51
|
Greene W, Kuhne K, Ye F, Chen J, Zhou F, Lei X, Gao SJ. Molecular biology of KSHV in relation to AIDS-associated oncogenesis. Cancer Treat Res 2007; 133:69-127. [PMID: 17672038 PMCID: PMC2798888 DOI: 10.1007/978-0-387-46816-7_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
KSHV has been established as the causative agent of KS, PEL, and MCD, malignancies occurring more frequently in AIDS patients. The aggressive nature of KSHV in the context of HIV infection suggests that interactions between the two viruses enhance pathogenesis. KSHV latent infection and lytic reactivation are characterized by distinct gene expression profiles, and both latency and lytic reactivation seem to be required for malignant progression. As a sophisticated oncogenic virus, KSHV has evolved to possess a formidable repertoire of potent mechanisms that enable it to target and manipulate host cell pathways, leading to increased cell proliferation, increased cell survival, dysregulated angiogenesis, evasion of immunity, and malignant progression in the immunocompromised host. Worldwide, approximately 40.3 million people are currently living with HIV infection. Of these, a significant number are coinfected with KSHV. The complex interplay between the two viruses dramatically elevates the risk for development of KSHV-induced malignancies, KS, PEL, and MCD. Although HAART significantly reduces HIV viral load, the entire T-cell repertoire and immune function may not be completely restored. In fact, clinically significant immune deficiency is not necessary for the induction of KSHV-related malignancy. Because of variables such as lack of access to therapy noncompliance with prescribed treatment, failure to respond to treatment and the development of drug-resistant strains of HIV, KSHV-induced malignancies will continue to present as major health concerns.
Collapse
Affiliation(s)
- Whitney Greene
- Tiumor Virology Program, Children's Cancer Research Institute, Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Viruses represent one of the main factors that cause normal cells to proliferate and to become malignant: up to 15% of all human cancers are associated with single or multiple virus infections, and several viruses have been recognized as causal agents of specific types of cancer. Viruses have evolved many strategies to prevent infected cells from becoming apoptotic and to evade the innate and adaptive immune responses of their hosts. The recent discovery that Epstein-Barr virus and other herpesviruses produce their own sets of micro (mi)RNAs brings an additional layer of complexity in this ongoing host-virus arms race and changes our initial views of the antiviral roles of RNA silencing in plants and insects. It seems that, rather than being inhibited by this process, many mammalian viruses can usurp or divert the host RNA silencing machinery to their advantage. Viral-encoded miRNAs can act both in cis, to ensure accurate expression of viral genomes, and in trans, to modify the expression of host transcripts. Here, we review the current knowledge on viral miRNAs and discuss how mammalian viruses can also perturb host miRNA expression. Those recent findings provide new insights into the role of viruses and miRNAs in cancer development.
Collapse
Affiliation(s)
- S Pfeffer
- IBMP-CNRS, rue du Général Zimmer, Strasbourg, France.
| | | |
Collapse
|
53
|
Abstract
The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.
Collapse
Affiliation(s)
- H Deng
- Center for Infection and Immunity, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, PR China
| | | | | |
Collapse
|
54
|
Rezaee SAR, Cunningham C, Davison AJ, Blackbourn DJ. Kaposi's sarcoma-associated herpesvirus immune modulation: an overview. J Gen Virol 2006; 87:1781-1804. [PMID: 16760382 DOI: 10.1099/vir.0.81919-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the most recently discovered human herpesvirus. It is the aetiological agent of Kaposi's sarcoma (KS), a tumour frequently affecting AIDS patients not receiving treatment. KSHV is also a likely cause of two lymphoproliferative diseases: multicentric Castleman's disease and primary effusion lymphoma. The study of KSHV offers exciting challenges for understanding the mechanisms of virus pathogenesis, including those involved in establishing infection and dissemination in the host. To facilitate these processes, approximately one-quarter of KSHV genes encode cellular homologues or unique proteins that have immunomodulatory roles in cytokine production, apoptosis, cell signalling and the immunological synapse. The activities of these molecules are considered in the present review and the positions of their genes are mapped from a complete KSHV genome sequence derived from a KS biopsy. The understanding gained enables the significance of different components of the immune response in protection against KSHV infection to be evaluated. It also helps to unravel the complexities of cellular and immunological pathways and offers the potential for exploiting viral immunomodulators and derivatives in disease therapy.
Collapse
Affiliation(s)
- S A Rahim Rezaee
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | | | | | - David J Blackbourn
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| |
Collapse
|
55
|
McAllister SC, Früh K, Moses AV. Functional genomics and the development of pathogenesis-targeted therapies for Kaposi's sarcoma. Pharmacogenomics 2006; 6:235-44. [PMID: 16013955 DOI: 10.1517/14622416.6.3.235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Kaposi's sarcoma (KS) is a multifocal angioproliferative disorder affecting the skin, mucosa and viscera of individuals infected with human herpesvirus-8 (HHV-8; also Kaposi's sarcoma-associated herpesvirus [KSHV]). KS is the most common neoplasm in AIDS patients; the clinical outcome of AIDS-KS is significantly improved by highly active antiretroviral therapy (HAART). However, in Africa, where the severest manifestations of KS occur, there is limited access to these and other effective but expensive drugs. Here we present a review of current efforts to identify novel therapeutic targets for the treatment of KS using functional genomics, with recommendations regarding the development of economically feasible treatments for use in Africa.
Collapse
Affiliation(s)
- Shane C McAllister
- Oregon Health and Science University, Vaccine and Gene Therapy Institute, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
56
|
Järviluoma A, Ojala PM. Cell signaling pathways engaged by KSHV. Biochim Biophys Acta Rev Cancer 2006; 1766:140-58. [PMID: 16828973 DOI: 10.1016/j.bbcan.2006.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/11/2006] [Accepted: 05/13/2006] [Indexed: 11/23/2022]
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the eighth human herpesvirus discovered in 1994 from Kaposi's sarcoma lesion of an AIDS patient. The strong molecular and epidemiological links associating KSHV with Kaposi's sarcoma and certain lymphoproliferative disorders indicate that KSHV is required for the development of these malignancies. Although KSHV is equipped to manipulate and deregulate several cellular signaling pathways, it is not yet understood how this leads to cell transformation. Profound understanding of the interplay of viral and cellular factors in KSHV-infected cells will provide valuable information on the mechanisms of viral tumorigenesis and enable development of efficient targeted therapies for virus-induced cancers. This review focuses on the cellular signaling pathways that KSHV gene products impinge on and discusses their putative contribution to tumorigenesis.
