51
|
Ciofani M, Schmitt TM, Ciofani A, Michie AM, Cuburu N, Aublin A, Maryanski JL, Zúñiga-Pflücker JC. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 172:5230-9. [PMID: 15100261 DOI: 10.4049/jimmunol.172.9.5230] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first checkpoint during T cell development, known as beta selection, requires the successful rearrangement of the TCR-beta gene locus. Notch signaling has been implicated in various stages during T lymphopoiesis. However, it is unclear whether Notch receptor-ligand interactions are necessary during beta selection. Here, we show that pre-TCR signaling concurrent with Notch receptor and Delta-like-1 ligand interactions are required for the survival, proliferation, and differentiation of mouse CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. Furthermore, we address the minimal signaling requirements underlying beta selection and show a hierarchical positioning of key proximal signaling molecules. Collectively, our results demonstrate an essential role for Notch receptor-ligand interactions in enabling the autonomous signaling capacity of the pre-TCR complex.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Bender TP, Kremer CS, Kraus M, Buch T, Rajewsky K. Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol 2004; 5:721-9. [PMID: 15195090 DOI: 10.1038/ni1085] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 04/20/2004] [Indexed: 01/12/2023]
Abstract
The transcription factor c-Myb is expressed throughout T cell development in the thymus. However, little is understood about c-Myb function because of the embryonic lethality of traditional Myb-null mutations. Using tissue-specific deletion to abrogate c-Myb expression at distinct stages of T cell development, we identify three points at which c-Myb activity is required for normal T cell differentiation: transition through the double-negative 3 stage, survival of preselection CD4(+)CD8(+) thymocytes, and differentiation of CD4 thymocytes. Thus, c-Myb is essential at several stages during T cell development in the thymus.
Collapse
Affiliation(s)
- Timothy P Bender
- The Department of Microbiology, PO Box 800734, University of Virginia Health System, Charlottesville, Virginia 22908-0734, USA.
| | | | | | | | | |
Collapse
|
53
|
Perez de Castro I, Bivona TG, Philips MR, Pellicer A. Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol Cell Biol 2004; 24:3485-96. [PMID: 15060167 PMCID: PMC381594 DOI: 10.1128/mcb.24.8.3485-3496.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ras activation is critical for T-cell development and function, but the specific roles of the different Ras isoforms in T-lymphocyte function are poorly understood. We recently reported T-cell receptor (TCR) activation of ectopically expressed H-Ras on the the Golgi apparatus of T cells. Here we studied the isoform and subcellular compartment specificity of Ras signaling in Jurkat T cells. H-Ras was expressed at much lower levels than the other Ras isoforms in Jurkat and several other T-cell lines. Glutathione S-transferase-Ras-binding domain (RBD) pulldown assays revealed that, although high-grade TCR stimulation and phorbol ester activated both N-Ras and K-Ras, low-grade stimulation of the TCR resulted in specific activation of N-Ras. Surprisingly, whereas ectopically expressed H-Ras cocapped with the TCRs in lipid microdomains of the Jurkat plasma membrane, N-Ras did not. Live-cell imaging of Jurkat cells expressing green fluorescent protein-RBD, a fluorescent reporter of GTP-bound Ras, revealed that N-Ras activation occurs exclusively on the Golgi apparatus in a phospholipase Cgamma- and RasGRP1-dependent fashion. The specificity of N-Ras signaling downstream of low-grade TCR stimulation was dependent on the monoacylation of the hypervariable membrane targeting sequence. Our data show that, in contrast to fibroblasts stimulated with growth factors in which all three Ras isoforms become activated and signaling occurs at both the plasma membrane and Golgi apparatus, Golgi-associated N-Ras is the critical Ras isoform and intracellular pool for low-grade TCR signaling in Jurkat T cells.
Collapse
Affiliation(s)
- Ignacio Perez de Castro
- Department of Pathology and New York University Cancer Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
54
|
Hozumi K, Negishi N, Suzuki D, Abe N, Sotomaru Y, Tamaoki N, Mailhos C, Ish-Horowicz D, Habu S, Owen MJ. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 2004; 5:638-44. [PMID: 15146182 DOI: 10.1038/ni1075] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 04/06/2004] [Indexed: 01/02/2023]
Abstract
Notch receptors and their ligands contribute to many developmental systems, but it is not apparent how they function after birth, as their null mutants develop severe defects during embryogenesis. Here we used the Cre-loxP system to delete the Delta-like 1 gene (Dll1) after birth and demonstrated the complete disappearance of splenic marginal zone B cells in Dll1-null mice. In contrast, T cell development was unaffected. These results demonstrated that Dll1 was dispensable as a ligand for Notch1 at the branch point of T cell-B cell development but was essential for the generation of marginal zone B cells. Thus, Notch signaling is essential for lymphocyte development in vivo, but there is a redundancy of Notch-Notch ligand signaling that can drive T cell development within the thymus.
Collapse
Affiliation(s)
- Katsuto Hozumi
- Department of Immunology, and Center for Embryogenesis and Organogenesis, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Canela A, Martín-Caballero J, Flores JM, Blasco MA. Constitutive expression of tert in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-Tert mice. Mol Cell Biol 2004; 24:4275-93. [PMID: 15121848 PMCID: PMC400466 DOI: 10.1128/mcb.24.10.4275-4293.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 11/23/2003] [Accepted: 01/20/2004] [Indexed: 12/25/2022] Open
Abstract
Here we describe a new mouse model with constitutive expression of the catalytic subunit of telomerase (Tert) targeted to thymocytes and peripheral T cells (Lck-Tert mice). Two independent Lck-Tert mouse lines showed higher incidences of spontaneous T-cell lymphoma than the corresponding age-matched wild-type controls, indicating that constitutive expression of Tert promotes lymphoma. Interestingly, T-cell lymphomas in Lck-Tert mice were more disseminated than those in wild-type controls and affected both lymphoid and nonlymphoid tissues, while nonlymphoid tissues were never affected with lymphoma in age-matched wild-type controls. Importantly, these roles of Tert constitutive expression in promoting tumor progression and dissemination were independent of the role of telomerase in telomere length maintenance, since telomere length distributions on a single-cell basis were identical in Lck-Tert and wild-type thymocytes. Finally, Tert constitutive expression did not interfere with telomere capping in Lck-Tert primary thymocytes, although it resulted in greater chromosomal instability upon gamma irradiation in Lck-Tert primary lymphocytes than in controls, suggesting that Tert overexpression may interfere with the cellular response to DNA damage.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Damage
- DNA, Complementary/genetics
- DNA-Binding Proteins
- Disease Models, Animal
- Gene Expression
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- T-Lymphocytes/metabolism
- Telomerase/genetics
- Telomere/genetics
Collapse
Affiliation(s)
- Andrés Canela
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
| | | | | | | |
Collapse
|
56
|
Zamoyska R, Lovatt M. Signalling in T-lymphocyte development: integration of signalling pathways is the key. Curr Opin Immunol 2004; 16:191-6. [PMID: 15023412 DOI: 10.1016/j.coi.2004.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
alpha beta T-cell development is restricted to the thymus. Interactions between developing lymphocytes and the thymic stroma, together with bone-marrow-derived monocytes and dendritic cells, are critical for proper development of the T-cell lineage. The developmental sequence through which T-cell progenitors pass on their way to maturity is well established, and can be followed by the sequential acquisition and/or removal of cell surface molecules. Using the combination of modern genetic manipulations, such as transgenesis, gene ablation (knockouts) and targeted mutagenesis (knock-ins), with the ever-improving conditional and inducible manipulation of gene expression, we are beginning to gain an understanding of how intercellular interactions can be relayed via intracellular signalling cascades to bring about nuclear re-organisation and the differentiated mature CD4(+) and CD8(+) subpopulations.
