51
|
Żylicz JJ, Heard E. Molecular Mechanisms of Facultative Heterochromatin Formation: An X-Chromosome Perspective. Annu Rev Biochem 2020; 89:255-282. [PMID: 32259458 DOI: 10.1146/annurev-biochem-062917-012655] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.
Collapse
Affiliation(s)
- Jan J Żylicz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, PSL University, 75248 Paris Cedex 05, France.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, United Kingdom
| | - Edith Heard
- Directors' Research, EMBL Heidelberg, 69117 Heidelberg, Germany;
| |
Collapse
|
52
|
Xist Repeats A and B Account for Two Distinct Phases of X Inactivation Establishment. Dev Cell 2020; 54:21-32.e5. [PMID: 32531209 DOI: 10.1016/j.devcel.2020.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/16/2020] [Accepted: 05/14/2020] [Indexed: 11/20/2022]
Abstract
X chromosome inactivation (XCI) is a global silencing mechanism by which XX and XY mammals equalize X-linked gene dosages. XCI begins with an establishment phase during which Xist RNA spreads and induces de novo heterochromatinization across a female X chromosome and is followed by a maintenance phase when multiple epigenetic pathways lock down the inactive X (Xi) state. Involvement of Polycomb repressive complexes 1 and 2 in XCI has been intensively studied but with conflicting conclusions regarding their recruitment and role in Xi silencing. Here, we reveal that establishment of XCI has two phases and reconcile the roles that Xist repeats A and B play in gene silencing and Polycomb recruitment. Repeat A initiates both processes, whereas repeat B bolsters or stabilizes them thereafter. Once established, XCI no longer requires repeat A during maintenance. These findings integrate disparate studies and present a unified view of Xist's role in Polycomb-mediated silencing.
Collapse
|
53
|
Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol 2020; 64:139-147. [PMID: 32535328 DOI: 10.1016/j.ceb.2020.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
X chromosome inactivation (XCI) is the process whereby one of the X chromosomes in female mammalian cells is silenced to equalize X-linked gene expression with males. XCI depends on the long noncoding RNA Xist, which coats the inactive X chromosome in cis and triggers a cascade of events that ultimately lead to chromosome-wide transcriptional silencing that is stable for the lifetime of an organism. In recent years, the discovery of proteins that interact with Xist have led to new insights into how the initiation of XCI occurs. Nevertheless, there are still various unknowns about the mechanisms by which Xist orchestrates and maintains stable X-linked silencing. Here, we review recent work elucidating the role of Xist and its protein partners in mediating chromosome-wide transcriptional repression, as well as discuss a model by which Xist may compartmentalize proteins across the inactive X chromosome to enable both the initiation and maintenance of XCI.
Collapse
Affiliation(s)
- Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
54
|
Postlmayr A, Dumeau CE, Wutz A. Cdk8 is required for establishment of H3K27me3 and gene repression by Xist and mouse development. Development 2020; 147:dev175141. [PMID: 32439758 PMCID: PMC7295591 DOI: 10.1242/dev.175141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/14/2020] [Indexed: 10/30/2022]
Abstract
We previously identified the cyclin dependent kinase Cdk8 as a putative silencing factor for Xist To investigate its role in X inactivation, we engineered a Cdk8 mutation in mouse embryonic stem cells (ESCs) carrying an inducible system for studying Xist function. We found that Xist repressed X-linked genes at half of the expression level in Cdk8 mutant cells, whereas they were almost completely silenced in the controls. Lack of Cdk8 impaired Ezh2 recruitment and the establishment of histone H3 lysine 27 tri-methylation but not PRC1 recruitment by Xist Transgenic expression of wild-type but not catalytically inactive Cdk8 restored efficient gene repression and PRC2 recruitment. Mutation of the paralogous kinase Cdk19 did not affect Xist function, and combined mutations of Cdk8 and Cdk19 resembled the Cdk8 mutation. In mice, a Cdk8 mutation caused post-implantation lethality. We observed that homozygous Cdk8 mutant female embryos showed a greater developmental delay than males on day 10.5. Together with the inefficient repression of X-linked genes in differentiating Cdk8 mutant female ESCs, these data show a requirement for Cdk8 in the initiation of X inactivation.
Collapse
Affiliation(s)
- Andreas Postlmayr
- D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, HPL E12, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| | - Charles Etienne Dumeau
- D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, HPL E12, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| | - Anton Wutz
- D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, HPL E12, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| |
Collapse
|
55
|
Abstract
The X inactive-specific transcript (Xist) gene is the master regulator of X chromosome inactivation in mammals. Xist produces a long noncoding (lnc)RNA that accumulates over the entire length of the chromosome from which it is transcribed, recruiting factors to modify underlying chromatin and silence X-linked genes in cis Recent years have seen significant progress in identifying important functional elements in Xist RNA, their associated RNA-binding proteins (RBPs), and the downstream pathways for chromatin modification and gene silencing. In this review, we summarize progress in understanding both how these pathways function in Xist-mediated silencing and the complex interplay between them.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
56
|
Yin Y, Lu JY, Zhang X, Shao W, Xu Y, Li P, Hong Y, Cui L, Shan G, Tian B, Zhang QC, Shen X. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature 2020; 580:147-150. [PMID: 32238924 DOI: 10.1038/s41586-020-2105-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable transcripts locate preferentially to chromatin, where some regulate chromatin structure, transcription and RNA processing1-13. Although several RNA sequences responsible for nuclear localization have been identified-such as repeats in the lncRNA Xist and Alu-like elements in long RNAs14-16-how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name 'RNA elements for subcellular localization by sequencing' (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5' splice sites and depleted of 3' splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1. Moreover, U1 snRNP interacts with transcriptionally engaged RNA polymerase II. These results show that U1 snRNP acts widely to tether and mobilize lncRNAs to chromatin in a transcription-dependent manner. Our findings have uncovered a previously unknown role of U1 snRNP beyond the processing of precursor mRNA, and provide molecular insight into how lncRNAs are recruited to regulatory sites to carry out chromatin-associated functions.
Collapse
Affiliation(s)
- Yafei Yin
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China.
| | - J Yuyang Lu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuechun Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Wen Shao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanhui Xu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Pan Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Yantao Hong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Cui
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Ge Shan
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
| | - Qiangfeng Cliff Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
57
|
Xist attenuates acute inflammatory response by female cells. Cell Mol Life Sci 2020; 78:299-316. [PMID: 32193609 DOI: 10.1007/s00018-020-03500-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/20/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
Biological sex influences inflammatory response, as there is a greater incidence of acute inflammation in men and chronic inflammation in women. Here, we report that acute inflammation is attenuated by X-inactive specific transcript (Xist), a female cell-specific nuclear long noncoding RNA crucial for X-chromosome inactivation. Lipopolysaccharide-mediated acute inflammation increased Xist levels in the cytoplasm of female mouse J774A.1 macrophages and human AML193 monocytes. In both cell types, cytoplasmic Xist colocalizes with the p65 subunit of NF-κB. This interaction was associated with reduced NF-κB nuclear migration, suggesting a novel mechanism to suppress acute inflammation. Further supporting this hypothesis, expression of 5' XIST in male cells significantly reduced IL-6 and NF-κB activity. Adoptive transfer of male splenocytes expressing Xist reduced acute paw swelling in male mice indicating that Xist can have a protective anti-inflammatory effect. These findings show that XIST has functions beyond X chromosome inactivation and suggest that XIST can contribute to sex-specific differences underlying inflammatory response by attenuating acute inflammation in women.
