51
|
Qiu R, Yang M, Wang W, Liu J, Yang L, Lei B. The Protective Effects of VVN001 on LPS-Induced Inflammatory Responses in Human RPE Cells and in a Mouse Model of EIU. Inflammation 2020; 44:780-794. [PMID: 33200357 DOI: 10.1007/s10753-020-01377-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022]
Abstract
To investigate protective effects of VVN001 on lipopolysaccharide (LPS)-induced inflammatory response in human retinal pigment epithelial (RPE) cells and in a mouse model of endotoxin-induced uveitis (EIU), and to explore the underlying mechanisms. Human primary RPE (hRPE) and ARPE-19 cells were pretreated with or without VVN001 for 1 h followed by 10 μg/mL LPS stimulation for 24 h. mRNA, and protein levels of inflammatory cytokines were analyzed with real-time PCR, western blotting, and ELISA. EIU was induced by intravitreal injection of 125 ng LPS in female BALB/c mice. VVN001 eye drops (1%) were locally administrated every 4 h for 24 h after LPS injection. Clinical scores were assessed with a slit lamp. mRNA and protein levels of inflammatory cytokines were investigated simultaneously. Compared with the LPS group, VVN001 pretreatment significantly reduced mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), IL-6, IL-8, TNF-α, IL-1β, IL-18, caspase-1 in hRPE, and ARPE-19 cells. Protein overproduction of ICAM-1, TNF-α, IL-1β, NLRP3, caspase-1 P20, and p-IκBα/IκBα stimulated by LPS was suppressed by VVN001 pretreatment. In vivo, VVN001 significantly reduced the average clinical score from 5.0 to 1.3 in EIU mice. Furthermore, overproduction of ICAM-1, IL-1β, NLRP3, caspase-1 P20, and p-IκBα/IκBα at mRNA and protein levels were remarkably suppressed by VVN001. VVN001 alleviated the inflammatory response induced by LPS both in vitro and in vivo. The effect of anti-inflammation is associated with inhibiting the overproduction of ICAM-1 and blocking the activation of NLRP3 inflammasome and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruiqi Qiu
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, 7# Weiwu Road, Zhengzhou, 450003, China
| | - Mingzhu Yang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, 7# Weiwu Road, Zhengzhou, 450003, China
| | - Weiping Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, 7# Weiwu Road, Zhengzhou, 450003, China
| | - Jingyang Liu
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, 7# Weiwu Road, Zhengzhou, 450003, China
| | - Lin Yang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, 7# Weiwu Road, Zhengzhou, 450003, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Bo Lei
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, 7# Weiwu Road, Zhengzhou, 450003, China.
| |
Collapse
|
52
|
Moriuchi Y, Iwagawa T, Tsuhako A, Koso H, Fujita Y, Watanabe S. RasV12 Expression in Microglia Initiates Retinal Inflammation and Induces Photoreceptor Degeneration. Invest Ophthalmol Vis Sci 2020; 61:34. [PMID: 33231622 PMCID: PMC7691791 DOI: 10.1167/iovs.61.13.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/05/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose The role of activated retinal microglia in driving retinal degeneration has been implicated in a number of in vivo disease models. Here, we investigated the primary consequences of microglial activation by the specific expression of constitutively active Ras in microglia in a transgenic mouse model before the onset of any degenerative changes in the retina. Methods The double transgenic lines CAG-LSL-RasV12-IRES-EGFP; Cx3cr1CreER/+ (Cx3cr1-RasV12 mice) and CAG-LSL-EGFP; Cx3cr1CreER_+ (control mice) were generated. The expression of RasV12 was induced in microglia by tamoxifen administration, and the retinas were examined by immunohistochemistry of frozen sections, RT-qPCR, and live imaging. Results RasV12 expression in retinal microglial cells promoted cell proliferation, cytokine expression, and phagocytosis. RasV12-expressing microglia migrated toward the inner and outer layers of the retina. Examination of glial fibrillary acidic protein (GFAP) expression revealed activation of Müller glia in the retina. We also observed loss of the photoreceptors in the outer nuclear layer in close proximity to microglial cells. However, no significant neurodegeneration was detected in the inner nuclear layer (INL) or ganglion cell layer (GCL). The morphology of RasV12-expressing microglia in the GCL and INL retained more ramified features compared with the predominantly-ameboid morphology found in outer retinal microglia. Conclusions The expression of RasV12 is sufficient to activate microglia and lead to photoreceptor degeneration. Neurons in the inner side of the retina were not damaged by the RasV12-activated microglia, suggesting that microenvironment cues may modulate the microglial phenotypic features and effects of microglial activation.
Collapse
Affiliation(s)
- Yuta Moriuchi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Asano Tsuhako
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideto Koso
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
53
|
Huang X, Yi S, Hu J, Du Z, Wang Q, Ye Z, Su G, Kijlstra A, Yang P. Linoleic acid inhibits in vitro function of human and murine dendritic cells, CD4 +T cells and retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2020; 259:987-998. [PMID: 33079282 DOI: 10.1007/s00417-020-04972-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Increased linoleic acid (LA) was observed in acute anterior uveitis (AAU) patient feces in our previous study. To investigate the immunoregulatory effect of LA, we studied the effect of LA on human and murine dendritic cells (DCs), CD4+T cells, and retinal pigment epithelial (RPE) cells in vitro. METHODS The level of LA in feces from AAU patients and healthy individuals was measured by gas chromatography coupled with a mass spectrometer (GC-MS). The immunoregulatory effect of LA on human and murine DCs, CD4+ T cells, and RPE cells was evaluated by enzyme linked immunosorbent assay (ELISA) and flow cytometry (FCM). The effect of LA on DCs was evaluated by Tandem mass tag (TMT)-based proteomics analysis. RESULTS Increased LA was observed in feces from AAU patients (1018.35 ± 900.01 mg/kg) as compared with healthy individuals (472.55 ± 365.49 mg/kg, p = 0.0136). LA attenuated the antigen-presenting function of human and murine DCs by decreasing the expression of CD40, the secretion of IL-6 and IL-12p70, and the ability to shift naïve T cells towards T helper type 1 (Th1) and Th17 cells. LA also inhibited the secretion of MCP-1 and IL-8 from RPE cells. Proteomics analysis showed differential expression of 28 proteins, including squalene epoxidase (SQLE), farnesyl-diphosphate farnesyltransferase 1 (FDFT1), and cytochrome P450 family 51 subfamily A member 1 (CYP51A1), in LA-treated DCs compared with controls. LA also accelerated the apoptosis of DCs from healthy individuals. CONCLUSION LA inhibited the function of human and murine DCs, CD4+T cells, and RPE cells, regulated the expression of proteins, and promoted the apoptosis of human DCs. These results collectively suggest that LA might decrease the function of immune cells in vitro, and further studies are needed to investigate its role in the pathogenesis of AAU.