Collapse
Affiliation(s)
- Rose Zamoyska
- Molecular Immunology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
| | | |
Collapse
|
57
|
Fujikawa K, Miletic AV, Alt FW, Faccio R, Brown T, Hoog J, Fredericks J, Nishi S, Mildiner S, Moores SL, Brugge J, Rosen FS, Swat W. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. ACTA ACUST UNITED AC 2004; 198:1595-608. [PMID: 14623913 PMCID: PMC2194126 DOI: 10.1084/jem.20030874] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Vav family of Rho guanine nucleotide exchange factors is thought to orchestrate signaling events downstream of lymphocyte antigen receptors. Elucidation of Vav function has been obscured thus far by the expression of three highly related family members. We generated mice lacking all Vav family proteins and show that Vav-null mice produce no functional T or B cells and completely fail to mount both T-dependent and T-independent humoral responses. Whereas T cell development is blocked at an early stage in the thymus, immature B lineage cells accumulate in the periphery but arrest at a late “transitional” stage. Mechanistically, we show that the Vav family is crucial for both TCR and B cell receptor (BCR)–induced Ca2+ signaling and, surprisingly, is only required for mitogen-activated protein kinase (MAPK) activation in developing and mature T cells but not in B cells. Thus, the abundance of immature B cells generated in Vav-null mice may be due to intact Ras/MAPK signaling in this lineage. Although the expression of Vav1 alone is sufficient for normal lymphocyte development, our data also reveal lineage-specific roles for Vav2 and Vav3, with the first demonstration that Vav3 plays a critical compensatory function in T cells. Together, we define an essential role for the entire Vav protein family in lymphocyte development and activation and establish the limits of functional redundancy both within this family and between Vav and other Rho–guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- Keiko Fujikawa
- 660 S. Euclid Ave., Dept. of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tretter T, Ross AE, Dordai DI, Desiderio S. Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. ACTA ACUST UNITED AC 2003; 198:1863-73. [PMID: 14662906 PMCID: PMC2194155 DOI: 10.1084/jem.20030729] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During B lymphoid ontogeny, assembly of the pre–B cell receptor (BCR) is a principal developmental checkpoint at which several Src-related kinases may play redundant roles. Here the Src-related kinase Blk is shown to effect functions associated with the pre-BCR. B lymphoid expression of an active Blk mutant caused proliferation of B progenitor cells and enhanced responsiveness of these cells to interleukin 7. In mice lacking a functional pre-BCR, active Blk supported maturation beyond the pro–B cell stage, suppressed VH to DJH rearrangement, relieved selection for productive heavy chain rearrangement, and stimulated κ rearrangement. These alterations were accompanied by tyrosine phosphorylation of immunoglobulin β and Syk, as well as changes in gene expression consistent with developmental maturation. Thus, sustained activation of Blk induces responses normally associated with the pre-BCR.
Collapse
Affiliation(s)
- Theresa Tretter
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
59
|
Dudley DD, Sekiguchi J, Zhu C, Sadofsky MJ, Whitlow S, DeVido J, Monroe RJ, Bassing CH, Alt FW. Impaired V(D)J recombination and lymphocyte development in core RAG1-expressing mice. ACTA ACUST UNITED AC 2003; 198:1439-50. [PMID: 14581608 PMCID: PMC2194253 DOI: 10.1084/jem.20030627] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RAG1 and RAG2 are the lymphocyte-specific components of the V(D)J recombinase. In vitro analyses of RAG function have relied on soluble, highly truncated “core” RAG proteins. To identify potential functions for noncore regions and assess functionality of core RAG1 in vivo, we generated core RAG1 knockin (RAG1c/c) mice. Significant B and T cell numbers are generated in RAG1c/c mice, showing that core RAG1, despite missing ∼40% of the RAG1 sequence, retains significant in vivo function. However, lymphocyte development and the overall level of V(D)J recombination are impaired at the progenitor stage in RAG1c/c mice. Correspondingly, there are reduced numbers of peripheral RAG1c/c B and T lymphocytes. Whereas normal B lymphocytes undergo rearrangement of both JH loci, substantial levels of germline JH loci persist in mature B cells of RAG1c/c mice, demonstrating that DJH rearrangement on both IgH alleles is not required for developmental progression to the stage of VH to DJH recombination. Whereas VH to DJH rearrangements occur, albeit at reduced levels, on the nonselected alleles of RAG1c/c B cells that have undergone D to JH rearrangements, we do not detect VH to DH rearrangements in RAG1c/c B cells that retain germline JH alleles. We discuss the potential implications of these findings for noncore RAG1 functions and for the ordered assembly of VH, DH, and JH segments.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital, The Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Marklund U, Lightfoot K, Cantrell D. Intracellular Location and Cell Context-Dependent Function of Protein Kinase D. Immunity 2003; 19:491-501. [PMID: 14563314 DOI: 10.1016/s1074-7613(03)00260-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein kinase D (PKD) is an antigen receptor-activated serine kinase localized at either the plasma membrane or the cytosol of lymphocytes. To probe PKD function at these different locations, transgenesis was used to target active PKD either to the membrane or cytosol of pre-T cells. In recombinase gene null pre-T cells, membrane and cytosolic active PKD both induced differentiation reminiscent of beta selection: downregulation of CD25 and upregulation of CD2 and CD5. Active PKDs also induced pre-T cell proliferation, although this response was not universal to all thymocyte subsets. There were two striking differences between the actions of the differentially localized PKDs. Membrane but not cytosolic PKD could induce expression of CD8 and CD4 in recombinase null mice; cytosolic but not membrane PKD suppressed Vbeta to DJbeta rearrangements of the TCRbeta chain locus in wild-type T cells. PKD function is thus determined by its intracellular location and cell context.
Collapse
Affiliation(s)
- Ulrica Marklund
- Lymphocyte Activation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
61
|
Thompson LF, Vaughn JG, Laurent AB, Blackburn MR, Van De Wiele CJ. Mechanisms of apoptosis in developing thymocytes as revealed by adenosine deaminase-deficient fetal thymic organ cultures. Biochem Pharmacol 2003; 66:1595-9. [PMID: 14555239 DOI: 10.1016/s0006-2952(03)00530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. dATP is a candidate toxic metabolite because its concentration in RBCs of ADA-deficient patients correlates with the severity of disease. Murine fetal thymic organ culture (FTOC) under ADA-deficient conditions can be used as a model system to investigate the biochemical mechanism responsible for the inhibition of thymopoiesis. In ADA-deficient FTOCs initiated at day 15 of gestation, thymocyte development was arrested at the CD4(-)CD8(-)CD44(lo)CD25(+) to CD4(-)CD8(-)CD44(lo)CD25(-) transition. Apoptosis appeared to be involved because the cultures could be rescued by the pan-caspase inhibitor zVADfmk, a Bcl-2 transgene, or deletion of apoptotic protease activating factor-1. As in ADA-deficient patients, dATP was also elevated in ADA-deficient FTOCs. dATP levels were normalized and thymocyte development was rescued in cultures treated with an inhibitor of adenosine kinase, the enzyme that phosphorylates deoxyadenosine to dAMP. zVADfmk also prevented the accumulation of dATP in ADA-deficient FTOCs, suggesting that deoxyadenosine was derived from thymocytes undergoing apoptosis as a consequence of failing the beta selection checkpoint. In contrast, dATP levels remained elevated in ADA-deficient FTOCs with fetal thymuses from Bcl-2 transgenic mice. These data suggest that thymocyte apoptosis as a consequence of failing developmental checkpoints involves one or more caspases that are not regulated by Bcl-2.