Collapse
|
58
|
He X, Yang L, Huang R, Lin L, Shen Y, Cheng L, Jin L, Wang S, Zhu R. Activation of CB2R with AM1241 ameliorates neurodegeneration via the Xist/miR-133b-3p/Pitx3 axis. J Cell Physiol 2020; 235:6032-6042. [PMID: 31989652 DOI: 10.1002/jcp.29530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023]
Abstract
Activation of cannabinoid receptor type II (CB2R) by AM1241 has been demonstrated to protect dopaminergic neurons in Parkinson's disease (PD) animals. However, the specific mechanisms of the action of the CB2R agonist AM1241 for PD treatment have not been characterized. Wild-type (WT), CB1R knockout (CB1-KO), and CB2R knockout (CB2-KO) mice were exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 1 week to obtain a PD mouse model. The therapeutic effects of AM1241 were evaluated in each group. Behavioral tests, analysis of neurotransmitters, and immunofluorescence results demonstrated that AM1241 ameliorated PD in WT animals and CB1-KO animals. However, AM1241 did not ameliorate PD symptoms in CB2-KO mice. RNA-seq analysis identified the lncRNA Xist as an important regulator of the protective actions of AM1241. Specifically, AM1241 allowed WT and CB1-KO animals treated with MPTP to maintain normal expression of Xist, which affected the expression of miR-133b-3p and Pitx3. In vitro, overexpression of Xist or AM1241 protected neuronal cells from death induced by 6-hydroxydopamine and increased Pitx3 expression. The CB2 receptor agonist AM1241 alleviated PD via regulation of the Xist/miR-133b-3p/Pitx3 axis, and revealed a new approach for PD treatment.
Collapse
Affiliation(s)
- Xiaolie He
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China.,Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China.,Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China
| | - Li Yang
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China
| | - Ruiqi Huang
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China
| | - Lijuan Lin
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China
| | - Yijue Shen
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Lingjing Jin
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Shilong Wang
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopedics, School of Life Science and Technology, Tongji Hospital affiliated to Tongji University, Tongji University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China.,Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China.,Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
59
|
Silencing Trisomy 21 with XIST in Neural Stem Cells Promotes Neuronal Differentiation. Dev Cell 2020; 52:294-308.e3. [PMID: 31978324 DOI: 10.1016/j.devcel.2019.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
The ability of XIST to dosage compensate a trisomic autosome presents unique experimental opportunities and potentially transformative therapeutic prospects. However, it is currently thought that XIST requires the natural context surrounding pluripotency to initiate chromosome silencing. Here, we demonstrate that XIST RNA induced in differentiated neural cells can trigger chromosome-wide silencing of chromosome 21 in Down syndrome patient-derived cells. Use of this tightly controlled system revealed a deficiency in differentiation of trisomic neural stem cells to neurons, correctible by inducing XIST at different stages of neurogenesis. Single-cell transcriptomics and other analyses strongly implicate elevated Notch signaling due to trisomy 21, thereby promoting neural stem cell cycling that delays terminal differentiation. These findings have significance for illuminating the epigenetic plasticity of cells during development, the understanding of how human trisomy 21 effects Down syndrome neurobiology, and the translational potential of XIST, a unique non-coding RNA.
Collapse
|
60
|
Cerase A, Armaos A, Neumayer C, Avner P, Guttman M, Tartaglia GG. Phase separation drives X-chromosome inactivation: a hypothesis. Nat Struct Mol Biol 2019; 26:331-334. [PMID: 31061525 DOI: 10.1038/s41594-019-0223-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea Cerase
- EMBL-Rome, Monterotondo, Italy. .,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph Neumayer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA and UPF, Barcelona, Spain. .,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy. .,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
61
|
Abstract
The non-coding RNA Xist regulates the process of X chromosome inactivation, in which one of the two X chromosomes present in cells of early female mammalian embryos is selectively and coordinately shut down. Remarkably Xist RNA functions in cis, affecting only the chromosome from which it is transcribed. This feature is attributable to the unique propensity of Xist RNA to accumulate over the territory of the chromosome on which it is synthesized, contrasting with the majority of RNAs that are rapidly exported out of the cell nucleus. In this review I provide an overview of the progress that has been made towards understanding localized accumulation of Xist RNA, drawing attention to evidence that some other non-coding RNAs probably function in a highly analogous manner. I describe a simple model for localized accumulation of Xist RNA and discuss key unresolved questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
62
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
63
|
Wang F, Bach I. Rlim/Rnf12, Rex1, and X Chromosome Inactivation. Front Cell Dev Biol 2019; 7:258. [PMID: 31737626 PMCID: PMC6834644 DOI: 10.3389/fcell.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022] Open
Abstract
RLIM/Rnf12 is an E3 ubiquitin ligase that has originally been identified as a transcriptional cofactor associated with LIM domain transcription factors. Indeed, this protein modulates transcriptional activities and multiprotein complexes recruited by several classes of transcription factors thereby enhancing or repressing transcription. Around 10 years ago, RLIM/Rnf12 has been identified as a major regulator for the process of X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mice and ESCs. However, the precise roles of RLIM during XCI have been controversial. Here, we discuss the cellular and developmental functions of RLIM as an E3 ubiquitin ligase and its roles during XCI in conjunction with its target protein Rex1.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
64
|
McLaughlin K, Flyamer IM, Thomson JP, Mjoseng HK, Shukla R, Williamson I, Grimes GR, Illingworth RS, Adams IR, Pennings S, Meehan RR, Bickmore WA. DNA Methylation Directs Polycomb-Dependent 3D Genome Re-organization in Naive Pluripotency. Cell Rep 2019; 29:1974-1985.e6. [PMID: 31722211 PMCID: PMC6856714 DOI: 10.1016/j.celrep.2019.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/09/2019] [Accepted: 10/09/2019] [Indexed: 11/14/2022] Open
Abstract
The DNA hypomethylation that occurs when embryonic stem cells (ESCs) are directed to the ground state of naive pluripotency by culturing in two small molecule inhibitors (2i) results in redistribution of polycomb (H3K27me3) away from its target loci. Here, we demonstrate that 3D genome organization is also altered in 2i, with chromatin decompaction at polycomb target loci and a loss of long-range polycomb interactions. By preventing DNA hypomethylation during the transition to the ground state, we are able to restore to ESC in 2i the H3K27me3 distribution, as well as polycomb-mediated 3D genome organization that is characteristic of primed ESCs grown in serum. However, these cells retain the functional characteristics of 2i ground-state ESCs. Our findings demonstrate the central role of DNA methylation in shaping major aspects of 3D genome organization but caution against assuming causal roles for the epigenome and 3D genome in gene regulation and function in ESCs.
