51
|
Stackowicz J, Jönsson F, Reber LL. Mouse Models and Tools for the in vivo Study of Neutrophils. Front Immunol 2020; 10:3130. [PMID: 32038641 PMCID: PMC6985372 DOI: 10.3389/fimmu.2019.03130] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and critical actors of the immune system. Many neutrophil functions and facets of their activity in vivo were revealed by studying genetically modified mice or by tracking fluorescent neutrophils in animals using imaging approaches. Assessing the roles of neutrophils can be challenging, especially when exact molecular pathways are questioned or disease states are interrogated that alter normal neutrophil homeostasis. This review discusses the main in vivo models for the study of neutrophils, their advantages and limitations. The side-by-side comparison underlines the necessity to carefully choose the right model(s) to answer a given scientific question, and exhibit caveats that need to be taken into account when designing experimental procedures. Collectively, this review suggests that at least two models should be employed to legitimately conclude on neutrophil functions.
Collapse
Affiliation(s)
- Julien Stackowicz
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Center for Pathophysiology Toulouse-Purpan (CPTP), UMR 1043, University of Toulouse, INSERM, CNRS, Toulouse, France
| |
Collapse
|
52
|
Ai Z, Udalova IA. Transcriptional regulation of neutrophil differentiation and function during inflammation. J Leukoc Biol 2020; 107:419-430. [PMID: 31951039 DOI: 10.1002/jlb.1ru1219-504rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in innate immunity where they elicit powerful effector functions to eliminate invading pathogens and modulate the adaptive as well as the innate immune response. Neutrophil function must be tightly regulated during inflammation and infection to avoid additional tissue damage. Increasing evidence suggests that transcription factors (TFs) function as key regulators to modulate transcriptional output, thereby controlling cell fate decision and the inflammatory responses. However, the molecular mechanisms underlying neutrophil differentiation and function during inflammation remain largely uncharacterized. Here, we provide a comprehensive overview of TFs known to be crucial for neutrophil maturation and in the signaling pathways that control neutrophil differentiation and activation. We also outline how emerging genomic and single-cell technologies may facilitate further discovery of neutrophil transcriptional regulators.
Collapse
Affiliation(s)
- Zhichao Ai
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
53
|
Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A 2019; 116:25222-25228. [PMID: 31754025 DOI: 10.1073/pnas.1908576116] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neutrophil dysregulation is implicated in the pathogenesis of systemic lupus erythematosus (SLE). SLE is characterized by elevated levels of a pathogenic neutrophil subset known as low-density granulocytes (LDGs). The origin and phenotypic, functional, and pathogenic heterogeneity of LDGs remain to be systematically determined. Transcriptomics and epigenetic assessment of lupus LDGs, autologous normal-density neutrophils, and healthy control neutrophils was performed by bulk and single-cell RNA sequencing and assay for transposase-accessible chromatin sequencing. Functional readouts were compared among neutrophil subsets. SLE LDGs display significant transcriptional and epigenetic heterogeneity and comprise 2 subpopulations of intermediate-mature and immature neutrophils, with different degrees of chromatin accessibility and differences in transcription factor motif analysis. Differences in neutrophil extracellular trap (NET) formation, oxidized mitochondrial DNA release, chemotaxis, phagocytosis, degranulation, ability to harm the endothelium, and responses to type I interferon (IFN) stimulation are evident among LDG subsets. Compared with other immune cell subsets, LDGs display the highest expression of IFN-inducible genes. Distinct LDG subsets correlate with specific clinical features of lupus and with the presence and severity of coronary artery disease. Phenotypic, functional, and pathogenic neutrophil heterogeneity are prevalent in SLE and may promote immune dysregulation and prominent vascular damage characteristic of this disease.
Collapse
|
54
|
Brumbaugh J, Kim IS, Ji F, Huebner AJ, Di Stefano B, Schwarz BA, Charlton J, Coffey A, Choi J, Walsh RM, Schindler JW, Anselmo A, Meissner A, Sadreyev RI, Bernstein BE, Hock H, Hochedlinger K. Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nat Cell Biol 2019; 21:1449-1461. [PMID: 31659274 PMCID: PMC6858577 DOI: 10.1038/s41556-019-0403-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
Development and differentiation are associated with profound changes to histone modifications, yet their in vivo function remains incompletely understood. Here, we generated mouse models expressing inducible histone H3 lysine-to-methionine (K-to-M) mutants, which globally inhibit methylation at specific sites. Mice expressing H3K36M developed severe anaemia with arrested erythropoiesis, a marked haematopoietic stem cell defect, and rapid lethality. By contrast, mice expressing H3K9M survived up to a year and showed expansion of multipotent progenitors, aberrant lymphopoiesis and thrombocytosis. Additionally, some H3K9M mice succumbed to aggressive T cell leukaemia/lymphoma, while H3K36M mice exhibited differentiation defects in testis and intestine. Mechanistically, induction of either mutant reduced corresponding histone trimethylation patterns genome-wide and altered chromatin accessibility as well as gene expression landscapes. Strikingly, discontinuation of transgene expression largely restored differentiation programmes. Our work shows that individual chromatin modifications are required at several specific stages of differentiation and introduces powerful tools to interrogate their roles in vivo.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO, USA
| | - Ik Soo Kim
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin A Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Amy Coffey
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiho Choi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan M Walsh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Schindler
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanno Hock
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
55
|
McClellan D, Casey MJ, Bareyan D, Lucente H, Ours C, Velinder M, Singer J, Lone MD, Sun W, Coria Y, Mason CC, Engel ME. Growth Factor Independence 1B-Mediated Transcriptional Repression and Lineage Allocation Require Lysine-Specific Demethylase 1-Dependent Recruitment of the BHC Complex. Mol Cell Biol 2019; 39:e00020-19. [PMID: 30988160 PMCID: PMC6580704 DOI: 10.1128/mcb.00020-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Growth factor independence 1B (GFI1B) coordinates assembly of transcriptional repressor complexes comprised of corepressors and histone-modifying enzymes to control gene expression programs governing lineage allocation in hematopoiesis. Enforced expression of GFI1B in K562 erythroleukemia cells favors erythroid over megakaryocytic differentiation, providing a platform to define molecular determinants of binary fate decisions triggered by GFI1B. We deployed proteome-wide proximity labeling to identify factors whose inclusion in GFI1B complexes depends upon GFI1B's obligate effector, lysine-specific demethylase 1 (LSD1). We show that GFI1B preferentially recruits core and putative elements of the BRAF-histone deacetylase (HDAC) (BHC) chromatin-remodeling complex (LSD1, RCOR1, HMG20A, HMG20B, HDAC1, HDAC2, PHF21A, GSE1, ZMYM2, and ZNF217) in an LSD1-dependent manner to control acquisition of erythroid traits by K562 cells. Among these elements, depletion of both HMG20A and HMG20B or of GSE1 blocks GFI1B-mediated erythroid differentiation, phenocopying impaired differentiation brought on by LSD1 depletion or disruption of GFI1B-LSD1 binding. These findings demonstrate the central role of the GFI1B-LSD1 interaction as a determinant of BHC complex recruitment to enable cell fate decisions driven by GFI1B.