Collapse
Affiliation(s)
- Linda F Thompson
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE, 13th Street, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
62
|
Senoo M, Wang L, Suzuki D, Takeda N, Shinkai Y, Habu S. Increase of TCR V beta accessibility within E beta regulatory region influences its recombination frequency but not allelic exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:829-35. [PMID: 12847251 DOI: 10.4049/jimmunol.171.2.829] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Seventy percent of the murine TCRbeta locus (475 kb) was deleted to generate a large deleted TCRbeta (beta(LD)) allele to investigate a possible linkage between germline transcription, recombination frequency, and allelic exclusion of the TCR Vbeta genes. In these beta(LD/LD) mice, the TCRbeta gene locus contained only four Vbeta genes at the 5' side of the locus, and consequently, the Vbeta10 gene was located in the original Dbeta1-Jbeta1cluster within the Ebeta regulatory region. We showed that the frequency of recombination and expression of the Vbeta genes are strongly biased to Vbeta10 in these mutant mice even though the proximity of the other three 5'Vbeta genes was also greatly shortened toward the Dbeta-Jbeta cluster and the Ebeta enhancer. Accordingly, the germline transcription of the Vbeta10 gene in beta(LD/LD) mice was exceptionally enhanced in immature double negative thymocytes compared with that in wild-type mice. During double negative-to-double positive transition of thymocytes, the level of Vbeta10 germline transcription was prominently increased in beta(LD/LD) recombination activating gene 2-deficient mice receiving anti-CD3epsilon Ab in vivo. Interestingly, however, despite the increased accessibility of the Vbeta10 gene in terms of transcription, allelic exclusion of this Vbeta gene was strictly maintained in beta(LD/LD) mice. These results provide strong evidence that increase of Vbeta accessibility influences frequency but not allelic exclusion of the TCR Vbeta rearrangement if the Vbeta gene is located in the Ebeta regulatory region.
Collapse
MESH Headings
- Alleles
- Animals
- Cell Line
- Clone Cells
- Enhancer Elements, Genetic/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Targeting
- Genes, T-Cell Receptor beta
- Germ-Line Mutation/immunology
- Hybridomas
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombination, Genetic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription, Genetic/immunology
- Tumor Cells, Cultured
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Makoto Senoo
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
63
|
Kelly JA, Spolski R, Kovanen PE, Suzuki T, Bollenbacher J, Pise-Masison CA, Radonovich MF, Lee S, Jenkins NA, Copeland NG, Morse HC, Leonard WJ. Stat5 synergizes with T cell receptor/antigen stimulation in the development of lymphoblastic lymphoma. J Exp Med 2003; 198:79-89. [PMID: 12835478 PMCID: PMC2196089 DOI: 10.1084/jem.20021548] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are latent transcription factors that mediate a wide range of actions induced by cytokines, interferons, and growth factors. We now report the development of thymic T cell lymphoblastic lymphomas in transgenic mice in which Stat5a or Stat5b is overexpressed within the lymphoid compartment. The rate of lymphoma induction was markedly enhanced by immunization or by the introduction of TCR transgenes. Remarkably, the Stat5 transgene potently induced development of CD8+ T cells, even in mice expressing a class II-restricted TCR transgene, with resulting CD8+ T cell lymphomas. These data demonstrate the oncogenic potential of dysregulated expression of a STAT protein that is not constitutively activated, and that TCR stimulation can contribute to this process.
Collapse
Affiliation(s)
- John A Kelly
- Laboratory of Molecular Immunology, National Heart and Blood Institute, National Cancer Institute, Bethesda, MD 20892-1674, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Guanine nucleotide binding proteins rapidly cycle between a guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound state, and they operate as binary switches that control cell activation in response to environmental cues. GTPases adopt different conformations when binding GTP vs. GDP. The GTP-bound state is generally considered to be the active conformation that allows GTPases to interact with downstream effectors and thereby initiate downstream signaling pathways, which regulate many important biological processes. Many members of the Ras family of GTPases, notably Ras and Rap1A, and the Rho family GTPases, Cdc42Hs, Rac1, Rac2 and RhoA, are important components of signal transduction pathways used by antigen receptors, costimulatory, cytokine and chemokine receptors to regulate the immune response. This review discusses current knowledge and ideas about the regulation and function of these GTPases in lymphocytes.
Collapse
Affiliation(s)
- Doreen Ann Cantrell
- Division of Cell Biology and Immunology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, UK.
| |
Collapse
|
65
|
Akamatsu Y, Monroe R, Dudley DD, Elkin SK, Gartner F, Talukder SR, Takahama Y, Alt FW, Bassing CH, Oettinger MA. Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice. Proc Natl Acad Sci U S A 2003; 100:1209-14. [PMID: 12531919 PMCID: PMC298752 DOI: 10.1073/pnas.0237043100] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2002] [Indexed: 01/22/2023] Open
Abstract
The recombination-activating gene (RAG)1 and RAG2 proteins comprise the lymphocyte-specific components of the V(D)J recombinase and are required for the assembly of antigen-receptor variable-region genes. A mutant truncated RAG2 protein ("core" RAG2) lacking the C-terminal 144 amino acids, together with core RAG1, is able to mediate the basic biochemical steps required for V(D)J recombination in vitro and in transfected cell lines. Here we examine the effect of replacing the endogenous RAG2 locus in mice with core RAG2. These mice generate substantial numbers of B and T cells, demonstrating that the core RAG2 protein retains significant in vivo function. However, core RAG2 mice display a reduction in the total number of B and T cells, reflecting impaired lymphocyte development at the progenitor stage associated with reduced chromosomal V(D)J recombination. We discuss potential roles of the RAG2 C terminus in mediating rearrangement of endogenous antigen-receptor loci.