Collapse
Affiliation(s)
- Katy McLaughlin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Heidi K Mjoseng
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ruchi Shukla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Northern Institute for Cancer Research, Framlington Place, Medical Faculty, Newcastle upon Tyne NE2 4HH, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Sari Pennings
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
65
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
66
|
Talon I, Janiszewski A, Chappell J, Vanheer L, Pasque V. Recent Advances in Understanding the Reversal of Gene Silencing During X Chromosome Reactivation. Front Cell Dev Biol 2019; 7:169. [PMID: 31552244 PMCID: PMC6733891 DOI: 10.3389/fcell.2019.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Dosage compensation between XX female and XY male cells is achieved by a process known as X chromosome inactivation (XCI) in mammals. XCI is initiated early during development in female cells and is subsequently stably maintained in most somatic cells. Despite its stability, the robust transcriptional silencing of XCI is reversible, in the embryo and also in a number of reprogramming settings. Although XCI has been intensively studied, the dynamics, factors, and mechanisms of X chromosome reactivation (XCR) remain largely unknown. In this review, we discuss how new sequencing technologies and reprogramming approaches have enabled recent advances that revealed the timing of transcriptional activation during XCR. We also discuss the factors and chromatin features that might be important to understand the dynamics and mechanisms of the erasure of transcriptional gene silencing on the inactive X chromosome (Xi).
Collapse
Affiliation(s)
| | | | | | | | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
67
|
Stork C, Li Z, Lin L, Zheng S. Developmental Xist induction is mediated by enhanced splicing. Nucleic Acids Res 2019; 47:1532-1543. [PMID: 30496473 PMCID: PMC6379716 DOI: 10.1093/nar/gky1198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 11/12/2022] Open
Abstract
X-inactive-specific transcript (Xist) is a long noncoding RNA (lncRNA) essential for inactivating one of the two X chromosomes in mammalian females. Random X chromosome inactivation is mediated by Xist RNA expressed from the inactive X chromosome. We found that Xist RNA is unspliced in naïve embryonic stem (ES) cells. Upon differentiation, Xist splicing becomes efficient across all exons independent of transcription, suggesting interdependent or coordinated removal of Xist introns. In female cells with mutated polypyrimidine tract binding protein 1 (Ptbp1), differentiation fails to substantially upregulate mature Xist RNA because of a defect in Xist splicing. We further found both Xist129 and XistCAS RNA are unspliced in Mus musculus 129SvJ/Mus castaneous (CAS) hybrid female ES cells. Upon differentiation, Xist129 exhibits a higher splicing efficiency than XistCAS, likely contributing to preferential inhibition of the X129 chromosome. Single cell analysis shows that the allelic choice of Xist splicing is linked to the inactive X chromosome. We conclude post-transcriptional control of Xist RNA splicing is an essential regulatory step of Xist induction. Our studies shed light on the developmental roles of splicing for nuclear-retained Xist lncRNA and suggest inefficient Xist splicing is an additional fail-safe mechanism to prevent Xist activity in ES cells.
Collapse
Affiliation(s)
- Cheryl Stork
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Lin Lin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA.,Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
68
|
Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS, Zhang T, Almeida M, Bloechl B, Moindrot B, Carter EJ, Alvarez Rodrigo I, Pan Q, Bi Y, Song CX, Brockdorff N. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun 2019; 10:3129. [PMID: 31311937 PMCID: PMC6635394 DOI: 10.1038/s41467-019-11171-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Xist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models. Using a machine learning approach we identify distance to the Xist locus and prior gene expression levels as key determinants of silencing efficiency. We go on to show that Spen, recruited through the Xist A-repeat, plays a central role, being critical for silencing of all except a subset of weakly expressed genes. Polycomb, recruited through the Xist B/C-repeat, also plays a key role, favouring silencing of genes with pre-existing H3K27me3 chromatin. LBR and the Rbm15/m6A-methyltransferase complex make only minor contributions to gene silencing. Together our results provide a comprehensive model for Xist-mediated chromosome silencing.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Heather Coker
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mafalda Almeida
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bianca Bloechl
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Benoit Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- I2BC Paris-Sud University, Gif-Sur-Yvette, France
| | - Emma J Carter
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ines Alvarez Rodrigo
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Qi Pan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ying Bi
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
69
|
Greenberg M, Teissandier A, Walter M, Noordermeer D, Bourc'his D. Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naïve pluripotency. eLife 2019; 8:44057. [PMID: 30990414 PMCID: PMC6488298 DOI: 10.7554/elife.44057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/15/2019] [Indexed: 12/29/2022] Open
Abstract
During early mammalian development, the chromatin landscape undergoes profound transitions. The Zdbf2 gene—involved in growth control—provides a valuable model to study this window: upon exit from naïve pluripotency and prior to tissue differentiation, it undergoes a switch from a distal to a proximal promoter usage, accompanied by a switch from polycomb to DNA methylation occupancy. Using a mouse embryonic stem cell (ESC) system to mimic this period, we show here that four enhancers contribute to the Zdbf2 promoter switch, concomitantly with dynamic changes in chromatin architecture. In ESCs, the locus is partitioned to facilitate enhancer contacts with the distal Zdbf2 promoter. Relieving the partition enhances proximal Zdbf2 promoter activity, as observed during differentiation or with genetic mutants. Importantly, we show that 3D regulation occurs upstream of the polycomb and DNA methylation pathways. Our study reveals the importance of multi-layered regulatory frameworks to ensure proper spatio-temporal activation of developmentally important genes.
Collapse
Affiliation(s)
- Maxim Greenberg
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | | | - Marius Walter
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris Sud, Université Paris-Saclay, CEA, CNRS, Paris, France
| | - Deborah Bourc'his
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| |
Collapse
|
70
|
A novel approach to differentiate rat embryonic stem cells in vitro reveals a role for RNF12 in activation of X chromosome inactivation. Sci Rep 2019; 9:6068. [PMID: 30988473 PMCID: PMC6465393 DOI: 10.1038/s41598-019-42246-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
X chromosome inactivation (XCI) is a mammalian specific, developmentally regulated process relying on several mechanisms including antisense transcription, non-coding RNA-mediated silencing, and recruitment of chromatin remodeling complexes. In vitro modeling of XCI, through differentiation of embryonic stem cells (ESCs), provides a powerful tool to study the dynamics of XCI, overcoming the need for embryos, and facilitating genetic modification of key regulatory players. However, to date, robust initiation of XCI in vitro has been mostly limited to mouse pluripotent stem cells. Here, we adapted existing protocols to establish a novel monolayer differentiation protocol for rat ESCs to study XCI. We show that differentiating rat ESCs properly downregulate pluripotency factor genes, and present female specific Xist RNA accumulation and silencing of X-linked genes. We also demonstrate that RNF12 seems to be an important player in regulation of initiation of XCI in rat, acting as an Xist activator. Our work provides the basis to investigate the mechanisms directing the XCI process in a model organism different from the mouse.