Collapse
Affiliation(s)
- Annika Järviluoma
- Molecular Cancer Biology Program, Institute of Biomedicine, Biomedicum Helsinki, P.O. Box 63, FIN-00014-University of Helsinki, Finland
| | | |
Collapse
|
57
|
Abstract
IPCEF1 has been reported to interact with ADP-ribosylation factor GTP exchange factors of the cytohesin family and function by modulating the cytohesin 2 activity. This article describes methods used to study the interaction and activation of cytohesin GEFs by IPCEF1. The experimental approaches described here include physical and functional interaction assays by which the association of IPCEF1 with cytohesin 2 is explored both in vitro and in vivo. The methods used to analyze the physical association include GST-pull down and coimmunoprecipitation approaches. We also used yeast two-hybrid and colocalization assays to study the interaction between IPCEF1 and cytohesins. The functional relationship between IPCEF1 and cytohesin 2 was assessed by studying the effect of IPCEF1 on the in vitro and in vivo stimulation of ADP-ribosylation factor 6 GTP formation by cytohesin 2.
Collapse
|
58
|
Nair V, Zavolan M. Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 2006; 14:169-75. [PMID: 16531046 DOI: 10.1016/j.tim.2006.02.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/02/2006] [Accepted: 02/22/2006] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of small RNAs that have recently been recognized as major regulators of gene expression. They influence diverse cellular processes ranging from cellular differentiation, proliferation, apoptosis and metabolism to cancer. Bioinformatic approaches and direct cloning methods have identified >3500 miRNAs, including orthologues from various species. Experiments to identify the targets and potential functions of miRNAs in various species are continuing but the recent discovery of virus-encoded miRNAs indicates that viruses also use this fundamental mode of gene regulation. Virus-encoded miRNAs seem to evolve rapidly and regulate both the viral life cycle and the interaction between viruses and their hosts.
Collapse
Affiliation(s)
- Venugopal Nair
- Viral Oncogenesis Group, Division of Microbiology, Institute for Animal Health, Compton, Berkshire, UK, RG20 7NN.
| | | |
Collapse
|
59
|
Abstract
Kaposi's sarcoma herpesvirus (KSHV), or human herpesvirus 8 (HHV8), is an essential factor in the pathogenesis of Kaposi's sarcoma (KS), multicentric Castleman's disease (MCD), and primary effusion lymphoma (PEL). Case reports suggest an occasional involvement in bone marrow hypoplasia and haemophagocytic syndrome, but other disease associations are unconfirmed or controversial. KSHV-associated disease is of particular importance in immunosuppressed individuals, in particular in patients with HIV infection and transplant recipients. KSHV establishes a latent infection in the majority of infected cells in KS, MCD, and PEL, but lytic replication occurs in a small fraction of infected cells. Viral proteins expressed during both the latent and the lytic phase of the viral life cycle contribute to the pathogenesis of KSHV-associated diseases.
Collapse
|
60
|
Pearce M, Matsumura S, Wilson AC. Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi's sarcoma-associated herpesvirus originate from a common promoter. J Virol 2006; 79:14457-64. [PMID: 16254382 PMCID: PMC1280212 DOI: 10.1128/jvi.79.22.14457-14464.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three malignancies associated with AIDS and immunosuppression. Tumor cells harbor latent virus and express kaposin (open reading frame [ORF] K12), v-FLIP (ORF 71), v-Cyclin (ORF 72), and latency-associated nuclear antigen (LANA; ORF 73). ORFs 71 to 73 are transcribed as multicistronic RNAs initiating from adjacent constitutive and inducible promoters upstream of ORF 73. Here we characterize a third promoter embedded within the ORF 71-to-73 transcription unit specifying transcripts that encode ORF 71/72 or K12. These transcripts may also be the source of 11 microRNAs arranged as a cluster between K12 and ORF 71. Our studies reveal a complex arrangement of interlaced transcription units, incorporating four important protein-encoding genes required for latency and pathogenesis and the entire KSHV microRNA repertoire.
Collapse
Affiliation(s)
- Michael Pearce
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
61
|
Kellersch B, Kolanus W. Membrane-proximal signaling events in beta-2 integrin activation. Results Probl Cell Differ 2006; 43:245-57. [PMID: 17068975 DOI: 10.1007/400_024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the immune system, integrins have essential roles in leukocyte trafficking and function. These include immune cell attachment to endothelial and antigen-presenting cells, cytotoxicity, and extravasation into tissues. The integrin leukocyte function-associated antigen-1 (LFA-1), which is exclusively expressed on hematopoietic cells, has been intensely studied since this receptor is important for many functions of the immune system. LFA-1 is involved in a) the interaction between T-cells and antigen presenting cells, b) the adhesion of cells to post-capillary high endothelial venules or to activated endothelium at sites of inflammation (extravasation), c) the control of cell differentiation and proliferation, and d) the regulation of T-cell effector functions. Therefore, a precise understanding of the spatial and temporal control of LFA-1 interaction with its cellular counter-receptors, the intercellular adhesion molecules (ICAM) -1, -2 and -3, in the various contexts, is of high interest. LFA-1 mediated adhesion is induced by several extracellular stimuli in different cell types. In T-cells, LFA-1 becomes activated upon signaling from the T-cell receptor (TCR), and upon cytokine and chemokine sensing. Adhesion of monocytes to ICAM-1 is induced by lipopolysaccharide (LPS), a component of the bacterial cell wall. To investigate the regulation of LFA-1 adhesiveness, research has focused on the identification of interaction partners of the intracellular portions of the integrin alpha and beta subunits. This review will highlight recent developments on transmembrane and intracellular signaling proteins, which have been implicated in beta-2 integrin activation.
