51
|
Ulivieri C, Fanigliulo D, Masi G, Savino MT, Gamberucci A, Pelicci PG, Baldari CT. p66Shc Is a Negative Regulator of FcεRI-Dependent Signaling in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:5095-106. [DOI: 10.4049/jimmunol.1001391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
52
|
An ENU-induced mouse mutant of SHIP1 reveals a critical role of the stem cell isoform for suppression of macrophage activation. Blood 2011; 117:5362-71. [PMID: 21421839 DOI: 10.1182/blood-2011-01-331041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In a recessive ENU mutagenesis screen for embryonic lethality, we identified a mouse pedigree with a missense mutation of SHIP1 (SHIP1(el20)) leading to an amino acid substitution I641T in the inositol-5'-phosphatase domain that represses phosphatidylinositol-3-kinase signaling. Despite detectable expression of functional SHIP1 protein, the phenotype of homozygous SHIP1(el20/el20) mice was more severe than gene-targeted SHIP1-null (SHIP1(-/-)) mice. Compared with age-matched SHIP1(-/-) mice, 5-week-old SHIP1(el20/el20) mice had increased myeloid cells, serum IL-6 levels, marked reductions in lymphoid cells, and died by 7 weeks of age with infiltration of the lungs by activated macrophages. Bone marrow transplantation demonstrated that these defects were hematopoietic-cell-autonomous. We show that the el20 mutation reduces expression in SHIP1(el20/el20) macrophages of both SHIP1 and s-SHIP, an isoform of SHIP1 generated by an internal promoter. In contrast, SHIP1(-/-) macrophages express normal levels of s-SHIP. Compound heterozygous mice (SHIP1(-/el20)) had the same phenotype as SHIP1(-/-) mice, thus providing genetic proof that the more severe phenotype of SHIP1(el20/el20) mice is probably the result of concomitant loss of SHIP1 and s-SHIP. Our results suggest that s-SHIP synergizes with SHIP1 for suppression of macrophage activation, thus providing the first evidence for a role of s-SHIP in adult hematopoiesis.
Collapse
|
53
|
Harris SJ, Parry RV, Foster JG, Blunt MD, Wang A, Marelli-Berg F, Westwick J, Ward SG. Evidence That the Lipid Phosphatase SHIP-1 Regulates T Lymphocyte Morphology and Motility. THE JOURNAL OF IMMUNOLOGY 2011; 186:4936-45. [DOI: 10.4049/jimmunol.1002350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
54
|
Waterman PM, Cambier JC. The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms. FEBS Lett 2010; 584:4878-82. [PMID: 20875413 PMCID: PMC2998577 DOI: 10.1016/j.febslet.2010.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/28/2022]
Abstract
Immunoreceptor signals must be appropriately transduced and regulated to achieve effective immunity while controlling inflammation and autoimmunity. It is generally held that these processes are mediated by the interplay of distinct activating and inhibitory receptors via conserved activating (ITAM) and inhibitory (ITIM) signaling motifs. However, recent evidence indicates that under certain conditions incomplete phosphorylation of ITAM tyrosines leads to inhibitory signaling. This new regulatory function of ITAMs has been termed ITAMi (inhibitory ITAM). Here we discuss the potential molecular mechanisms of inhibitory signaling by ITAM-containing receptors.
Collapse
Affiliation(s)
- Paul M Waterman
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver CO 80206, USA
| | | |
Collapse
|
55
|
Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J, Ansari AA, Coppel RL, Worman HJ, Gores GJ, Gershwin ME. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010; 52:987-98. [PMID: 20568301 PMCID: PMC2932809 DOI: 10.1002/hep.23783] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Our understanding of primary biliary cirrhosis (PBC) has been significantly enhanced by the rigorous dissection of the multilineage T and B cell response against the immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2). PDC-E2 is a ubiquitous protein present in mitochondria of nucleated cells. However, the damage of PBC is confined to small biliary epithelial cells (BECs). We have previously demonstrated that BECs translocate immunologically intact PDC-E2 to apoptotic bodies and create an apotope. To define the significance of this observation, we have studied the ability of biliary or control epithelial apotopes to induce cytokine secretion from mature monocyte-derived macrophages (MDMphis) from either patients with PBC or controls in the presence or absence of anti-mitochondrial antibodies (AMAs). We demonstrate that there is intense inflammatory cytokine production in the presence of the unique triad of BEC apotopes, macrophages from patients with PBC, and AMAs. The cytokine secretion is inhibited by anti-CD16 and is not due to differences in apotope uptake. Moreover, MDMphis from PBC patients cultured with BEC apoptotic bodies in the presence of AMAs markedly increase tumor necrosis factor-related apoptosis-inducing ligand expression. CONCLUSION These results provide a mechanism for the biliary specificity of PBC, the recurrence of disease after liver transplantation, and the success of ursodiol in treatment. They further emphasize the critical role of the innate immune system in the perpetuation of this autoimmune disease.
Collapse
Affiliation(s)
- Ana Lleo
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Hepatobiliary Immunopathology Unit, IRCCS-Istituto Clinico Humanitas, Rozzano, Italy
| | - Christopher L. Bowlus
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Pietro Invernizzi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Hepatobiliary Immunopathology Unit, IRCCS-Istituto Clinico Humanitas, Rozzano, Italy
| | - Mauro Podda
- Hepatobiliary Immunopathology Unit, IRCCS-Istituto Clinico Humanitas, Rozzano, Italy
- Department of Translational Medicine, Universita degli Studi di Milano, IRCCS-Istituto Clinico Humanitas, Rozzano, Italy
| | - Judy Van de Water
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross L. Coppel
- Department of Microbiology, Monash University, Clayton, Australia
| | - Howard J. Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
56
|
Balagopalan L, Coussens NP, Sherman E, Samelson LE, Sommers CL. The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb Perspect Biol 2010; 2:a005512. [PMID: 20610546 DOI: 10.1101/cshperspect.a005512] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adapter molecule LAT is a nucleating site for multiprotein signaling complexes that are vital for the function and differentiation of T cells. Extensive investigation of LAT in multiple experimental systems has led to an integrated understanding of the formation, composition, regulation, dynamic movement, and function of LAT-nucleated signaling complexes. This review discusses interactions of signaling molecules that bind directly or indirectly to LAT and the role of cooperativity in stabilizing LAT-nucleated signaling complexes. In addition, it focuses on how imaging studies visualize signaling assemblies as signaling clusters and demonstrate their dynamic nature and cellular fate. Finally, this review explores the function of LAT based on the interpretation of mouse models using various LAT mutants.