Collapse
|
71
|
Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Rep 2019; 27:442-454.e5. [DOI: 10.1016/j.celrep.2019.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
|
72
|
Sierra I, Anguera MC. Enjoy the silence: X-chromosome inactivation diversity in somatic cells. Curr Opin Genet Dev 2019; 55:26-31. [PMID: 31108425 PMCID: PMC6759402 DOI: 10.1016/j.gde.2019.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
The imbalance of sex chromosomes between females (XX) and males (XY) necessitates strict regulation of X-linked gene expression. X-Chromosome Inactivation (XCI) selects one X for transcriptional silencing in the early embryo, generating an epigenetically distinct and transcriptionally silent X that is maintained into adulthood. Some genes on the inactive X escape XCI, and human somatic cells have a greater number of escape genes compared to mice. Advances with single-cell technologies have revealed human-specific escape genes in fibroblasts and immune cells, some of which exhibit cell and tissue specificity. Here, we review recent discoveries of dynamic XCI in female immune cells, which have changed our understanding of XCI maintenance, and discuss how some X-linked genes might become overexpressed in female-biased autoimmunity.
Collapse
Affiliation(s)
- Isabel Sierra
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
73
|
Abstract
Despite essential roles played by long noncoding RNAs (lncRNAs) in development and disease, methods to determine lncRNA cis-elements are lacking. Here, we developed a screening method named “Tiling CRISPR” to identify lncRNA functional domains. Using this approach, we identified Xist A-Repeats as the silencing domain, an observation in agreement with published work, suggesting Tiling CRISPR feasibility. Mechanistic analysis suggested a novel function for Xist A-repeats in promoting Xist transcription. Overall, our method allows mapping of lncRNA functional domains in an unbiased and potentially high-throughput manner to facilitate the understanding of lncRNA functions.
Collapse
|
74
|
Jégu T, Blum R, Cochrane JC, Yang L, Wang CY, Gilles ME, Colognori D, Szanto A, Marr SK, Kingston RE, Lee JT. Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome. Nat Struct Mol Biol 2019; 26:96-109. [PMID: 30664740 PMCID: PMC6421574 DOI: 10.1038/s41594-018-0176-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The noncoding RNA Xist recruits silencing factors to the inactive X chromosome (Xi) and facilitates re-organization of Xi structure. Here, we examine the mouse epigenomic landscape of Xi and assess how Xist alters chromatin accessibility. Interestingly, Xist deletion triggers a gain of accessibility of selective chromatin regions that is regulated by BRG1, an ATPase subunit of the SWI/SNF chromatin remodeling complex. In vitro, RNA binding inhibits nucleosome remodeling and ATPase activities of BRG1, while in cell culture Xist directly interacts with BRG1 and expels BRG1 from the Xi. Xist ablation leads to a selective return of BRG1 in cis, starting from pre-existing BRG1 sites that are free of Xist. BRG1 re-association correlates with cohesin binding and restoration of topologically associated domains (TADs), and results in formation of de novo Xi “superloops.” Thus, Xist binding inhibits BRG1’s nucleosome remodeling activity and results in expulsion of the SWI/SNF complex from the Xi.
Collapse
Affiliation(s)
- Teddy Jégu
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Roy Blum
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jesse C Cochrane
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Yang
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chen-Yu Wang
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maud-Emmanuelle Gilles
- Institute for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Colognori
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Attila Szanto
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, MA, USA. .,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
75
|
Ibeagha-Awemu EM, Li R, Dudemaine PL, Do DN, Bissonnette N. Transcriptome Analysis of Long Non-Coding RNA in the Bovine Mammary Gland Following Dietary Supplementation with Linseed Oil and Safflower Oil. Int J Mol Sci 2018; 19:E3610. [PMID: 30445766 PMCID: PMC6274745 DOI: 10.3390/ijms19113610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023] Open
Abstract
This study aimed to characterize the long non-coding RNA (lncRNA) expression in the bovine mammary gland and to infer their functions in dietary response to 5% linseed oil (LSO) or 5% safflower oil (SFO). Twelve cows (six per treatment) in mid lactation were fed a control diet for 28 days followed by a treatment period (control diet supplemented with 5% LSO or 5% SFO) of 28 days. Mammary gland biopsies were collected from each animal on day-14 (D-14, control period), D+7 (early treatment period) and D+28 (late treatment period) and were subjected to RNA-Sequencing and subsequent bioinformatics analyses. Functional enrichment of lncRNA was performed via potential cis regulated target genes located within 50 kb flanking regions of lncRNAs and having expression correlation of >0.7 with mRNAs. A total of 4955 lncRNAs (325 known and 4630 novel) were identified which potentially cis targeted 59 and 494 genes in LSO and SFO treatments, respectively. Enrichments of cis target genes of lncRNAs indicated potential roles of lncRNAs in immune function, nucleic acid metabolism and cell membrane organization processes as well as involvement in Notch, cAMP and TGF-β signaling pathways. Thirty-two and 21 lncRNAs were differentially expressed (DE) in LSO and SFO treatments, respectively. Six genes (KCNF1, STARD13, BCL6, NXPE2, HHIPL2 and MMD) were identified as potential cis target genes of six DE lncRNAs. In conclusion, this study has identified lncRNAs with potential roles in mammary gland functions and potential candidate genes and pathways via which lncRNAs might function in response to LSO and SFA.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| | - Ran Li
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| | - Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada.
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| |
Collapse
|
76
|
Zhao CN, Mao YM, Liu LN, Li XM, Wang DG, Pan HF. Emerging role of lncRNAs in systemic lupus erythematosus. Biomed Pharmacother 2018; 106:584-592. [DOI: 10.1016/j.biopha.2018.06.175] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
|
77
|
Galupa R, Heard E. X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annu Rev Genet 2018; 52:535-566. [PMID: 30256677 DOI: 10.1146/annurev-genet-120116-024611] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In somatic nuclei of female therian mammals, the two X chromosomes display very different chromatin states: One X is typically euchromatic and transcriptionally active, and the other is mostly silent and forms a cytologically detectable heterochromatic structure termed the Barr body. These differences, which arise during female development as a result of X-chromosome inactivation (XCI), have been the focus of research for many decades. Initial approaches to define the structure of the inactive X chromosome (Xi) and its relationship to gene expression mainly involved microscopy-based approaches. More recently, with the advent of genomic techniques such as chromosome conformation capture, molecular details of the structure and expression of the Xi have been revealed. Here, we review our current knowledge of the 3D organization of the mammalian X-chromosome chromatin and discuss its relationship with gene activity in light of the initiation, spreading, and maintenance of XCI, as well as escape from gene silencing.
