KO) mice are protected from experimental autoimmune encephalomyelitis, an animal model of MS, and Kv1.3-KO Th cells display suppressive capacity associated with increased IL-10. In this article, we demonstrate that myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells exhibit a unique regulatory phenotype characterized by high CD25, CTLA4, pSTAT5, FoxO1, and GATA1 expression without a corresponding increase in Foxp3. These phenotypic changes result from increased signaling through IL-2R. Moreover, myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells can ameliorate experimental autoimmune encephalomyelitis following transfer to wild-type recipients in a manner that is partially dependent on IL-2R and STAT5 signaling. The present study identifies a population of Foxp3(-) T cells with suppressive properties that arises in the absence of Kv1.3 and enhances the understanding of the molecular mechanism by which these cells are generated. This increased understanding could contribute to the development of novel therapies for MS patients that promote heightened immune regulation.
Collapse
Affiliation(s)
- Inna V Grishkan
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Dominique M Tosi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Melissa D Bowman
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Maya Harary
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Anne R Gocke
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| |
Collapse
|
82
|
Dendritic Cell-Based Immunotherapy Treatment for Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2015; 2015:717530. [PMID: 26167495 PMCID: PMC4488155 DOI: 10.1155/2015/717530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/08/2015] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma and patients diagnosed with this disease had poor outcomes even treated with the combination of conventional treatment (surgery, chemotherapy, and radiation). Dendritic cells (DCs) are the most powerful antigen presenting cells and DC-based vaccination has the potential to target and eliminate GBM cells and enhance the responses of these cells to the existing therapies with minimal damage to the healthy tissues around them. It can enhance recognition of GBM cells by the patients' immune system and activate vast, potent, and long-lasting immune reactions to eliminate them. Therefore, this therapy can prolong the survival of GBM patients and has wide and bright future in the treatment of GBM. Also, the efficacy of this therapy can be strengthened in several ways at some degree: the manipulation of immune regulatory components or costimulatory molecules on DCs; the appropriate choices of antigens for loading to enhance the effectiveness of the therapy; regulation of positive regulators or negative regulators in GBM microenvironment.
Collapse
|
83
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
84
|
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75:14-24. [PMID: 26044597 DOI: 10.1016/j.cyto.2015.05.010] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these "type 2 immune response-related" cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
85
|
β3 subunit of Na,K ATPase regulates T cell activation with no involvement of Na,K ATPase activity. Immunobiology 2015; 220:634-40. [DOI: 10.1016/j.imbio.2014.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/18/2014] [Accepted: 11/22/2014] [Indexed: 11/24/2022]
|
86
|
Mahajan S, Hogan JK, Shlyakhter D, Oh L, Salituro FG, Farmer L, Hoock TC. VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune disease. J Pharmacol Exp Ther 2015; 353:405-14. [PMID: 25762693 DOI: 10.1124/jpet.114.221176] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytokines, growth factors, and other chemical messengers rely on a class of intracellular nonreceptor tyrosine kinases known as Janus kinases (JAKs) to rapidly transduce intracellular signals. A number of these cytokines are critical for lymphocyte development and mediating immune responses. JAK3 is of particular interest due to its importance in immune function and its expression, which is largely confined to lymphocytes, thus limiting the potential impact of JAK3 inhibition on nonimmune physiology. The aim of this study was to evaluate the potency and selectivity of the investigational JAK3 inhibitor VX-509 (decernotinib) [(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide] against JAK3 kinase activity and inhibition of JAK3-mediated signaling in vitro and JAK3-dependent physiologic processes in vivo. These results demonstrate that VX-509 potently inhibits JAK3 in enzyme assays (Ki = 2.5 nM + 0.7 nM) and cellular assays dependent on JAK3 activity (IC50 range, 50-170 nM), with limited or no measurable potency against other JAK isotypes or non-JAK kinases. VX-509 also showed activity in two animal models of aberrant immune function. VX-509 treatment resulted in dose-dependent reduction in ankle swelling and paw weight and improved paw histopathology scores in the rat collagen-induced arthritis model. In a mouse model of oxazolone-induced delayed-type hypersensitivity, VX-509 reduced the T cell-mediated inflammatory response in skin. These findings demonstrate that VX-509 is a selective and potent inhibitor of JAK3 in vitro and modulates proinflammatory response in models of immune-mediated diseases, such as collagen-induced arthritis and delayed-type hypersensitivity. The data support evaluation of VX-509 for treatment of patients with autoimmune and inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Sudipta Mahajan
- Departments of Integrated Biology and Chemistry, Vertex Pharmaceuticals, Boston, Massachusetts (S.M., J.K.H., D.S., L.F., T.C.H.); Sage Therapeutics, Cambridge, Massachusetts (F.G.S.); and Mallinckrodt Pharmaceuticals, Ellicott City, Maryland (L.O.)