Collapse
|
57
|
Abstract
Mast cells are pivotal in innate immunity and play an important role in amplifying adaptive immunity. Nonetheless, they have long been known to be central to the initiation of allergic disorders. This results from the dysregulation of the immune response whereby normally innocuous substances are recognized as non-self, resulting in the production of IgE antibodies to these 'allergens'. Preformed and newly synthesized inflammatory (allergic) mediators are released from the mast cell following allergen-mediated aggregation of allergen-specific IgE bound to the high-affinity receptors for IgE (FcepsilonRI). Thus, the process by which the mast cell is able to interpret the engagement of FcepsilonRI into the molecular events necessary for release of their allergic mediators is of considerable therapeutic interest. Unraveling these molecular events has led to the discovery of a functional class of proteins that are essential in organizing activated signaling molecules and in coordinating and compartmentalizing their activity. These so-called 'adapters' bind multiple signaling proteins and localize them to specific cellular compartments, such as the plasma membrane. This organization is essential for normal mast cell responses. Here, we summarize the role of adapter proteins in mast cells focusing on the most recent advances toward understanding how these molecules work upon FcepsilonRI engagement.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
58
|
Mashima R, Hishida Y, Tezuka T, Yamanashi Y. The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 2010; 232:273-85. [PMID: 19909370 DOI: 10.1111/j.1600-065x.2009.00844.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian Dok protein family has seven members (Dok-1-Dok-7). The Dok proteins share structural similarities characterized by the NH2-terminal pleckstrin homology and phosphotyrosine-binding domains followed by SH2 target motifs in the COOH-terminal moiety, indicating an adapter function. Indeed, Dok-1 was originally identified as a 62 kDa protein that binds with p120 rasGAP, a potent inhibitor of Ras, upon tyrosine phosphorylation by a variety of protein tyrosine kinases. Among the Dok family, only Dok-1, Dok-2, and Dok-3 are preferentially expressed in hematopoietic/immune cells. Dok-1 and its closest relative Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. By contrast, Dok-3 does not bind with p120 rasGAP. However, accumulating evidence has demonstrated that Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, where the interaction of Dok-3 with SHIP-1 and Grb2 appears to be important. Here, we review the physiological roles and underlying mechanisms of Dok family proteins.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
59
|
Li WQ, Shi L, You YG, Gong YH, Yin B, Yuan JG, Peng XZ. Downstream of tyrosine kinase/docking protein 6, as a novel substrate of tropomyosin-related kinase C receptor, is involved in neurotrophin 3-mediated neurite outgrowth in mouse cortex neurons. BMC Biol 2010; 8:86. [PMID: 20565848 PMCID: PMC2901200 DOI: 10.1186/1741-7007-8-86] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/18/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The downstream of tyrosine kinase/docking protein (Dok) adaptor protein family has seven members, Dok1 to Dok7, that act as substrates of multiple receptor tyrosine kinase and non-receptor tyrosine kinase. The tropomyosin-related kinase (Trk) receptor family, which has three members (TrkA, TrkB and TrkC), are receptor tyrosine kinases that play pivotal roles in many stages of nervous system development, such as differentiation, migration, axon and dendrite projection and neuron patterning. Upon related neurotrophin growth factor stimulation, dimerisation and autophosphorylation of Trk receptors can occur, recruiting adaptor proteins to mediate signal transduction. RESULTS In this report, by using yeast two-hybrid assays, glutathione S-transferase (GST) precipitation assays and coimmunoprecipitation (Co-IP) experiments, we demonstrate that Dok6 selectively binds to the NPQY motif of TrkC through its phosphotyrosine-binding (PTB) domain in a kinase activity-dependent manner. We further confirmed their interaction by coimmunoprecipitation and colocalisation in E18.5 mouse cortex neurons, which provided more in vivo evidence. Next, we demonstrated that Dok6 is involved in neurite outgrowth in mouse cortex neurons via the RNAi method. Knockdown of Dok6 decreased neurite outgrowth in cortical neurons upon neurotrophin 3 (NT-3) stimulation. CONCLUSIONS We conclude that Dok6 interacts with the NPQY motif of the TrkC receptor through its PTB domain in a kinase activity-dependent manner, and works as a novel substrate of the TrkC receptor involved in NT-3-mediated neurite outgrowth in mouse cortex neurons.
Collapse
Affiliation(s)
- Wei qi Li
- National Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
60
|
Keck S, Freudenberg M, Huber M. Activation of murine macrophages via TLR2 and TLR4 is negatively regulated by a Lyn/PI3K module and promoted by SHIP1. THE JOURNAL OF IMMUNOLOGY 2010; 184:5809-18. [PMID: 20385881 DOI: 10.4049/jimmunol.0901423] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Src family kinases are involved in a plethora of aspects of cellular signaling. We demonstrate in this study that the Src family kinase Lyn negatively regulates TLR signaling in murine bone marrow-derived macrophages (BMM Phis) and in vivo. LPS-stimulated Lyn(-/-) BMM Phis produced significantly more IL-6, TNF-alpha, and IFN-alpha/beta compared with wild type (WT) BMM Phis, suggesting that Lyn is able to control both MyD88- and TRIF-dependent signaling pathways downstream of TLR4. CD14 was not involved in this type of regulation. Moreover, Lyn attenuated proinflammatory cytokine production in BMM Phis in response to the TLR2 ligand FSL-1, but not to ligands for TLR3 (dsRNA) or TLR9 (CpG 1668). In agreement with these in vitro experiments, Lyn-deficient mice produced higher amounts of proinflammatory cytokines than did WT mice after i. v. injection of LPS or FSL-1. Although Lyn clearly acted as a negative regulator downstream of TLR4 and TLR2, it did not, different from what was proposed previously, prevent the induction of LPS tolerance. Stimulation with a low dose of LPS resulted in reduced production of proinflammatory cytokines after subsequent stimulation with a high dose of LPS in both WT and Lyn(-/-) BMM Phis, as well as in vivo. Mechanistically, Lyn interacted with PI3K; in correlation, PI3K inhibition resulted in increased LPS-triggered cytokine production. In this line, SHIP1(-/-) BMM Phis, exerting enhanced PI3K-pathway activation, produced fewer cytokines than did WT BMM Phis. The data suggest that the Lyn-mediated negative regulation of TLR signaling proceeds, at least in part, via PI3K.
Collapse
Affiliation(s)
- Simone Keck
- Department of Molecular Immunology, Biology III, University of Freiburg, Germany
| | | | | |
Collapse
|
61
|
De Re V, Pavan A, Sansonno S, Sansonno D, Racanelli V. Clonal CD27+ CD19+ B cell expansion through inhibition of FC gammaIIR in HCV(+) cryoglobulinemic patients. Ann N Y Acad Sci 2009; 1173:326-33. [PMID: 19758169 DOI: 10.1111/j.1749-6632.2009.04664.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Persistent HCV infection may be associated with extrahepatic manifestations such as type II mixed cryoglobulinemia (II-MC), a clonal B cell proliferative disorder. In persistent HCV infection without II-MC, an increase in serum immunoglobulins (Ig) is commonly observed. This increase is polyclonal and is determined primarily by increased levels of IgG which include both HCV-specific and nonspecific antibodies. Nonetheless, memory CD27(+) B cells do not accumulate. This paradoxical phenomenon depends on heightened sensitivity of memory B cells to BCR-independent noncognate T cell help, which speeds up their terminal differentiation into antibody-secreting cells and makes them more prone to apoptosis. In persistent HCV infection with II-MC, serum Ig elevation is also a general occurrence, and characteristically includes IgM antibodies with rheumatoid factor activity, which are essential for the development of circulating, cryoprecipitable immune complexes. Hypergammaglobulinemia is sustained by a peripheral expansion of IgM(+)k(+)IgD(low/neg)CD21(low)CD27(+) B cells. These cells exhibit marked V(H), J(H), and V(K) gene segment usage restriction, indicating that a limited number of antigens drive their proliferation through BCR interaction. Recently, two epitopes, one of the human IgG and the second of the HCV(NS3) protein, had been identified and demonstrated able to link the BCR exposed on II-MC subjects. Based on the above findings, we propose a model whereby BCR binding the IgM/IgG/HCV(NS3) immune complexes deprives Fc gammaIIR of its natural ligand. This takes the brake off RF(+)CD27(+) B cell proliferation and promotes their selective accumulation, which is otherwise prevented by increased apoptosis susceptibility in persistent HCV infection without II-MC.
Collapse
Affiliation(s)
- Valli De Re
- Experimental and Clinical Pharmacology Unit, DOMERT, Molecular Oncology and Translational Research Department, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano (PN), Italy.
| | | | | | | | | |
Collapse
|
62
|
Haddon DJ, Antignano F, Hughes MR, Blanchet MR, Zbytnuik L, Krystal G, McNagny KM. SHIP1 is a repressor of mast cell hyperplasia, cytokine production, and allergic inflammation in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 183:228-36. [PMID: 19542434 DOI: 10.4049/jimmunol.0900427] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SHIP1 inhibits immune receptor signaling through hydrolysis of the PI3K product phosphatidylinositol 3,4,5-trisphosphate, forming phosphatidylinositol 3,4-bisphosphate. In mast cells, SHIP1 represses FcepsilonRI- and cytokine-mediated activation in vitro, but little is known regarding the function of SHIP1 in mast cells in vivo or the susceptibility of Ship1(-/-) mice to mast cell-associated diseases. In this study, we found that Ship1(-/-) mice have systemic mast cell hyperplasia, increased serum levels of IL-6, TNF, and IL-5, and heightened anaphylactic response. Further, by reconstituting mast cell-deficient mice with Ship1(+/+) or Ship1(-/-) mast cells, we found that the above defects were due to loss of SHIP1 in mast cells. Additionally, we found that mice reconstituted with Ship1(-/-) mast cells suffered worse allergic asthma pathology than those reconstituted with Ship1(+/+) mast cells. In summary, our data show that SHIP1 represses allergic inflammation and mast cell hyperplasia in vivo and exerts these effects specifically in mast cells.