Collapse
Affiliation(s)
- Bettina Kellersch
- Life and Medical Sciences Institute (LIMES), Molecular Immune and Cell Biology Program Unit, Laboratory of Molecular Immunology, University of Bonn, Germany
| | | |
Collapse
|
62
|
Abstract
MicroRNAs (miRNAs) play a pivotal role in the regulation of genes involved in diverse processes such as development, differentiation, and cellular growth control. Recently, many viral-encoded miRNAs have been discovered, for the most part in viruses transcribed from double-stranded DNA genomes. As with their cellular counterparts, the functions of most viral-derived miRNAs are unknown; however, functions have been documented or proposed for viral miRNAs from three different viral families-herpesviruses, polyomaviruses, and retroviruses. Several virus-encoded miRNAs have unique aspects to their biogenesis, such as the polymerase that transcribes them or their location within the precursor transcript. Additionally, viral interactions with cellular miRNAs have also been identified, and these have substantially expanded our appreciation of miRNA functions.
Collapse
Affiliation(s)
- Christopher S Sullivan
- Howard Hughes Medical Institute, Department of Microbiology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
63
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), has been linked to several malignancies in humans. KSHV is the etiologic agent associated with the development of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). KSHV is a double-stranded DNA virus that has been classified as a gammaherpesvirus. Here, we review the association of KSHV with human cancer, viral genes that may potentially be involved in the neoplastic process, and current therapies used to treat KS, PEL, and MCD.
Collapse
Affiliation(s)
- Emily L Wong
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
64
|
Viejo-Borbolla A, Ottinger M, Schulz TF. Human herpesvirus 8: biology and role in the pathogenesis of Kaposi's sarcoma and other AIDS-related malignancies. Curr HIV/AIDS Rep 2005; 1:5-11. [PMID: 16091217 DOI: 10.1007/s11904-004-0001-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human herpesvirus type 8, or Kaposi's sarcoma-associated herpesvirus (KSHV), is the only known human g(2) herpesvirus (rhadinovirus) and the most recently discovered tumor virus. KSHV is associated with Kaposi's sarcoma and two other lymphoproliferative disorders in the AIDS setting: primary effusion lymphoma and the plasma cell variant of multicentric Castleman's disease. This review offers an update on the epidemiology and the role of KSHV genes in the development of disease.
Collapse
Affiliation(s)
- Abel Viejo-Borbolla
- Department of Virology, Hannover Medical School, Carl-Neuberg-Strasse1, D-30625 Hannover, Germany.
| | | | | |
Collapse
|
65
|
Klass CM, Offermann MK. Targeting human herpesvirus-8 for treatment of Kaposi??s sarcoma and primary effusion lymphoma. Curr Opin Oncol 2005; 17:447-55. [PMID: 16093794 DOI: 10.1097/01.cco.0000172823.01190.6c] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Human herpesvirus-8, also called the Kaposi's sarcoma herpesvirus, is present in all cases of Kaposi's sarcoma and primary effusion lymphoma and in some cases of multicentric Castleman's disease. This review discusses mechanisms by which human herpesvirus-8 contributes to tumorigenesis and how this knowledge can be used to target the virus for the treatment of these tumors. RECENT FINDINGS Most primary effusion lymphomas and Kaposi's sarcoma tumor cells are latently infected with human herpesvirus-8 and hence resistant to antiherpesvirus drugs that are dependent on lytic replication. In contrast, many of the cells infected with human herpesvirus-8 in multicentric Castleman's disease support lytic replication, so that clinical improvement frequently occurs in response to treatment with antiherpesvirus drugs. The resistance of latently-infected tumor cells to antiherpesvirus drugs can be overcome by inducing human herpesvirus-8 to reenter the lytic cascade in the presence of antiherpesvirus drugs. This leads to apoptosis of virally infected cells without increasing production of infectious virus. Alternatively, the replication and maintenance of the human herpesvirus-8 episome during latency can be disrupted by glycyrrhizic acid or hydroxyurea so that the virus no longer contributes to tumorigenesis. Both the innate and acquired immune systems can also be augmented to help prevent or treat human herpesvirus-8-associated tumors. SUMMARY Novel strategies targeting human herpesvirus-8, which is present in all cases of Kaposi's sarcoma and primary effusion lymphoma, provide opportunities for selectively killing tumor cells.
Collapse
Affiliation(s)
- Carmen Manuela Klass
- Winship Cancer Institute, Emory University, 1365-B Clifton Road NE, Atlanta, GA 30322, USA
| | | |
Collapse
|
66
|
Cohen A, Wolf DG, Guttman-Yassky E, Sarid R. Kaposi's sarcoma-associated herpesvirus: clinical, diagnostic, and epidemiological aspects. Crit Rev Clin Lab Sci 2005; 42:101-53. [PMID: 15941082 DOI: 10.1080/10408360590913524] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHI) is one of the few viruses proven to be associated with tumorigenesis in humans. Its causal association with all clinical and epidemiological variants of Kaposi's sarcoma (KS) is well established. KSHV is also involved in the pathogenesis of primary effusion lymphoma (PEL) and a subset of multicentric Castleman's disease (MCD). Possible associations of KSHV with other clinical settings have been extensively examined. The findings from several of these studies are contradictory and are yet to be resolved. Concentrated effort over the last decade, since the initial discovery of KSHV, led to the development of several experimental systems that resulted in a better comprehension of the biological characteristics of KSHV and set the stage for the understanding of mechainisms by which diseases are induced by the virus. The development of molecular, histological, and serological tools for KSHV diagnosis allowed researchers to track the transmission and to study the epidemiology of KSHV. These assays have been applied, in particular in ambiguous cases, in order to confirm clinically and pathologically based diagnoses. Here, we review the advances in the clinical, experimental, diagnostic, and epidemiological research of KSHV.