| | - James K Hogan
- Departments of Integrated Biology and Chemistry, Vertex Pharmaceuticals, Boston, Massachusetts (S.M., J.K.H., D.S., L.F., T.C.H.); Sage Therapeutics, Cambridge, Massachusetts (F.G.S.); and Mallinckrodt Pharmaceuticals, Ellicott City, Maryland (L.O.)
| | - Dina Shlyakhter
- Departments of Integrated Biology and Chemistry, Vertex Pharmaceuticals, Boston, Massachusetts (S.M., J.K.H., D.S., L.F., T.C.H.); Sage Therapeutics, Cambridge, Massachusetts (F.G.S.); and Mallinckrodt Pharmaceuticals, Ellicott City, Maryland (L.O.)
| | - Luke Oh
- Departments of Integrated Biology and Chemistry, Vertex Pharmaceuticals, Boston, Massachusetts (S.M., J.K.H., D.S., L.F., T.C.H.); Sage Therapeutics, Cambridge, Massachusetts (F.G.S.); and Mallinckrodt Pharmaceuticals, Ellicott City, Maryland (L.O.)
| | - Francesco G Salituro
- Departments of Integrated Biology and Chemistry, Vertex Pharmaceuticals, Boston, Massachusetts (S.M., J.K.H., D.S., L.F., T.C.H.); Sage Therapeutics, Cambridge, Massachusetts (F.G.S.); and Mallinckrodt Pharmaceuticals, Ellicott City, Maryland (L.O.)
| | - Luc Farmer
- Departments of Integrated Biology and Chemistry, Vertex Pharmaceuticals, Boston, Massachusetts (S.M., J.K.H., D.S., L.F., T.C.H.); Sage Therapeutics, Cambridge, Massachusetts (F.G.S.); and Mallinckrodt Pharmaceuticals, Ellicott City, Maryland (L.O.)
| | - Thomas C Hoock
- Departments of Integrated Biology and Chemistry, Vertex Pharmaceuticals, Boston, Massachusetts (S.M., J.K.H., D.S., L.F., T.C.H.); Sage Therapeutics, Cambridge, Massachusetts (F.G.S.); and Mallinckrodt Pharmaceuticals, Ellicott City, Maryland (L.O.)