Collapse
Affiliation(s)
- D James Haddon
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
63
|
Wu L, Bijian K, Shen SH, Shen SS. CD45 recruits adapter protein DOK-1 and negatively regulates JAK-STAT signaling in hematopoietic cells. Mol Immunol 2009; 46:2167-77. [PMID: 19481264 DOI: 10.1016/j.molimm.2009.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 12/26/2022]
Abstract
It has been extensively documented that CD45 positively regulates T cell receptor-mediated signaling through the activation of Src-family kinases. The mechanism whereby CD45 negatively regulates the JAK/STAT pathway, however, has not been fully elucidated. Here we describe the mechanism by which CD45 negatively regulates the JAK/STAT pathway through the recruitment of the inhibitory molecule Downstream of Kinase 1 (DOK-1) in hematopoietic cells. We present evidences that CD45 recruits DOK-1 to associate with tyrosine-phosphorylated DOK-1, and that the DOK-1-Y296F mutant completely abrogates its interaction with CD45. Moreover, CD45 expression is required for DOK-1 targeting to the plasma membrane in response to anti-CD3 stimulation. Functional studies further showed that stable expression of DOK-1 in K562 cells markedly decreased both JAK-2 and STAT-3/5 phosphorylation following IL-3 and IFN-alpha stimulation. Likewise, stable expression of DOK-1 in Jurkat cells significantly decreased JAK-2 phosphorylation. Similarly, both IL-3 and IFN-alpha-induced JAK-2 phosphorylations were significantly increased in CD45 deficient Jurkat cells. Consistently, silencing of the DOK-1 gene resulted in rescue of MAP kinases and JAKs activities in CD45 positive Jurkat cells. Accordingly, CD45 recruits adaptor DOK-1 to the proximal plasma membrane to serve as a downstream effector, resulting in negative regulation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Liangtang Wu
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
64
|
The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 2009; 419:29-49. [PMID: 19272022 DOI: 10.1042/bj20081673] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.
Collapse
|
65
|
Nakamura A, Kubo T, Takai T. Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:220-33. [PMID: 19065795 DOI: 10.1007/978-0-387-09789-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fc receptors (FcRs) play an important role in the maintenance of an adequate activation threshold of various cells in antibody-mediated immune responses. Analyses of murine models show that the inhibitory FcR, FcyRIIB plays a pivotal role in the suppression of antibody-mediated allergy and autoimmunity. On the other hand, the activating-type FcRs are essential for the development of these diseases, suggesting that regulation of inhibitory or activating FcR is an ideal target for a therapeutic agent. Recent experimental or clinical studies also indicate that FcRs function as key receptors in the treatment with monoclonal antibodies (mAbs) therapy. This review summarizes FcR functions and highlights possible FcR-targeting therapies including mAb therapies for allergy, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Experimental Immunology and CREST program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Seiryo 4-1, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
66
|
Abstract
These studies investigate how interactions between the BCR and FcgammaRIIB affect B lymphocyte stimulator (BLyS) recep-tor expression and signaling. Previous studies showed that BCR ligation up-regulates BLyS binding capacity in mature B cells, reflecting increased BLyS receptor levels. Here we show that FcgammaRIIB coaggregation dampens BCR-induced BLyS receptor up-regulation. This cross-regulation requires BCR and FcgammaRIIB coligation, and optimal action relies on the Src-homology-2 (SH2)-containing inositol 5 phosphase-1 (SHIP1). Subsequent to FcgammaRIIB/BCR coaggregation, the survival promoting actions of BLyS are attenuated, reflecting reduced BLyS receptor signaling capacity in terms of Pim 2 maintenance, noncanonical NF-kappaB activation, and Bcl-xL levels. These findings link the negative regulatory functions of FcgammaRIIB with BLyS-mediated B-cell survival.
Collapse
|
67
|
Functionality of the IgA Fc receptor (FcalphaR, CD89) is down-regulated by extensive engagement of FcepsilonRI. Clin Immunol 2008; 129:155-62. [PMID: 18700185 DOI: 10.1016/j.clim.2008.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/23/2008] [Accepted: 07/02/2008] [Indexed: 01/30/2023]
Abstract
Besides mast cells and basophils, the high-affinity IgE Fc receptor (FcepsilonRI) is exclusively expressed on certain FcalphaR (IgA Fc receptor)-expressing immune cells such as neutrophils in allergic patients. Transfected rat basophilic leukemia cell line (RBL-2H3) co-expressing FcepsilonRI and FcalphaR was analyzed for effects of simultaneous receptor engagement by their specific antibodies on degranulation and signaling. Whereas supraoptimal FcepsilonRI engagement decreased degranulation, which is known as a bell-shaped dose-response curve, such inhibitory effect was not observed with FcalphaR engagement. However, simultaneous engagement of FcepsilonRI and FcalphaR showed that supraoptimal FcepsilonRI engagement down-regulates FcalphaR-mediated degranulation. This inhibition was associated with extensive phosphorylation of inositol polyphosphate 5'-phosphatase SHIP1 and FcepsilonRIbeta, and reversed by adding actin-depolymerizing drug, latrunculin B. The results suggest an endogenous mechanism by which FcalphaR functionality is down-regulated in an 'allergic environment' where FcepsilonRI is co-expressed and extensively cross-linked on FcalphaR-expressing effector cells.
Collapse
|
68
|
Cady CT, Rice JS, Ott VL, Cambier JC. Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. Immunol Rev 2008; 224:44-57. [PMID: 18759919 PMCID: PMC2968700 DOI: 10.1111/j.1600-065x.2008.00663.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous autoimmune and inflammatory disorders stem from the dysregulation of hematopoietic cell activation. The activity of inositol lipid and protein tyrosine phosphatases, and the receptors that recruit them, is critical for prevention of these disorders. Balanced signaling by inhibitory and activating receptors is now recognized to be an important factor in tuning cell function and inflammatory potential. In this review, we provide an overview of current knowledge of membrane proximal events in signaling by inhibitory/regulatory receptors focusing on structural and functional characteristics of receptors and their effectors Src homology 2 (SH2) domain-containing tyrosine phosphatase 1 and SH2 domain-containing inositol 5-phosphatase-1. We review use of new strategies to identify novel regulatory receptors and effectors. Finally, we discuss complementary actions of paired inhibitory and activating receptors, using Fc gammaRIIA and Fc gammaRIIB regulation human basophil activation as a prototype.
Collapse
Affiliation(s)
- Carol T. Cady
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - Jeffrey S. Rice
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - Vanessa L. Ott
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| | - John C. Cambier
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
- National Jewish Medical and Research Center, Denver, CO, USA
| |
Collapse
|
69
|
Li C, Chung B, Tao J, Iosef C, Aoukaty A, Wang Y, Tan R, Li SSC. The X-linked lymphoproliferative syndrome gene product SAP regulates B cell function through the FcgammaRIIB receptor. Cell Signal 2008; 20:1960-7. [PMID: 18662772 DOI: 10.1016/j.cellsig.2008.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/24/2008] [Accepted: 07/03/2008] [Indexed: 01/06/2023]
Abstract
X-linked lympho-proliferative (XLP) is an immunodeficiency condition caused by mutation or deletion of the gene encoding the adaptor protein SAP/SH2D1A. Besides defects in T cell and NK cell function and an absence of NKT cells, XLP can also manifest as lymphomas resulting primarily from uncontrolled B cell proliferation upon acute infection by Epstein-Barr virus. While it has been demonstrated that SAP regulates the functions of T cells and NK cells through the SLAM family of immunoreceptors, its role in B cells has not been defined. Here we show that SAP forms a ternary complex with the kinase Lyn and the inhibitory IgG Fc receptor FcgammaRIIB to regulate B cell proliferation and survival. SAP binds directly and simultaneously to the Lyn SH3 domain and an Immuno-receptor Tyrosine-based Inhibitory Motif (ITIM) in FcgammaRIIB, resulting in the activation of the latter. Moreover, SAP associates with FcgammaRIIB in mouse splenic B cells and promotes its tyrosine phosphorylation. Expression of SAP in the A20 B cell line led to a marked reduction in Blnk phosphorylation, a decrease in Akt activation, and a near-complete ablation of phosphorylation of the MAP kinases Erk1/2, p38 and JNK upon colligation of FcgammaRIIB with the B cell receptor (BCR). In contrast, an XLP-causing SAP mutant was much less efficient in eliciting these effects in B cells. Furthermore, compared to A20 cells, SAP transfectants displayed a significantly reduced rate of proliferation and an increased sensitivity to activation-induced cell death. Collectively these data identify an intrinsic function for SAP in inhibitory signaling in B cells and suggests that SAP may play an important role in balancing positive versus negative immune responses.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | |
Collapse
|
70
|
MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 2008; 28:5014-26. [PMID: 18559423 DOI: 10.1128/mcb.00640-08] [Citation(s) in RCA: 366] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (approximately 140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.