Collapse
Affiliation(s)
- David McClellan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mattie J Casey
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diana Bareyan
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Helena Lucente
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Ours
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Matthew Velinder
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Singer
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mehraju Din Lone
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Wenxiang Sun
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yunuen Coria
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Michael E Engel
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Primary Children's Hospital, Salt Lake City, Utah, USA
- Center for Investigational Therapeutics, Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Nuclear Control of Cell Growth and Differentiation Program, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
56
|
Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol 2019; 40:648-664. [PMID: 31155315 DOI: 10.1016/j.it.2019.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Neutrophils, the most abundant white blood cells in human circulation, entertain intense interactions with other leukocyte subsets, platelets, and stromal cells. Molecularly, such interactions are typically communicated through proteins generated during granulopoiesis, stored in granules, or produced on demand. Here, we provide an overview of the mammalian regulation of granule protein production in the bone marrow and the de novo synthesis of cytokines by neutrophils recruited to tissues. In addition, we discuss some of the known biological roles of these protein messengers, and how neutrophil-borne granule proteins and cytokines can synergize to modulate inflammation and tumor development. Decoding the neutrophil interactome is important for therapeutically neutralizing individual proteins to putatively dampen inflammation, or for delivering modified neutrophil-borne proteins to boost host defense.
Collapse
Affiliation(s)
| | - Nataliya K Östberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Oliver Soehnlein
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention (IPEK), Klinikum der LMU, München, Germany; German Centre for Cardiovascular Research (DZHK), Partner site, Munich, Germany.
| |
Collapse
|
57
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
58
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
59
|
Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol 2019; 10:346. [PMID: 30886615 PMCID: PMC6409342 DOI: 10.3389/fimmu.2019.00346] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are versatile innate effector cells essential for immune defense but also responsible for pathologic inflammation. This dual role complicates therapeutic targeting. However, neither neutrophils themselves nor the mechanisms they employ in different forms of immune responses are homogeneous, offering possibilities for selective intervention. Here we review heterogeneity within the neutrophil population as well as in the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining opportunities for therapeutic manipulation in inflammatory disease.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
60
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
61
|
Gfi1-Mediated Repression of c-Fos, Egr-1 and Egr-2, and Inhibition of ERK1/2 Signaling Contribute to the Role of Gfi1 in Granulopoiesis. Sci Rep 2019; 9:737. [PMID: 30679703 PMCID: PMC6345849 DOI: 10.1038/s41598-018-37402-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/30/2018] [Indexed: 01/23/2023] Open
Abstract
Gfi1 supports neutrophil development at the expense of monopoiesis, but the underlying molecular mechanism is incompletely understood. We recently showed that the G-CSFR Y729F mutant, in which tyrosine 729 was mutated to phenylalanine, promoted monocyte rather than neutrophil development in myeloid precursors, which was associated with prolonged activation of Erk1/2 and enhanced activation of c-Fos and Egr-1. We show here that Gfi1 inhibited the expression of c-Fos, Egr-1 and Egr-2, and rescued neutrophil development in cells expressing G-CSFR Y729F. Gfi1 directly bound to and repressed c-Fos and Egr-1, as has been shown for Egr-2, all of which are the immediate early genes (IEGs) of the Erk1/2 pathway. Interestingly, G-CSF- and M-CSF-stimulated activation of Erk1/2 was augmented in lineage-negative (Lin−) bone marrow (BM) cells from Gfi1−/− mice. Suppression of Erk1/2 signaling resulted in diminished expression of c-Fos, Egr-1 and Egr-2, and partially rescued the neutrophil development of Gfi1−/− BM cells, which are intrinsically defective for neutrophil development. Together, our data indicate that Gfi1 inhibits the expression of c-Fos, Egr-1 and Egr-2 through direct transcriptional repression and indirect inhibition of Erk1/2 signaling, and that Gfi1-mediated downregulation of c-Fos, Egr-1 and Egr-2 may contribute to the role of Gfi1 in granulopoiesis.
Collapse
|
62
|
Chen MS, Lo YH, Chen X, Williams CS, Donnelly JM, Criss ZK, Patel S, Butkus JM, Dubrulle J, Finegold MJ, Shroyer NF. Growth Factor-Independent 1 Is a Tumor Suppressor Gene in Colorectal Cancer. Mol Cancer Res 2019; 17:697-708. [PMID: 30606770 DOI: 10.1158/1541-7786.mcr-18-0666] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Colorectal cancer is the third most common cancer and the third leading cause of cancer death in the United States. Growth factor-independent 1 (GFI1) is a zinc finger transcriptional repressor responsible for controlling secretory cell differentiation in the small intestine and colon. GFI1 plays a significant role in the development of human malignancies, including leukemia, lung cancer, and prostate cancer. However, the role of GFI1 in colorectal cancer progression is largely unknown. Our results demonstrate that RNA and protein expression of GFI1 are reduced in advanced-stage nonmucinous colorectal cancer. Subcutaneous tumor xenograft models demonstrated that the reexpression of GFI1 in 4 different human colorectal cancer cell lines inhibits tumor growth. To further investigate the role of Gfi1 in de novo colorectal tumorigenesis, we developed transgenic mice harboring a deletion of Gfi1 in the colon driven by CDX2-cre (Gfi1F/F; CDX2-cre) and crossed them with ApcMin/+ mice (ApcMin/+; Gfi1F/F; CDX2-cre). Loss of Gfi1 significantly increased the total number of colorectal adenomas compared with littermate controls with an APC mutation alone. Furthermore, we found that compound (ApcMin/+; Gfi1F/F; CDX2-cre) mice develop larger adenomas, invasive carcinoma, as well as hyperplastic lesions expressing the neuroendocrine marker chromogranin A, a feature that has not been previously described in APC-mutant tumors in mice. Collectively, these results demonstrate that GFI1 acts as a tumor suppressor gene in colorectal cancer, where deficiency of Gfi1 promotes malignancy in the colon. IMPLICATIONS: These findings reveal that GFI1 functions as a tumor suppressor gene in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Min-Shan Chen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Yuan-Hung Lo
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Xi Chen
- Department of Public Health Sciences, University of Miami, Miami, Florida
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, Tennessee
| | - Jessica M Donnelly
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Zachary K Criss
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Shreena Patel
- Department of Pediatrics, Section of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas
| | - Joann M Butkus
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.,Summer Undergraduate Research Training Program, Baylor College of Medicine, Houston Texas.,Susquehanna University, Selinsgrove, Pennsylvania
| | - Julien Dubrulle
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - Milton J Finegold
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas. .,Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.,Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
63
|
Csepregi JZ, Orosz A, Zajta E, Kása O, Németh T, Simon E, Fodor S, Csonka K, Barátki BL, Kövesdi D, He YW, Gácser A, Mócsai A. Myeloid-Specific Deletion of Mcl-1 Yields Severely Neutropenic Mice That Survive and Breed in Homozygous Form. THE JOURNAL OF IMMUNOLOGY 2018; 201:3793-3803. [PMID: 30464050 PMCID: PMC6287103 DOI: 10.4049/jimmunol.1701803] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic protein in Lyz2Cre/CreMcl1flox/flox (Mcl1ΔMyelo) mice leads to dramatic reduction of circulating and tissue neutrophil counts without affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1ΔMyelo mice appeared normally, and their survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1ΔMyelo mice were also able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of neutropenia was confirmed by the complete protection of Mcl1ΔMyelo mice from arthritis development in the K/B×N serum-transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita. Mcl1ΔMyelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 in MRP8-CreMcl1flox/flox (Mcl1ΔPMN) mice also led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1ΔMyelo mice indicate that severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the analysis of the role of neutrophils in health and disease.