Collapse
Affiliation(s)
- Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Ziyu Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China.
| |
Collapse
|
54
|
Busetto V, Barbosa I, Basquin J, Marquenet É, Hocq R, Hennion M, Paternina JA, Namane A, Conti E, Bensaude O, Le Hir H. Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes. Nucleic Acids Res 2020; 48:5670-5683. [PMID: 32329775 PMCID: PMC7261170 DOI: 10.1093/nar/gkaa267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022] Open
Abstract
Human CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible. Here, the structure of a CWC27/CWC22 heterodimer bound to the exon junction complex (EJC) core component eIF4A3 is solved at 3Å-resolution. According to spliceosomal structures, the EJC is recruited in the C complex, once CWC27 has left. Our 3D structure of the eIF4A3/CWC22/CWC27 complex is compatible with the Bact spliceosome structure but not with that of the C complex, where a CWC27 loop would clash with the EJC core subunit Y14. A CWC27/CWC22 building block might thus form an intermediate landing platform for eIF4A3 onto the Bact complex prior to its conversion into C complex. Knock-down of either CWC27 or CWC22 in immortalized retinal pigment epithelial cells affects numerous common genes, indicating that these proteins cooperate, targeting the same pathways. As the most up-regulated genes encode factors involved in inflammation, our findings suggest a possible link to the retinal degeneration associated with CWC27 deficiencies.
Collapse
Affiliation(s)
- Virginia Busetto
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Jérôme Basquin
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany
| | - Émelie Marquenet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Rémi Hocq
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Magali Hennion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Janio Antonio Paternina
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, 25-28 rue du docteur Roux 75015 Paris, France
| | - Elena Conti
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany
| | - Olivier Bensaude
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
55
|
Ikelle L, Al-Ubaidi MR, Naash MI. Pluripotent Stem Cells for the Treatment of Retinal Degeneration: Current Strategies and Future Directions. Front Cell Dev Biol 2020; 8:743. [PMID: 32923439 PMCID: PMC7457054 DOI: 10.3389/fcell.2020.00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023] Open
Abstract
Stem cells have been part of the biomedical landscape since the early 1960s. However, the translation of stem cells to effective therapeutics have met significant challenges, especially for retinal diseases. The retina is a delicate and complex architecture of interconnected cells that are steadfastly interdependent. Degenerative mechanisms caused by acquired or inherited diseases disrupt this interconnectivity, devastating the retina and causing severe vision loss in many patients. Consequently, retinal differentiation of exogenous and endogenous stem cells is currently being explored as replacement therapies in the debilitating diseases. In this review, we will examine the mechanisms involved in exogenous stem cells differentiation and the challenges of effective integration to the host retina. Furthermore, we will explore the current advancements in trans-differentiation of endogenous stem cells, primarily Müller glia.
Collapse
Affiliation(s)
- Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
56
|
SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells. Int J Mol Sci 2020; 21:ijms21113969. [PMID: 32492816 PMCID: PMC7312701 DOI: 10.3390/ijms21113969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Switch/sucrose non-fermentable (SWI/SNF)-related matrix-associated actin-dependent regulator of chromatin (SMARC) subfamily B member 1 (SMARCB1) is a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, one of the adenosine triphosphate (ATP)-dependent chromatin remodeler complexes. The unique role of SMARCB1 has been reported in various cellular contexts. Here, we focused on the general role of the ubiquitous expression of SMARCB1 in a normal cell state. We selected ARPE19 (human primary retinal pigment epithelium) and IMR90 (from human fetal lung fibroblasts) cell lines as they have completely different contexts. Furthermore, although these cell lines have been immortalized, they are relatively close to normal human cells. The loss of SMARCB1 in ARPE19 and IMR90 cells reduced cell cycle progression via the upregulation of P21. Transcriptome analysis followed by SMARCB1 knockdown in both cell lines revealed that SMARCB1 was not only involved in cell maintenance but also conferred immunomodulation. Of note, SMARCB1 bound to interleukin (IL) 6 promoter in a steady state and dissociated in an active immune response state, suggesting that SMARCB1 was a direct repressor of IL6, which was further confirmed via loss- and gain-of-function studies. Taken together, we demonstrated that SMARCB1 is a critical gatekeeper molecule of the cell cycle and immune response.
Collapse
|
57
|
Luo R, Jin H, Li L, Hu YX, Xiao F. Long Noncoding RNA MEG3 Inhibits Apoptosis of Retinal Pigment Epithelium Cells Induced by High Glucose via the miR-93/Nrf2 Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1813-1822. [PMID: 32473920 DOI: 10.1016/j.ajpath.2020.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in developed nations. Though plasma microRNA-93 (miR-93) is associated with the risk of DR, the function and regulatory mechanism of miR-93 during DR remains unclear. Blood samples were collected from 12 DR patients and 12 healthy controls. Primary human retinal pigment epithelium (RPE) cells and ARPE-19 cells were cultured in 5 mmol/L or 33 mmol/L d-glucose medium. Long noncoding (lnc) RNA MEG3 and miR-93 expression was detected by real-time quantitative PCR. The effect of MEG3 and miR-93 on high glucose (HG)-induced apoptosis was detected by MTT and flow cytometry. IL-6 and tumor necrosis factor-α levels were detected by enzyme-linked immunosorbent assay. The relationships among MEG3, miR-93, and Nrf2 (also known as NFE2L2) were explored via dual-luciferase reporter assay. lncRNA MEG3 and Nrf2 were decreased and miR-93 was increased in blood samples of DR patients and HG-treated human RPE and ARPE-19 cells. Overexpression of miR-93 inhibited cell proliferation and promoted apoptosis, whereas overexpression of Nrf2 or MEG3 promoted proliferation and suppressed apoptosis and inflammation. In addition, MEG3 targeted miR-93 and down-regulated miR-93. Moreover, miR-93 directly targeted Nrf2 and negatively regulated Nrf2. This study suggests that lncRNA MEG3 depresses HG-induced apoptosis and inflammation of RPE via miR-93/Nrf2 axis, providing a novel perspective on the genesis and development of DR.