Collapse
|
71
|
Roget K, Malissen M, Malbec O, Malissen B, Daëron M. Non-T Cell Activation Linker Promotes Mast Cell Survival by Dampening the Recruitment of SHIP1 by Linker for Activation of T Cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:3689-98. [DOI: 10.4049/jimmunol.180.6.3689] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
72
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|
73
|
Tarasenko T, Dean JA, Bolland S. FcgammaRIIB as a modulator of autoimmune disease susceptibility. Autoimmunity 2007; 40:409-17. [PMID: 17729034 DOI: 10.1080/08916930701464665] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies are secreted to recognize and in some cases directly neutralize pathogens. Another important means by which they are essential components of the immune system is through binding to Fc receptors. Effector responses triggered by antibody binding of Fc receptors affect a host of important cellular responses such as phagocytosis, inflammatory cytokine release, antigen presentation, and regulation of humoral responses. A crucial check on this antibody-mediated signal is through the inhibitory receptor, FcgammaRIIB. In this review we discuss how dysregulation of FcgammaRIIB can result in a lowered threshold for autoimmunity in mice and humans. We close with a discussion of the potential for applying these findings to immunotherapy.
Collapse
Affiliation(s)
- Tatyana Tarasenko
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, Rockville, MD 20852, USA
| | | | | |
Collapse
|
74
|
Patrussi L, Baldari CT. Intracellular mediators of CXCR4-dependent signaling in T cells. Immunol Lett 2007; 115:75-82. [PMID: 18054087 DOI: 10.1016/j.imlet.2007.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 01/03/2023]
Abstract
The signaling pathways induced in T lymphocytes by CXCR4-CXCL12 interaction, which lead to the cytoskeletal macro-rearrangements observable in migrating cells, are as yet largely uncharacterized. The aim of this review is to briefly summarize the current knowledge of the signaling machinery which controls the process of chemotaxis in CXCL12-stimulated T lymphocytes.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | | |
Collapse
|
75
|
Abstract
SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase-1], an inositol 5-phosphatase expressed in haemopoietic cells, acts by hydrolysing the 5-phosphates from PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4), thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathway. SHIP1 plays a major role in inhibiting proliferation of myeloid cells. As a result, SHIP1(-/-) mice have an increased number of neutrophils and monocytes/macrophages due to enhanced survival and proliferation of their progenitors. Although SHIP1 contributes to PtdIns(3,4,5)P(3) metabolism in T-lymphocytes, its exact role in this cell type is much less explored. Jurkat cells have recently emerged as an interesting tool to study SHIP1 function in T-cells because they do not express SHIP1 at the protein level, thereby allowing reintroduction experiments in a relatively easy-to-use system. Data obtained from SHIP1 reintroduction have revealed that SHIP1 not only acts as a negative player in T-cell lines proliferation, but also regulates critical pathways, such as NF-kappaB (nuclear factor kappaB) activation, and also appears to remarkably inhibit T-cell apoptosis. On the other hand, experiments using primary T-cells from SHIP1(-/-) mice have highlighted a new role for SHIP1 in regulatory T-cell development, but also emphasize that this protein is not required for T-cell proliferation. In support of these results, SHIP1(-/-) mice are lymphopenic, suggesting that SHIP1 function in T-cells differs from its role in the myeloid lineage.
Collapse
Affiliation(s)
- G Gloire
- GIGA, Virology and Immunology Unit, B34, University of Liège, 4000 Liège, Belgium.
| | | | | |
Collapse
|
76
|
Abstract
The type I Fc epsilon receptor (Fc epsilon RI) is one of the better understood members of its class and is central to the immunological activation of mast cells and basophils, the key players in immunoglobulin E (IgE)-dependent immediate hypersensitivity. This review provides background information on several distinct regulatory mechanisms controlling this receptor's stimulus-response coupling network. First, we review the current understanding of this network's operation, and then we focus on the inhibitory regulatory mechanisms. In particular, we discuss the different known cytosolic molecules (e.g. kinases, phosphatases, and adapters) as well as cell membrane proteins involved in negatively regulating the Fc epsilon RI-induced secretory responses. Knowledge of this field is developing at a fast rate, as new proteins endowed with regulatory functions are still being discovered. Our understanding of the complex networks by which these proteins exert regulation is limited. Although the scope of this review does not include addressing several important biochemical and biophysical aspects of the regulatory mechanisms, it does provide general insights into a central field in immunology.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
77
|
Abstract
Mast cells are effector cells of the innate immune system, but because they express Fc receptors (FcRs), they can be engaged in adaptive immunity by antibodies. Mast cell FcRs include immunoglobulin E (IgE) and IgG receptors and, among these, activating and inhibitory receptors. The engagement of mast cell IgG receptors by immune complexes may or may not trigger cell activation, depending on the type of mast cell. The coengagement of IgG and IgE receptors results in inhibition of mast cell activation. The Src homology-2 domain-containing inositol 5-phosphatase-1 is a major effector of negative regulation. Biological responses of mast cells depend on the balance between positive and negative signals that are generated in FcR complexes. The contribution of human mast cell IgG receptors in allergies remains to be clarified. Increasing evidence indicates that mast cells play critical roles in IgG-dependent tissue-specific autoimmune diseases. Convincing evidence was obtained in murine models of multiple sclerosis, rheumatoid arthritis, bullous pemphigoid, and glomerulonephritis. In these models, the intensity of lesions depended on the relative engagement of activating and inhibitory IgG receptors. In vitro models of mature tissue-specific murine mast cells are needed to investigate the roles of mast cells in these diseases. One such model unraveled unique differentiation/maturation-dependent biological responses of serosal-type mast cells.
Collapse
Affiliation(s)
- Odile Malbec
- Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, Paris, France
| | | |
Collapse
|
78
|
Baldwin C, Bedirian A, Li H, Takano T, Lemay S. Identification of Dok-4b, a Dok-4 splice variant with enhanced inhibitory properties. Biochem Biophys Res Commun 2007; 354:783-8. [PMID: 17258175 DOI: 10.1016/j.bbrc.2007.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 02/04/2023]
Abstract
Dok adapter proteins have been primarily implicated in negative regulation of tyrosine kinase signaling, but Dok-4 has been reported to exert both inhibitory and stimulatory effects. We have identified a splice variant of Dok-4, Dok-4b, which contains a 39 aa insert within the its C-terminal region. The approximately 45kDa Dok-4b protein was detected in several human epithelial cell lines. Based on genomic sequences, Dok-4b was also predicted to exist in primates and possibly bovines, but not in rodents or other species. Compared to Dok-4, Dok-4b inhibited the tyrosine kinase-induced activation of both Erk and Elk-1 more strongly. Truncation of the C-terminal region of Dok-4 (Dok-4 DeltaCT) also enhanced the inhibitory activity of Dok-4, whereas expression of the isolated C-terminal domain enhanced Elk-1 activation, suggesting that the N-terminus and C-terminus of Dok-4 possess opposing inhibitory and stimulatory properties, respectively, the balance of which is altered by alternative splicing of Dok-4 to Dok-b.