Collapse
Affiliation(s)
- Janka Zsófia Csepregi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Anita Orosz
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Erik Zajta
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Orsolya Kása
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Katalin Csonka
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Balázs L Barátki
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary.,Office of Supported Research Groups of the Hungarian Academy of Sciences, 1051 Budapest, Hungary; and
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Attila Gácser
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; .,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
64
|
Kelly AD, Madzo J, Madireddi P, Kropf P, Good CR, Jelinek J, Issa JPJ. Demethylator phenotypes in acute myeloid leukemia. Leukemia 2018; 32:2178-2188. [PMID: 29556023 PMCID: PMC6128790 DOI: 10.1038/s41375-018-0084-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) often harbors mutations in epigenetic regulators, and also has frequent DNA hypermethylation, including the presence of CpG island methylator phenotypes (CIMPs). Although global hypomethylation is well known in cancer, the question of whether distinct demethylator phenotypes (DMPs) exist remains unanswered. Using Illumina 450k arrays for 194 patients from The Cancer Genome Atlas, we identified two distinct DMPs by hierarchical clustering: DMP.1 and DMP.2. DMP.1 cases harbored mutations in NPM1 (94%), FLT3 (71%) and DNMT3A (61%). Surprisingly, only 40% of patients with DNMT3A mutations were DMP.1, which has implications for mechanisms of transformation by this mutation. In contrast, DMP.2 AML was comprised of patients with t(8;21), inv(16) or t(15;17), suggesting common methylation defects connect these disparate rearrangements. RNA-seq revealed upregulated genes functioning in immune response (DMP.1) and development (DMP.2). We confirmed these findings by integrating independent 450k data sets (236 additional cases), and found prognostic effects by DMP status, independent of age and cytogenetics. The existence of DMPs has implications for AML pathogenesis and may augment existing tools in risk stratification.
Collapse
Affiliation(s)
- Andrew D Kelly
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jozef Madzo
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka Madireddi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Patricia Kropf
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Charly R Good
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
65
|
Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018; 48:364-379.e8. [PMID: 29466759 DOI: 10.1016/j.immuni.2018.02.002] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 01/04/2023]
Abstract
Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.
Collapse
|
66
|
Reduced expression but not deficiency of GFI1 causes a fatal myeloproliferative disease in mice. Leukemia 2018; 33:110-121. [PMID: 29925903 PMCID: PMC6326955 DOI: 10.1038/s41375-018-0166-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Growth factor independent 1 (Gfi1) controls myeloid differentiation by regulating gene expression and limits the activation of p53 by facilitating its de-methylation at Lysine 372. In human myeloid leukemia, low GFI1 levels correlate with an inferior prognosis. Here, we show that knockdown (KD) of Gfi1 in mice causes a fatal myeloproliferative disease (MPN) that could progress to leukemia after additional mutations. Both KO and KD mice accumulate myeloid cells that show signs of metabolic stress and high levels of reactive oxygen species. However, only KO cells have elevated levels of Lysine 372 methylated p53. This suggests that in contrast to absence of GFI1, KD of GFI1 leads to the accumulation of myeloid cells because sufficient amount of GFI1 is present to impede p53-mediated cell death, leading to a fatal MPN. The combination of myeloid accumulation and the ability to counteract p53 activity under metabolic stress could explain the role of reduced GF1 expression in human myeloid leukemia.
Collapse
|
67
|
Stackowicz J, Balbino B, Todorova B, Godon O, Iannascoli B, Jönsson F, Bruhns P, Reber LL. Evidence that neutrophils do not promote Echis carinatus venom-induced tissue destruction. Nat Commun 2018; 9:2304. [PMID: 29899337 PMCID: PMC5998045 DOI: 10.1038/s41467-018-04688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/03/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Julien Stackowicz
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France.,INSERM U1222, Paris, France.,Université Pierre et Marie Curie, Paris, 75252, France.,Department of Biology, École Normale Supérieure Paris-Saclay, 94230, Cachan, France
| | - Bianca Balbino
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France.,INSERM U1222, Paris, France.,Université Pierre et Marie Curie, Paris, 75252, France
| | - Biliana Todorova
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France.,INSERM U1222, Paris, France
| | - Ophélie Godon
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France.,INSERM U1222, Paris, France
| | - Bruno Iannascoli
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France.,INSERM U1222, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France.,INSERM U1222, Paris, France
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France.,INSERM U1222, Paris, France
| | - Laurent L Reber
- Unit of Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, 75015, France. .,INSERM U1222, Paris, France.
| |
Collapse
|
68
|
Loss of murine Gfi1 causes neutropenia and induces osteoporosis depending on the pathogen load and systemic inflammation. PLoS One 2018; 13:e0198510. [PMID: 29879182 PMCID: PMC5991660 DOI: 10.1371/journal.pone.0198510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Gfi1 is a key molecule in hematopoietic lineage development and mutations in GFI1 cause severe congenital neutropenia (SCN). Neutropenia is associated with low bone mass, but the underlying mechanisms are poorly characterized. Using Gfi1 knock-out mice (Gfi1-ko/ko) as SCN model, we studied the relationship between neutropenia and bone mass upon different pathogen load conditions. Our analysis reveals that Gfi1-ko/ko mice kept under strict specific pathogen free (SPF) conditions demonstrate normal bone mass and survival. However, Gfi1-ko/ko mice with early (nonSPF) or late (SPF+nonSPF) pathogen exposure develop low bone mass. Gfi1-ko/ko mice demonstrate a striking rise of systemic inflammatory markers according to elevated pathogen exposure and reduced bone mass. Elevated inflammatory cytokines include for instance Il-1b, Il-6, and Tnf-alpha that regulate osteoclast development. We conclude that low bone mass, due to low neutrophil counts, is caused by the degree of systemic inflammation promoting osteoclastogenesis.