Collapse
Affiliation(s)
- Rong Luo
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Han Jin
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Lan Li
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Yu-Xiang Hu
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Fan Xiao
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China.
| |
Collapse
|
58
|
Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res 2020; 80:100866. [PMID: 32422390 DOI: 10.1016/j.preteyeres.2020.100866] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Uveitis is a group of diseases characterized by intraocular inflammation, of which some are driven by autoinflammatory or autoimmune responses, such as Vogt-Koyanagi-Harada disease, Behçet's disease, uveitis associated with spondyloarthritis, ocular sarcoidosis, sympathetic ophthalmia and birdshot chorioretinopathy. These entities have various clinical forms, but genetic and biomarker data suggest that they share a common molecular basis, activation of the Interleukin (IL)-23/IL-17 pathway. Multiple factors including genetic predisposition, various cytokine imbalances, infectious agents and gut alterations are found to trigger an aberrant response of this pathway. The enhanced activity of the IL-23/IL-17 pathway is committed to the expansion and pathogenicity of Th17 cells. Evidence from animal models demonstrates that the development of pathogenic Th17 cells is responsible for the induction of experimental autoimmune uveitis. Further findings indicate that retinal pigment epithelium (RPE) cells may be a target of IL-17. IL-17 triggers downstream inflammatory cascades and causes dysfunction of RPE cells, which may affect retinal barrier function and thereby promote intraocular inflammation. Currently, several emerging drugs blocking the IL-23/IL-17 pathway have been assessed for the treatment of uveitis in pilot studies. The purpose of this is to summarize updated biological knowledge and preliminary clinical data, providing the rationale for further development and evaluation of novel drugs targeting the IL-23/IL-17 pathway in autoinflammatory and autoimmune uveitis. Future studies may focus on translational medicine targeting the IL-23/IL-17 pathway for the improvement of diagnosis and treatment of uveitis. In conclusion, activation of the IL-23/IL-17 pathway is a critical biological event and can be an important target for the treatment of autoinflammatory and autoimmune uveitis.
Collapse
Affiliation(s)
- Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China.
| |
Collapse
|
59
|
Ando Y, Sato Y, Kudo A, Watanabe T, Hirakata A, Okada AA, Umezawa K, Keino H. Anti‑inflammatory effects of the NF‑κB inhibitor dehydroxymethylepoxyquinomicin on ARPE‑19 cells. Mol Med Rep 2020; 22:582-590. [PMID: 32377746 DOI: 10.3892/mmr.2020.11115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/26/2020] [Indexed: 11/05/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a polarized, monolayer of pigmented cells that forms the outer retinal layer. A key function of the RPE is to maintain the integrity of the photoreceptors mainly via phagocytosis and recycling of the digested photoreceptor outer segments. Moreover, RPE cells are a major source of inflammatory cytokines and chemokines, which play important roles in the activation of other immune cells under inflammatory conditions in the posterior segment of the eye. Dehydroxymethylepoxyquinomicin (DHMEQ) is a NF‑κB inhibitor and its structure is related to that of epoxyquinomicin C, which is an antibiotic. The present study evaluated the anti‑inflammatory effects of DHMEQ on a human retinal pigment epithelial cell line (ARPE‑19). It was revealed that high concentrations of DHMEQ (100 µg/ml) induced apoptosis and necrosis of tumor necrosis factor (TNF)‑α‑stimulated ARPE‑19 cells. Furthermore, the percentage of intercellular adhesion molecule 1 (ICAM‑1)‑positive TNF‑α‑stimulated cells was significantly reduced in the presence of DHMEQ (10 µg/ml), as determined by flow cytometry. It was also demonstrated that DHMEQ exposure significantly decreased the levels of interleukin (IL)‑8 and monocyte chemoattractant protein‑1 (MCP‑1) in the supernatant of cultured ARPE‑19 cells as determined by ELISA. Moreover, the protein expression levels of IL‑8 and MCP‑1 were significantly reduced in ARPE‑19 cells exposed to DHMEQ compared with cells exposed to dexamethasone. PCR array analysis revealed that DHMEQ reduced the expression levels of MCP‑1, ICAM‑1, IL‑6, Toll‑like receptor (TLR)2, TLR3 and TLR4. Therefore, the present results indicated that DHMEQ has anti‑inflammatory effects on TNF‑α‑stimulated ARPE‑19 cells. Thus, DHMEQ may have therapeutic potential for TNF‑α‑mediated inflammatory disorders of the eye.