Collapse
Affiliation(s)
- Yoshiko Akamatsu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L. Thymic selection revisited: how essential is it? Immunol Rev 2003; 191:62-78. [PMID: 12614352 DOI: 10.1034/j.1600-065x.2003.00010.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development represents one of the best studied paradigms of mammalian development. Lymphoid committed precursors enter the thymus and the Notch1 receptor plays an essential role in committing them to the T cell lineages. The pre-T cell receptor (TCR), as an autonomous cell signaling receptor, commits cells to the alphabeta lineage while its rival, the gammadeltaTCR, is involved in generating the gammadelta lineage of T cells. Positive and negative selection of immature alphabetaTCR-expressing cells are essential mechanisms for generating mature T cells, committing them to the CD4 and CD8 lineages and avoiding autoimmunity. Additional lineages of alphabetaT cells, such as the natural killer T cell lineage and the CD25+ regulatory T cell lineage, are formed when the alphabetaTCR encounters specific ligands in suitable microenvironments. Thus, positive selection and receptor-instructed lineage commitment represent a hallmark of the thymus. Ectopically expressed organ-specific antigens contribute to thymic self-nonself discrimination, which represents an essential feature for the evolutionary fitness of mammalian species.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Norment AM, Bogatzki LY, Klinger M, Ojala EW, Bevan MJ, Kay RJ. Transgenic expression of RasGRP1 induces the maturation of double-negative thymocytes and enhances the production of CD8 single-positive thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1141-9. [PMID: 12538669 DOI: 10.4049/jimmunol.170.3.1141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RasGRP1 is a guanine nucleotide exchange factor for Ras that is required for the efficient production of both CD4 and CD8 single-positive thymocytes. We found that RasGRP1 expression is rapidly up-regulated in double-negative thymocytes following pre-TCR ligation. Transgenic overexpression of RasGRP1 compensated for deficient pre-TCR signaling in vivo, enabling recombinase-activating gene 2(-/-) double-negative thymocytes to mature to the double-positive stage. RasGRP1 transgenic mice had a 4-fold increase in CD8 single-positive thymocytes, most of which had atypically low levels of CD3. The RasGRP1 transgene lowered the threshold of TCR signaling needed to initiate proliferation of single-positive thymocytes, with this effect being particularly evident among CD8 single-positive cells. In 3-day cultures, TCR stimulation via anti-CD3 caused a 10-fold increase in the ratio of CD8 to CD4 thymocytes among RasGRP1 transgenic vs nontransgenic thymocytes. These results demonstrate that in addition to driving the double-negative to double-positive transition, increased expression of RasGRP1 selectively increases CD8 single-positive thymocyte numbers and enhances their responsiveness to TCR signaling.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Amino Acid Sequence
- Animals
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Crosses, Genetic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Guanine Nucleotide Exchange Factors
- Humans
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Nuclear Proteins
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- ras Proteins/physiology
Collapse
Affiliation(s)
- Anne M Norment
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
68
|
Ingram DA, Zhang L, McCarthy J, Wenning MJ, Fisher L, Yang FC, Clapp DW, Kapur R. Lymphoproliferative defects in mice lacking the expression of neurofibromin: functional and biochemical consequences of Nf1 deficiency in T-cell development and function. Blood 2002; 100:3656-62. [PMID: 12393709 DOI: 10.1182/blood-2002-03-0734] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras plays an essential role in lymphocyte development and function. However, in vivo consequence(s) of regulation of Ras activity by guanosine triphosphatase (GTPase)-activating proteins (GAPs) on lymphocyte development and function are not known. In this study we demonstrate that neurofibromin, the protein encoded by the NF1 tumor suppressor gene functions as a GAP for Ras in T cells. Loss of Nf1 in T cells results in enhanced Ras activation, which is associated with thymic and splenic hyperplasia, and an increase in the absolute number of immature and mature T-cell subsets compared with control mice. Interestingly, in spite of a profound T-cell expansion and higher thymidine incorporation in unstimulated Nf1-deficient T cells, T-cell receptor and interleukin-2 receptor-mediated proliferation of thymocytes and mature T cells was substantially reduced compared with control mice. Collectively, these results identify neurofibromin as a GAP for Ras in T cells for maintaining immune homeostasis in vivo.
Collapse
Affiliation(s)
- David A Ingram
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Livák F, Petrie HT. Access roads for RAG-ged terrains: control of T cell receptor gene rearrangement at multiple levels. Semin Immunol 2002; 14:297-309. [PMID: 12220931 DOI: 10.1016/s1044-5323(02)00063-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antigen-specific immune response requires the generation of a diverse antigen (Ag)-receptor repertoire. The primary repertoire is generated through somatic gene rearrangement and molded by subsequent cellular selection. Constraints during gene recombination influence the ultimate shape of the repertoire. One major control mechanism of gene rearrangement, investigated for many years, is exerted through regulated chromosomal accessibility of the recombinase to the antigen receptor loci. More recent studies began to explore the role of interactions between the recombinase and its cognate recognition DNA sequences. The emerging results suggest that formation of the primary repertoire is controlled by two, partially independent factors: chromosomal accessibility and direct recombinase-DNA interactions.
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
70
|
Abstract
The specificity of the adaptive immune response is, in part, dependent on the clonal expression of the mature T cell receptor (TCR) on T lymphocytes. One mechanism regulating the clonality of the TCR occurs at the level of TCR-beta gene rearrangements during lymphocyte development. Expression of a nascent TCR-beta chain together with pre-Talpha (pTalpha) and CD3 molecules to form the pre-TCR complex, represents a critical checkpoint in T cell differentiation known as beta-selection. Indeed, failure to generate a functionally rearranged TCR-beta chain at this stage of development results in apoptosis. Signals derived from the pre-TCR complex trigger a maturation program within developing thymocytes that includes: rescue from apoptosis; inhibition of further DNA recombination at the TCR-beta gene locus (allowing for the clonality of antigen receptor expression; allelic exclusion); and induction of proliferation and differentiation. The signaling mechanisms that control this developmental program remain largely undefined. Here, we discuss recent evidence investigating the molecular mechanisms that regulate thymocyte differentiation downstream of pre-TCR formation.
Collapse
Affiliation(s)
- Alison M Michie
- Department of Immunology and Bacteriology, Western Infirmary, University of Glasgow, Glasgow, Scotland, G11 6NT, UK
| | | |
Collapse
|
71
|
Borowski C, Martin C, Gounari F, Haughn L, Aifantis I, Grassi F, von Boehmer H. On the brink of becoming a T cell. Curr Opin Immunol 2002; 14:200-6. [PMID: 11869893 DOI: 10.1016/s0952-7915(02)00322-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies provide fresh insight into the mechanisms by which precursor cells are committed to and develop within the T-lymphocyte lineage. Precursor/product studies have identified developmental stages between that of the pluripotent hematopoietic stem cell and thymocytes committed to the T lineage. Specific ligands and signaling pathways interacting with the Notch-1 receptor and its ability to influence commitment within the lymphoid lineage have been described. Although the structural features or putative ligands endowing the pre-TCR with constitutive signaling capacity remain elusive, numerous distal mediators of pre-TCR signaling have been identified. It remains for the future to determine what roles they may have in survival, proliferation, lineage commitment and allelic exclusion of TCR genes. Receptor editing and lineage commitment of alphabeta T cells still represent controversial topics that need further study.
Collapse
Affiliation(s)
- Christine Borowski
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Assembly of TCRbeta chain variable-region genes is regulated in the context of allelic exclusion. Differential epigenetic modifications of the two TCRbeta alleles established early in embryonic development may be important for permitting allelic exclusion by ordering rearrangement of the two alleles in double-negative thymocytes. Expression of a TCRbeta chain, as part of the pre-TCR complex, activates signaling pathways that enforce allelic exclusion in double-positive thymocytes. These signaling pathways, which utilize p56(lck) and SLP-76, may be distinct from those used to promote other processes initiated by pre-TCR expression. In double-positive thymocytes allelic exclusion is enforced, in part, by changes in Vbeta gene segment accessibility promoted by cis-acting elements that may be distinct from those regulating accessibility of D/Jbeta gene segments.
Collapse
Affiliation(s)
- Bernard Khor
- Washington University School of Medicine, Department of Pathology and Immunology, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110-1093, USA.
| | | |
Collapse
|
73
|
Abstract
V(D)J recombination is of fundamental importance to the generation of diverse antigen receptor repertoires. We review our current understanding of the V(D)J recombination reaction and how it is regulated during lymphocyte development. We also discuss how defects in the mechanism or regulation of V(D)J recombination can lead to human disease.