Collapse
|
69
|
Konarska K, Cieszkowski J, Warzecha Z, Ceranowicz P, Chmura A, Kuśnierz-Cabala B, Gałązka K, Kowalczyk P, Miskiewicz A, Konturek TJ, Pędziwiatr M, Dembiński A. Treatment with Obestatin-A Ghrelin Gene-Encoded Peptide-Reduces the Severity of Experimental Colitis Evoked by Trinitrobenzene Sulfonic Acid. Int J Mol Sci 2018; 19:ijms19061643. [PMID: 29865176 PMCID: PMC6032262 DOI: 10.3390/ijms19061643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Obestatin is a 23-amino acid peptide derived from proghrelin, a common prohormone for ghrelin and obestatin. Previous studies showed that obestatin exhibited some protective and therapeutic effects in the gut. The aim of our presented study was to examine the effect of treatment with obestatin on trinitrobenzene sulfonic acid (TNBS)-induced colitis. In rats anesthetized with ketamine, colitis was induced through intrarectal administration of 25 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Obestatin was administered intraperitoneally at doses of 4, 8, or 16 nmol/kg, twice per day for four consecutive days. The first dose of obestatin was given one day before the induction of colitis, and the last one was given two days after administration of TNBS. Fourteen days after the induction of colitis, rats were anesthetized again with ketamine, and the severity of colitis was determined. The administration of obestatin had no effect on the parameters tested in rats without the induction of colitis. In rats with colitis, administration of obestatin at doses of 8 or 16 nmol/kg reduced the area of colonic damage, and improved mucosal blood flow in the colon. These effects were accompanied by a reduction in the colitis-evoked increase in the level of blood leukocytes, and mucosal concentration of pro-inflammatory interleukin-1β. Moreover, obestatin administered at doses of 8 or 16 nmol/kg reduced histological signs of colonic damage. The administration of obestatin at a dose of 4 nmol/kg failed to significantly affect the parameters tested. Overall, treatment with obestatin reduced the severity of TNBS-induced colitis in rats. This effect was associated with an improvement in mucosal blood flow in the colon, and a decrease in local and systemic inflammatory processes.
Collapse
Affiliation(s)
- Katarzyna Konarska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Jakub Cieszkowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Beata Kuśnierz-Cabala
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Krystyna Gałązka
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland.
| | - Andrzej Miskiewicz
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 00-246 Warsaw, Poland.
| | - Thomas Jan Konturek
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Michał Pędziwiatr
- Second Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Artur Dembiński
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
70
|
Shyamsunder P, Sankar H, Mayakonda A, Han L, Nordin HBM, Woon TW, Shanmugasundaram M, Dakle P, Madan V, Koeffler HP. CARD10, a CEBPE target involved in granulocytic differentiation. Haematologica 2018; 103:1269-1277. [PMID: 29773596 PMCID: PMC6068032 DOI: 10.3324/haematol.2018.190280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Maturation of granulocytes is dependent on controlled gene expression by myeloid lineage restricted transcription factors. CEBPE is one of the essential transcription factors required for granulocytic differentiation. Identification of downstream targets of CEBPE is vital to understand better its role in terminal granulopoiesis. In this study, we have identified Card10 as a novel target of CEBPE. We show that CEBPE binds to regulatory elements upstream of the murine Card10 locus, and expression of CARD10 is significantly reduced in Cebpe knock-out mice. Silencing Card10 in a human cell line and in murine primary cells impaired granulopoiesis, affecting expression of genes involved in myeloid cell development and function. Taken together, our data demonstrate for the first time that Card10 is expressed in granulocytes and is a direct target of CEBPE with functions extending to myeloid differentiation.
Collapse
Affiliation(s)
- Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Haresh Sankar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | | | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore
| |
Collapse
|
71
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
72
|
|
73
|
Kim K, Hwang SM, Kim SM, Park SW, Jung Y, Chung IY. Terminally Differentiating Eosinophils Express Neutrophil Primary Granule Proteins as well as Eosinophil-specific Granule Proteins in a Temporal Manner. Immune Netw 2017; 17:410-423. [PMID: 29302254 PMCID: PMC5746611 DOI: 10.4110/in.2017.17.6.410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils and eosinophils, 2 prominent granulocytes, are commonly derived from myelocytic progenitors through successive stages in the bone marrow. Our previous genome-wide transcriptomic data unexpectedly showed that genes encoding a multitude of neutrophil primary granule proteins (NPGPs) were markedly downregulated during the end period of eosinophilic terminal differentiation when cord blood (CB) cluster of differentiation (CD) 34+ cells were induced to differentiate toward the eosinophil lineage during a 24-day culture period. Accordingly, this study aimed to examine whether NPGP genes were expressed on the way to eosinophil terminal differentiation stage and to compare their expression kinetics with that of genes encoding eosinophil-specific granule proteins (ESGPs). Transcripts of all NPGP genes examined, including proteinase 3, myeloperoxidase, cathepsin G (CTSG), and neutrophil elastase, reached a peak at day 12 and sharply declined thereafter, while transcript of ESGP genes including major basic protein 1 (MBP1) attained maximum expression at days 18 or 24. Growth factor independent 1 (GFI1) and CCAAT/enhancer-binding protein α (C/EBPA), transactivators for the NPGP genes, were expressed immediately before the NPGP genes, whereas expression of C/EBPA, GATA1, and GATA2 kinetically paralleled that of eosinophil granule protein genes. The expression kinetics of NPGPs and ESGPs were duplicated upon differentiation of the eosinophilic leukemia cell line (EoL-1) immature eosinophilic cells. Importantly, confocal image analysis showed that CTSG was strongly coexpressed with MBP1 in differentiating CB eosinophils at days 12 and 18 and became barely detectable at day 24 and beyond. Our results suggest for the first time the presence of an immature stage where eosinophils coexpress NPGPs and ESGPs before final maturation.
Collapse
Affiliation(s)
- Karam Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sae Mi Hwang
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sung Min Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Yunjae Jung
- Department of Microbiology, Gachon University School of Medicine, Incheon 21936, Korea
| | - Il Yup Chung
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea.,Department of Molecular and Life Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
74
|
Ramírez C, Mendoza L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 2017; 34:1174-1182. [DOI: 10.1093/bioinformatics/btx736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carlos Ramírez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| |
Collapse
|
75
|
Hönes JM, Thivakaran A, Botezatu L, Patnana P, Castro SVDC, Al-Matary YS, Schütte J, Fischer KBI, Vassen L, Görgens A, Dührsen U, Giebel B, Khandanpour C. Enforced GFI1 expression impedes human and murine leukemic cell growth. Sci Rep 2017; 7:15720. [PMID: 29147018 PMCID: PMC5691148 DOI: 10.1038/s41598-017-15866-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The differentiation of haematopoietic cells is regulated by a plethora of so-called transcription factors (TFs). Mutations in genes encoding TFs or graded reduction in their expression levels can induce the development of various malignant diseases such as acute myeloid leukaemia (AML). Growth Factor Independence 1 (GFI1) is a transcriptional repressor with key roles in haematopoiesis, including regulating self-renewal of haematopoietic stem cells (HSCs) as well as myeloid and lymphoid differentiation. Analysis of AML patients and different AML mouse models with reduced GFI1 gene expression levels revealed a direct link between low GFI1 protein level and accelerated AML development and inferior prognosis. Here, we report that upregulated expression of GFI1 in several widely used leukemic cell lines inhibits their growth and decreases the ability to generate colonies in vitro. Similarly, elevated expression of GFI1 impedes the in vitro expansion of murine pre-leukemic cells. Using a humanized AML model, we demonstrate that upregulation of GFI1 expression leads to myeloid differentiation morphologically and immunophenotypically, increased level of apoptosis and reduction in number of cKit+ cells. These results suggest that increasing GFI1 level in leukemic cells with low GFI1 expression level could be a therapeutic approach.