Collapse
Affiliation(s)
- Cindy Baldwin
- Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, Que., Canada H3A 2B4
| | | | | | | | | |
Collapse
|
79
|
Julien SG, Dubé N, Read M, Penney J, Paquet M, Han Y, Kennedy BP, Muller WJ, Tremblay ML. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat Genet 2007; 39:338-46. [PMID: 17259984 DOI: 10.1038/ng1963] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 12/18/2006] [Indexed: 11/08/2022]
Abstract
We investigated the role of protein tyrosine phosphatase 1B (PTP1B) in mammary tumorigenesis using both genetic and pharmacological approaches. It has been previously shown that transgenic mice with a deletion mutation in the region of Erbb2 encoding its extracellular domain (referred to as NDL2 mice, for 'Neu deletion in extracellular domain 2') develop mammary tumors that progress to lung metastasis. However, deletion of PTP1B activity in the NDL2 transgenic mice either by breeding with Ptpn1-deficient mice or by treatment with a specific PTP1B inhibitor results in significant mammary tumor latency and resistance to lung metastasis. In contrast, specific overexpression of PTP1B in the mammary gland leads to spontaneous breast cancer development. The regulation of ErbB2-induced mammary tumorigenesis by PTB1B occurs through the attenuation of both the MAP kinase (MAPK) and Akt pathways. This report provides a rationale for the development of PTP1B as a new therapeutic target in breast cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line, Tumor
- Down-Regulation
- Female
- Lung/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- MAP Kinase Signaling System/physiology
- Mammary Glands, Animal/drug effects
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Phenotype
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sofi G Julien
- McGill Cancer Centre, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The Tec family of tyrosine kinases consists of five members (Itk, Rlk, Tec, Btk, and Bmx) that are expressed predominantly in hematopoietic cells. The exceptions, Tec and Bmx, are also found in endothelial cells. Tec kinases constitute the second largest family of cytoplasmic protein tyrosine kinases. While B cells express Btk and Tec, and T cells express Itk, Rlk, and Tec, all four of these kinases (Btk, Itk, Rlk, and Tec) can be detected in mast cells. This chapter will focus on the biochemical and cell biological data that have been accumulated regarding Itk, Rlk, Btk, and Tec. In particular, distinctions between the different Tec kinase family members will be highlighted, with a goal of providing insight into the unique functions of each kinase. The known functions of Tec kinases in T cell and mast cell signaling will then be described, with a particular focus on T cell receptor and mast cell Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Martin Felices
- Department of Pathology, University of Massachusetts Medical School, Massachusetts, USA
| | | | | | | |
Collapse
|
81
|
Dong S, Corre B, Foulon E, Dufour E, Veillette A, Acuto O, Michel F. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. ACTA ACUST UNITED AC 2006; 203:2509-18. [PMID: 17043143 PMCID: PMC2118126 DOI: 10.1084/jem.20060650] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain–containing inositol polyphosphate 5′-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Cell Line, Tumor
- DNA-Binding Proteins/physiology
- Down-Regulation/immunology
- Feedback, Physiological/immunology
- GRB2 Adaptor Protein/physiology
- Humans
- Inositol Polyphosphate 5-Phosphatases
- Jurkat Cells
- Ligands
- Lymphocyte Activation
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoproteins/physiology
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation
- RNA-Binding Proteins/physiology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Shen Dong
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
82
|
MacGlashan D, Vilariño N. Nonspecific desensitization, functional memory, and the characteristics of SHIP phosphorylation following IgE-mediated stimulation of human basophils. THE JOURNAL OF IMMUNOLOGY 2006; 177:1040-51. [PMID: 16818760 DOI: 10.4049/jimmunol.177.2.1040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previous studies of secretion from basophils have demonstrated the phenomenon called nonspecific desensitization, the ability of one IgE-mediated stimulus to alter the cell's response to other non-cross-reacting IgE-mediated stimuli, and a process that would modify phosphatidylinositol 3,4,5-phosphate levels was speculated to be responsible for nonspecific desensitization. The current studies examined the changes and characteristics of SHIP1 phosphorylation as a measure of SHIP1 participation in the reaction. Based on the earlier studies, two predictions were made that were not observed. First, the kinetics of SHIP1 phosphorylation were similar to reaction kinetics of other early signals and returned to resting levels while nonspecific desensitization remained. Second, in contrast to an expected exaggerated SHIP phosphorylation, cells in a state of nonspecific desensitization showed reduced SHIP phosphorylation (compared with cells not previously exposed to a non-cross-reacting Ag). Discordant with expectations concerning partial recovery from nonspecific desensitization, treatment of cells with DNP-lysine to dissociate bound DNP-HSA, either enhanced or had no effect on SHIP phosphorylation following a second Ag. These experiments also showed a form of desensitization that persisted despite dissociation of the desensitizing Ag. Recent studies and the results of these studies suggest that loss of early signaling components like syk kinase may account for some of the effects of nonspecific desensitization and result in a form of immunological memory of prior stimulation. Taken together, the various characteristics of SHIP phosphorylation were not consistent with expectations for a signaling element involved in nonspecific desensitization, but instead one which itself undergoes nonspecific desensitization.
Collapse
Affiliation(s)
- Donald MacGlashan
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Center, Baltimore, MD 21224, USA.
| | | |
Collapse
|
83
|
Parsa KVL, Ganesan LP, Rajaram MVS, Gavrilin MA, Balagopal A, Mohapatra NP, Wewers MD, Schlesinger LS, Gunn JS, Tridandapani S. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP. PLoS Pathog 2006; 2:e71. [PMID: 16848641 PMCID: PMC1513262 DOI: 10.1371/journal.ppat.0020071] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 06/02/2006] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL)-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP) is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.
Collapse
Affiliation(s)
- Kishore V. L Parsa
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Latha P Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Murugesan V. S Rajaram
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mikhail A Gavrilin
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Ashwin Balagopal
- Department of Molecular Virology, Immunology, and Medical Genetics and Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Nrusingh P Mohapatra
- Department of Molecular Virology, Immunology, and Medical Genetics and Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D Wewers
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Larry S Schlesinger
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology, and Medical Genetics and Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - John S Gunn
- Department of Molecular Virology, Immunology, and Medical Genetics and Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
84
|
Lamkin TJ, Chin V, Yen A. All-trans retinoic acid induces p62DOK1 and p56DOK2 expression which enhances induced differentiation and G0 arrest of HL-60 leukemia cells. Am J Hematol 2006; 81:603-15. [PMID: 16823827 DOI: 10.1002/ajh.20667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
p62(DOK1) (DOK1) and p56(DOK2) (DOK2) are sequence homologs that act as docking proteins downstream of receptor or nonreceptor tyrosine kinases. Originally identified in chronic myelogenous leukemia cells as a highly phosphorylated substrate for the chimeric p210(bcr-abl) protein, DOK1 was suspected to play a role in leukemogenesis. However, p62(DOK1-/-) fibroblast knockout cells were found to have enhanced MAPK signaling and proliferation due to growth factors, suggesting negative regulatory capabilities for DOK1. The role of DOK1 and DOK2 in leukemogeneis thus is enigmatic. The data in this report show that both the DOK1 and the DOK2 adaptor proteins are constitutively expressed in the myelomonoblastic leukemia cell line, HL-60, and that expression of both proteins is induced by the chemotherapeutic differentiation causing agents, all-trans retinoic acid (atRA) and 1,25-dihydroxyvitamin D3 (VD3). Ectopic expression of either protein enhances atRA- or VD3-induced growth arrest, differentiation, and G(0)/G(1) cell cycle arrest and results in increased ERK1/2 phosphorylation. DOK1 and DOK2 are similarly effective in these capabilities. The data provide evidence that DOK1 and DOK2 proteins have a similar role in regulating cell proliferation and differentiation and are positive regulators of the MAPK signaling pathway in this context.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/drug effects
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Calcitriol/pharmacology
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Screening Assays, Antitumor
- Flow Cytometry/methods
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- HL-60 Cells
- Humans
- Leukemia, Myelomonocytic, Acute/drug therapy
- Leukemia, Myelomonocytic, Acute/metabolism
- MAP Kinase Signaling System/drug effects
- Mitogen-Activated Protein Kinase Kinases/drug effects
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Molecular Sequence Data
- Phenotype
- Phosphoproteins/drug effects
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA-Binding Proteins/drug effects
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Resting Phase, Cell Cycle/drug effects
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Time Factors
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Thomas J Lamkin
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
85
|
Niu Y, Roy F, Saltel F, Andrieu-Soler C, Dong W, Chantegrel AL, Accardi R, Thépot A, Foiselle N, Tommasino M, Jurdic P, Sylla BS. A nuclear export signal and phosphorylation regulate Dok1 subcellular localization and functions. Mol Cell Biol 2006; 26:4288-301. [PMID: 16705178 PMCID: PMC1489083 DOI: 10.1128/mcb.01817-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.