Collapse
Affiliation(s)
- Yoshimasa Ando
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo 181‑8611, Japan
| | - Yasuhiko Sato
- Division of Radioisotope Research, Kyorin University School of Medicine, Tokyo 181‑8611, Japan
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Tokyo 181‑8611, Japan
| | - Takayo Watanabe
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo 181‑8611, Japan
| | - Akito Hirakata
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo 181‑8611, Japan
| | - Annabelle A Okada
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo 181‑8611, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo 181‑8611, Japan
| |
Collapse
|
60
|
Kauppinen A, Kaarniranta K, Salminen A. Potential Role of Myeloid-Derived Suppressor Cells (MDSCs) in Age-Related Macular Degeneration (AMD). Front Immunol 2020; 11:384. [PMID: 32265903 PMCID: PMC7099658 DOI: 10.3389/fimmu.2020.00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid cells, such as granulocytes/neutrophils and macrophages, have responsibilities that include pathogen destruction, waste material degradation, or antigen presentation upon inflammation. During persistent stress, myeloid cells can remain partially differentiated and adopt immunosuppressive functions. Myeloid-derived suppressor cells (MDSCs) are primarily beneficial upon restoring homeostasis after inflammation. Because of their ability to suppress adaptive immunity, MDSCs can also ameliorate autoimmune diseases and semi-allogenic responses, e.g., in pregnancy or transplantation. However, immunosuppression is not always desirable. In certain conditions, such as cancer or chronically inflamed tissue, MDSCs prevent restorative immune responses and thereby aggravate disease progression. Age-related macular degeneration (AMD) is the most common disease in Western countries that severely threatens the central vision of aged people. The pathogenesis of this multifactorial disease is not fully elucidated, but inflammation is known to participate in both dry and wet AMD. In this paper, we provide an overview about the potential role of MDSCs in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
61
|
Wang C, Ma J, Xu M, Gao J, Zhao W, Yao Y, Shang Q. mTORC1 signaling pathway regulates macrophages in choroidal neovascularization. Mol Immunol 2020; 121:72-80. [PMID: 32172027 DOI: 10.1016/j.molimm.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Macrophages are involved in choroidal neovascularization (CNV). The mechanistic target of rapamycin complex 1 (mTORC1) is a central cell regulator, but mTORC1 function in macrophages in CNV is not fully understood. We explored the effect of mTORC1 pathway regulation on macrophages in CNV. A laser-induced murine CNV model was performed. Expression of phospho-S6 and F4/80 in CNV lesions was analyzed by immunofluorescence. Macrophages in CNV lesions were found at 1 day after laser treatment, reached a peak at 5 days, and decreased at 7 and 14 days. mTORC1 activity of cells in CNV lesions was increased from 3 to 7 days, and deceased at 14 days. Most infiltrating macrophages in CNV lesions had strong mTORC1 activity at 3 and 5 days that subsequently decreased. In vitro, THP-1 macrophages were polarized to M1 or M2 with rapamycin or siRNA treatment. The human retinal pigment epithelium (RPE) cell line ARPE-19 was co-cultured with macrophages. Cytokine expression of macrophages and ARPE-19 cells was detected by quantitative PCR. Inhibiting mTORC1 activity of macrophages reduced M1 and strengthened M2, which was reversed by mTORC1 hyperactivation. Both M1 and M2 macrophages induced RPE cells to express less PEDF and more MMP9, IL-1β and MCP-1. Inhibiting or enhancing mTORC1 activity of macrophages changed cytokine expression of RPE cells. Together, we demonstrated that macrophage functions in CNV were regulated partly by the mTORC1 pathway, and mTORC1 activity of macrophages influenced the expression of cytokines that are associated with CNV development in RPE cells. This study provides more understanding about the regulatory mechanism of macrophages in CNV.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jingxue Ma
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Man Xu
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian Gao
- Department of Biotechnology Drug, North China Pharmaceutical Group New Drug R&D Co., Ltd., Shijiazhuang, 052260, Hebei, China
| | - Wei Zhao
- Department of Biotechnology Drug, North China Pharmaceutical Group New Drug R&D Co., Ltd., Shijiazhuang, 052260, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
62
|
Sun Q, Gong L, Qi R, Qing W, Zou M, Ke Q, Zhang L, Tang X, Nie Q, Yang Y, Hu A, Ding X, Lu L, Liu Y, Li DWC. Oxidative stress-induced KLF4 activates inflammatory response through IL17RA and its downstream targets in retinal pigment epithelial cells. Free Radic Biol Med 2020; 147:271-281. [PMID: 31881336 DOI: 10.1016/j.freeradbiomed.2019.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 11/19/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness worldwide. Oxidative stress (OS), inflammation and genetics are considered the key pathogenic factors contributing to AMD development. Recent evidence shows the pro-inflammatory interleukin 17 (IL17) signaling is activated in AMD patients and promotes disease pathogenesis. However, the interplay between OS and IL17 signaling, and the regulatory mechanism of IL17 pathway are largely unknown. OS-induced retinal pigment epithelial cell (RPE) damage causes both the initial pathogenesis of AMD and secondary degeneration of rods and cones. Healthy RPE is essential for ocular immune privilege, however, damaged RPE cells can activate inflammatory response. In the present study, we identified IL17RA, the principle receptor of IL17 signaling, is one of the most upregulated inflammatory genes in human RPE cells upon OS exposure. The prominent increase of IL17RA was also observed in RPE and retina of an AMD-like mouse model. Knockdown of IL17RA in RPE cells prevented OS-induced RPE cell apoptosis and reduced the inflammatory response in both RPE and macrophages. Furthermore, we found that transcription factor KLF4 directly activates IL17RA expression, therefore, promotes the production of IL1β and IL8 in an IL17RA-dependent manner. In addition, the mRNA level of KLF4 isoform 2 was positively correlated with that of IL17RA in AMD patients. Together, our study demonstrates an unrevealed relationship between IL17RA and OS, and a new regulatory mechanism of IL17RA by KLF4 in RPE cells. These findings suggest that inhibition of IL17RA as a new potential therapeutic target for AMD through RPE protection and inflammatory suppression upon OS exposure.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China.
| | - Ruili Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Wenjie Qing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Ming Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Qin Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xiangcheng Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Yuan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
63
|
Jorge L, Canário N, Quental H, Bernardes R, Castelo-Branco M. Is the Retina a Mirror of the Aging Brain? Aging of Neural Retina Layers and Primary Visual Cortex Across the Lifespan. Front Aging Neurosci 2020; 11:360. [PMID: 31998115 PMCID: PMC6961569 DOI: 10.3389/fnagi.2019.00360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023] Open
Abstract
How aging concomitantly modulates the structural integrity of the brain and retina in healthy individuals remains an outstanding question. Given the strong bottom-up retinocortical connectivity, it is important to study how these structures co-evolve during healthy aging in order to unravel mechanisms that may affect the physiological integrity of both structures. For the 56 participants in the study, primary visual cortex (BA17), as well as frontal, parietal and temporal regions thicknesses were measured in T1-weighted magnetic resonance imaging (MRI), and retinal macular thickness (10 neuroretinal layers) was measured by optical coherence tomography (OCT) imaging. We investigated the statistical association of these measures and their age dependence. We found an age-related decay of primary visual cortical thickness that was significantly correlated with a decrease in global and multiple layer retinal thicknesses. The atrophy of both structures might jointly account for the decline of various visual capacities that accompany the aging process. Furthermore, associations with other cortical regions suggest that retinal status may index cortical integrity in general.