| |
Collapse
|
87
|
Liu Y, Lai Y, Li H, Liu J, Luo XY, Li MH, Yang T, Wang YT, Yang SX, Li LM, Zou Q, Chen ZL. A novel water-soluble benzothiazole derivative BD926 inhibits human activated T cell proliferation by down-regulating the STAT5 activation. Eur J Pharmacol 2015; 761:36-43. [PMID: 25935419 DOI: 10.1016/j.ejphar.2015.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/28/2015] [Accepted: 04/06/2015] [Indexed: 02/08/2023]
Abstract
Immunosuppressants are widely used for treatment of T cell-mediated autoimmune diseases and allogeneic graft rejection. However, because of the toxicity and tolerance of these drugs, novel immunosuppressants are urgently needed. We synthesized a series of novel water-soluble benzothiazole derivatives and found that BD926 [sodium 2-(benzo[d]thiazol-2-yl)-4,5,6,7-tetrahydro-2H-indazol-3-olate] had potent immunosuppressive activity. Treatment with BD926 significantly inhibited anti-CD3/anti-CD28 and alloantigen-induced human T cell proliferation as well as IL2-stimulated activated T cell proliferation in a dose-dependent manner in vitro. BD926 had no obvious cytotoxicity against human resting T cells, IL-4 treated activated T cells and fibroblast-like synoviocytes in our experimental conditions. Furthermore, BD926 induced cell cycle arrest at G0/G1 phase and inhibited the cyclin D3 and CDK 6 expression in activated T cells. BD926 inhibited the STAT5, but not Akt and p70S6K, phosphorylation in a dose-dependent manner in the IL-2-treated activated T cells. Interestingly, BD926 inhibited IFN-γ, IL-6 and IL-17, but not IL-2, IL-4 and IL-10, production in activated T cells. Finally, treatment with BD926 reduced delayed-type hypersensitivity in mice in a dose-dependent manner. Collectively, these data suggest that BD926 may be a lead compound for the design and development of new immunosuppressants for the intervention of allograft rejection and autoimmune diseases.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People׳s Republic of China; Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China; Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Yi Lai
- School of laboratory medicine, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Hua Li
- Cancer center, Chengdu Military General Hospital, Chengdu, Sichuan, People׳s Republic of China.
| | - Jin Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Xing-Yan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Min-Hui Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Tai Yang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Yan-Tang Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Shu-Xia Yang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Li-Mei Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Qiang Zou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, People׳s Republic of China.
| | - Zheng-Liang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People׳s Republic of China.
| |
Collapse
|
88
|
Doucette CD, Greenshields AL, Liwski RS, Hoskin DW. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways. Toxicol Lett 2015; 234:1-12. [DOI: 10.1016/j.toxlet.2015.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/26/2015] [Accepted: 01/31/2015] [Indexed: 02/03/2023]
|
89
|
Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH, Akbari O. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 2015; 42:538-51. [PMID: 25769613 DOI: 10.1016/j.immuni.2015.02.007] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/12/2014] [Accepted: 12/24/2014] [Indexed: 11/27/2022]
Abstract
Allergic asthma is caused by Th2-cell-type cytokines in response to allergen exposure. Type 2 innate lymphoid cells (ILC2s) are a newly identified subset of immune cells that, along with Th2 cells, contribute to the pathogenesis of asthma by producing copious amounts of IL-5 and IL-13, which cause eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. ILC2s express ICOS, a T cell costimulatory molecule with a currently unknown function. Here we showed that a lack of ICOS on murine ILC2s and blocking the ICOS:ICOS-ligand interaction in human ILC2s reduced AHR and lung inflammation. ILC2s expressed both ICOS and ICOS-ligand, and the ICOS:ICOS-ligand interaction promoted cytokine production and survival in ILC2s through STAT5 signaling. Thus, ICOS:ICOS-ligand signaling pathway is critically involved in ILC2 function and homeostasis.
Collapse
Affiliation(s)
- Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Nisheel Patel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Ishwarya Sankaranarayanan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Yuzo Suzuki
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Diamanda Rigas
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Pejman Soroosh
- Janssen Research and Development, San Diego, California 92121, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA.