Collapse
Affiliation(s)
- Yamei Niu
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Shi L, Yue J, You Y, Yin B, Gong Y, Xu C, Qiang B, Yuan J, Liu Y, Peng X. Dok5 is substrate of TrkB and TrkC receptors and involved in neurotrophin induced MAPK activation. Cell Signal 2006; 18:1995-2003. [PMID: 16647839 DOI: 10.1016/j.cellsig.2006.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 03/03/2006] [Accepted: 03/10/2006] [Indexed: 12/17/2022]
Abstract
Tropomyosin-related kinase (Trk) family receptors are a group of high affinity receptors for neurotrophin growth factors, which have pivotal functions in many physiological processes of nervous system. Trk receptors can dimerize and autophosphorylate upon neurotrophin stimulation, then recruit multiple adaptor proteins to transduct signal. In this report, we identified Dok5, a member of Dok family, as a new substrate of TrkB/C receptors. In yeast two-hybrid assay, Dok5 can interact with intracellular domain of TrkB and TrkC receptor through its PTB domain, but not with that of TrkA receptor. The interaction was then confirmed by GST pull-down assay and Co-IP experiment. Dok5 co-localized with TrkB and TrkC in differentiated PC12 cells, providing another evidence for their interaction. By using mutational analysis, we characterized that Dok5 PTB domain bound to Trk receptor NPQY motif in a kinase-activity-dependent manner. Furthermore, competition experiment indicated that Dok5 competed with N-shc for binding to the receptors at the same site. Finally, we showed that Dok5 was involved in the activation of MAPK pathway induced by neurotrophin stimulation. Taken together, these results suggest that Dok5 acts as substrate of TrkB/C receptors and is involved in neurotrophin induced MAPK signal pathway activation.
Collapse
Affiliation(s)
- Lei Shi
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Chinese National Human Genome Center, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Gloire G, Charlier E, Rahmouni S, Volanti C, Chariot A, Erneux C, Piette J. Restoration of SHIP-1 activity in human leukemic cells modifies NF-κB activation pathway and cellular survival upon oxidative stress. Oncogene 2006; 25:5485-94. [PMID: 16619039 DOI: 10.1038/sj.onc.1209542] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nuclear factor-kappa B (NF-kappaB) is an important prosurvival transcription factor activated in response to a large array of external stimuli, including reactive oxygen species (ROS). Previous works have shown that NF-kappaB activation by ROS involved tyrosine phosphorylation of the inhibitor IkappaBalpha through an IkappaB kinase (IKK)-independent mechanism. In the present work, we investigated with more details NF-kappaB redox regulation in human leukemic cells. By using different cell lines (CEM, Jurkat and the subclone Jurkat JR), we clearly showed that NF-kappaB activation by hydrogen peroxide (H2O2) is cell-type dependent: it activates NF-kappaB through tyrosine phosphorylation of IkappaBalpha in Jurkat cells, whereas it induces an IKK-mediated IkappaBalpha phosphorylation on S32 and 36 in CEM and Jurkat JR cells. We showed that this H2O2-induced IKK activation in CEM and Jurkat JR cells is mediated by SH2-containing inositol 5'-phosphatase 1 (SHIP-1), a lipid phosphatase that is absent in Jurkat cells. Indeed, the complementation of SHIP-1 in Jurkat cells made them shift to an IKK-dependent mechanism upon oxidative stress stimulation. We also showed that Jurkat cells expressing SHIP-1 are more resistant to H2O2-induced apoptosis than the parental cells, suggesting that SHIP-1 has an important role in leukemic cell responses to ROS in terms of signal transduction pathways and apoptosis resistance, which can be of interest in improving ROS-mediated chemotherapies.
Collapse
Affiliation(s)
- G Gloire
- Virology-Immunology Unit, University of Liège, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
88
|
Gauld SB, Merrell KT, Cambier JC. Silencing of autoreactive B cells by anergy: a fresh perspective. Curr Opin Immunol 2006; 18:292-7. [PMID: 16616480 DOI: 10.1016/j.coi.2006.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 03/28/2006] [Indexed: 12/22/2022]
Abstract
B-cell antigen receptor (BCR) signals are crucial for initiation of humoral immune responses and must be actively modulated and/or terminated in preparation for receipt of subsequent cues for progression. BCR signaling is also actively inhibited in autoreactive cells in which unresponsiveness is maintained by anergy. This serves to prevent cell activation and autoimmunity. Importantly, the feedback mechanisms that modulate and/or terminate signaling during normal antigen-induced B-cell activation appear to also be involved in maintaining B-cell anergy. In fact, it is suggested that anergy reflects nothing more than the normal inability of cells to respond to antigen following preceding stimulation of normal inhibitory feedback mechanisms. Thus, the time-honored two-signal hypothesis is almost certainly correct, with second signals being required to release the cell from inhibitory BCR-specific and trans-active feedback regulation.
Collapse
Affiliation(s)
- Stephen B Gauld
- Integrated Department of Immunology, University of Colorado Health Science Center and National Jewish Medical Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
89
|
Isnardi I, Bruhns P, Bismuth G, Fridman WH, Daëron M. The SH2 domain-containing inositol 5-phosphatase SHIP1 is recruited to the intracytoplasmic domain of human FcγRIIB and is mandatory for negative regulation of B cell activation. Immunol Lett 2006; 104:156-65. [PMID: 16406061 DOI: 10.1016/j.imlet.2005.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Murine FcgammaRIIB were demonstrated to recruit SH2 domain-containing inositol 5-phosphatases (SHIP1/2), when their ITIM is tyrosyl-phosphorylated upon co-aggregation with BCR, and SHIP1 to account for FcgammaRIIB-dependent negative regulation of murine B cell activation. Although human FcgammaRIIB share the same ITIM as murine FcgammaRIIB and similarly inhibit human B cell activation, which among the four known SH2 domain-containing (tyrosine or inositol) phosphatases is/are recruited by human FcgammaRIIB is unclear. Our recent finding that, besides the ITIM, a second tyrosine-based motif is mandatory for murine FcgammaRIIB to recruit SHIP1 challenged the possibility that human FcgammaRIIB recruit this phosphatase. Human FcgammaRIIB indeed lack this motif. Using an experimental model which enabled us to compare human FcgammaRIIB and murine FcgammaRIIB under strictly controlled conditions, we show that SHIP1 is recruited to the intracytoplasmic domain of human FcgammaRIIB and inhibits the same biological responses and intracellular signals as when recruited by murine FcgammaRIIB. Identical results were observed in murine and in human B cells. We demonstrate that SHIP is necessary for human FcgammaRIIB to inhibit BCR signaling, and cannot be replaced by SHP-1 or SHP-2. Although it contains no tyrosine, the C-terminal segment of human FcgammaRIIB was as mandatory as the tyrosine-containing C-terminal segment of murine FcgammaRIIB for SHIP1 to be recruited to the ITIM. This segment, however, did not recruit the adapters Grb2/Grap which were demonstrated to stabilize the recruitment of SHIP1 to the ITIM in murine FcgammaRIIB.