Collapse
Affiliation(s)
- Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Hugo Quental
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
64
|
Eamegdool SS, Sitiwin EI, Cioanca AV, Madigan MC. Extracellular matrix and oxidative stress regulate human retinal pigment epithelium growth. Free Radic Biol Med 2020; 146:357-371. [PMID: 31751761 DOI: 10.1016/j.freeradbiomed.2019.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022]
Abstract
Age-related macular degeneration (AMD), the most common cause of vision loss with ageing, is characterised by degeneration of the photoreceptors and retinal pigment epithelium (RPE) and changes in the extracellular matrix (ECM) underlying the RPE. The pathogenesis of AMD is still not fully understood. In this study we investigated the in vitro growth and function of primary human RPE cells in response to different ECM substrates, including nitrite-modified ECM. We initially confirmed the presence of disorganised retinal glial and photoreceptor cells, marked retinal cytoplasmic and Bruch's membrane expression of nitro-tyrosine (an oxidative stress marker) and increased numbers of Iba1+ macrophages/microglia in human donor eye sections (aged and AMD) using multi-marker immunohistochemistry (n = 3). Concurrently, we utilised two-photon microscopy to reveal topographical changes in flatmounts of RPE-associated ECM and in the underlying choroid of aged and AMD donor eyes (n = 3). To recapitulate these observations in vitro, we then used primary human RPE cells to investigate how different ECM proteins, including nitrite cross-linked RPE-secreted ECM, modified RPE cell growth and function. Collagen I or IV increased RPE attachment and spreading two-to three-fold, associated with significantly increased cell migration and proliferation, consistent with a preferential interaction with these matrix substrates. Primary human RPE cells grown on collagen I and IV also showed increased secretion of pro-inflammatory cytokines, MCP-1 and IL-8. Nitrite-modification of RPE-secreted ECM (simulating ageing of Bruch's membrane) significantly reduced in vitro RPE attachment to the ECM and this was mitigated with collagen IV coating of the modified ECM. Taken together, our observations confirm the importance of RPE-ECM interactions for normal RPE growth and function, and for inducing RPE secretion of pro-inflammatory cytokines. Furthermore, the findings are consistent with ageing and/or oxidative stress-induced disruption of RPE-ECM interactions contributing to the pathogenesis of AMD.
Collapse
Affiliation(s)
- Steven S Eamegdool
- Save Sight Institute, University of Sydney, 2000, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, 2145, Australia.
| | - Ephrem I Sitiwin
- Save Sight Institute, University of Sydney, 2000, Australia; School of Optometry and Vision Science, UNSW, 2052, Australia; Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Adrian V Cioanca
- Save Sight Institute, University of Sydney, 2000, Australia; The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Michele C Madigan
- Save Sight Institute, University of Sydney, 2000, Australia; School of Optometry and Vision Science, UNSW, 2052, Australia.
| |
Collapse
|
65
|
Age-related macular degeneration: A two-level model hypothesis. Prog Retin Eye Res 2019; 76:100825. [PMID: 31899290 DOI: 10.1016/j.preteyeres.2019.100825] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
Age-related diseases, including age-related macular degeneration (AMD), are of growing importance in a world where population ageing has become a dominant global trend. Although a wide variety of risk factors for AMD have been identified, age itself remains by far the most important risk factor, making it an urgent priority to understand the connections between underlying ageing mechanisms and pathophysiology of AMD. Ageing is both multicausal and variable, so that differences between individuals in biological ageing processes are the focus of a growing number of pathophysiological studies seeking to explain how ageing contributes to chronic, age-related conditions. The aim of this review is to integrate the available knowledge on the pathophysiology of AMD within the framework of the biology of ageing. One highly significant feature of biological ageing is systemic inflammation, which arises as a second-level response to a first level of molecular damage involving oxidative stress, mutations etc. Combining these insights, the various co-existing pathophysiological explanations in AMD arrange themselves according to a two-level hypothesis. Accordingly, we describe how AMD can be considered the consequence of age-related random accumulation of molecular damage at the ocular level and the subsequent systemic inflammatory host response thereof. We summarize evidence and provide original data to enlighten where evidence is lacking. Finally, we discuss how this two-level hypothesis provides a foundation for thoughts and future studies in prevention, prognosis, and intervention.
Collapse
|
66
|
Holan V, Hermankova B, Krulova M, Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World J Stem Cells 2019; 11:957-967. [PMID: 31768222 PMCID: PMC6851013 DOI: 10.4252/wjsc.v11.i11.957] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative disorders, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration or glaucoma, represent the most common causes of loss of vision and blindness. In spite of intensive research, treatment options to prevent, stop or cure these diseases are limited. Newer therapeutic approaches are offered by stem cell-based therapy. To date, various types of stem cells have been evaluated in a range of models. Among them, mesenchymal stem/stromal cells (MSCs) derived from bone marrow or adipose tissue and used as autologous cells have been proposed to have the potential to attenuate the negative manifestations of retinal diseases. MSCs delivered to the vicinity of the diseased retina can exert local anti-inflammatory and repair-promoting/regenerative effects on retinal cells. However, MSCs also produce numerous factors that could have negative impacts on retinal regeneration. The secretory activity of MSCs is strongly influenced by the cytokine environment. Therefore, the interactions among the molecules produced by the diseased retina, cytokines secreted by inflammatory cells and factors produced by MSCs will decide the development and propagation of retinal diseases. Here we discuss the interactions among cytokines and other factors in the environment of the diseased retina treated by MSCs, and we present results supporting immunoregulatory and trophic roles of molecules secreted in the vicinity of the retina during MSC-based therapy.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Barbora Hermankova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Magdalena Krulova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
67
|
Uchida M, Kamoi K, Ando N, Wei C, Karube H, Ohno-Matsui K. Safety of Infliximab for the Eye Under Human T-Cell Leukemia Virus Type 1 Infectious Conditions in vitro. Front Microbiol 2019; 10:2148. [PMID: 31620105 PMCID: PMC6759608 DOI: 10.3389/fmicb.2019.02148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022] Open
Abstract
Use of biologics has been widely advocated for inflammatory diseases recently. Anti-tumor necrosis factor (TNF)-α antibody therapy is reportedly effective against ocular inflammation. However, side effects of TNF-α inhibition have been reported, particularly in the form of exacerbation of infections such as tuberculosis. Paradoxical reactions such as exacerbated inflammation are also well known. Around 20 million humans are infected with human T-cell leukemia virus type 1 (HTLV-1) globally, and this virus can cause adult T-cell leukemia, HTLV-1-associated myelopathy and HTLV-1 uveitis. As for ophthalmic concerns, it has not been identified whether anti-TNF-α antibody stimulates HTLV-1-infected cells and ocular cells to induce HTLV-1 uveitis in HTLV-1 carriers. Here we investigated the effects of anti-TNF-α antibody on ocular status under HTLV-1 infectious conditions using ocular cells and HTLV-1-infected cells in vitro. We used the ARPE-19 human retinal pigment epithelial cell line as ocular cells considered to play an important role in the blood-ocular barrier, and the MT2 HTLV-1-infected cell line. Jurkat cells were used as controls. Infliximab (IFX) was used as an anti-TNF-α antibody to achieve TNF-α inhibition. We evaluated the production of inflammatory cytokines and intercellular adhesion molecule (ICAM)-1, proliferation of ARPE-19, expression of TNF-α receptor (TNF-R) and HTLV-1 proviral DNA, and the percentage of apoptotic ARPE-19. Inflammatory cytokines such as interleukin (IL)-6, IL-8, TNF, and ICAM-1 were significantly elevated through contact between ARPE-19 and MT2. Treatment with IFX tented to inhibit TNF production, although the level of production was low, but changes in IL-6, IL-8, and ICAM-1 remained unaffected. Expression of TNFR was unaltered by IFX treatment. HTLV-1 proviral DNA was not significantly changed with treatment. No change in cell growth rate or apoptotic rate of ARPE-19 was seen with the addition of IFX. In conclusion, IFX did not exacerbate production of inflammatory cytokines, and did not affect expression of TNFR, proliferation of ARPE-19, HTLV-1 proviral load, or apoptosis of ARPE-19. These results suggest that IFX does not exacerbate HTLV-1-related inflammation in the eye and represents an acceptable treatment option under HTLV-1 infectious conditions.