Collapse
Affiliation(s)
- Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pradeep Patnana
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Symone Vitoriano da Conceição Castro
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, Brazil
| | - Yahya S Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karen B I Fischer
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
76
|
Zhao H, Wang X, Yi P, Si Y, Tan P, He J, Yu S, Ren Y, Ma Y, Zhang J, Wang D, Wang F, Yu J. KSRP specifies monocytic and granulocytic differentiation through regulating miR-129 biogenesis and RUNX1 expression. Nat Commun 2017; 8:1428. [PMID: 29127290 PMCID: PMC5681548 DOI: 10.1038/s41467-017-01425-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/15/2017] [Indexed: 01/11/2023] Open
Abstract
RNA-binding proteins (RBPs) integrate the processing of RNAs into post-transcriptional gene regulation, but the direct contribution of them to myeloid cell specification is poorly understood. Here, we report the first global RBP transcriptomic analysis of myeloid differentiation by combining RNA-seq analysis with myeloid induction in CD34+ hematopoietic progenitor cells. The downregulated expression of the KH-Type Splicing Regulatory Protein (KSRP) during monocytopoiesis and up-regulated expression during granulopoiesis suggests that KSRP has divergent roles during monocytic and granulocytic differentiation. A further comparative analysis of miRNA transcripts reveals that KSRP promotes the biogenesis of miR-129, and the expression patterns and roles of miR-129 in myeloid differentiation are equivalent to those of KSRP. Finally, miR-129 directly blocks the expression of Runt Related Transcription Factor 1 (RUNX1), which evokes transcriptional modulation by RUNX1. Based on our findings, KSRP, miR-129, and RUNX1 participate in a regulatory axis to control the outcome of myeloid differentiation.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.,State Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Puwen Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jinrong He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Shan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Junwu Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.
| |
Collapse
|
77
|
An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program. Sci Rep 2017; 7:14327. [PMID: 29085021 PMCID: PMC5662654 DOI: 10.1038/s41598-017-14523-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.
Collapse
|
78
|
Sasaki T, Tanaka Y, Kulkeaw K, Yumine-Takai A, Tan KS, Nishinakamura R, Ishida J, Fukamizu A, Sugiyama D. Embryonic Intra-Aortic Clusters Undergo Myeloid Differentiation Mediated by Mesonephros-Derived CSF1 in Mouse. Stem Cell Rev Rep 2017; 12:530-542. [PMID: 27324145 DOI: 10.1007/s12015-016-9668-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aorta-gonad-mesonephros (AGM) region contains intra-aortic clusters (IACs) thought to have acquired hematopoietic stem cell (HSC) potential in vertebrate embryos. To assess extrinsic regulation of IACs in the AGM region, we employed mouse embryos harboring a Sall1-GFP reporter gene, which allows identification of mesonephros cells based on GFP expression. Analysis of AGM region tissue sections confirmed mesonephros GFP expression. Mesonephric cells sorted at E10.5 expressed mRNA encoding Csf1, a hematopoietic cytokine, and corresponding protein, based on real-time PCR and immunocytochemistry, respectively. Further analysis indicated that some IACs express the CSF1 receptor, CSF1R. Expression of Cebpa and Irf8 mRNAs was higher in CSF1R-positive IACs, whereas that of Cebpε and Gfi1 mRNAs was lower relative to CSF1R-negative IACs, suggesting that CSF1/CSF1R signaling functions in IAC myeloid differentiation by modulating expression of these transcription factors. Colony formation assays using CSF1R-positive IACs revealed increased numbers of myeloid colonies in the presence of CSF1. Analysis using an intra-cellular signaling array indicated the greatest fold increase of Cleaved Caspase-3 in AGM cells in the presence of CSF1. Immunohistochemistry revealed that Cleaved Caspase-3 is primarily expressed in IACs in the AGM region, and incubation of IACs with CSF1 up-regulated Cleaved Caspase-3. Overall, our findings suggest that CSF1 secreted from mesonephros accelerates IAC myeloid differentiation in the AGM region, possibly via Caspase-3 cleavage.
Collapse
Affiliation(s)
- Tatsuya Sasaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuka Tanaka
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kasem Kulkeaw
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ayako Yumine-Takai
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keai Sinn Tan
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Junji Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
- Center for Clinical and Translational Research, Kyushu University, Fukuoka, 812-84582, Japan.
- Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Station for Collaborative Research 1 4F, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
79
|
Metallothioneins: Emerging Modulators in Immunity and Infection. Int J Mol Sci 2017; 18:ijms18102197. [PMID: 29065550 PMCID: PMC5666878 DOI: 10.3390/ijms18102197] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Metallothioneins (MTs) are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn) and copper (Cu), mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.
Collapse
|
80
|
Leiding JW. Neutrophil Evolution and Their Diseases in Humans. Front Immunol 2017; 8:1009. [PMID: 28894446 PMCID: PMC5581313 DOI: 10.3389/fimmu.2017.01009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Granulocytes have been preserved and have evolved across species, developing into cells that provide one of the first lines of host defense against pathogens. In humans, neutrophils are involved in early recognition and killing of infectious pathogens. Disruption in neutrophil production, emigration, chemotaxis, and function cause a spectrum of primary immune defects characterized by host susceptibility to invasive infections.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, United States.,Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| |
Collapse
|
81
|
Abstract
Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated.
Collapse
Affiliation(s)
- Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark.,The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
82
|
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of haematopoietic cell fate decisions. They act by negatively regulating the expression of key immune development genes, thus contributing important logic elements to the regulatory circuitry. Deletion studies have made it increasingly apparent that they confer robustness to immune cell development, especially under conditions of environmental stress such as infectious challenge and ageing. Aberrant expression of certain miRNAs can lead to pathological consequences, such as autoimmunity and haematological cancers. In this Review, we discuss the mechanisms by which several miRNAs influence immune development and buffer normal haematopoietic output, first at the level of haematopoietic stem cells, then in innate and adaptive immune cells. We then discuss the pathological consequences of dysregulation of these miRNAs.