Collapse
Affiliation(s)
- Rafael Galupa
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Current affiliation: Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Edith Heard
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Collège de France, 75231 Paris, France
| |
Collapse
|
78
|
Sahakyan A, Yang Y, Plath K. The Role of Xist in X-Chromosome Dosage Compensation. Trends Cell Biol 2018; 28:999-1013. [PMID: 29910081 DOI: 10.1016/j.tcb.2018.05.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023]
Abstract
In each somatic cell of a female mammal one X chromosome is transcriptionally silenced via X-chromosome inactivation (XCI), initiating early in development. Although XCI events are conserved in mouse and human postimplantation development, regulation of X-chromosome dosage in preimplantation development occurs differently. In preimplantation development, mouse embryos undergo imprinted form of XCI, yet humans lack imprinted XCI and instead regulate gene expression of both X chromosomes by dampening transcription. The long non-coding RNA Xist/XIST is expressed in mouse and human preimplantation and postimplantation development to orchestrate XCI, but its role in dampening is unclear. In this review, we discuss recent advances in our understanding of the role of Xist in X chromosome dosage compensation in mouse and human.
Collapse
Affiliation(s)
- Anna Sahakyan
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yihao Yang
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
79
|
Hanin G, Yayon N, Tzur Y, Haviv R, Bennett ER, Udi S, Krishnamoorthy YR, Kotsiliti E, Zangen R, Efron B, Tam J, Pappo O, Shteyer E, Pikarsky E, Heikenwalder M, Greenberg DS, Soreq H. miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut 2018; 67:1124-1134. [PMID: 28381526 PMCID: PMC5969364 DOI: 10.1136/gutjnl-2016-312869] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Both non-alcoholic fatty liver disease (NAFLD) and the multitarget complexity of microRNA (miR) suppression have recently raised much interest, but the in vivo impact and context-dependence of hepatic miR-target interactions are incompletely understood. Assessing the relative in vivo contributions of specific targets to miR-mediated phenotypes is pivotal for investigating metabolic processes. DESIGN We quantified fatty liver parameters and the levels of miR-132 and its targets in novel transgenic mice overexpressing miR-132, in liver tissues from patients with NAFLD, and in diverse mouse models of hepatic steatosis. We tested the causal nature of miR-132 excess in these phenotypes by injecting diet-induced obese mice with antisense oligonucleotide suppressors of miR-132 or its target genes, and measured changes in metabolic parameters and transcripts. RESULTS Transgenic mice overexpressing miR-132 showed a severe fatty liver phenotype and increased body weight, serum low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and liver triglycerides, accompanied by decreases in validated miR-132 targets and increases in lipogenesis and lipid accumulation-related transcripts. Likewise, liver samples from both patients with NAFLD and mouse models of hepatic steatosis or non-alcoholic steatohepatitis (NASH) displayed dramatic increases in miR-132 and varying decreases in miR-132 targets compared with controls. Furthermore, injecting diet-induced obese mice with anti-miR-132 oligonucleotides, but not suppressing its individual targets, reversed the hepatic miR-132 excess and hyperlipidemic phenotype. CONCLUSIONS Our findings identify miR-132 as a key regulator of hepatic lipid homeostasis, functioning in a context-dependent fashion via suppression of multiple targets and with cumulative synergistic effects. This indicates reduction of miR-132 levels as a possible treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Geula Hanin
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Nadav Yayon
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Yonat Tzur
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Rotem Haviv
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Estelle R Bennett
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoganathan R Krishnamoorthy
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Kotsiliti
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, Munich, Germany
| | - Rivka Zangen
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Ben Efron
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Pappo
- The Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Shteyer
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel,The Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, Munich, Germany,Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David S Greenberg
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Hermona Soreq
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| |
Collapse
|
80
|
Sousa EJ, Stuart HT, Bates LE, Ghorbani M, Nichols J, Dietmann S, Silva JCR. Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell Stem Cell 2018; 22:919-928.e6. [PMID: 29804891 PMCID: PMC5989057 DOI: 10.1016/j.stem.2018.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/21/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
A hallmark of naive pluripotency is the presence of two active X chromosomes in females. It is not clear whether prevention of X chromosome inactivation (XCI) is mediated by gene networks that preserve the naive state. Here, we show that robust naive pluripotent stem cell (nPSC) self-renewal represses expression of Xist, the master regulator of XCI. We found that nPSCs accumulate Xist on the male X chromosome and on both female X chromosomes as they become NANOG negative at the onset of differentiation. This is accompanied by the appearance of a repressive chromatin signature and partial X-linked gene silencing, suggesting a transient and rapid XCI-like state in male nPSCs. In the embryo, Xist is transiently expressed in males and in females from both X chromosomes at the onset of naive epiblast differentiation. In conclusion, we propose that XCI initiation is gender independent and triggered by destabilization of naive identity, suggesting that gender-specific mechanisms follow, rather than precede, XCI initiation.
Collapse
Affiliation(s)
- Elsa J Sousa
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Hannah T Stuart
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Lawrence E Bates
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - José C R Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
81
|
Monfort A, Wutz A. Progress in understanding the molecular mechanism of Xist RNA function through genetics. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0368. [PMID: 28947663 DOI: 10.1098/rstb.2016.0368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 01/06/2023] Open
Abstract
The Xist gene produces a long noncoding RNA that initiates chromosome-wide gene repression on the inactive X chromosome in female mammals. Recent progress has advanced the understanding of Xist function at the molecular level. This review provides an overview of insights from genetic approaches and puts the new data in the context of an emerging mechanistic model as well as the existing literature. Some consideration is given on how independent biochemical studies on X inactivation help to advance on the wider question of chromatin regulation in the mammalian dosage compensation system.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| |
Collapse
|
82
|
Epigenetic modifications in the embryonic and induced pluripotent stem cells. Gene Expr Patterns 2018; 29:1-9. [PMID: 29625185 DOI: 10.1016/j.gep.2018.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/03/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Epigenetic modifications are involved in global reprogramming of the cell transcriptome. Therefore, synchronized major shifts in the expression of many genes could be achieved through epigenetic changes. The regulation of gene expression could be implemented by different epigenetic events including histone modifications, DNA methylation and chromatin remodelling. Interestingly, it has been documented that reprogramming of somatic cells to induced pluripotent stem (iPS) cells is also a typical example of epigenetic modifications. Additionally, epigenetic would determine the fates of almost all cells upon differentiation of stem cells into somatic cells. Currently, generation of iPS cells through epigenetic modifications is a routine laboratory practice. Despite all our knowledge, inconsistency in the results of reprogramming and differentiation of stem cells, highlight the need for more thorough investigation into the role of epigenetic modification in generation and maintenance of stem cells. Besides, subtle differences have been observed among different iPS cells and between iPS and ES cells. Although, a handful of detailed review regarding the status of epigenetics in stem cells has been published previously, in the current review, an abstracted and rather simplified view has been presented for those who want to gain a more general overview on this subject. However, almost all key references and ground breaking studies were included, which could be further explored to gain more in depth knowledge regarding this topic. The most dominant epigenetic changes have been presented followed by the impacts of such changes on the global gene expression. Epigenetic status in iPS and ES cells were compared. In addition to including the issues related to X-chromosome reactivation in the stem cells, we have also included loss of imprinting for some genes as a major drawback in generation of iPS cells. Finally, the overall impacts of epigenetic modifications on different aspects of stem cells has been discussed, including their use in cell therapy.