Collapse
Affiliation(s)
- Isabelle Isnardi
- Unité d' Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, 75015 Paris, France
| | | | | | | | | |
Collapse
|
90
|
Kashiwada M, Cattoretti G, McKeag L, Rouse T, Showalter BM, Al-Alem U, Niki M, Pandolfi PP, Field EH, Rothman PB. Downstream of Tyrosine Kinases-1 and Src Homology 2-Containing Inositol 5′-Phosphatase Are Required for Regulation of CD4+CD25+ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2006; 176:3958-65. [PMID: 16547230 DOI: 10.4049/jimmunol.176.7.3958] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein, downstream of tyrosine kinases-1 (Dok-1), and the phosphatase SHIP are both tyrosine phosphorylated in response to T cell stimulation. However, a function for these molecules in T cell development has not been defined. To clarify the role of Dok-1 and SHIP in T cell development in vivo, we compared the T cell phenotype of wild-type, Dok-1 knockout (KO), SHIP KO, and Dok-1/SHIP double-knockout (DKO) mice. Dok-1/SHIP DKO mice were runted and had a shorter life span compared with either Dok-1 KO or SHIP KO mice. Thymocyte numbers from Dok-1/SHIP DKO mice were reduced by 90%. Surface expression of both CD25 and CD69 was elevated on freshly isolated splenic CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO, suggesting these cells were constitutively activated. However, these T cells did not proliferate or produce IL-2 after stimulation. Interestingly, the CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO mice produced higher levels of TGF-beta, expressed Foxp3, and inhibited IL-2 production by CD3-stimulated CD4(+)CD25(-) T cells in vitro. These findings suggest Dok-1 and SHIP function in pathways that influence regulatory T cell development.
Collapse
Affiliation(s)
- Masaki Kashiwada
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Ganesan LP, Joshi T, Fang H, Kutala VK, Roda J, Trotta R, Lehman A, Kuppusamy P, Byrd JC, Carson WE, Caligiuri MA, Tridandapani S. FcgammaR-induced production of superoxide and inflammatory cytokines is differentially regulated by SHIP through its influence on PI3K and/or Ras/Erk pathways. Blood 2006; 108:718-25. [PMID: 16543474 PMCID: PMC1895481 DOI: 10.1182/blood-2005-09-3889] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phagocytosis of IgG-coated particles via FcgammaR is accompanied by the generation of superoxide and inflammatory cytokines, which can cause collateral tissue damage in the absence of regulation. Molecular mechanisms regulating these phagocytosis-associated events are not known. SHIP is an inositol phosphatase that downregulates PI3K-mediated activation events. Here, we have examined the role of SHIP in FcgammaR-induced production of superoxide and inflammatory cytokines. We report that primary SHIP-deficient bone marrow macrophages produce elevated levels of superoxide upon FcgammaR clustering. Analysis of the molecular mechanism revealed that SHIP regulates upstream Rac-GTP binding, an obligatory event for superoxide production. Likewise, SHIP-deficient macrophages displayed enhanced IL-1beta and IL-6 production in response to FcgammaR clustering. Interestingly, whereas IL-6 production required activation of both PI3K and Ras/Erk pathways, IL-1beta production was dependent only on Ras/Erk activation, suggesting that SHIP may also regulate the Ras/Erk pathway in macrophages. Consistently, SHIP-deficient macrophages displayed enhanced activation of Erk upon FcgammaR clustering. Inhibition of Ras/Erk or PI3K suppressed the enhanced production of IL-6 in SHIP-deficient macrophages. In contrast, inhibition of Ras/Erk, but not PI3K, suppressed IL-1beta production in these cells. Together, these data demonstrate that SHIP regulates phagocytosis-associated events through the inhibition of PI3K and Ras/Erk pathways.
Collapse
Affiliation(s)
- Latha P Ganesan
- Department of Internal Medicine, The Ohio State University Biochemistry Program, Columbus, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Cell activation results from the transient displacement of an active balance between positive and negative signaling. This displacement depends in part on the engagement of cell surface receptors by extracellular ligands. Among these are receptors for the Fc portion of immunoglobulins (FcRs). FcRs are widely expressed by cells of hematopoietic origin. When binding antibodies, FcRs provide these cells with immunoreceptors capable of triggering numerous biological responses in response to a specific antigen. FcR-dependent cell activation is regulated by negative signals which are generated together with positive signals within signalosomes that form upon FcR engagement. Many molecules involved in positive signaling, including the FcRbeta subunit, the src kinase lyn, the cytosolic adapter Grb2, and the transmembrane adapters LAT and NTAL, are indeed also involved in negative signaling. A major player in negative regulation of FcR signaling is the inositol 5-phosphatase SHIP1. Several layers of negative regulation operate sequentially as FcRs are engaged by extracellular ligands with an increasing valency. A background protein tyrosine phosphatase-dependent negative regulation maintains cells in a "resting" state. SHIP1-dependent negative regulation can be detected as soon as high-affinity FcRs are occupied by antibodies in the absence of antigen. It increases when activating FcRs are engaged by multivalent ligands and, further, when FcR aggregation increases, accounting for the bell-shaped dose-response curve observed in excess of ligand. Finally, F-actin skeleton-associated high-molecular weight SHIP1, recruited to phosphorylated ITIMs, concentrates in signaling complexes when activating FcRs are coengaged with inhibitory FcRs by immune complexes. Based on these data, activating and inhibitory FcRs could be used for new therapeutic approaches to immune disorders.
Collapse
Affiliation(s)
- Marc Daëron
- Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, Paris, France
| | | |
Collapse
|
93
|
Chen JY, Wang CM, Ma CC, Luo SF, Edberg JC, Kimberly RP, Wu J. Association of a transmembrane polymorphism of Fcγ receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. ACTA ACUST UNITED AC 2006; 54:3908-17. [PMID: 17133600 DOI: 10.1002/art.22220] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the possible association of the Fcgamma receptor IIb (FcgammaRIIb) Ile/Thr187 transmembrane domain polymorphism, which significantly affects receptor signaling, with susceptibility to systemic lupus erythematosus (SLE) in Taiwanese patients. METHODS We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to genotype 351 Taiwanese SLE patients and 372 age- and sex-matched healthy individuals from the same geographic area. Allele frequencies and genotype distributions were compared between the patients and controls, both as an aggregate and as stratified by sex, autoantibody profile, and clinical parameters. A combined analysis was conducted to assess the FCGR2B Thr187 allele as a common risk factor in different ethnic populations. RESULTS The minor Thr187 allele was significantly associated with SLE in Taiwanese subjects (P = 0.017, odds ratio [OR] 1.989 [95% confidence interval (95% CI) 1.119-3.553]). Interestingly, male SLE patients showed enrichment of the Thr/Thr187 genotype (24%; 7 of 29) as compared with female SLE patients (10%; 32 of 322) (P = 0.043, OR 2.884 [95% CI 1.028-7.839]). Additionally, SLE patients with Thr/Thr187 and Ile/Thr187 genotypes were more likely to have pleural effusions (P = 0.038, OR 1.874 [95% CI 1.033-3.411]) and anti-SSA/Ro antibody production (P = 0.046, OR 2.221 [95% CI 1.013-4.897]). Combined analysis of 4 groups of Asian patients strongly supported the association of the FCGR2B Thr187 allele with the lupus phenotype (P = 0.000159). CONCLUSION The FcgammaRIIb transmembrane polymorphism is a strong disease susceptibility candidate in epistasis with other genetic effects in Taiwanese and other Asian populations. It may also play a more prominent role in male patients with SLE.