Collapse
Affiliation(s)
- Minami Uchida
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koju Kamoi
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoko Ando
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chenxi Wei
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisako Karube
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
68
|
Verma A, Zhu P, de Kloet A, Krause E, Sumners C, Li Q. Angiotensin receptor expression revealed by reporter mice and beneficial effects of AT2R agonist in retinal cells. Exp Eye Res 2019; 187:107770. [PMID: 31449794 DOI: 10.1016/j.exer.2019.107770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
Abstract
The renin-angiotensin system (RAS) plays a vital role in cardiovascular physiology and body homeostasis. In addition to circulating RAS, a local RAS exists in the retina. Dysfunction of local RAS, resulting in increased levels of Angiotensin II (Ang II) and activation of AT1R-mediated signaling pathways, contributes to tissue pathophysiology and end-organ damage. Activation of AT2R on other hand is known to counteract the effects of AT1R activation and produce anti-inflammatory and anti-oxidative effects. We examined the expression of angiotensin receptors in the retina by using transgenic dual reporter mice and by real-time RT-PCR. We further evaluated the effects of C21, a selective agonist of AT2R, in reducing Ang II, lipopolysaccharide (LPS) and hydrogen peroxide induced oxidative stress and inflammatory responses in cultured human ARPE-19 cells. We showed that both AT1Ra and AT2R positive cells are detected in different cell types of the eye, including the RPE/choroid complex, ciliary body/iris, and neural retina. AT1Ra is more abundantly expressed than AT2R in mouse retina, consistent with previous reports. In the neural retina, AT1Ra are also detected in photoreceptors whereas AT2R are mostly expressed in the inner retinal neurons and RGCs. In cultured human RPE cells, activation of AT2R with C21 significantly blocked Ang II, LPS and hydrogen peroxide -induced NF-κB activation and inflammatory cytokine expression; Ang II and hydrogen peroxide-induced reactive oxygen species (ROS) production and MG132-induced apoptosis, comparable to the effects of Angiotensin-(1-7) (Ang-(1-7)), another protective component of the RAS, although C21 is more potent in reducing some of the effects induced by Ang II, whereas Ang-(1-7) is more effective in reducing some of the LPS and hydrogen peroxide-induced effects. These results suggest that activation of AT2R may represent a new therapeutic approach for retinal diseases.
Collapse
Affiliation(s)
- Amrisha Verma
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Ping Zhu
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Annette de Kloet
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Eric Krause
- College of Medicine, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Colin Sumners
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Qiuhong Li
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
69
|
Terao R, Honjo M, Totsuka K, Miwa Y, Kurihara T, Aihara M. The role of sphingosine 1-phosphate receptors on retinal pigment epithelial cells barrier function and angiogenic effects. Prostaglandins Other Lipid Mediat 2019; 145:106365. [PMID: 31415870 DOI: 10.1016/j.prostaglandins.2019.106365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator, promoting angiogenesis and inflammation via interactions with its receptors (S1P1-5), but the receptors and signaling pathways responsible for the progression of choroidal neovascularization (CNV) remain unknown. We investigated the roles of S1P/S1P receptors in RPE cells. ARPE-19 cells were treated with S1P dissolved in carrier proteins of albumin or apolipoprotein M (ApoM). The mRNA expression levels of interleukin-8 (IL-8), C-C motif chemokine ligand 2 (CCL2), and vascular endothelial growth factor (VEGF) were evaluated using quantitative real-time polymerase chain reaction. The protein level of hypoxia-inducible factor (HIF)-1α was assessed via enzyme-linked immunosorbent assay. HIF transcriptional activity was evaluated with a dual-reporter luciferase assay. Cellular barrier integrity was evaluated using transepithelial electrical resistance and the FITC-dextran permeability assay. The suppressive effect of an S1P antagonist on CNV progression was investigated with a laser-induced CNV model in mice. The increase in expression of IL-8, CCL2, and VEGF due to albumin-bound S1P was significantly mitigated by an S1P2 antagonist. The expression of HIF-1α significantly decreased with inhibition of S1P2 and S1P3. In addition, albumin-bound S1P disrupted the barrier integrity of retinal pigment epithelial cells via S1P2, whereas integrity was strengthened by ApoM-bound S1P. CNV lesions were significantly reduced in the mouse model with intravitreal injection of S1P2 antagonist. This study demonstrated that S1P significantly promotes angiogenesis, inflammation, and barrier integrity, which was attenuated by inhibition of S1P2 or S1P3, suggesting that regulation of S1P2 and S1P3 is a novel therapeutic target for CNV.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kiyohito Totsuka
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Yukihiro Miwa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| |
Collapse
|
70
|
Eichler W, Lohrenz A, Simon K, Krohn S, Lange J, Bürger S, Liebscher I. The role of ADGRE5/CD97 in human retinal pigment epithelial cell growth and survival. Ann N Y Acad Sci 2019; 1456:64-79. [DOI: 10.1111/nyas.14210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Kay‐Uwe Simon
- Rudolf Schönheimer Institute of Biochemistry, Molecular BiochemistryLeipzig University Leipzig Germany
| | - Sandra Krohn
- Clinic for Gastroenterology and Rheumatology, Hepatology SectionLeipzig University Leipzig Germany
| | - Johannes Lange
- Norwegian Center for Movement DisordersStavanger University Hospital Stavanger Norway
| | | | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular BiochemistryLeipzig University Leipzig Germany
| |
Collapse
|
71
|
The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20143578. [PMID: 31336621 PMCID: PMC6678077 DOI: 10.3390/ijms20143578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions—especially in AMD.