Collapse
|
83
|
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.
Collapse
|
84
|
Abstract
Live imaging gives additional layers of information such as physical dynamics of a molecule of your interest. Aptamer-based green fluorescent protein (GFP) labeling is suitable for visualization of RNA molecules. Here we describe a method to visualize Xist RNA using the Bgl aptamer system.
Collapse
Affiliation(s)
- Osamu Masui
- Laboratory for Developmental Genetics, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan.
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Institut Curie, PSL University, CNRS UMR3215, INSERM U934, Paris, France.
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan.
| |
Collapse
|
85
|
Huang YS, Chang CC, Lee SS, Jou YS, Shih HM. Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression. Oncotarget 2017; 7:43256-43266. [PMID: 27248326 PMCID: PMC5190021 DOI: 10.18632/oncotarget.9673] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) dysregulated in cancer potentially play oncogenic or tumor-suppressive roles. While the X inactivate-specific transcript (Xist) lncRNA is important for X-chromosome inactivation in female cells, very little is known about the role of Xist in human breast cancer in modulating cellular pathway(s). Here, we show that Xist expression is significantly reduced in breast tumor samples and cancer cell lines. Xist knockdown or overexpression resulted in increased or decreased levels, respectively, of AKT phosphorylation and cell viability. Further studies revealed an inverse correlation between Xist and phospho-AKT levels in breast cancer samples. Additionally, Xist knockdown-elicited increase of cell viability was attenuated by AKT inhibitor. These results suggest that Xist negatively regulates cell viability via inhibition of AKT activation. Interestingly, decreased Xist expression in breast cancer samples was associated with reduced levels of Jpx RNA, an lncRNA that positively regulates Xist promoter activity. Accordingly, Jpx knockdown enhanced AKT activation and cell viability. We also demonstrate that knockdown of Xist or SPEN, an intermediator protein to link Xist, SMRT co-repressor and HDAC3 complexes for X-chromosome inactivation, decreased expression of PHLPP1, a phosphatase to remove AKT phosphorylation, via increased HDAC3 recruitment to the PHLPP1 promoter, correlating with increased AKT phosphorylation. Our findings elucidate the tumor suppressor role of Xist in breast cancer and provide the molecular basis of Xist in downregulating AKT activation.
Collapse
Affiliation(s)
- Yen-Sung Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Che-Chang Chang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Szu-Shuo Lee
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
86
|
Chigi Y, Sasaki H, Sado T. The 5' region of Xist RNA has the potential to associate with chromatin through the A-repeat. RNA (NEW YORK, N.Y.) 2017; 23:1894-1901. [PMID: 28939698 PMCID: PMC5689009 DOI: 10.1261/rna.062158.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
X inactive-specific transcript (Xist) is a long noncoding RNA that plays an essential role in X chromosome inactivation. Although Xist RNA, like common protein-coding mRNAs, is transcribed by RNA polymerase II, spliced and polyadenylated, it is retained in the nucleus and associates with the X chromosome it originates from. It has been assumed that Xist RNA recruits proteins involved in epigenetic modifications and chromatin compaction to the X chromosome. One of the major proteins constituting the nuclear matrix, hnRNP U, has been shown to be required for the association of Xist RNA with the inactive X chromosome (Xi). In this study, we found that the first 950-nt sequence of Xist RNA had the potential to associate with chromatin in a manner independent of hnRNP U. Furthermore, its chromatin association is apparently dependent on the presence of an intact A-repeat sequence, which is one of the repeats in Xist/XIST RNA conserved among many mammalian species, and has been shown to be important for Xist RNA-mediated silencing. Taking this unexpected finding and a previous study demonstrating the effect of Xist RNA lacking the A-repeat on the formation of the silent heterochromatin domain together, we suggest that the A-repeat captures chromatin near the initial loading site of Xist RNA and relocates it into the core of the heterochromatin domain.
Collapse
Affiliation(s)
- Yuta Chigi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan
| | - Hiroyuki Sasaki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
87
|
Inoue A, Jiang L, Lu F, Zhang Y. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 2017; 31:1927-1932. [PMID: 29089420 PMCID: PMC5710138 DOI: 10.1101/gad.304113.117] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022]
Abstract
In this study, Inoue et al. investigated the mechanism underlying Xist imprinting in female mammals. They demonstrate that the Xist locus is coated with a broad H3K27me3 domain that is established during oocyte growth and persists through preimplantation development in mice, thus identifying maternal H3K27me3 as the imprinting mark of Xist. Maternal imprinting at the Xist gene is essential to achieve paternal allele-specific imprinted X-chromosome inactivation (XCI) in female mammals. However, the mechanism underlying Xist imprinting is unclear. Here we show that the Xist locus is coated with a broad H3K27me3 domain that is established during oocyte growth and persists through preimplantation development in mice. Loss of maternal H3K27me3 induces maternal Xist expression and maternal XCI in preimplantation embryos. Our study thus identifies maternal H3K27me3 as the imprinting mark of Xist.