Collapse
Affiliation(s)
- Craig H Bassing
- Howard Hughes Medical Institute, The Children's Hospital, The Center for Blood Research, Boston, MA 02115, USA
| | | | | |
Collapse
|
74
|
Van De Wiel CJ, Hooker SW, Laurent AB, Vaughn JG, Blackburn MR, Kellems RE, Hershfield MS, Thompson LF. Inhibition of fetal thymic caspases abrogates the consequences of adenosine deaminase deficiency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:65-70. [PMID: 11783529 DOI: 10.1007/0-306-46843-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- C J Van De Wiel
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Spain LM, Liu P. TCRbeta transmembrane tyrosines are required for pre-TCR function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:127-33. [PMID: 11751955 DOI: 10.4049/jimmunol.168.1.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pre-TCR promotes thymocyte development in the alphabeta lineage. Productive rearrangement of the TCRbeta locus triggers the assembly of the pre-TCR, which includes the pTalpha chain and CD3 epsilongammadeltazeta subunits. This complex receptor signals the up-regulation of CD4 and CD8 expression, thymocyte proliferation/survival, and the cessation of TCRbeta rearrangements (allelic exclusion). In this study, we investigate the function of two conserved tyrosine residues located in the TCRbeta chain transmembrane region of the pre-TCR. We show that replacement of both tyrosines with alanine and expression of the mutant receptor in RAG-1(null) thymocytes prevents surface expression and abolishes pre-TCR function relative to wild-type receptor. Replacement of both tyrosines with phenylalanines (YF double mutant) generates a complex phenotype in which thymocyte survival and proliferation are severely disrupted, differentiation is moderately disrupted, and allelic exclusion is unaffected. We further show that the YF double mutant receptor is expressed on the cell surface and associates with pTalpha and CD3epsilon at the same level as does wild-type TCRbeta, while association of the YF double mutant with CD3zeta is slightly reduced relative to wild type. These data demonstrate that pre-TCR signaling pathways leading to proliferation and survival, differentiation, and allelic exclusion are differently sensitive to subtle mutation-induced alterations in pre-TCR structure.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation
- Cell Survival
- Flow Cytometry
- Genes, RAG-1
- Genes, T-Cell Receptor beta
- Humans
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Molecular Sequence Data
- Mutation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Sequence Homology, Amino Acid
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Tyrosine/physiology
Collapse
Affiliation(s)
- Lisa M Spain
- Jerome H. Holland Laboratory for Biomedical Research, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA.
| | | |
Collapse
|
76
|
Kim D, Xu M, Nie L, Peng XC, Jimi E, Voll RE, Nguyen T, Ghosh S, Sun XH. Helix-loop-helix proteins regulate pre-TCR and TCR signaling through modulation of Rel/NF-kappaB activities. Immunity 2002; 16:9-21. [PMID: 11825562 DOI: 10.1016/s1074-7613(02)00264-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
E2A and HEB are basic helix-loop-helix transcription factors essential for T cell development. Complete inhibition of their activities through transgenic overexpression of their inhibitors Id1 and Tal1 leads to a dramatic loss of thymocytes. Here, we suggest that bHLH proteins play important roles in establishing thresholds for pre-TCR and TCR signaling. Inhibition of their function allows double-negative cells to differentiate without a functional pre-TCR, while anti-CD3 stimulation downregulates bHLH activities. We also find that the transcription factor NF-kappaB becomes activated in transgenic thymocytes. Further activation of NF-kappaB exacerbates the loss of thymocytes, whereas inhibition of NF-kappaB leads to the rescue of double-positive thymocytes. Therefore, we propose that E2A and HEB negatively regulate pre-TCR and TCR signaling and their removal causes hyperactivation and apoptosis of thymocytes.
Collapse
Affiliation(s)
- Dongsoo Kim
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Helix-loop-helix (HLH) proteins are essential factors for lymphocyte development and function. One class of HLH proteins, the E-proteins, regulate many aspects of lymphocyte maturation, survival, proliferation, and differentiation. E-proteins are negatively regulated by another class of HLH proteins known as the Id proteins. The Id proteins function as dominant negative inhibitors of E-proteins by inhibiting their ability to bind DNA. Here we discuss the function and regulation of the Id proteins in lymphocyte development.
Collapse
Affiliation(s)
- R Rivera
- Division of Biology, 0366, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
78
|
Allman D, Karnell FG, Punt JA, Bakkour S, Xu L, Myung P, Koretzky GA, Pui JC, Aster JC, Pear WS. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J Exp Med 2001; 194:99-106. [PMID: 11435476 PMCID: PMC2193437 DOI: 10.1084/jem.194.1.99] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Notch1 signaling is required for T cell development. We have previously demonstrated that expression of a dominant active Notch1 (ICN1) transgene in hematopoietic stem cells (HSCs) leads to thymic-independent development of CD4(+)CD8(+) double-positive (DP) T cells in the bone marrow (BM). To understand the function of Notch1 in early stages of T cell development, we assessed the ability of ICN1 to induce extrathymic T lineage commitment in BM progenitors from mice that varied in their capacity to form a functional pre-T cell receptor (TCR). Whereas mice repopulated with ICN1 transduced HSCs from either recombinase deficient (Rag-2(-/)-) or Src homology 2 domain--containing leukocyte protein of 76 kD (SLP-76)(-/)- mice failed to develop DP BM cells, recipients of ICN1-transduced Rag-2(-/)- progenitors contained two novel BM cell populations indicative of pre-DP T cell development. These novel BM populations are characterized by their expression of CD3 epsilon and pre-T alpha mRNA and the surface proteins CD44 and CD25. In contrast, complementation of Rag-2(-/)- mice with a TCR beta transgene restored ICN1-induced DP development in the BM within 3 wk after BM transfer (BMT). At later time points, this population selectively and consistently gave rise to T cell leukemia. These findings demonstrate that Notch signaling directs T lineage commitment from multipotent progenitor cells; however, both expansion and leukemic transformation of this population are dependent on T cell-specific signals associated with development of DP thymocytes.
Collapse
MESH Headings
- Animals
- Bone Marrow/physiology
- Cell Lineage
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Hematopoietic Stem Cells/physiology
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/metabolism
- Leukemia, T-Cell/genetics
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Receptor, Notch1
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Cell Surface
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Signal Transduction
- T-Lymphocytes/physiology
- Thymus Gland/cytology
- Transcription Factors
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Fredrick G. Karnell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | | | - Sonia Bakkour
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Lanwei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Peggy Myung
- Abramson Family Cancer Research Institute, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Gary A. Koretzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - John C. Pui
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Jon C. Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| |
Collapse
|
79
|
Aifantis I, Gounari F, Scorrano L, Borowski C, von Boehmer H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-kappaB and NFAT. Nat Immunol 2001; 2:403-9. [PMID: 11323693 DOI: 10.1038/87704] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pre-T cell antigen receptor (pre-TCR) signaling plays a crucial role in the development of immature T cells. Although certain aspects of proximal pre-TCR signaling have been studied, the intermediate signal transducers and the distal transcription modulators have been poorly characterized. We report here a correlation between pre-TCR signaling and a biphasic rise in the cytosolic Ca2+ concentration. In addition, we show that constitutive pre-TCR signaling is associated with an increased rate of Ca2+ influx through store-operated plasma membrane Ca2+ channels. We show also that the biphasic nature of the observed pre-TCR-induced rise in cytosolic Ca2+ differentially modulates the activities of the transcription factors NF-kappaB and NFAT in developing T cells.
Collapse
Affiliation(s)
- I Aifantis
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
80
|
von Boehmer H, Aifantis I, Azogui O, Saint-Ruf C, Grassi F. The impact of pre-T-cell receptor signals on gene expression in developing T cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:283-9. [PMID: 11232298 DOI: 10.1101/sqb.1999.64.283] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- H von Boehmer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U373 Hôpital Necker-Enfants Malades, F-75730 Paris, France
| | | | | | | | | |
Collapse
|
81
|
Michie AM, Soh JW, Hawley RG, Weinstein IB, Zuniga-Pflucker JC. Allelic exclusion and differentiation by protein kinase C-mediated signals in immature thymocytes. Proc Natl Acad Sci U S A 2001; 98:609-14. [PMID: 11149941 PMCID: PMC14635 DOI: 10.1073/pnas.98.2.609] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pre-T cell receptor (preTCR)-derived signals mediate the transition of thymocytes from the CD4(-) CD8(-) double-negative (DN) to CD4(+) CD8(+) double-positive stage of T lymphocyte development. This progression, termed beta-selection, is limited to thymocytes that have generated a functional TCR-beta chain able to associate with pTalpha to form the preTCR complex. Formation of the preTCR complex not only induces differentiation, survival, and proliferation of DN thymocytes; it also inhibits further TCR-beta gene rearrangement through an ill-defined process known as allelic exclusion. The signaling pathways controlling this critical developmental checkpoint have not been characterized. Here we demonstrate that formation of the preTCR complex leads to the activation of protein kinase C (PKC), and that activation of PKC is necessary for the differentiation and expansion of DN thymocytes. Importantly, we also show that allelic exclusion at the TCR-beta gene loci is enforced by PKC-mediated signals. These results define PKC as a central mediator of both differentiation and allelic exclusion during thymocyte development.