| |
Collapse
|
90
|
Hatting M, Spannbauer M, Peng J, Al Masaoudi M, Sellge G, Nevzorova YA, Gassler N, Liedtke C, Cubero FJ, Trautwein C. Lack of gp130 expression in hepatocytes attenuates tumor progression in the DEN model. Cell Death Dis 2015; 6:e1667. [PMID: 25741592 PMCID: PMC4385909 DOI: 10.1038/cddis.2014.590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Chronic liver inflammation is a crucial event in the development and growth of hepatocellular carcinoma (HCC). Compelling evidence has shown that interleukin-6 (IL-6)/gp130-dependent signaling has a fundamental role in liver carcinogenesis. Thus, in the present study we aimed to investigate the role of gp130 in hepatocytes for the initiation and progression of HCC. Hepatocyte-specific gp130 knockout mice (gp130(Δhepa)) and control animals (gp130(f/f)) were treated with diethylnitrosamine (DEN). The role of gp130 for acute injury (0-144 h post treatment), tumor initiation (24 weeks) and progression (40 weeks) was analyzed. After acute DEN-induced liver injury we observed a reduction in the inflammatory response in gp130(Δhepa) animals as reflected by decreased levels of IL-6 and oncostatin M. The loss of gp130 slightly attenuated the initiation of HCC 24 weeks after DEN treatment. In contrast, 40 weeks after DEN treatment, male and female gp130(Δhepa) mice showed smaller tumors and reduced tumor burden, indicating a role for hepatocyte-specific gp130 expression during HCC progression. Oxidative stress and DNA damage were substantially and similarly increased by DEN in both gp130(f/f) and gp130(Δhepa) animals. However, gp130(Δhepa) livers revealed aberrant STAT5 activation and decreased levels of transforming growth factor-β (TGFβ), pSMAD2/3 and SMAD2, whereas phosphorylation of STAT3 at Tyr705 and Ser727 was absent. Our results indicate that gp130 deletion in hepatocytes reduces progression, but not HCC initiation in the DEN model. Gp130 deletion resulted in STAT3 inhibition but increased STAT5 activation and diminished TGF-dependent signaling. Hence, blocking gp130 in hepatocytes might be an interesting therapeutic target to inhibit the growth of HCC.
Collapse
Affiliation(s)
- M Hatting
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - M Spannbauer
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - J Peng
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - M Al Masaoudi
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - G Sellge
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Y A Nevzorova
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - N Gassler
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - C Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - F J Cubero
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - C Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
91
|
Abstract
Induction of specific immune tolerance to grafts remains the sought-after standard following transplantation. Defined by expression of the Foxp3 (forkhead box protein 3) transcription factor, the regulatory T-cell (Treg) lineage has been noted to exert potent immunoregulatory functions that contribute to specific graft tolerance. In this review, we discuss the known signals and pathways which govern Treg development, both in the thymus and in peripheral sites, as well as lineage maintenance and homeostasis. In particular, we highlight the roles of T-cell receptor signaling, CD28 costimulation, and signals through phosphatidyl inositol 3-kinase (PI3K) and related metabolic pathways in multiple aspects of Treg biology.
Collapse
Affiliation(s)
- Alexandria Huynh
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
92
|
|
93
|
Abstract
Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte.
Collapse
Affiliation(s)
- Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 408 East 69th Street, ZRC-1402, New York, NY, 10065, USA.
| |
Collapse
|
94
|
Côté-Maurais G, Bernier J. Silver and fullerene nanoparticles’ effect on interleukin-2-dependent proliferation of CD4 (+) T cells. Toxicol In Vitro 2014; 28:1474-81. [DOI: 10.1016/j.tiv.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/17/2014] [Accepted: 08/16/2014] [Indexed: 01/07/2023]
|
95
|
Zhao L, Chu H, Xu X, Yue J, Li H, Wang M. Association between single-nucleotide polymorphism in CISH gene and susceptibility to tuberculosis in Chinese Han population. Cell Biochem Biophys 2014; 68:529-34. [PMID: 23949851 DOI: 10.1007/s12013-013-9733-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cytokine-inducible SRC homology 2 domain (CISH) gene is up-regulated by IL-2 in response to infection, and inhibits microbial infection. The objective of the present study was to examine whether genetic variants of CISH (SNPs) are associated with increased susceptibility to tuberculosis (TB) in individuals of Chinese Han ethnicity. We sequenced five previously identified SNPs of CISH in patients with TB or healthy controls. Three of the SNPs, rs148685070 [position -639; C/C], rs414171 [position -292; A/T], and rs6768300 [position -163; C/G]) are located in the promoter region, while the fourth (rs2239751 [position +1320; A/C]) near the translation start site, and the fifth (rs622502 [position +3415; C/G]) in the third intron. The AA genotypes of the SNPs rs2239751 and rs414171 were significantly associated with TB. Multivariate logistic regression analysis demonstrated that subjects with the rs414171 AA genotype were more likely to have TB than those with the AT genotype. By contrast, we did not observe genetic variants of the rs148685070 SNP. In conclusion, two genetic variants in CISH gene appear to increase susceptibility to TB in Chinese Han population.