Collapse
Affiliation(s)
- Azusa Inoue
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Lan Jiang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Falong Lu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
88
|
Ruan Z, Zhao X, Qin X, Luo C, Liu X, Deng Y, Zhu P, Li Z, Huang B, Shi D, Lu F. DNA methylation and expression of imprinted genes are associated with the viability of different sexual cloned buffaloes. Reprod Domest Anim 2017; 53:203-212. [PMID: 29076549 DOI: 10.1111/rda.13093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023]
Abstract
The DNA methylation of imprinted genes is an important way to regulate epigenetic reprogramming of donor cells in somatic cell nuclear transfer (SCNT). However, the effects of sexual distinction on the DNA methylation of imprinted genes in cloned animals have seldom been reported. In this study, we analysed the DNA methylation status of three imprinted genes (Xist, IGF2 and H19) from liveborn cloned buffaloes (L group, three female and three male), stillborn cloned buffaloes (S group, three female and three male) and natural reproduction buffaloes (N group, three female and three male), using bisulphite sequencing polymerase chain reaction (BS-PCR). The expression levels of these imprinted genes were also investigated by quantitative real-time PCR (QRT-PCR). The DNA methylation levels of H19 were not significantly different among the groups. However, the Xist in female and IGF2 in male of the S group were found to be significantly hypomethylated in comparison with the same sexual buffaloes in L group and N group (p < .05). Furthermore, the expression levels of Xist, IGF2 and H19 in the stillborn female cloned buffaloes of S group were significantly higher than that of the female buffaloes in the L group and N group (p < .05). The expression levels of IGF2 and H19 in the stillborn male cloned buffaloes in the S group were significantly higher than that of the male buffaloes in the L group and N group (p < .05). These results indicate that Xist may be associated with the viability of female cloned buffaloes, and IGF2 may also be related to the viability of male cloned buffaloes.
Collapse
Affiliation(s)
- Z Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - C Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Y Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - P Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Z Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - D Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - F Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
89
|
Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nat Commun 2017; 8:690. [PMID: 28947736 PMCID: PMC5612955 DOI: 10.1038/s41467-017-00528-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023] Open
Abstract
Xist is indispensable for X chromosome inactivation. However, how Xist RNA directs chromosome-wide silencing and why some regions are more efficiently silenced than others remains unknown. Here, we explore the function of Xist by inducing ectopic Xist expression from multiple different X-linked and autosomal loci in mouse aneuploid and female diploid embryonic stem cells in which Xist-mediated silencing does not lead to lethal functional monosomy. We show that ectopic Xist expression faithfully recapitulates endogenous X chromosome inactivation from any location on the X chromosome, whereas long-range silencing of autosomal genes is less efficient. Long interspersed elements facilitate inactivation of genes located far away from the Xist transcription locus, and genes escaping X chromosome inactivation show enrichment of CTCF on X chromosomal but not autosomal loci. Our findings highlight important genomic and epigenetic features acquired during sex chromosome evolution to facilitate an efficient X chromosome inactivation process.Xist RNA is required for X chromosome inactivation but it is not well understood how Xist silences some regions more efficiently than others. Here, the authors induce ectopic Xist expression from multiple different X-linked and autosomal loci in cells to explore Xist function.
Collapse
|
90
|
Bunch H. Gene regulation of mammalian long non-coding RNA. Mol Genet Genomics 2017; 293:1-15. [PMID: 28894972 DOI: 10.1007/s00438-017-1370-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (Pol II) transcribes two classes of RNAs, protein-coding and non-protein-coding (ncRNA) genes. ncRNAs are also synthesized by RNA polymerases I and III (Pol I and III). In humans, the number of ncRNA genes exceeds more than twice that of protein-coding genes. However, the history of studying Pol II-synthesized ncRNA is relatively short. Since early 2000s, important biological and pathological functions of these ncRNA genes have begun to be discovered and intensively studied. And transcription mechanisms of long non-coding RNA (lncRNA) have been recently reported. Transcription of lncRNAs utilizes some transcription factors and mechanisms shared in that of protein-coding genes. In addition, tissue specificity in lncRNA gene expression has been shown. LncRNAs play essential roles in regulating the expression of neighboring or distal genes through different mechanisms. This leads to the implication of lncRNAs in a wide variety of biological pathways and pathological development. In this review, the newly discovered transcription mechanisms, characteristics, and functions of lncRNA are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Agriculture & Life Sciences Building 1, Room 207, 80 Dae-Hak Ro, Daegu, Republic of Korea.
| |
Collapse
|
91
|
Perry RBT, Ulitsky I. The functions of long noncoding RNAs in development and stem cells. Development 2017; 143:3882-3894. [PMID: 27803057 DOI: 10.1242/dev.140962] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eukaryotic genomes are pervasively transcribed, with tens of thousands of RNAs emanating from uni- and bi-directional promoters and from active enhancers. In vertebrates, thousands of loci in each species produce a class of transcripts called long noncoding RNAs (lncRNAs) that are typically expressed at low levels and do not appear to give rise to functional proteins. Substantial numbers of lncRNAs are expressed at specific stages of embryonic development, in many cases from regions flanking key developmental regulators. Here, we review the known biological functions of such lncRNAs and the emerging paradigms of their modes of action. We also provide an overview of the growing arsenal of methods for lncRNA identification, perturbation and functional characterization.
Collapse
Affiliation(s)
- Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St, Rehovot 76100, Israel
| |
Collapse
|
92
|
Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G, Godwin J, Wilson R, Haslam A, Lilley F, Ruigrok R, Bageghni SA, Albadrani G, Mansfield W, Roulson JA, Brockdorff N, Ainscough JFX, Coverley D. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 2017; 31:876-888. [PMID: 28546514 PMCID: PMC5458755 DOI: 10.1101/gad.295907.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
Here, Ridings-Figueroa et al. show that the nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. Their findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages. The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist. CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.
Collapse
Affiliation(s)
| | - Emma R Stewart
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Tatyana B Nesterova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Heather Coker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rose Wilson
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aidan Haslam
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fred Lilley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Renate Ruigrok
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sumia A Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ghadeer Albadrani
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom.,Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Kingdom of Saudi Arabia
| | - William Mansfield
- Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Jo-An Roulson
- Leeds Institute of Molecular Medicine (LIMM), University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Justin F X Ainscough
- Department of Biology, University of York, York YO10 5DD, United Kingdom.,Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
93
|
Lyu C, Shen J, Zhang J, Xue F, Liu X, Liu W, Fu R, Zhang L, Li H, Zhang D, Zhang X, Cheng T, Yang R, Zhang L. The State of Skewed X Chromosome Inactivation is Retained in the Induced Pluripotent Stem Cells from a Female with Hemophilia B. Stem Cells Dev 2017; 26:1003-1011. [PMID: 28401797 DOI: 10.1089/scd.2016.0323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Skewed X chromosome inactivation (XCI) is a rare reason for hemophilia B in females. It is indefinite whether X chromosome reactivation (XCR) would occur when cells of hemophilia B patients with skewed XCI were reprogrammed into induced pluripotent stem cells (iPSCs). In this study, we investigated a female hemophilia B patient with a known F9 gene mutation: c.676C>T, p.Arg226Trp. We demonstrated that skewed XCI was the pathogenesis of the patient, and we successfully generated numerous iPSC colonies of the patient from peripheral blood mononuclear cells (PBMNCs), which was the first time for generating hemophilia-specific iPSCs from PBMNCs. Then we detected the XCI state of these iPSCs. Ninety-two iPSC lines were picked for XCI analysis. All of them retained an inactive X chromosome, which could be proved by amplification of the androgen receptor gene and XIST (X inactivation-specific transcript), expression of H3K27me3, and existence of XIST clouds in XIST RNA fluorescence in situ hybridization (FISH) analysis. We attempted to obtain iPSC lines with the wild-type F9 gene on the active X chromosome for further disease treatment. But it turned out that the patient's iPSCs were still skewed such as the somatic cells with 92 iPSC lines having mutant F9 on the active X chromosome. In conclusion, skewed XCI is one reason for hemophilia in females. PBMNCs are excellent somatic cell resources for hemophilia patients to do reprogramming. More attentions should be paid to generate naive iPSCs with two active X chromosomes for further clinical disease treatment. The state of skewed XCI is retained in the iPSCs from a female with hemophilia B.