Collapse
|
72
|
Spekker-Bosker K, Ufermann CM, Oldenburg M, Däubener W, Eller SK. Interplay between IDO1 and iNOS in human retinal pigment epithelial cells. Med Microbiol Immunol 2019; 208:811-824. [PMID: 31267172 PMCID: PMC6817751 DOI: 10.1007/s00430-019-00627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Human retinal pigment epithelial (hRPE) cells form a selectively permeable monolayer between the neural retina and the highly permeable choroidal vessels. Thus, hRPE cells bear important regulatory functions and are potential targets of pathogens in vivo. Endogenous bacterial endophthalmitis (EBE) is frequently caused by infections with the Gram-positive bacterium Staphylococcus aureus (S. aureus). Upon microbial infection, interferon gamma (IFN-γ), a major cytokine of the adaptive immune response, induces a broad spectrum of effector molecules, such as the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase-1 (IDO1). We stimulated human RPE (hRPE) cells in vitro with proinflammatory cytokines and analyzed the expression levels and enzymatic activities of IDO1 and inducible nitric oxide synthase (iNOS), another antimicrobial effector molecule. The antimicrobial capacity was analyzed in infection experiments using S. aureus and Toxoplasma gondii (T. gondii). Our aim was to characterize the particular importance of IDO1 and iNOS during EBE. We found that an IFN-γ stimulation of hPRE cells induced the expression of IDO1, which inhibited the growth of T. gondii and S. aureus. A co-stimulation with IFN-γ, interleukin-1 beta, and tumor necrosis factor alpha induced a strong expression of iNOS. The iNOS-derived nitric oxide production was dependent on cell-culture conditions; however, it could not cause antimicrobial effects. iNOS did not act synergistically with IDO1. Instead, iNOS activity inhibited IDO1-mediated tryptophan degradation and bacteriostasis. This effect was reversible by the addition of the iNOS inhibitor NG-monomethyl-l-arginine. In conclusion, iNOS mediates anti-inflammatory effects in hRPE cells stimulated with high amounts of IFN-γ together with tumor necrosis factor alpha and Interleukin-1 beta and prevents potential IDO1-dependent tissue damage.
Collapse
Affiliation(s)
- Katrin Spekker-Bosker
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Christoph-Martin Ufermann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Maike Oldenburg
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Silvia Kathrin Eller
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany.
| |
Collapse
|
73
|
Faber C, Juel HB, Jensen BAH, Christensen JP, Prause JU, Thomsen AR, Nissen MH. Chemokine Expression in Murine RPE/Choroid in Response to Systemic Viral Infection and Elevated Levels of Circulating Interferon-γ. Invest Ophthalmol Vis Sci 2019; 60:192-201. [PMID: 30654385 DOI: 10.1167/iovs.18-25721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine how circulating immune mediators in vivo may affect gene and protein expression at the RPE/choroid interface. Methods Young mice were systemically infected with lymphocytic choriomeningitis virus (LCMV) or continuously infused with IFN-γ. RPE/choroid was isolated and analyzed with whole-transcriptome gene expression microarrays. Selected gene expression findings were validated at the protein level. Results Both the systemic immune activation from virus infection and the sterile systemically increased level of IFN-γ resulted in increased expression of chemokine ligands, chemokine receptors, and early complement components in isolates of RPE/choroid. These findings were largely absent from LCMV-infected mice deficient in either the interferon α/β receptor or IFN-γ. Conclusions Together, these findings demonstrate that acute systemic immune activation results in a local response at the RPE/choroid interface that may include chemokine-dependent recruitment of inflammatory cells and engagement of the complement system. This may represent a link between the systemic low-grade inflammation and the retinal pathology observed in several multifactorial entities such as aging, AMD, and diabetes.
Collapse
Affiliation(s)
- Carsten Faber
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Helene Bæk Juel
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | | | - Jan Pravsgaard Christensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - Jan Ulrik Prause
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, Eye Pathology Section, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - Mogens Holst Nissen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| |
Collapse
|
74
|
The Zinc-Metallothionein Redox System Reduces Oxidative Stress in Retinal Pigment Epithelial Cells. Nutrients 2018; 10:nu10121874. [PMID: 30513827 PMCID: PMC6315569 DOI: 10.3390/nu10121874] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress affects all the structures of the human eye, particularly the retina and its retinal pigment epithelium (RPE). The RPE limits oxidative damage by several protective mechanisms, including the non-enzymatic antioxidant system zinc-metallothionein (Zn-MT). This work aimed to investigate the role of Zn-MT in the protection of RPE from the oxidative damage of reactive oxygen intermediates by analytical and biochemical-based techniques. The Zn-MT system was induced in an in vitro model of RPE cells and determined by elemental mass spectrometry with enriched isotopes and mathematical calculations. Induced-oxidative stress was quantified using fluorescent probes. We observed that 25, 50 or 100 μM of zinc induced Zn-MT synthesis (1.6-, 3.6- and 11.9-fold, respectively), while pre-treated cells with zinc (25, 50, and 100 μM) and subsequent 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) treatment increased Zn-MT levels in a lesser extent (0.8-, 2.1-, 6.1-fold, respectively), exerting a stoichiometric transition in the Zn-MT complex. Moreover, AAPH treatment decreased MT levels (0.4-fold), while the stoichiometry remained constant or slightly higher when compared to non-treated cells. Convincingly, induction of Zn-MT significantly attenuated oxidative stress produced by free radicals’ generators. We conclude that the stoichiometry of Zn-MT plays an important role in oxidative stress response, related with cellular metal homeostasis.