Collapse
Affiliation(s)
- Lan Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | | | | | | | | | | |
Collapse
|
96
|
Calcium mobilization is both required and sufficient for initiating chromatin decondensation during activation of peripheral T-cells. Mol Immunol 2014; 63:540-9. [PMID: 25453467 DOI: 10.1016/j.molimm.2014.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/06/2014] [Accepted: 10/17/2014] [Indexed: 01/10/2023]
Abstract
Antigen engagement of the T-cell receptor (TCR) induces a rapid and dramatic decondensation of chromatin that is necessary for T-cell activation. This decondensation makes T-cells competent to respond to interleukin-2 providing a mechanism to ensure clonotypic proliferation during an immune response. Using murine T-cells, we investigated the mechanism by which TCR signaling can initiate chromatin decondensation, focusing on the role of calcium mobilization. During T-cell activation, calcium is first released from intracellular stores, followed by influx of extracellular calcium via store operated calcium entry. We show that mobilization of intracellular calcium is required for TCR-induced chromatin decondensation. However, the decondensation is not dependent on the activity of the downstream transcription factor NFAT. Furthermore, we show that the influx of extracellular calcium is dispensable for initiating chromatin decondensation. Finally, we show that mobilization of calcium from intracellular stores is sufficient to induce decondensation, independent of TCR engagement. Collectively, our data suggest that chromatin decondensation in peripheral T-cells is controlled by modulating intracellular calcium levels.
Collapse
|
97
|
Durham NM, Nirschl CJ, Jackson CM, Elias J, Kochel CM, Anders RA, Drake CG. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLoS One 2014; 9:e109080. [PMID: 25372844 PMCID: PMC4220939 DOI: 10.1371/journal.pone.0109080] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/08/2014] [Indexed: 12/17/2022] Open
Abstract
Lymphocyte Activation Gene – 3 (LAG-3) is an immune checkpoint molecule that regulates both T-cell activation and homeostasis. However, the molecular mechanisms underlying LAG-3’s function are generally unknown. Using a model in which LAG-3 blockade or absence reliably augmented homeostatic proliferation in vivo, we found that IL-2 and STAT5 are critical for LAG-3 function. Similarly, LAG-3 blockade was ineffective in the absence of regulatory T-cells (Treg), suggesting an important role for LAG-3 in either the responsiveness of conventional T-cells (Tconv) to regulation, or a relative defect in the ability of LAG-3 KO regulatory T-cells (Treg) to suppress the proliferation of Tconv. In this model, LAG-3 KO Treg suppressed proliferation in a manner fairly similar to wild-type (WT) Treg, but LAG-3 KO Tconv were relatively resistant to suppression. Further studies also identified a role for LAG-3 in the induction/expansion of Treg. Finally, we found that LAG-3 blockade (or knockout) led to a relative skewing of naïve CD4 T-cells toward a TH1 phenotype both in vitro and in in vivo. Together, these data suggest that LAG-3 expression on Tconv cells makes them more susceptible to Treg based suppression, and also regulates the development of a TH1 T-cell response.
Collapse
Affiliation(s)
- Nicholas M Durham
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher J Nirschl
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher M Jackson
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jimmy Elias
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina M Kochel
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert A Anders
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Charles G Drake
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
98
|
Zloza A, Kim DW, Broucek J, Schenkel JM, Kaufman HL. High-dose IL-2 induces rapid albumin uptake by endothelial cells through Src-dependent caveolae-mediated endocytosis. J Interferon Cytokine Res 2014; 34:915-9. [PMID: 24963699 DOI: 10.1089/jir.2013.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
High-dose interleukin-2 (HDIL2) treatment of patients with metastatic melanoma and renal cell carcinoma is associated with durable responses, but therapy is accompanied by significant toxicity related to vascular leak syndrome (VLS). Currently, the cause of VLS is not well defined; however, based on the role of endothelial cell (EC) permeability in VLS and the commonly observed hypoalbuminemia in patients receiving HDIL2 therapy, we established an in vitro approach utilizing primary human pulmonary microvascular ECs to monitor the effect of HDIL2 therapy on albumin uptake. We found that HDIL2 treatment of ECs results in albumin colocalization with caveolin-1 leading to albumin uptake by ECs. This albumin uptake occurs through caveolae-mediated but not clathrin-mediated endocytosis and is abrogated with inhibition of the Src tyrosine kinase pathway. These findings provide insight into how IL-2 induces VLS and may help identify potential targets for prevention of toxicity without affecting the therapeutic activity of HDIL2.