Collapse
Affiliation(s)
- Adina Cohen
- Faculty of Life Sciences, Bar-Ilan Universiy, Ramat-Gan, Israel
| | | | | | | |
Collapse
|
67
|
Tomkowicz B, Singh SP, Lai D, Singh A, Mahalingham S, Joseph J, Srivastava S, Srinivasan A. Mutational analysis reveals an essential role for the LXXLL motif in the transformation function of the human herpesvirus-8 oncoprotein, kaposin. DNA Cell Biol 2005; 24:10-20. [PMID: 15684715 DOI: 10.1089/dna.2005.24.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human herpesvirus-8 (HHV-8) is causally linked to Kaposi's sarcoma (KS). Sequence analysis of the genome and subsequent studies revealed several genes including kaposin, with transformation properties in cell culture. In this study, we have analyzed the requirement of Kaposin A for cellular transformation in an effort to understand its contribution towards KS pathogenesis. Comparative analysis of Kaposin with other proteins identified the LXXLL motif spanning from residues 31-35 (LVCLL). The observation that the LXXLL motif is present in nuclear receptor coactivators that mediate the interaction of coactivators with nuclear receptors has prompted us to investigate the relevance of this motif for Kaposin's function(s). Kaposin A coding sequences were cloned into a eukaryotic expression plasmid with the Flag (FL) epitope fused in-frame at the C-terminus (Kap-FL). To evaluate the role of leucine residues in the motif, site-directed mutagenesis was utilized, whereby alanine was substituted for the leucine residues (Kap-AXXAA-FL). Both Kap-FL and Kap- AXXAA-FL exhibited similar levels of expression in cells. Interestingly, the Kap-AXXAA-FL mutant failed to show transforming activity by two independent assays: anchorage-independent growth, and focus formation. Immunofluorescence (IFA) and FACS analysis indicated that Kap-FL was localized around the nucleus and at the cell surface, respectively. However, Kap-AXXAA-FL exhibited diffuse cytoplasmic staining as measured by IFA yet was still detectable on the cell surface by FACS. Ironically, both Kap-FL and Kap-AXXAAFL were able to activate the AP-1 promoter. These results support an important role for the LXXLL motif in the ability of Kaposin to induce transformation.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Sequence
- Animals
- Cell Nucleus/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral/genetics
- DNA Mutational Analysis
- Herpesvirus 8, Human/genetics
- Humans
- Leucine/genetics
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation/genetics
- NIH 3T3 Cells
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Promoter Regions, Genetic/genetics
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Transcription Factor AP-1/genetics
- Transfection
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Brian Tomkowicz
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2:269-76. [PMID: 15782219 DOI: 10.1038/nmeth746] [Citation(s) in RCA: 857] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 02/10/2005] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV or HHV4), a member of the human herpesvirus (HHV) family, has recently been shown to encode microRNAs (miRNAs). In contrast to most eukaryotic miRNAs, these viral miRNAs do not have close homologs in other viral genomes or in the genome of the human host. To identify other miRNA genes in pathogenic viruses, we combined a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types. We cloned ten miRNAs in the Kaposi sarcoma-associated virus (KSHV or HHV8), nine miRNAs in the mouse gammaherpesvirus 68 (MHV68) and nine miRNAs in the human cytomegalovirus (HCMV or HHV5). These miRNA genes are expressed individually or in clusters from either polymerase (pol) II or pol III promoters, and share no substantial sequence homology with one another or with the known human miRNAs. Generally, we predicted miRNAs in several large DNA viruses, and we could neither predict nor experimentally identify miRNAs in the genomes of small RNA viruses or retroviruses.
Collapse
Affiliation(s)
- Sébastien Pfeffer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Direkze S, Laman H. Regulation of growth signalling and cell cycle by Kaposi's sarcoma-associated herpesvirus genes. Int J Exp Pathol 2005; 85:305-19. [PMID: 15566428 PMCID: PMC2517533 DOI: 10.1111/j.0959-9673.2004.00407.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the primary aetiological agent of at least three malignancies associated with HIV infection and immunosuppression: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. KSHV encodes proteins that deregulate key checkpoints in the signalling pathways governing cell proliferation, which may ultimately contribute to the virus' oncogenic potential. To alter cellular signalling associated with proliferation, these viral proteins function like growth factor ligands/receptors, signal transduction proteins, transcription factors and cell cycle regulators. This review focuses on the mechanisms by which some KSHV-encoded proteins activate signalling pathways and cell proliferation and their role in the pathogenesis of KSHV-driven mechanisms.
Collapse
Affiliation(s)
- Shamindra Direkze
- Cancer Research UK, Viral Oncology Laboratory, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
70
|
Abstract
Mammalian cytohesins are a family of very similar guanine nucleotide-exchange proteins (GEPs) that activate ADP-ribosylation factors (ARFs). Cytohesins are multifunctional molecules comprising a Sec7 domain that is responsible for the GEP activity, a PH domain that binds specific phosphatidylinositol phosphates, and a coiled-coil domain responsible for homodimerization and interaction with other proteins. Cytohesin proteins are ubiquitous and have been implicated in several functions including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. Unlike the GEP activity of BIG1 and BIG2, the acceleration by cytohesins of guanine nucleotide exchange to generate active ARF-GTP is not inhibited by the fungal metabolite brefeldin, A (BFA). This chapter is concerned for the most part with cytohesin-1 and the assay of its GEP activity.