Collapse
Affiliation(s)
- A M Michie
- Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
82
|
Allelic exclusion and differentiation by protein kinase C-mediated signals in immature thymocytes. Proc Natl Acad Sci U S A 2001. [PMID: 11149941 PMCID: PMC14635 DOI: 10.1073/pnas.021288598] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pre-T cell receptor (preTCR)-derived signals mediate the transition of thymocytes from the CD4(-) CD8(-) double-negative (DN) to CD4(+) CD8(+) double-positive stage of T lymphocyte development. This progression, termed beta-selection, is limited to thymocytes that have generated a functional TCR-beta chain able to associate with pTalpha to form the preTCR complex. Formation of the preTCR complex not only induces differentiation, survival, and proliferation of DN thymocytes; it also inhibits further TCR-beta gene rearrangement through an ill-defined process known as allelic exclusion. The signaling pathways controlling this critical developmental checkpoint have not been characterized. Here we demonstrate that formation of the preTCR complex leads to the activation of protein kinase C (PKC), and that activation of PKC is necessary for the differentiation and expansion of DN thymocytes. Importantly, we also show that allelic exclusion at the TCR-beta gene loci is enforced by PKC-mediated signals. These results define PKC as a central mediator of both differentiation and allelic exclusion during thymocyte development.
Collapse
|
83
|
Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, Florea SM, Freud AG, Robinson ML, Durbin J, Caligiuri MA. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 2001; 193:219-31. [PMID: 11208862 PMCID: PMC2193336 DOI: 10.1084/jem.193.2.219] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 11/16/2000] [Indexed: 11/11/2022] Open
Abstract
Inflammation likely has a role in the early genesis of certain malignancies. Interleukin (IL)-15, a proinflammatory cytokine and growth factor, is required for lymphocyte homeostasis. Intriguingly, the expression of IL-15 protein is tightly controlled by multiple posttranscriptional mechanisms. Here, we engineered a transgenic mouse to overexpress IL-15 by eliminating these posttranscriptional checkpoints. IL-15 transgenic mice have early expansions in natural killer (NK) and CD8+ T lymphocytes. Later, these mice develop fatal lymphocytic leukemia with a T-NK phenotype. These data provide novel evidence that leukemia, like certain other cancers, can arise as the result of chronic stimulation by a proinflammatory cytokine.
Collapse
Affiliation(s)
- Todd A. Fehniger
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Kazuhiro Suzuki
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
- Department of Urology, Gunma University School of Medicine, Gunma 371-8511, Japan
| | - Anand Ponnappan
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
| | - Jeffrey B. VanDeusen
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Megan A. Cooper
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Sorin M. Florea
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
| | - Aharon G. Freud
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
| | | | - Joan Durbin
- Children's Hospital and Research Institute, Columbus, Ohio 43205
| | - Michael A. Caligiuri
- Department of Internal Medicine, Division of Hematology/Oncology, Columbus, Ohio 43210
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
84
|
Kruisbeek AM, Haks MC, Carleton M, Michie AM, Zúñiga-Pflücker JC, Wiest DL. Branching out to gain control: how the pre-TCR is linked to multiple functions. IMMUNOLOGY TODAY 2000; 21:637-44. [PMID: 11114425 DOI: 10.1016/s0167-5699(00)01744-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
How is signaling specificity achieved by the pre-TCR during selection of T-cell fate? Like the TCR, this receptor controls many functions, and recent studies define which pathways couple the pre-TCR to the molecular events controlling survival, proliferation, allelic exclusion at the TCRbeta locus, and further differentiation.
Collapse
Affiliation(s)
- A M Kruisbeek
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
85
|
Thompson LF, Van de Wiele CJ, Laurent AB, Hooker SW, Vaughn JG, Jiang H, Khare K, Kellems RE, Blackburn MR, Hershfield MS, Resta R. Metabolites from apoptotic thymocytes inhibit thymopoiesis in adenosine deaminase-deficient fetal thymic organ cultures. J Clin Invest 2000; 106:1149-57. [PMID: 11067867 PMCID: PMC301416 DOI: 10.1172/jci9944] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 09/25/2000] [Indexed: 01/03/2023] Open
Abstract
Murine fetal thymic organ culture was used to investigate the mechanism by which adenosine deaminase (ADA) deficiency causes T-cell immunodeficiency. C57BL/6 fetal thymuses treated with the specific ADA inhibitor 2'-deoxycoformycin exhibited features of the human disease, including accumulation of dATP and inhibition of S-adenosylhomocysteine hydrolase enzyme activity. Although T-cell receptor (TCR) Vbeta gene rearrangements and pre-TCR-alpha expression were normal in ADA-deficient cultures, the production of alphabeta TCR(+) thymocytes was inhibited by 95%, and differentiation was blocked beginning at the time of beta selection. In contrast, the production of gammadelta TCR(+) thymocytes was unaffected. Similar results were obtained using fetal thymuses from ADA gene-targeted mice. Differentiation and proliferation were preserved by the introduction of a bcl-2 transgene or disruption of the gene encoding apoptotic protease activating factor-1. The pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone also significantly lessened the effects of ADA deficiency and prevented the accumulation of dATP. Thus, ADA substrates accumulate and disrupt thymocyte development in ADA deficiency. These substrates derive from thymocytes that undergo apoptosis as a consequence of failing to pass developmental checkpoints, such as beta selection.
Collapse
MESH Headings
- Adenosine Deaminase/deficiency
- Adenosine Deaminase/genetics
- Animals
- Apoptosis
- Base Sequence
- DNA Primers/genetics
- Fetus/cytology
- Fetus/metabolism
- Hematopoiesis
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- L F Thompson
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, University of Oklahoma, Oklahoma City, 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Jacobs H. TCR-independent T cell development mediated by gain-of-oncogene function or loss-of-tumor-suppressor gene function. Semin Immunol 2000; 12:487-502. [PMID: 11085181 DOI: 10.1006/smim.2000.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms that govern differentiation of T cell precursors during intrathymic development bridge an interdisciplinary research field of immunology, oncology and developmental biology. Critical checkpoints controlling early thymic T cell development and homeostasis are set by the proper signaling function of the IL-7 receptor, c-Kit receptor, and the pre-T cell antigen receptor (pre-TCR). Given the intimate link between cell cycle control and differentiation in T cell development, proto-oncogenes and tumor suppressors participate as physiological effectors downstream of these receptors not only to influence the cell cycle but also to determine differentiation and survival. Gain- or loss-of-function mutations of these downstream effectors uncouples partially or completely T cell precursors from these checkpoints, providing a selective advantage and enabling aberrant development. These effectors can be identified by provirus tagging in normal mice and more readily by complementation tagging in mice with a predefined block in T cell differentiation.