Collapse
Affiliation(s)
- Andrew Zloza
- 1 Department of Immunology/Microbiology, Rush University Medical Center , Chicago, Illinois
| | | | | | | | | |
Collapse
|
99
|
Schepers H, Wierenga ATJ, Vellenga E, Schuringa JJ. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAKSTAT 2014; 1:13-22. [PMID: 24058747 PMCID: PMC3670129 DOI: 10.4161/jkst.19316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/07/2023] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might exhaust the stem cell pool, while a shift toward self-renewal might mark the onset of leukemic transformation. A number of transcription factors have been proposed to be critically involved in governing stem cell fate and lineage commitment, such as Hox transcription factors, c-Myc, Notch1, β-catenin, C/ebpα, Pu.1 and STAT5. It is therefore no surprise that dysregulation of these transcription factors can also contribute to the development of leukemias. This review will discuss the role of STAT5 in both normal and leukemic hematopoietic stem cells as well as mechanisms by which STAT5 might contribute to the development of human leukemias.
Collapse
Affiliation(s)
- Hein Schepers
- Department of Experimental Hematology; University Medical Center Groningen; Groningen, The Netherlands ; Department of Stem Cell Biology; University Medical Center Groningen; Groningen, The Netherlands
| | | | | | | |
Collapse
|
100
|
Everson RG, Jin RM, Wang X, Safaee M, Scharnweber R, Lisiero DN, Soto H, Liau LM, Prins RM. Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2014; 2:10. [PMID: 24883189 PMCID: PMC4039989 DOI: 10.1186/2051-1426-2-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022] Open
Abstract
Background Immunotherapeutic approaches, such as dendritic cell (DC) vaccination, have emerged as promising strategies in the treatment of glioblastoma. Despite their promise, however, the absence of objective biomarkers and/or immunological monitoring techniques to assess the clinical efficacy of immunotherapy still remains a primary limitation. To address this, we sought to identify a functional biomarker for anti-tumor immune responsiveness associated with extended survival in glioblastoma patients undergoing DC vaccination. Methods 28 patients were enrolled and treated in two different Phase 1 DC vaccination clinical trials at UCLA. To assess the anti-tumor immune response elicited by therapy, we studied the functional responsiveness of pre- and post-vaccination peripheral blood lymphocytes (PBLs) to the immunostimulatory cytokines interferon-gamma (IFN-γ) and interleukin-2 (IL-2) in 21 of these patients for whom we had adequate material. Immune responsiveness was quantified by measuring downstream phosphorylation events of the transcription factors, STAT-1 and STAT-5, via phospho-specific flow cytometry. Results DC vaccination induced a significant decrease in the half-maximal concentration (EC-50) of IL-2 required to upregulate pSTAT-5 specifically in CD3+CD8+ T lymphocytes (p < 0.045). Extended survival was also associated with an increased per cell phosphorylation of STAT-5 in cytotoxic T-cells following IL-2 stimulation when the median post/pre pSTAT-5 ratio was used to dichotomize the patients (p = 0.0015, log-rank survival; hazard ratio = 0.1834, p = 0.018). Patients whose survival was longer than two years had a significantly greater pSTAT-5 ratio (p = 0.015), but, contrary to our expectations, a significantly lower pSTAT-1 ratio (p = 0.038). Conclusions Our results suggest that monitoring the pSTAT signaling changes in PBL may provide a functional immune monitoring measure predictive of clinical efficacy in DC-vaccinated patients.
Collapse
Affiliation(s)
- Richard G Everson
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Richard M Jin
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Safaee
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rudi Scharnweber
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dominique N Lisiero
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Horacio Soto
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Linda M Liau
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robert M Prins
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|