Collapse
Affiliation(s)
- Gustavo Pacheco-Rodriguez
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
71
|
Lu M, Suen J, Frias C, Pfeiffer R, Tsai MH, Chuang E, Zeichner SL. Dissection of the Kaposi's sarcoma-associated herpesvirus gene expression program by using the viral DNA replication inhibitor cidofovir. J Virol 2004; 78:13637-52. [PMID: 15564474 PMCID: PMC533899 DOI: 10.1128/jvi.78.24.13637-13652.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of primary effusion lymphoma cells latently infected by Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus-8 [HHV-8]) with agents such as 12-O-tetradecanoylphorbol-13-acetate (TPA) induces a lytic viral replication cycle, with an ordered gene expression program. Initial studies of the KSHV expression program following TPA induction using viral microarrays yielded useful information concerning the viral expression program, but precise kinetic assignments for some genes remained unclear. Classically, late herpesvirus genes require viral DNA replication for maximal expression. We used cidofovir (CDV), a nucleotide-analogue KSHV DNA polymerase inhibitor, to dissect KSHV expression into two components: genes expressed without viral DNA replication and those requiring it. The expression of known immediate-early or early genes (e.g., open reading frames [ORFs] 50, K8 bZIP, and 57) serving lytic regulatory roles was relatively unaffected by the presence of CDV, while known late capsid and tegument structural genes (e.g., ORFs 25, 26, 64, and 67) were CDV sensitive. Latency-associated transcript ORF 73 was unaffected by the presence of TPA or CDV, suggesting that it was constitutively expressed. Expression of several viral cellular gene homologs, including K2 (vIL-6), ORF 72 (vCyclin), ORF 74 (vGPCR), and K9 (vIRF-1), was unaffected by the presence of CDV, while that of others, such as K4.1 (vMIP-III), K11.1 (vIRF-2), and K10.5 (LANA2, vIRF-3), was inhibited. The results distinguish KSHV genes whose full expression required viral DNA replication from those that did not require it, providing additional insights into KSHV replication and pathogenesis strategies and helping to show which viral cell homologs are expressed at particular times during the lytic process.
Collapse
Affiliation(s)
- Michael Lu
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 10S255 MSC1868, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Damania B. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2004; 2:656-68. [PMID: 15263900 DOI: 10.1038/nrmicro958] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
73
|
Sodhi A, Montaner S, Patel V, Gómez-Román JJ, Li Y, Sausville EA, Sawai ET, Gutkind JS. Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci U S A 2004; 101:4821-6. [PMID: 15047889 PMCID: PMC387332 DOI: 10.1073/pnas.0400835101] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have recently engineered an in vivo endothelial cell-specific retroviral gene transfer system and found that a single Kaposi's sarcoma (KS)-associated herpesvirus/human herpesvirus 8 gene encoding a G protein-coupled receptor (vGPCR), is sufficient to induce KS-like tumors in mice. By using this system, we show here that the Akt signaling pathway plays a central role in vGPCR oncogenesis. Indeed, a constitutively active Akt was sufficient to induce benign hemangiomas in mice, whereas heterozyogosity for PTEN (the phosphatase and tension homologue deleted on chromosome 10), modestly enhancing basal Akt activity, dramatically enhanced vGPCR sarcomagenesis. Examination of KS biopsies from AIDS patients revealed active Akt as a prominent feature, supportive of a role for Akt in human Kaposi's sarcomagenesis. By using a vGPCR agonist-dependent mutant, we further establish constitutive activity as a requirement for vGPCR sarcomagenesis, validating targeted inhibition of key vGPCR signaling pathways as an approach for preventing its oncogenic potential. These observations prompted us to explore the efficacy of inhibiting Akt activation as a molecular approach to KS treatment. Pharmacological inhibition of the Akt pathway with the chemotherapeutic agent 7-hydroxystaurosporine prevented proliferation of vGPCR-expressing endothelial cells in vitro and inhibited their tumorigenic potential in vivo. Both were associated with a decrease in Akt activity. These results identify Akt as an essential player in vGPCR sarcomagenesis and demonstrate the therapeutic potential of drugs targeting this pathway in the treatment of KS.
Collapse
Affiliation(s)
- Akrit Sodhi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Venkateswarlu K. Interaction protein for cytohesin exchange factors 1 (IPCEF1) binds cytohesin 2 and modifies its activity. J Biol Chem 2003; 278:43460-9. [PMID: 12920129 DOI: 10.1074/jbc.m304078200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP-ribosylation factor 6 (ARF6) small GTPase functions as a GDP/GTP-regulated switch in the pathways that stimulate actin reorganization and membrane ruffling. The formation of active ARF6GTP is stimulated by guanine nucleotide exchange factors (GEFs) such as cytohesins, which translocate to the plasma membrane in agonist-stimulated cells by binding the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate through the pleckstrin homology domain with subsequent ARF6 activation. Using cytohesin 2 as bait in yeast two-hybrid screening, we have isolated a cDNA encoding a protein termed interaction protein for cytohesin exchange factors 1 (IPCEF1). Using yeast two-hybrid and glutathione S-transferase pull-down assays coupled with deletion mutational analysis, the specific domains required for the cytohesin 2-IPCEF1 interaction were mapped to the coiled-coil domain of cytohesin 2 and the C-terminal 121 amino acids of IPCEF1. IPCEF1 also interacts with the other members of the cytohesin family of ARF GEFs, suggesting that the interaction with IPCEF1 is highly conserved among the cytohesin family of ARF GEFs. The interaction of cytohesin 2 and IPCEF1 in mammalian cells was demonstrated by immunoprecipitation. Immunofluorescence analysis revealed that IPCEF1 co-localizes with cytohesin 2 to the cytosol in unstimulated cells and translocates to the plasma membrane via binding to cytohesin 2 in epidermal growth factor-stimulated cells. However, a deletion mutant of IPCEF1 that lacks the cytohesin 2 binding site failed to co-migrate with cytohesin 2 to the membrane in stimulated cells. The functional significance of the IPCEF1-cytohesin 2 interaction is demonstrated by showing that IPCEF1 increases the in vitro and in vivo stimulation of ARFGTP formation by cytohesin 2.
Collapse
|
75
|
Perez OD, Mitchell D, Jager GC, South S, Murriel C, McBride J, Herzenberg LA, Kinoshita S, Nolan GP. Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1. Nat Immunol 2003; 4:1083-92. [PMID: 14528303 DOI: 10.1038/ni984] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 09/04/2003] [Indexed: 11/09/2022]
Abstract
Leukocyte functional antigen 1 (LFA-1), with intercellular adhesion molecule ligands, mediates T cell adhesion, but the signaling pathways and functional effects imparted by LFA-1 are unclear. Here, intracellular phosphoprotein staining with 13-dimensional flow cytometry showed that LFA-1 activation induced phosphorylation of the beta(2) integrin chain and release of Jun-activating binding protein 1 (JAB-1), and mediated signaling of kinase Erk1/2 through cytohesin-1. Dominant negatives of both JAB-1 and cytohesin-1 inhibited interleukin 2 production and impaired T helper type 1 differentiation. LFA-1 stimulation lowered the threshold of T cell activation. Thus, LFA-1 signaling contributes to T cell activation and effects T cell differentiation.