Collapse
Affiliation(s)
- Ji-Yih Chen
- Department of Medicine, Chang Gung Memorial Hospital, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
94
|
Yen A, Varvayanis S, Smith JL, Lamkin TJ. Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells. Eur J Cell Biol 2005; 85:117-32. [PMID: 16439309 DOI: 10.1016/j.ejcb.2005.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/21/2005] [Accepted: 09/28/2005] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Differentiation/drug effects
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/physiology
- Gene Expression Regulation, Leukemic
- HL-60 Cells
- Humans
- Immunoprecipitation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/physiopathology
- Mutation
- Paxillin/genetics
- Paxillin/physiology
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphorylation
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/physiology
- Receptors, Antigen, T-Cell/physiology
- Resting Phase, Cell Cycle/drug effects
- Signal Transduction
- Superoxides/metabolism
- Transfection
- Tretinoin/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Andrew Yen
- Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
95
|
Abstract
The activation threshold of cells in the immune system is often tuned by cell surface molecules. The Fc receptors expressed on various hematopoietic cells constitute critical elements for activating or downmodulating immune responses and combines humoral and cell-mediated immunity. Thus, Fc receptors are the intelligent sensors of the immune status in the individual. However, impaired regulation by Fc receptors will lead to unresponsiveness or hyperreactivity to foreign as well as self-antigens. Murine models for autoimmune disease indicate the indispensable roles of the inhibitory Fc receptor in the suppression of such disorders, whereas activating-type FcRs are crucial for the onset and exacerbation of the disease. The development of many autoimmune diseases in humans may be caused by impairment of the human Fc receptor regulatory system. This review is aimed at providing a current overview of the mechanism of Fc receptor-based immune regulation and the possible scenario of how autoimmune disease might result from their dysfunction.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology and CREST Program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
96
|
Tzeng SJ, Bolland S, Inabe K, Kurosaki T, Pierce SK. The B Cell Inhibitory Fc Receptor Triggers Apoptosis by a Novel c-Abl Family Kinase-dependent Pathway. J Biol Chem 2005; 280:35247-54. [PMID: 16115887 DOI: 10.1074/jbc.m505308200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory Fc receptors function to regulate the antigen-driven activation and expansion of lymphocytes. In B cells, the Fc gammaRIIB1 is a potent inhibitor of B cell antigen receptor (BCR) signaling when coligated to the BCR by engagement of antigen-containing immune complexes. Inhibition is mediated by the recruitment of the inositol phosphatase, SHIP, to the Fc gammaRIIB1 phosphorylated tyrosine-based inhibitory motif (ITIM). Here we show that BCR-independent aggregation of the Fc gammaRIIB1 transduces an ITIM- and SHIP-independent proapoptotic signal that is dependent on members of the c-Abl tyrosine kinase family. These results define a novel Abl family kinase-dependent Fc gammaRIIB1 signaling pathway that functions independently of the BCR in controlling antigen-driven B cell responses.
Collapse
Affiliation(s)
- Shiang-Jong Tzeng
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
97
|
Boulay I, Némorin JG, Duplay P. Phosphotyrosine Binding-Mediated Oligomerization of Downstream of Tyrosine Kinase (Dok)-1 and Dok-2 Is Involved in CD2-Induced Dok Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4483-9. [PMID: 16177091 DOI: 10.4049/jimmunol.175.7.4483] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To date, five members of the downstream of tyrosine kinase (Dok) family have been characterized. In T cells, two members, Dok-1 and Dok-2, are expressed. CD2 or CD28 stimulation, but not CD3/TCR stimulation, induces Dok phosphorylation. Recent evidence suggests that they act as negative regulators of the CD2 and CD28 signaling pathways. To identify the molecular mechanisms involved in Dok-mediated inhibition, we have identified proteins that bind to the phosphotyrosine-binding (PTB) domain of Dok-1 and Dok-2. We showed that the Dok PTB domain mediates phosphotyrosine-dependent homotypic and heterotypic interactions of Dok-1 and Dok-2. Moreover, in CD2-stimulated Jurkat cells, Dok-1 coimmunoprecipitates with tyrosine-phosphorylated Dok-2. To study the involvement of PTB-mediated oligomerization in Dok function, we have generated Jurkat clones overexpressing Dok-1 or Dok-2 with a mutation that prevents oligomerization (in either the PTB domain or Tyr146 of Dok-1 and Tyr139 of Dok-2). These mutations abrogate CD2-induced phosphorylation and the ability of Dok-1 or Dok-2 to inhibit CD2-induced ERK1/2 and NFAT activation. Moreover, overexpression of Dok-1Y146F or Dok-2Y139F interferes with CD2-induced phosphorylation of endogenous Dok, whereas overexpression of PTB mutant or wild-type Dok does not. Taken together, these data indicate that PTB-mediated oligomerization of Dok-1 and Dok-2 represents an essential step for Dok phosphorylation and function.
Collapse
Affiliation(s)
- Iohann Boulay
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
98
|
Itoh S, Lemay S, Osawa M, Che W, Duan Y, Tompkins A, Brookes PS, Sheu SS, Abe JI. Mitochondrial Dok-4 Recruits Src Kinase and Regulates NF-κB Activation in Endothelial Cells. J Biol Chem 2005; 280:26383-96. [PMID: 15855164 DOI: 10.1074/jbc.m410262200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The downstream of kinase (Dok) family of adapter proteins consists of at least five members structurally characterized by an NH2-terminal tandem of conserved pleckstrin homology and phosphotyrosine binding domains linked to a unique COOH-terminal region. To determine the role of the novel adapter protein Dok-4 in endothelial cells, we first investigated the cell localization of Dok-4. Most surprisingly, immunofluorescence microscopy, cell fractionation studies, and studies with enhanced green fluorescent protein chimeras showed that wild type Dok-4 (Dok-4-WT) specifically localized in mitochondria. An NH2-terminal deletion mutant of Dok-4 (Dok-4-(deltaN11-29)), which lacks the mitochondrial targeting sequence, could not accumulate in mitochondria. Co-immunoprecipitation revealed an interaction of c-Src with Dok-4-WT in endothelial cells. Most interestingly, overexpression of Dok-4-WT, but not Dok-4-(deltaN1-99), increased mitochondrial c-Src expression, whereas knock-down of endogenous Dok-4 with a small interfering RNA vector greatly inhibited mitochondrial localization of c-Src, suggesting a unique function for Dok-4 as an anchoring protein for c-Src in mitochondria. Dok-4-WT significantly decreased 39-kDa subunit complex I expression. PP2, a specific Src kinase inhibitor, prevented the Dok-4-mediated complex I decrease, suggesting the involvement of Src kinase in regulation of complex I expression. Dok-4-WT enhanced tumor necrosis factor-alpha (TNF-alpha)-mediated reactive oxygen species (ROS) production, supporting the functional relevance of a Dok-4-Src-complex I/ROS signaling pathway in mitochondria. Finally, Dok-4 enhanced TNF-alpha-mediated NF-kappaB activation, whereas this was inhibited by transfection with Dok-4 small interfering RNA. In addition, Dok-4-induced NF-kappaB activation was also inhibited by transfection of a dominant negative form of c-Src. These data suggest a role for mitochondrial Dok-4 as an anchoring molecule for the tyrosine kinase c-Src, and in turn as a regulator of TNF-alpha-mediated ROS production and NF-kappaB activation.
Collapse
Affiliation(s)
- Seigo Itoh
- Center for Cardiovascular Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Inhibitory co-receptors downmodulate B-cell receptor (BCR) signalling by setting a signalling threshold that prevents overstimulation of B cells. Activation of these inhibitory co-receptors occurs by phosphorylation on their cytoplasmic inhibitory immunoreceptor tyrosine-based inhibition motifs (ITIMs), followed by recruitment of the tyrosine phosphatase SHP-1 or the lipid phosphatase SHIP, and depends on their association with the BCR. Recent evidence shows that B-cell signal inhibition is regulated by ligand binding of inhibitory receptors.
Collapse
Affiliation(s)
- Lars Nitschke
- Department of Genetics, University of Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany.
| |
Collapse
|
100
|
Nakamura A, Akiyama K, Takai T. Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer. Expert Opin Ther Targets 2005; 9:169-90. [PMID: 15757489 DOI: 10.1517/14728222.9.1.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune activation and inhibitory receptors play an important role in the maintenance of an adequate activation threshold of various cells in our immune system. Analyses of murine models show that the inhibitory Fcreceptor, FcgammaRIIB plays an indispensable role in the suppression of anti-body-mediated allergy and autoimmunity. In contrast, the activating-type Fcreceptors (FcRs) are essential for the development of these diseases, suggesting that regulation of inhibitory or activating FcR is an ideal target as a therapeutic agent. In addition, recent crystal structural analyses of FcR-Ig-Fc fragment complexes provide an effective approach for developing FcR-targeting drugs. This review summarises recent advances of FcR, which were mainly obtained by murine studies, and highlights novel antibodies as possible FcR-targeting therapies for allergy, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Akira Nakamura
- Tohoku University, Department of Experimental Immunology and CREST programme of Japan Science and Technology Agency, Institute of Development, ageing and Cancer, Seiryo 4-1, Sendai 980-8575, Japan.
| | | | | |
Collapse
|