Collapse
Affiliation(s)
- H Jacobs
- Basel Institute for Immunology, Switzerland
| |
Collapse
|
87
|
Leduc I, Karsunky H, Mathieu N, Schmidt T, Verthuy C, Ferrier P, Möröy T. The Pim-1 kinase stimulates maturation of TCRbeta-deficient T cell progenitors: implications for the mechanism of Pim-1 action. Int Immunol 2000; 12:1389-96. [PMID: 11007756 DOI: 10.1093/intimm/12.10.1389] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We demonstrate that overexpression of Pim-1, a cytoplasmic serine/threonine kinase of poorly defined function, results in the development of substantial numbers of CD4(+)CD8(+) double-positive thymocytes in two independent knock-out mouse models (i.e. the RAG-1-deficient and TCRbeta gene enhancer-deleted mice) in which production of a functionally rearranged TCRbeta gene (hence the pre-TCR) is impaired. This activity of Pim-1, however, does not affect signaling through the Ras/Raf/MAP kinase cascade nor signaling which mediates suppression of TCRbeta gene recombination (i.e. allelic exclusion). While overexpression of Pim-1 positively affects cell cycle progression in selected CD4(-)CD8(-) double-negative precursors, it did not affect expression of components of the cell cycle machinery, with the exception of the G(1)-specific phosphatase Cdc25A upon antigen receptor stimulation. We propose that Pim-1 acts downstream, or in parallel, to pre-TCR-mediated selection as one factor involved in the proliferative expansion of beta-selected pre-T cells.
Collapse
Affiliation(s)
- I Leduc
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Case 906, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
88
|
Gomez M, Tybulewicz V, Cantrell DA. Control of pre-T cell proliferation and differentiation by the GTPase Rac-I. Nat Immunol 2000; 1:348-52. [PMID: 11017108 DOI: 10.1038/79808] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The GTPase Rac-I has the potential for pleiotropic functions due to its ability to interact with multiple effectors. Here, activation of Rac-I is shown to potently regulate pre-T cell differentiation and proliferation at the point of T cell antigen receptor (TCR) beta selection. An activated Rac-I effector domain mutant that restricts signaling to particular actions on actin dynamics can drive pre-T cell differentiation. Rac-I activation cannot fully substitute for the pre-TCR complex but can fully correct defects in pre-T cell development in mice lacking the adapter molecule Vav-1. The present study identifies the subset of Rac-I responses that mediate Vav-1 action as critical regulators of TCR beta selection.
Collapse
Affiliation(s)
- M Gomez
- Imperial Cancer Research Fund, Lymphocyte Activation Laboratory, 44 Lincolns Inn Fields, London WC2A3PX, UK
| | | | | |
Collapse
|
89
|
Baker M, Gamble J, Tooze R, Higgins D, Yang FT, O'Brien PC, Coleman N, Pingel S, Turner M, Alexander DR. Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice. EMBO J 2000; 19:4644-54. [PMID: 10970857 PMCID: PMC302076 DOI: 10.1093/emboj/19.17.4644] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The CD45 tyrosine phosphatase lowers T-cell antigen receptor signalling thresholds by its positive actions on p56(lck) tyrosine kinase function. We now show that mice expressing active lck(F505) at non-oncogenic levels develop aggressive thymic lymphomas on a CD45(-/-) background. CD45 suppresses the tumorigenic potential of the kinase by dephosphorylation of the Tyr394 autophosphorylation site. In CD45(-/-) thymocytes the kinase is switched to a hyperactive oncogenic state, resulting in increased resistance to apoptosis. Transformation occurs in early CD4(-)CD8(-) thymocytes during the process of TCR-beta chain rearrangement by a recombinase-independent mechanism. Our findings represent the first example in which a tyrosine phosphatase in situ prevents the oncogenic actions of a SRC: family tyrosine kinase.
Collapse
Affiliation(s)
- M Baker
- Laboratory of Lymphocyte Signalling and Development, Programme of Molecular Immunology, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Outram SV, Varas A, Pepicelli CV, Crompton T. Hedgehog signaling regulates differentiation from double-negative to double-positive thymocyte. Immunity 2000; 13:187-97. [PMID: 10981962 DOI: 10.1016/s1074-7613(00)00019-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The hedgehog (Hh) signaling pathway is involved in the development of many tissues. Here we show that sonic hedgehog (Shh) is involved in thymocyte development. Our data suggest that termination of Hh signaling is necessary for differentiation from CD4-CD8-double-negative (DN) to CD4+CD8+ double-positive (DP) thymocyte. Shh is produced by the thymic stroma, and Patched and Smoothened (Smo), the transmembrane receptors for Shh, are expressed in DN thymocytes. A neutralizing monoclonal antibody against Shh increases differentiation of DN to DP thymocytes, and Shh protein arrests thymocyte differentiation at the CD25+ DN stage, after T cell receptor beta (TCRbeta) gene rearrangement. We show that one consequence of pre-TCR signaling is downregulation of Smo, allowing DN thymocytes to proliferate and differentiate.
Collapse
Affiliation(s)
- S V Outram
- Department of Biology, Imperial College of Science, Technology, and Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
91
|
Abstract
Ligation of the T cell antigen receptor (TCR) stimulates protein tyrosine kinases (PTKs), which regulate intracellular calcium and control the activity of protein kinase C (PKC) isozymes. PTKs activated by antigen receptors and costimulatory molecules also couple to phosphatidylinositol-3 kinase (PI3K) and control the activity of Ras- and Rho-family GTPases. T cell signal transduction is triggered physiologically by antigen in the context of antigen presenting cells (APC). The formation of stable and prolonged contacts between T cells and APCs is not necessary to initiate T cell signaling but is required for effective T cell proliferation and differentiation. The stabilization of the T cell/ APC conjugate is regulated by intracellular signals induced by antigen receptors and costimulators. These coordinate the regulation of the actin and microtubule cytoskeleton and organize a specialized signaling zone that allows sustained TCR signaling.
Collapse
Affiliation(s)
- O Acuto
- Molecular Immunology Unit, Department of Immunology, Pasteur Institute, 75724, Paris, France.
| | | |
Collapse
|
92
|
Sleckman BP, Bassing CH, Hughes MM, Okada A, D'Auteuil M, Wehrly TD, Woodman BB, Davidson L, Chen J, Alt FW. Mechanisms that direct ordered assembly of T cell receptor beta locus V, D, and J gene segments. Proc Natl Acad Sci U S A 2000; 97:7975-80. [PMID: 10869424 PMCID: PMC16655 DOI: 10.1073/pnas.130190597] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
T cell receptor (TCR) beta variable region genes are assembled in progenitor T cells from germ-line Vbeta, Dbeta, and Jbeta segments via an ordered two-step process in which Dbeta to Jbeta rearrangements occur on both alleles before appendage of a Vbeta to a preexisting DJbeta complex. Direct joining of Vbeta segments to nonrearranged Dbeta or Jbeta segments, while compatible with known restrictions on the V(D)J recombination mechanism, are infrequent within the endogenous TCRbeta locus. We have analyzed mechanisms that mediate ordered Vbeta, Dbeta, and Jbeta assembly via an approach in which TCRbeta minilocus recombination substrates were introduced into embryonic stem cells and then analyzed for rearrangement in normal thymocytes by recombinase-activating gene 2-deficient blastocyst complementation. These analyses demonstrated that Vbeta segments are preferentially targeted for rearrangement to Dbeta as opposed to Jbeta segments. In addition, we further demonstrated that Vbeta segments can be appended to nonrearranged endogenous Dbeta segments in which we have eliminated the ability of Dbeta segments to join to Jbeta segments. Our findings are discussed in the context of the mechanisms that regulate the ordered assembly and utilization of V, D, and J segments.