Collapse
Affiliation(s)
- Omar D Perez
- Department of Microbiology and Immunology, and The Baxter Laboratory of Genetic Pharmacology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Li HS, Shome K, Rojas R, Rizzo MA, Vasudevan C, Fluharty E, Santy LC, Casanova JE, Romero G. The guanine nucleotide exchange factor ARNO mediates the activation of ARF and phospholipase D by insulin. BMC Cell Biol 2003; 4:13. [PMID: 12969509 PMCID: PMC212319 DOI: 10.1186/1471-2121-4-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/11/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. RESULTS Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: DeltaCC-ARNO and CC-ARNO were partially translocated to the membranes while DeltaPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. CONCLUSIONS Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.
Collapse
Affiliation(s)
- Hai-Sheng Li
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Kuntala Shome
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Raúl Rojas
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Megan A Rizzo
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Chandrasekaran Vasudevan
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Eric Fluharty
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Lorraine C Santy
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| |
Collapse
|
77
|
Nicholas J. Human herpesvirus-8-encoded signalling ligands and receptors. J Biomed Sci 2003; 10:475-89. [PMID: 12928588 DOI: 10.1007/bf02256109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 05/15/2003] [Indexed: 01/26/2023] Open
Abstract
Analysis of the genome of human herpesvirus 8 (HHV-8) led to the discovery of several novel genes, unique among the characterized gammaherpesviruses. These include cytokines (interleukin-6 and chemokine homologues), two putative signal-transducing transmembrane proteins encoded by genes K1 and K15 at the genome termini, and an OX-2 (CD200) receptor homologue that had not previously been identified in a gammaherpesvirus. HHV-8 also specifies a diverged version of the gammaherpesvirus-conserved G protein-coupled chemokine receptor (vGCR) and a latently expressed protein unique to HHV-8 specified by open reading frame (ORF) K12. These cytokine and receptor homologues mediate signal transduction or modulate the activities of other endogenous cytokines and receptors to enhance viral productive replication, regulate latent-lytic switching, evade host attack, or mediate cell survival. The viral signalling ligands and receptors are also potential contributors to virus-associated diseases, Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease, and so represent potentially important targets for therapeutic and antiviral drugs. Understanding these proteins' modes of action and functions in viral biology and disease is therefore of considerable importance, and the subject of this review.
Collapse
Affiliation(s)
- John Nicholas
- Molecular Virology Laboratories, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Md. 21231, USA.
| |
Collapse
|
78
|
Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 2003; 67:175-212, table of contents. [PMID: 12794189 PMCID: PMC156467 DOI: 10.1128/mmbr.67.2.175-212.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma had been recognized as unique human cancer for a century before it manifested as an AIDS-defining illness with a suspected infectious etiology. The discovery of Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, in 1994 by using representational difference analysis, a subtractive method previously employed for cloning differences in human genomic DNA, was a fitting harbinger for the powerful bioinformatic approaches since employed to understand its pathogenesis in KS. Indeed, the discovery of KSHV was rapidly followed by publication of its complete sequence, which revealed that the virus had coopted a wide armamentarium of human genes; in the short time since then, the functions of many of these viral gene variants in cell growth control, signaling apoptosis, angiogenesis, and immunomodulation have been characterized. This critical literature review explores the pathogenic potential of these genes within the framework of current knowledge of the basic herpesvirology of KSHV, including the relationships between viral genotypic variation and the four clinicoepidemiologic forms of Kaposi's sarcoma, current viral detection methods and their utility, primary infection by KSHV, tissue culture and animal models of latent- and lytic-cycle gene expression and pathogenesis, and viral reactivation from latency. Recent advances in models of de novo endothelial infection, microarray analyses of the host response to infection, receptor identification, and cloning of full-length, infectious KSHV genomic DNA promise to reveal key molecular mechanisms of the candidate pathogeneic genes when expressed in the context of viral infection.
Collapse
|
79
|
Viejo-Borbolla A, Ottinger M, Schulz TF. Human Herpesvirus 8: Biology and Role in the Pathogenesis of Kaposi's Sarcoma and Other AIDS-related Malignancies. Curr Infect Dis Rep 2003; 5:169-175. [PMID: 12642004 DOI: 10.1007/s11908-003-0054-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human herpesvirus type 8, or Kaposi's sarcoma-associated herpesvirus (KSHV), is the only known human g(2) herpesvirus (rhadinovirus) and the most recently discovered tumor virus. KSHV is associated with Kaposi's sarcoma and two other lymphoproliferative disorders in the AIDS setting: primary effusion lymphoma and the plasma cell variant of multicentric Castleman's disease. This review offers an update on the epidemiology and the role of KSHV genes in the development of disease.
Collapse
Affiliation(s)
- Abel Viejo-Borbolla
- *Department of Virology, Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | | | | |
Collapse
|
80
|
Boehm T, Hofer S, Winklehner P, Kellersch B, Geiger C, Trockenbacher A, Neyer S, Fiegl H, Ebner S, Ivarsson L, Schneider R, Kremmer E, Heufler C, Kolanus W. Attenuation of cell adhesion in lymphocytes is regulated by CYTIP, a protein which mediates signal complex sequestration. EMBO J 2003; 22:1014-24. [PMID: 12606567 PMCID: PMC150334 DOI: 10.1093/emboj/cdg101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An important theme in molecular cell biology is the regulation of protein recruitment to the plasma membrane. Fundamental biological processes such as proliferation, differentiation or leukocyte functions are initiated and controlled through the reversible binding of signaling proteins to phosphorylated membrane components. This is mediated by specialized interaction modules, such as SH2 and PH domains. Cytohesin-1 is an intracellular guanine nucleotide exchange factor, which regulates leukocyte adhesion. The activity of cytohesin-1 is controlled by phospho inositide-dependent membrane recruitment. An interacting protein was identified, the expression of which is upregulated by cytokines in hematopoietic cells. This molecule, CYTIP, is also recruited to the cell cortex by integrin signaling via its PDZ domain. However, stimulation of Jurkat cells with phorbol ester results in re-localization of CYTIP to the cytoplasm, and membrane detachment of cytohesin-1 strictly requires co-expression of CYTIP. Consequently, stimulated adhesion of Jurkat cells to intracellular adhesion molecule-1 is repressed by CYTIP. These findings outline a novel mechanism of signal chain abrogation through sequestration of a limiting component by specific protein-protein interactions.