Collapse
|
83
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
84
|
Costa A, Powell LM, Lowell S, Jarman AP. Atoh1 in sensory hair cell development: constraints and cofactors. Semin Cell Dev Biol 2017; 65:60-68. [DOI: 10.1016/j.semcdb.2016.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
85
|
Reber LL, Gillis CM, Starkl P, Jönsson F, Sibilano R, Marichal T, Gaudenzio N, Bérard M, Rogalla S, Contag CH, Bruhns P, Galli SJ. Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. J Exp Med 2017; 214:1249-1258. [PMID: 28385925 PMCID: PMC5413333 DOI: 10.1084/jem.20161238] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/30/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
Neutrophils have crucial antimicrobial functions but are also thought to contribute to tissue injury upon exposure to bacterial products, such as lipopolysaccharide (LPS). To study the role of neutrophils in LPS-induced endotoxemia, we developed a new mouse model, PMNDTR mice, in which injection of diphtheria toxin induces selective neutrophil ablation. Using this model, we found, surprisingly, that neutrophils serve to protect the host from LPS-induced lethal inflammation. This protective role was observed in conventional and germ-free animal facilities, indicating that it does not depend on a particular microbiological environment. Blockade or genetic deletion of myeloperoxidase (MPO), a key neutrophil enzyme, significantly increased mortality after LPS challenge, and adoptive transfer experiments confirmed that neutrophil-derived MPO contributes importantly to protection from endotoxemia. Our findings imply that, in addition to their well-established antimicrobial properties, neutrophils can contribute to optimal host protection by limiting the extent of endotoxin-induced inflammation in an MPO-dependent manner.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Caitlin M Gillis
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Friederike Jönsson
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Marion Bérard
- Animalerie Centrale, Institut Pasteur, 75015 Paris, France
| | - Stephan Rogalla
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, CA 94305
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Christopher H Contag
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, CA 94305
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305
| | - Pierre Bruhns
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
86
|
Keightley MC, Carradice DP, Layton JE, Pase L, Bertrand JY, Wittig JG, Dakic A, Badrock AP, Cole NJ, Traver D, Nutt SL, McCoey J, Buckle AM, Heath JK, Lieschke GJ. The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nat Commun 2017; 8:14911. [PMID: 28382966 PMCID: PMC5384227 DOI: 10.1038/ncomms14911] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1–ZBTB11–TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs. Neutrophils are increased in response to injury and infection but how they form from a common granulocyte-macrophage progenitor is unclear. Here, the authors identify a role for the transcriptional repressor ZBTB11 in zebrafish, which is regulated by master myeloid regulators and represses TP53.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Duncan P Carradice
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Judith E Layton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva-CMU, 1211 Geneva 4, Switzerland
| | - Johannes G Wittig
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Andrew P Badrock
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Nicholas J Cole
- Motor Neuron Disease Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julia McCoey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
87
|
Cunin P, Penke LR, Thon JN, Monach PA, Jones T, Chang MH, Chen MM, Melki I, Lacroix S, Iwakura Y, Ware J, Gurish MF, Italiano JE, Boilard E, Nigrovic PA. Megakaryocytes compensate for Kit insufficiency in murine arthritis. J Clin Invest 2017; 127:1714-1724. [PMID: 28375155 DOI: 10.1172/jci84598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2017] [Indexed: 12/12/2022] Open
Abstract
The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.
Collapse
|
88
|
Anguita E, Candel FJ, Chaparro A, Roldán-Etcheverry JJ. Transcription Factor GFI1B in Health and Disease. Front Oncol 2017; 7:54. [PMID: 28401061 PMCID: PMC5368270 DOI: 10.3389/fonc.2017.00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Many human diseases arise through dysregulation of genes that control key cell fate pathways. Transcription factors (TFs) are major cell fate regulators frequently involved in cancer, particularly in leukemia. The GFI1B gene, coding a TF, was identified by sequence homology with the oncogene growth factor independence 1 (GFI1). Both GFI1 and GFI1B have six C-terminal C2H2 zinc fingers and an N-terminal SNAG (SNAIL/GFI1) transcriptional repression domain. Gfi1 is essential for neutrophil differentiation in mice. In humans, GFI1 mutations are associated with severe congenital neutropenia. Gfi1 is also required for B and T lymphopoiesis. However, knockout mice have demonstrated that Gfi1b is required for development of both erythroid and megakaryocytic lineages. Consistent with this, human mutations of GFI1B produce bleeding disorders with low platelet count and abnormal function. Loss of Gfi1b in adult mice increases the absolute numbers of hematopoietic stem cells (HSCs) that are less quiescent than wild-type HSCs. In keeping with this key role in cell fate, GFI1B is emerging as a gene involved in cancer, which also includes solid tumors. In fact, abnormal activation of GFI1B and GFI1 has been related to human medulloblastoma and is also likely to be relevant in blood malignancies. Several pieces of evidence supporting this statement will be detailed in this mini review.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco J Candel
- Microbiology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Alberto Chaparro
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan J Roldán-Etcheverry
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
89
|
A Novel CD48-Based Analysis of Sepsis-Induced Mouse Myeloid-Derived Suppressor Cell Compartments. Mediators Inflamm 2017; 2017:7521701. [PMID: 28337051 PMCID: PMC5346402 DOI: 10.1155/2017/7521701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous subset of cells that expands dramatically in many disease states and can suppress T-cell responses. MDSCs mainly include monocytic and granulocytic subpopulations that can be distinguished in mice by the expression of Ly6G and Ly6C cell surface markers. This identification system has been validated in experimental tumor models, but not in models of inflammation-associated conditions such as sepsis. We challenged growth factor independent 1 transcription repressor green fluorescent protein (Gfi1:GFP) knock-in reporter mice with cecal ligation and puncture surgery and found that CD11b+Ly6GlowLy6Chigh MDSCs in this sepsis model comprised both monocytic and granulocytic MDSCs. The evidence that conventional Ly6G/Ly6C marker analysis may not be suited to study of inflammation-induced MDSCs led to the development of a novel strategy of distinguishing granulocytic MDSCs from monocytic MDSCs in septic mice by expression of CD48. Application of this novel model should help achieve a more accurate understanding of the inflammation-induced MDSC activity.
Collapse
|
90
|
Sugino N, Kawahara M, Tatsumi G, Kanai A, Matsui H, Yamamoto R, Nagai Y, Fujii S, Shimazu Y, Hishizawa M, Inaba T, Andoh A, Suzuki T, Takaori-Kondo A. A novel LSD1 inhibitor NCD38 ameliorates MDS-related leukemia with complex karyotype by attenuating leukemia programs via activating super-enhancers. Leukemia 2017; 31:2303-2314. [PMID: 28210006 DOI: 10.1038/leu.2017.59] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 12/15/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) regulates gene expression by affecting histone modifications and is a promising target for acute myeloid leukemia (AML) with specific genetic abnormalities. Novel LSD1 inhibitors, NCD25 and NCD38, inhibited growth of MLL-AF9 leukemia as well as erythroleukemia, megakaryoblastic leukemia and myelodysplastic syndromes (MDSs) overt leukemia cells in the concentration range that normal hematopoiesis was spared. NCD25 and NCD38 invoked the myeloid development programs, hindered the MDS and AML oncogenic programs, and commonly upregulated 62 genes in several leukemia cells. NCD38 elevated H3K27ac level on enhancers of these LSD1 signature genes and newly activated ~500 super-enhancers. Upregulated genes with super-enhancer activation in erythroleukemia cells were enriched in leukocyte differentiation. Eleven genes including GFI1 and ERG, but not CEBPA, were identified as the LSD1 signature with super-enhancer activation. Super-enhancers of these genes were activated prior to induction of the transcripts and myeloid differentiation. Depletion of GFI1 attenuated myeloid differentiation by NCD38. Finally, a single administration of NCD38 causes the in vivo eradication of primary MDS-related leukemia cells with a complex karyotype. Together, NCD38 derepresses super-enhancers of hematopoietic regulators that are silenced abnormally by LSD1, attenuates leukemogenic programs and consequently exerts anti-leukemic effect against MDS-related leukemia with adverse outcome.