Collapse
Affiliation(s)
- B P Sleckman
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School and Center for Blood Research, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
The GTPase, Ras, is rapidly activated in antigen receptor stimulated T. cells, B cells and mast cells. Ras can bind to diverse effector molecules when activated and thereby switch on multiple downstream effector pathways. In lymphocytes Ras plays an important role in the signalling pathways that activate transcription factors involved in cytokine gene induction. Ras is also a key component of the complex regulatory networks that control T and B cell development.
Collapse
Affiliation(s)
- E Genot
- Growth Factors and Differentiation Laboratory, Bordeaux I University, Batiment de Biologie Animale, Talence Cedex, 33 405, France
| | | |
Collapse
|
94
|
Bassing CH, Alt FW, Hughes MM, D'Auteuil M, Wehrly TD, Woodman BB, Gärtner F, White JM, Davidson L, Sleckman BP. Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 2000; 405:583-6. [PMID: 10850719 DOI: 10.1038/35014635] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genes encoding the variable regions of lymphocyte antigen receptors are assembled from variable (V), diversity (D) and joining (J) gene segments. V(D)J recombination is initiated by the recombinase activating gene (RAG)-1 and -2 proteins, which introduce DNA double-strand breaks between the V, D and J segments and their flanking recombination signal sequences (RSSs). Generally expressed DNA repair proteins then carry out the joining reaction. The conserved heptamer and nonamer sequences of the RSSs are separated by non-conserved spacers of 12 or 23 base pairs (forming 12-RSSs and 23-RSSs). The 12/23 rule, which is mediated at the level of RAG-1/2 recognition and cutting, specifies that V(D)J recombination occurs only between a gene segment flanked by a 12-RSS and one flanked by a 23-RSS. Vbeta segments are appended to DJbeta rearrangements, with little or no direct Vbeta to Jbeta joining, despite 12/23 compatibility of Vbeta 23-RSSs and Jbeta12-RSSs. Here we use embryonic stem cells and mice with a modified T-cell receptor (TCR)beta locus containing only one Dbeta (Dbeta1) gene segment and one Jbeta (Jbeta1) gene cluster to show that the 5' Dbeta1 12-RSS, but not the Jbeta1 12-RSSs, targets rearrangement of a diverse Vbeta repertoire. This targeting is precise and position-independent. This additional restriction on V(D)J recombination has important implications for the regulation of variable region gene assembly and repertoire development.
Collapse
Affiliation(s)
- C H Bassing
- Howard Hughes Medical Institute, Children's Hospital and Department of Genetics, Harvard Medical School and The Center for Blood Research, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
SLP-76 and LAT are two recently identified adapter proteins that are involved in the signal transduction cascade initiated by engagement of the TCR. The role of these two molecules in thymocyte development has become clearer following studies of gene targeted mice. The data indicate that SLP-76 and LAT are each critical for the expansion and differentiation of double-negative thymocytes and that SLP-76 is essential for allelic exclusion at the TCRbeta locus.
Collapse
Affiliation(s)
- V I Pivniouk
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
96
|
Michie AM, Trop S, Wiest DL, Zúñiga-Pflücker JC. Extracellular signal-regulated kinase (ERK) activation by the pre-T cell receptor in developing thymocytes in vivo. J Exp Med 1999; 190:1647-56. [PMID: 10587355 PMCID: PMC2195734 DOI: 10.1084/jem.190.11.1647] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1999] [Accepted: 09/29/1999] [Indexed: 12/17/2022] Open
Abstract
The first checkpoint in T cell development occurs between the CD4(-)CD8(-) and CD4(+)CD8(+) stages and is associated with formation of the pre-T cell receptor (TCR). The signaling mechanisms that drive this progression remain largely unknown. Here, we show that extracellular signal-regulated kinases (ERKs)-1/2 are activated upon engagement of the pre-TCR. Using a novel experimental system, we demonstrate that expression of the pre-TCR by developing thymocytes induces ERK-1/2 activation within the thymus. In addition, the activation of this pre-TCR signaling cascade is mediated through Lck. These findings directly link pre-TCR complex formation with specific downstream signaling components in vivo.
Collapse
Affiliation(s)
- Alison M. Michie
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sébastien Trop
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - David L. Wiest
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
97
|
Monroe RJ, Chen F, Ferrini R, Davidson L, Alt FW. RAG2 is regulated differentially in B and T cells by elements 5' of the promoter. Proc Natl Acad Sci U S A 1999; 96:12713-8. [PMID: 10535988 PMCID: PMC23063 DOI: 10.1073/pnas.96.22.12713] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To study RAG2 gene regulation in vivo, we developed a blastocyst complementation method in which RAG2-deficient embryonic stem cells were transfected with genomic clones containing RAG2 and then assessed for their ability to generate lymphocytes. A RAG2 genomic clone that contained only the RAG2 promoter sequences rescued V(D)J recombination in RAG2-deficient pro-B cell lines, but did not rescue development of RAG2-deficient lymphocytes in vivo. However, inclusion of varying lengths of sequences 5' of the RAG2 promoter generated constructs capable of rescuing only in vivo B cell development, as well as other constructs that rescued both B and T cell development. In particular, the 2-kb 5' region starting just upstream of the RAG2 promoter, as well as the region from 2-7 kb 5', could independently drive B cell development, but not efficient T cell development. Deletion of the 2-kb 5' region from the murine germ line demonstrated that this region was not required for RAG expression sufficient to generate normal B or T cell numbers, implying redundancy among 5' elements. We conclude that RAG2 expression in vivo requires elements beyond the core promoter, that such elements contribute to differential regulation in the B vs. T lineages, and that sequences sufficient to direct B cell expression are located in the promoter-proximal 5' region.
Collapse
Affiliation(s)
- R J Monroe
- Howard Hughes Medical Institute, The Children's Hospital, Center for Blood Research and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
98
|
Aifantis I, Pivniouk VI, Gärtner F, Feinberg J, Swat W, Alt FW, von Boehmer H, Geha RS. Allelic exclusion of the T cell receptor beta locus requires the SH2 domain-containing leukocyte protein (SLP)-76 adaptor protein. J Exp Med 1999; 190:1093-102. [PMID: 10523607 PMCID: PMC2195661 DOI: 10.1084/jem.190.8.1093] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1999] [Accepted: 08/10/1999] [Indexed: 01/18/2023] Open
Abstract
Signaling via the pre-T cell receptor (TCR) is required for the proliferative expansion and maturation of CD4(-)CD8(-) double-negative (DN) thymocytes into CD4(+)CD8(+) double-positive (DP) cells and for TCR-beta allelic exclusion. The adaptor protein SH2 domain-containing leukocyte protein (SLP)-76 has been shown to play a crucial role in thymic development, because thymocytes of SLP-76(-/-) mice are arrested at the CD25(+)CD44(-) DN stage. Here we show that SLP-76(-/-) DN thymocytes express the pre-TCR on their surfaces and that introduction of a TCR-alpha/beta transgene into the SLP-76(-/-) background fails to cause expansion of DN thymocytes or developmental progression to the DP stage. Moreover, analysis of TCR-beta rearrangement in SLP-76(-/-) TCR-transgenic mice or in single CD25(+)CD44(-) DN cells from SLP-76(-/-) mice indicates an essential role of SLP-76 in TCR-beta allelic exclusion.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Alleles
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Line
- Flow Cytometry
- Gene Expression Regulation
- Gene Rearrangement
- Mice
- Mice, Transgenic
- Phosphoproteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Signal Transduction/immunology
- src Homology Domains/immunology
Collapse
Affiliation(s)
- Iannis Aifantis
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Vadim I. Pivniouk
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frank Gärtner
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jacqueline Feinberg
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Wojciech Swat
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Harald von Boehmer
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Raif S. Geha
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|