Collapse
Affiliation(s)
- Thomas Boehm
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Susanne Hofer
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Patricia Winklehner
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Bettina Kellersch
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Christiane Geiger
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Alexander Trockenbacher
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Susanne Neyer
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Heidi Fiegl
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Susanne Ebner
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Lennart Ivarsson
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Rainer Schneider
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Elisabeth Kremmer
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Christine Heufler
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| | - Waldemar Kolanus
- Laboratory for Molecular Biology, Gene Center, University of Munich, Feodor-Lynen-Straße 25, D-81377 Munich, GSF-National Research Center for Environment and Health, Marchioninistraße 25, D-81377 Munich, Germany, Department of Dermatology, University of Innsbruck, Anichstraße 35, A-6020 Innsbruck and Institute of Biochemistry, University of Innsbruck, Peter Mayerstraße 1, Innsbruck, Austria Present address: Institute of Molecular Physiology and Developmental Biology, Division of Cellular Biochemistry, University of Bonn, Karlrobert-Kreiten Straße 13, D-53115 Bonn, Germany Corresponding authors e-mail: or
T.Boehm and S.Hofer contributed equally to this work
| |
Collapse
|
81
|
Wang FZ, Akula SM, Sharma-Walia N, Zeng L, Chandran B. Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 2003; 77:3131-47. [PMID: 12584338 PMCID: PMC149745 DOI: 10.1128/jvi.77.5.3131-3147.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus, implicated in the pathogenesis of Kaposi's sarcoma, utilizes heparan sulfate-like molecules to bind the target cells via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8-gB possesses the Arg-Gly-Asp (RGD) motif, the minimal peptide region of many proteins known to interact with subsets of host cell surface integrins. HHV-8 utilizes alpha3beta1 integrin as one of the receptors for its entry into the target cells via its gB interaction and induces the activation of focal adhesion kinase (FAK) (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Since FAK activation is the first step in the outside-in signaling necessary for integrin-mediated cytoskeletal rearrangements, cell adhesions, motility, and proliferation, the ability of HHV-8-gB to mediate the target cell adhesion was examined. A truncated form of gB without the transmembrane and carboxyl domains (gBdeltaTM) and a gBdeltaTM mutant (gBdeltaTM-RGA) with a single amino acid mutation (RGD to RGA) were expressed in a baculovirus system and purified. Radiolabeled HHV-8-gBdeltaTM, gBdeltaTM-RGA, and deltaTMgpK8.1A proteins bound to the human foreskin fibroblasts (HFFs), human dermal microvascular endothelial (HMVEC-d) cells, human B (BJAB) cells, and Chinese hamster ovary (CHO-K1) cells with equal efficiency, which was blocked by preincubation of proteins with soluble heparin. Maxisorp plate-bound gBdeltaTM protein induced the adhesion of HFFs and HMVEC-d and monkey kidney epithelial (CV-1) cells in a dose-dependent manner. In contrast, the gBdeltaTM-RGA and DeltaTMgpK8.1A proteins did not mediate adhesion. Adhesion mediated by gBdeltaTM was blocked by the preincubation of target cells with RGD-containing peptides or by the preincubation of plate-bound gBdeltaTM protein with rabbit antibodies against gB peptide containing the RGD sequence. In contrast, adhesion was not blocked by the preincubation of plate-bound gBdeltaTM protein with heparin, suggesting that the adhesion is mediated by the RGD amino acids of gB, which is independent of the heparin-binding domain of gB. Integrin-ligand interaction is dependent on divalent cations. Adhesion induced by the gBdeltaTM was blocked by EDTA, thus suggesting the role of integrins in the observed adhesions. Focal adhesion components such as FAK and paxillin were activated by the binding of gBdeltaTM protein to the target cells but not by gBdeltaTM-RGA protein binding. Inhibition of FAK phosphorylation by genistein blocked gBdeltaTM-induced FAK activation and cell adhesion. These findings suggest that HHV-8-gB could mediate cell adhesion via its RGD motif interaction with the cell surface integrin molecules and indicate the induction of cellular signaling pathways, which may play roles in the infection of target cells and in Kaposi's sarcoma pathogenesis.
Collapse
Affiliation(s)
- Fu-Zhang Wang
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
82
|
Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind JS. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003; 3:23-36. [PMID: 12559173 DOI: 10.1016/s1535-6108(02)00237-4] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Kaposi's sarcoma herpesvirus (KSHV) has been identified as the etiologic agent of Kaposi's sarcoma (KS), but initial events leading to KS development remain unclear. Characterization of the KSHV genome reveals the presence of numerous potential oncogenes. To address their contribution to the initiation of the endothelial cell-derived KS tumor, we developed a novel transgenic mouse that enabled endothelial cell-specific infection in vivo using virus expressing candidate KSHV oncogenes. Here we show that transduction of one gene, vGPCR, was sufficient to induce angioproliferative tumors that strikingly resembled human KS. Endothelial cells expressing vGPCR were further able to promote tumor formation by cells expressing KSHV latent genes, suggestive of a cooperative role among viral genes in the promotion of Kaposi's sarcomagenesis.