Collapse
Affiliation(s)
- N Sugino
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Kawahara
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - G Tatsumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - A Kanai
- Department of Molecular Oncology and Leukemia Program Project, Hiroshima University, Hiroshima, Japan
| | - H Matsui
- Department of Molecular Oncology and Leukemia Program Project, Hiroshima University, Hiroshima, Japan.,Department of Molecular Laboratory Medicine, Kumamoto University, Kumamoto, Japan
| | - R Yamamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Nagai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Fujii
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Shimazu
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Inaba
- Department of Molecular Oncology and Leukemia Program Project, Hiroshima University, Hiroshima, Japan
| | - A Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - T Suzuki
- Department of Chemistry, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan.,CREST, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - A Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
91
|
Huang JY, Zhou QL, Huang CH, Song Y, Sharma AG, Liao Z, Zhu K, Massidda MW, Jamieson RR, Zhang JY, Tenen DG, Jiang ZY. Neutrophil Elastase Regulates Emergency Myelopoiesis Preceding Systemic Inflammation in Diet-induced Obesity. J Biol Chem 2017; 292:4770-4776. [PMID: 28202548 DOI: 10.1074/jbc.c116.758748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Inflammation plays a significant role in the development of obesity-related complications, but the molecular events that initiate and propagate such inflammation remain unclear. Here, we report that mice fed a high-fat diet (HFD) for as little as 1-3 days show increased differentiation of myeloid progenitors into neutrophils and monocytes but reduced B lymphocyte production in the bone marrow. Levels of neutrophil elastase (NE) and the nuclear factors CCAAT/enhancer-binding protein α (C/EBPα) and growth factor-independent 1 (GFI-1) are elevated in hematopoietic stem and progenitor cells from HFD-fed mice, but mice lacking either NE or C/EBPα are resistant to HFD-induced myelopoiesis. NE deletion increases expression of the inhibitory isoform of p30 C/EBPα, impairs the transcriptional activity of p42 C/EBPα, and reduces expression of the C/EBPα target gene GFI-1 in hematopoietic stem and progenitor cells, suggesting a mechanism by which NE regulates myelopoiesis. Furthermore, NE deletion prevents HFD-induced vascular leakage. Thus, HFD feeding rapidly activates bone marrow myelopoiesis through the NE-dependent C/EBPα-GFI-1 pathway preceding vascular damage and systemic inflammation.
Collapse
Affiliation(s)
- Jun-Yuan Huang
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Qiong Lin Zhou
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Chun-Hong Huang
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ye Song
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Andria G Sharma
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Zhangping Liao
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Kavin Zhu
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Miles W Massidda
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ryan R Jamieson
- From the Department of Pharmacology and Experimental Therapeutics and.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jun-Yuan Zhang
- the Harvard Stem Cell Institute, Boston, Massachusetts 02115, and
| | - Daniel G Tenen
- the Harvard Stem Cell Institute, Boston, Massachusetts 02115, and.,the Cancer Science Institute, National University of Singapore, Singapore 117599
| | - Zhen Y Jiang
- From the Department of Pharmacology and Experimental Therapeutics and .,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
92
|
Lehmann B, Biburger M, Brückner C, Ipsen-Escobedo A, Gordan S, Lehmann C, Voehringer D, Winkler T, Schaft N, Dudziak D, Sirbu H, Weber GF, Nimmerjahn F. Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response. Sci Immunol 2017; 2:2/7/eaah6413. [PMID: 28783667 DOI: 10.1126/sciimmunol.aah6413] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Despite recent advances in activating immune cells to target tumors, the presence of some immune cells, such as tumor-associated macrophages (TAMs) or tumor-associated neutrophils (TANs), may promote rather than inhibit tumor growth. However, it remains unclear how antibody-dependent tumor immunotherapies, such as cytotoxic or checkpoint control antibodies, affect different TAM or TAN populations, which abundantly express activating Fcγ receptors. In this study, we show that the tissue environment determines which cellular effector pathways are responsible for antibody-dependent tumor immunotherapy. Although TAMs derived from Ly6Chigh monocytes recruited by the CCL2-CCR2 axis were critical for tumor immunotherapy of skin tumors, the destruction of lung tumors was CCL2-independent and required the presence of colony-stimulating factor 2-dependent tissue-resident macrophages. Our findings suggest that TAMs may have a dual role not only in promoting tumor growth in certain tissue environments on the one hand but also in contributing to tumor cell destruction during antibody-mediated immunotherapy on the other hand.
Collapse
Affiliation(s)
- Birgit Lehmann
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Markus Biburger
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Christin Brückner
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Sina Gordan
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Christian Lehmann
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Thomas Winkler
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Horia Sirbu
- Department of Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany.
| |
Collapse
|
93
|
A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci Rep 2017; 7:39804. [PMID: 28059162 PMCID: PMC5216372 DOI: 10.1038/srep39804] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Homeostasis of neutrophils—the blood cells that respond first to infection and tissue injury—is critical for the regulation of immune responses and regulated through granulopoiesis, a multi-stage process by which neutrophils differentiate from hematopoietic stem cells. Granulopoiesis is a highly dynamic process and altered in certain clinical conditions, such as pathologic and iatrogenic neutropenia, described as demand-adapted granulopoiesis. The regulation of granulopoiesis under stress is not completely understood because studies of granulopoiesis dynamics have been hampered by technical limitations in defining neutrophil precursors. Here, we define a population of neutrophil precursor cells in the bone marrow with unprecedented purity, characterized by the lineage−CD11b+Ly6GloLy6BintCD115−, which we call NeuPs (Neutrophil Precursors). We demonstrated that NeuPs differentiate into mature and functional neutrophils both in vitro and in vivo. By analyzing the gene expression profiles of NeuPs, we also identified NeuP stage-specific genes and characterized patterns of gene regulation throughout granulopoiesis. Importantly, we found that NeuPs have the potential to proliferate, but the proliferation decreased in multiple different hematopoietic stress settings, indicating that proliferating NeuPs are poised at a critical step to regulate granulopoiesis. Our findings will facilitate understanding how the hematopoietic system maintains homeostasis and copes with the demands of granulopoiesis.