Collapse
Affiliation(s)
- Cuicui Lyu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China .,2 Department of Hematology, The First Central Hospital of Tianjin , Tianjin, China
| | - Jun Shen
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianping Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng Xue
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofan Liu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Liu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rongfeng Fu
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liyan Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiyuan Li
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Donglei Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaobing Zhang
- 3 Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University , Loma Linda, California
| | - Tao Cheng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
94
|
Postlmayr A, Wutz A. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X Inactivation. J Mol Biol 2017; 429:1521-1531. [PMID: 28315662 DOI: 10.1016/j.jmb.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
Animal development entails the sequential and coordinated specialization of cells. During cell differentiation, transcription factors, cell signaling pathways, and chromatin-associated protein complexes cooperate in regulating the expression of a large number of genes. Here, we review the present understanding of the establishment of chromatin states by focusing on X chromosome inactivation (XCI) as a model for facultative heterochromatin formation in female embryonic cells. The inactive X chromosome is large enough to be investigated by biochemical and microscopy techniques. In addition, the ability to compare the inactivated chromatin to the active X in male cells enables us to differentiate events specific to gene silencing during XCI from gene regulatory effects from changing pathways in the same cell. Findings in XCI are useful as blueprints for investigation of the action of epigenetic pathways in differentiation and lineage commitment. We summarize recent studies that have identified factors that are critical for chromosome-wide gene repression in XCI, and we discuss their implications for epigenetic regulation in pluripotent cells of the early embryo.
Collapse
Affiliation(s)
- Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
95
|
Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol 2017; 24:197-204. [DOI: 10.1038/nsmb.3370] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
96
|
Zhang L, Yang Z, Trottier J, Barbier O, Wang L. Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 2017; 65:604-615. [PMID: 27770549 PMCID: PMC5258819 DOI: 10.1002/hep.28882] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Bile acids (BAs) play critical physiological functions in cholesterol homeostasis, and deregulation of BA metabolism causes cholestatic liver injury. The long noncoding RNA maternally expressed gene 3 (MEG3) was recently shown as a potential tumor suppressor; however, its basic hepatic function remains elusive. Using RNA pull-down with biotin-labeled sense or anti-sense MEG 3RNA followed by mass spectrometry, we identified RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) as a MEG3 interacting protein and validated their interaction by RNA immunoprecipitation (RIP). Bioinformatics analysis revealed putative binding sites for PTBP1 within the coding region (CDS) of small heterodimer partner (SHP), a key repressor of BA biosynthesis. Forced expression of MEG3 in hepatocellular carcinoma cells guided and facilitated PTBP1 binding to the Shp CDS, resulting in Shp mRNA decay. Transient overexpression of MEG3 RNA in vivo in mouse liver caused rapid Shp mRNA degradation and cholestatic liver injury, which was accompanied by the disruption of BA homeostasis, elevation of liver enzymes, as well as dysregulation of BA synthetic enzymes and metabolic genes. Interestingly, RNA sequencing coupled with quantitative PCR (qPCR) revealed a drastic induction of MEG3 RNA in Shp-/- liver. SHP inhibited MEG3 gene transcription by repressing cAMP response element-binding protein (CREB) transactivation of the MEG3 promoter. In addition, the expression of MEG3 and PTBP1 was activated in human fibrotic and cirrhotic livers. CONCLUSION MEG3 causes cholestasis by serving as a guide RNA scaffold to recruit PTBP1 to destabilize Shp mRNA. SHP in turn represses CREB-mediated activation of MEG3 expression in a feedback-regulatory fashion. (Hepatology 2017;65:604-615).
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Zhihong Yang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Li Wang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,Address reprint requests to: Li Wang, Ph.D., 75 North Eagleville Rd., U3156, Storrs, CT 06269. ; Tel: 860-486-0857; Fax: 860-486-3303
| |
Collapse
|
97
|
Yang T, Yildirim E. Epigenetic and LncRNA-Mediated Regulation of X Chromosome Inactivation and Its Impact on Pathogenesis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
98
|
Cantone I, Dharmalingam G, Chan YW, Kohler AC, Lenhard B, Merkenschlager M, Fisher AG. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biol 2017; 18:2. [PMID: 28118853 PMCID: PMC5264468 DOI: 10.1186/s13059-016-1136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. RESULTS We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. CONCLUSIONS Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Gopuraja Dharmalingam
- Bioinformatics and Computing facility, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Yi-Wah Chan
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anne-Celine Kohler
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
99
|
Chen CK, Blanco M, Jackson C, Aznauryan E, Ollikainen N, Surka C, Chow A, Cerase A, McDonel P, Guttman M. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 2016; 354:468-472. [PMID: 27492478 DOI: 10.1126/science.aae0047] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.
Collapse
Affiliation(s)
- Chun-Kan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Constanza Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Erik Aznauryan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christine Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Cerase
- European Molecular Biology Laboratory-Monterotondo, Via Ramarini 32, 00015 Monterotondo (RM), Italy
| | - Patrick McDonel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
100
|
Mor-Shaked H, Eiges R. Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells. Genes (Basel) 2016; 7:genes7100077. [PMID: 27690107 PMCID: PMC5083916 DOI: 10.3390/genes7100077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a loss-of-function mutation by a CGG repeat expansion at the 5′ untranslated region of the X-linked fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeats beyond 200 copies results in protein deficiency by leading to aberrant methylation of the FMR1 promoter and the switch from active to repressive histone modifications. Additionally, the CGGs become increasingly unstable, resulting in high degree of variation in expansion size between and within tissues of affected individuals. It is still unclear how the FMR1 protein (FMRP) deficiency leads to disease pathology in neurons. Nor do we know the mechanisms by which the CGG expansion results in aberrant DNA methylation, or becomes unstable in somatic cells of patients, at least in part due to the lack of appropriate animal or cellular models. This review summarizes the current contribution of pluripotent stem cells, mutant human embryonic stem cells, and patient-derived induced pluripotent stem cells to disease modeling of FXS for basic and applied research, including the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| |
Collapse
|