Collapse
MESH Headings
- Animals
- Avian Leukosis Virus/genetics
- Cell Transformation, Neoplastic
- Cells, Cultured
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Endothelium, Vascular/virology
- Genetic Engineering/methods
- Herpesvirus 8, Human/genetics
- Immunohistochemistry
- Mice
- Mice, Transgenic
- Microscopy, Electron
- Neoplasm Proteins/genetics
- Promoter Regions, Genetic
- Proto-Oncogene Proteins
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/ultrastructure
- Sarcoma, Kaposi/virology
- Transduction, Genetic
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Silvia Montaner
- Cell Growth Regulation Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Li H, Komatsu T, Dezube BJ, Kaye KM. The Kaposi's sarcoma-associated herpesvirus K12 transcript from a primary effusion lymphoma contains complex repeat elements, is spliced, and initiates from a novel promoter. J Virol 2002; 76:11880-8. [PMID: 12414930 PMCID: PMC136876 DOI: 10.1128/jvi.76.23.11880-11888.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects KS tumors, primary effusion lymphomas (PELs), and PEL cell lines. K12 (T0.7) is the most abundant transcript expressed in latent KSHV infection. We characterize here the K12 transcript from a PEL tumor prior to passage in cell culture. The PEL tumor KSHV K12 transcript contained additional complex nucleotide repeat elements compared to the previously described K12 message of the BCBL-1 PEL cell line. The PEL tumor lacked kaposin B, the predominant BCBL-1 K12 protein product, but encoded kaposins A and C. The K12 transcript was spliced and the splicing event occurred in all KSHV isolates tested. The 5' end of the K12 transcript was mapped by 5' RACE (rapid amplification of cDNA ends) and S1 nuclease protection assays and was at the site of an active promoter. This work demonstrates that the K12 transcript contains variable, complex repeat elements, is spliced and is expressed from a novel KSHV promoter.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Composition
- Base Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/isolation & purification
- Humans
- Lymphoma/virology
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Splicing
- Repetitive Sequences, Nucleic Acid
- Sarcoma, Kaposi/virology
- Transcription, Genetic
- Tumor Cells, Cultured
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Hong Li
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
84
|
Sarid R, Klepfish A, Schattner A. Virology, pathogenetic mechanisms, and associated diseases of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Mayo Clin Proc 2002; 77:941-9. [PMID: 12233927 DOI: 10.4065/77.9.941] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a recently discovered and characterized member of the herpesvirus family. It is one of a few viruses proved to be associated with tumorigenesis in humans. Its causal association with 4 clinical and epidemiologic variants of Kaposi sarcoma (classic, endemic, iatrogenic, and acquired immunodeficiency virus-associated) as well as with several lymphoproliferative disorders (notably primary effusion lymphoma and multicentric Castleman disease) is reviewed critically. Issues related to the epidemiology, transmission, and molecular and serologic diagnosis are discussed. Several intriguing oncogenic mechanisms of KSHV infection have been identified. These are often dependent on the interaction of KSHV with other viruses, such as human immunodeficiency virus, Epstein-Barr virus, or both. However, important problems remain and once resolved will substantially enhance our understanding of oncogenesis in general and viral-induced oncogenesis in particular. This may also translate into improved treatment and perhaps prevention of this common and intriguing viral infection.
Collapse
MESH Headings
- Castleman Disease/virology
- DNA, Viral/analysis
- Enzyme-Linked Immunosorbent Assay
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/isolation & purification
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, AIDS-Related/virology
- Lymphoma, B-Cell/virology
- Lymphoma, Large B-Cell, Diffuse/virology
- Multiple Myeloma/virology
- Polymerase Chain Reaction
- Sarcoma, Kaposi/complications
- Sarcoma, Kaposi/diagnosis
- Sarcoma, Kaposi/epidemiology
- Sarcoma, Kaposi/virology
Collapse
Affiliation(s)
- Ronit Sarid
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
85
|
Tomkowicz B, Singh SP, Cartas M, Srinivasan A. Human herpesvirus-8 encoded Kaposin: subcellular localization using immunofluorescence and biochemical approaches. DNA Cell Biol 2002; 21:151-62. [PMID: 12015894 DOI: 10.1089/10445490252925413] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human herpesvirus-8 (HHV-8) has been causally linked to the development of Kaposi's sarcoma (KS). DNA sequence analysis of the viral genome revealed a total of 81 open reading frames (ORF). Interestingly, only a small subset of these ORFs has been shown to be transcribed in cells latently infected with HHV-8 and in cells of the KS lesions. Among the genes active during latency, kaposin, is noted for its abundance and ability to transform cells in culture, thus implicating a potential role in KS pathogenesis. This has prompted us to undertake an investigation on elucidating the mechanism(s) by which Kaposin brings about transformation of cells. Towards this goal, we have generated an eukaryotic expression plasmid encoding Kaposin (Kap). As Kaposin is predicted to be a type II membrane protein, several strategies were utilized to address this, including the generation of Kaposin with the Flag (FL) epitope (DYKDDDDK) at the C-terminus of the protein (Kap-C-FL). Antibodies specific for Kaposin (kap-2), recognized both Kaposin and Kaposin-Flag, while antibodies against the Flag epitope recognized only Kaposin-Flag. Transfection of Kap and Kap-C-FL expression plasmid DNA into NIH3T3 cells resulted in cellular clones that exhibited a phenotypic property of transformation by forming large, multiclustered cells, when grown on soft agar. Because there is controversial data regarding the localization of Kaposin in cells, we examined the subcellular localization of Kaposin using confocal microscopy. We observed that Kaposin and Kaposin-Flag showed an intense staining surrounding the nucleus. Although there was no staining at the cell membrane of transfected cells, FACS analysis using kap-2 or Flag antibodies, under nonpermeable conditions, showed positivity. Cell fractionation studies further showed that the majority of Kaposin was detected in the nuclear fraction by Western blot analysis. The cytoplasmic and detergent soluble membrane fractions did not show Kaposin protein; however, a small amount was detected in the detergent insoluble membrane fraction. Taken together, these results suggest that Kaposin exhibits multicompartmental localization in cells.
Collapse
Affiliation(s)
- Brian Tomkowicz
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
86
|
Affiliation(s)
- Joel Moss
- Pulmonary-Critical Care Medicine Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|