Collapse
|
94
|
Liu XF, Hummel M, Abecassis M. Epigenetic regulation of cellular and cytomegalovirus genes during myeloid cell development. ACTA ACUST UNITED AC 2017; 3. [PMID: 28707002 DOI: 10.18103/imr.v3i3.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Myeloid cells are important cell types that carry human cytomegalovirus. Latent viral DNA is present in CD34+ progenitor cells and their derived monocytes. However, differentiation of latently infected monocytes to mature macrophages or dendritic cells causes reactivation of latent viruses. During hematopoietic development, pluripotent genes are repressed, and lineage specific genes are activated in a step-wise manner. This process is governed by cell-type specific chromatin states. Enhancers in the hematopoietic system are highly dynamic and established by pioneer (first tier) transcription factors (TFs), which set the stage for second and third tier TF binding. In this review, we examine the epigenetic mechanisms that regulate myeloid cell development, cell identity, and activation with a special focus on factors that regulate viral gene expression and the status of viral infection in myeloid cells.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Mary Hummel
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Michael Abecassis
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| |
Collapse
|
95
|
The role of the transcriptional repressor growth factor independent 1 in the formation of myeloid cells. Curr Opin Hematol 2017; 24:32-37. [DOI: 10.1097/moh.0000000000000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
96
|
Puerta-Arias JD, Pino-Tamayo PA, Arango JC, González Á. Depletion of Neutrophils Promotes the Resolution of Pulmonary Inflammation and Fibrosis in Mice Infected with Paracoccidioides brasiliensis. PLoS One 2016; 11:e0163985. [PMID: 27690127 PMCID: PMC5045199 DOI: 10.1371/journal.pone.0163985] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic stages of paracoccidioidomycosis (PCM) are characterized by granulomatous lesions which promote the development of pulmonary fibrosis leading to the loss of respiratory function in 50% of patients; in addition, it has been observed that neutrophils predominate during these chronic stages of P. brasiliensis infection. The goal of this study was to evaluate the role of the neutrophil during the chronic stages of experimental pulmonary PCM and during the fibrosis development and tissue repair using a monoclonal specific to this phagocytic cell. Male BALB/c mice were inoculated intranasally with 1.5x106 P. brasiliensis yeast cells. A monoclonal antibody specific to neutrophils was administered at 4 weeks post-inoculation followed by doses every 48h during two weeks. Mice were sacrificed at 8 and 12 weeks post-inoculation to assess cellularity, fungal load, cytokine/chemokine levels, histopathological analysis, collagen and expression of genes related to fibrosis development. Depletion of neutrophils was associated with a significant decrease in the number of eosinophils, dendritic cells, B cells, CD4-T cells, MDSCs and Treg cells, fungal load and levels of most of the pro-inflammatory cytokines/chemokines evaluated, including IL-17, TNF-α and TGF-β1. Recovery of lung architecture was also associated with reduced levels of collagen, high expression of TGF-β3, matrix metalloproteinase (MMP)-12 and -14, and decreased expression of tissue inhibitor metalloproteinase (TIMP)-2, and MMP-8. Depletion of neutrophils might attenuate lung fibrosis and inflammation through down-regulating TGF-β1, TNF-α, IL-17, MMP-8 and TIMP-2. These results suggest that neutrophil could be considered as a therapeutic target in pulmonary fibrosis induced by P. brasiliensis.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Unit, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Unit, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Julián Camilo Arango
- Medical and Experimental Mycology Unit, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Ángel González
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
97
|
Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N, Singh H, Grimes HL. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 2016; 537:698-702. [PMID: 27580035 PMCID: PMC5161694 DOI: 10.1038/nature19348] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
Delineating hierarchical cellular states, including rare intermediates and the networks of regulatory genes that orchestrate cell-type specification, are continuing challenges for developmental biology. Single-cell RNA sequencing is greatly accelerating such research, given its power to provide comprehensive descriptions of genomic states and their presumptive regulators. Haematopoietic multipotential progenitor cells, as well as bipotential intermediates, manifest mixed-lineage patterns of gene expression at a single-cell level. Such mixed-lineage states may reflect the molecular priming of different developmental potentials by co-expressed alternative-lineage determinants, namely transcription factors. Although a bistable gene regulatory network has been proposed to regulate the specification of either neutrophils or macrophages, the nature of the transition states manifested in vivo, and the underlying dynamics of the cell-fate determinants, have remained elusive. Here we use single-cell RNA sequencing coupled with a new analytic tool, iterative clustering and guide-gene selection, and clonogenic assays to delineate hierarchical genomic and regulatory states that culminate in neutrophil or macrophage specification in mice. We show that this analysis captured prevalent mixed-lineage intermediates that manifested concurrent expression of haematopoietic stem cell/progenitor and myeloid progenitor cell genes. It also revealed rare metastable intermediates that had collapsed the haematopoietic stem cell/progenitor gene expression programme, instead expressing low levels of the myeloid determinants, Irf8 and Gfi1 (refs 9, 10, 11, 12, 13). Genetic perturbations and chromatin immunoprecipitation followed by sequencing revealed Irf8 and Gfi1 as key components of counteracting myeloid-gene-regulatory networks. Combined loss of these two determinants 'trapped' the metastable intermediate. We propose that mixed-lineage states are obligatory during cell-fate specification, manifest differing frequencies because of their dynamic instability and are dictated by counteracting gene-regulatory networks.
Collapse
Affiliation(s)
- Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | - Viren K Chaudhri
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Harinder Singh
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
98
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
99
|
Fraszczak J, Helness A, Chen R, Vadnais C, Robert F, Khandanpour C, Möröy T. Threshold Levels of Gfi1 Maintain E2A Activity for B Cell Commitment via Repression of Id1. PLoS One 2016; 11:e0160344. [PMID: 27467586 PMCID: PMC4965025 DOI: 10.1371/journal.pone.0160344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
A regulatory circuit that controls myeloid versus B lymphoid cell fate in hematopoietic progenitors has been proposed, in which a network of the transcription factors Egr1/2, Nab, Gfi1 and PU.1 forms the core element. Here we show that a direct link between Gfi1, the transcription factor E2A and its inhibitor Id1 is a critical element of this regulatory circuit. Our data suggest that a certain threshold of Gfi1 is required to gauge E2A activity by adjusting levels of Id1 in multipotent progenitors, which are the first bipotential myeloid/lymphoid-restricted progeny of hematopoietic stem cells. If Gfi1 levels are high, Id1 is repressed enabling E2A to activate a specific set of B lineage genes by binding to regulatory elements for example the IL7 receptor gene. If Gfi1 levels fall below a threshold, Id1 expression increases and renders E2A unable to function, which prevents hematopoietic progenitors from engaging along the B lymphoid lineage.
Collapse
Affiliation(s)
- Jennifer Fraszczak
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Anne Helness
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Riyan Chen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Charles Vadnais
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
100
|
Thambyrajah R, Ucanok D, Jalali M, Hough Y, Wilkinson RN, McMahon K, Moore C, Gering M. A gene trap transposon eliminates haematopoietic expression of zebrafish Gfi1aa, but does not interfere with haematopoiesis. Dev Biol 2016; 417:25-39. [PMID: 27432513 PMCID: PMC5003831 DOI: 10.1016/j.ydbio.2016.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/10/2016] [Accepted: 07/15/2016] [Indexed: 11/02/2022]
Abstract
A transposon-mediated gene trap screen identified the zebrafish line qmc551 that expresses a GFP reporter in primitive erythrocytes and also in haemogenic endothelial cells, which give rise to haematopoietic stem and progenitor cells (HSPCs) that seed sites of larval and adult haematopoiesis. The transposon that mediates this GFP expression is located in intron 1 of the gfi1aa gene, one of three zebrafish paralogs that encode transcriptional repressors homologous to mammalian Gfi1 and Gfi1b proteins. In qmc551 transgenics, GFP expression is under the control of the endogenous gfi1aa promoter, recapitulates early gfi1aa expression and allows live observation of gfi1aa promoter activity. While the transposon integration interferes with the expression of gfi1aa mRNA in haematopoietic cells, homozygous qmc551 fish are viable and fertile, and display normal primitive and definitive haematopoiesis. Retained expression of Gfi1b in primitive erythrocytes and up-regulation of Gfi1ab at the onset of definitive haematopoiesis in homozygous qmc551 carriers, are sufficient to allow normal haematopoiesis. This finding contradicts previously published morpholino data that suggested an essential role for zebrafish Gfi1aa in primitive erythropoiesis.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Deniz Ucanok
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Maryam Jalali
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Yasmin Hough
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Robert Neil Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Kathryn McMahon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Chris Moore
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Martin Gering
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|