Collapse
|
75
|
Sakamoto K, Inukai M, Mori A, Nakahara T. Brilliant Blue G protects against photoreceptor injury in a murine endotoxin-induced uveitis model. Exp Eye Res 2018; 177:45-49. [DOI: 10.1016/j.exer.2018.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
|
76
|
Knockdown of Fibromodulin Inhibits Proliferation and Migration of RPE Cell via the VEGFR2-AKT Pathway. J Ophthalmol 2018; 2018:5708537. [PMID: 30298106 PMCID: PMC6157207 DOI: 10.1155/2018/5708537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
Purpose Recent research has provided novel insight into the function of fibromodulin (FMOD) in wound healing and angiogenesis. The role of FMOD in initiation of proliferative vitreoretinopathy (PVR) has not been studied. This study investigated the effect of FMOD on human retinal pigment epithelial (RPE) cell, which plays an essential role in the progression of PVR, and the possible mechanisms. Methods Small interfering (si) RNA-based gene transfer technology was used to decrease FMOD expression and to study its effects on RPEs in vitro. Cell Counting Kit-8 assays, transwells, and flow cytometry analysis were used to measure cell proliferation, migration, cell cycle, and apoptosis. Western blot was used to measure expression of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), extracellular signal-related kinase 1/2 (ERK1/2), and phosphoinositide 3 kinase (PI3K/AKT). Results After transfection of RPEs with a FMOD-specific siRNA, cell proliferation and migration were inhibited to the percentage of 65% ± 5% and 39% ± 10%, respectively, compared to the control group. Depletion of FMOD induced cell cycle arrest and apoptosis in RPE cells. Downregulation of VEGF, VEGFR2, and phosphorylated AKT (p-AKT) were detected in transfected RPEs. Conclusion Depletion of FMOD selectively downregulated the expression of VEGF and VEGFR2 and inhibited the signaling pathway of AKT phosphorylation, which consequently inhibited the proliferation and migration of RPE Cell.
Collapse
|
77
|
Schottler J, Randoll N, Lucius R, Caliebe A, Roider J, Klettner A. Long-term treatment with anti-VEGF does not induce cell aging in primary retinal pigment epithelium. Exp Eye Res 2018. [DOI: 10.1016/j.exer.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior. J Neurosci 2018; 38:5220-5236. [PMID: 29739870 DOI: 10.1523/jneurosci.0061-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for pregnancy-associated plasma protein aa (pappaa) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated pappaa mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of pappaa mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells. pappaa is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved pappaa mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.SIGNIFICANCE STATEMENT Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue: pregnancy-associated plasma protein aa (pappaa), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.
Collapse
|
79
|
Chen X, Han R, Hao P, Wang L, Liu M, Jin M, Kong D, Li X. Nepetin inhibits IL-1β induced inflammation via NF-κB and MAPKs signaling pathways in ARPE-19 cells. Biomed Pharmacother 2018; 101:87-93. [PMID: 29477475 DOI: 10.1016/j.biopha.2018.02.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Chronic inflammation in retinal pigment epithelial (RPE) cells is related to the pathogenesis of retinal inflammatory blind causing diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Nepetin, a natural flavonoid compound, has shown potent anti-inflammatory activities but has not been studied on ocular resident cells yet. Here, we assess the ability of Nepetin to alleviate the inflammatory responses of ARPE-19 cells induced by interleukin (IL)-1β. METHODS The secretion and mRNA expression of inflammatory cytokines IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1) induced by IL-1β are measured by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) respectively. To clarify the underlying action mechanism, we examine the effect of Nepetin on activation of nuclear factor of kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways using Western blot. RESULTS Nepetin can significantly decrease the three inflammatory mediators at both protein and mRNA level in a dose-dependent manner. Western blot results show that Nepetin can decrease the nuclear translocation of p65 through suppressing phosphorylation of inhibitor of nuclear factor kappa B (IκB) and IκB kinase (IKK). Also, Nepetin can decrease the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2, c-Jun N-terminal kinase (JNK) and p38 MAPK. CONCLUSIONS Taken together, Nepetin abolishes IL-1β-induced IL-6, IL-8 and MCP-1 secretion and mRNA expression by repressing the activation of NF-κB and MAPKs. These results indicate that Nepetin shows potential to be used for prevention and treatment of inflammatory retinal diseases or as a lead compound.
Collapse
Affiliation(s)
- Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ruifang Han
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Peng Hao
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Liming Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Meixin Liu
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuan Li
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China.
| |
Collapse
|
80
|
Kim BJ, Zack DJ. The Role of c-Jun N-Terminal Kinase (JNK) in Retinal Degeneration and Vision Loss. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:351-357. [PMID: 29721963 DOI: 10.1007/978-3-319-75402-4_43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
c-Jun N-terminal kinase (JNK), a member of stress-induced mitogen-activated protein (MAP) kinase family, has been shown to modulate a variety of biological processes associated with neurodegenerative pathology of the retina. In particular, various retinal cell culture and animal models related to glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa indicate that JNK signaling may contribute to disease pathogenesis. This mini-review discusses the impact of JNK signaling in retinal disease, with a focus on retinal ganglion cells (RGCs), photoreceptor cells, retinal pigment epithelial (RPE) cells, and animal studies, with particular attention to modulation of JNK signaling as a potential therapeutic target for the treatment of retinal disease.
Collapse
Affiliation(s)
- Byung-Jin Kim
- The Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- The Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
81
|
Apolipoprotein M Inhibits Angiogenic and Inflammatory Response by Sphingosine 1-Phosphate on Retinal Pigment Epithelium Cells. Int J Mol Sci 2017; 19:ijms19010112. [PMID: 29301231 PMCID: PMC5796061 DOI: 10.3390/ijms19010112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent lipid mediator that modulates inflammatory responses and proangiogenic factors. It has been suggested that S1P upregulates choroidal neovascularization (CNV) and may be deeply involved in the pathogenesis of exudative age-related macular degeneration (AMD). Recent studies have suggested that apolipoprotein M (ApoM), a carrier protein for S1P, modulates the biological properties of S1P in the pathogenesis of atherosclerosis. However, the role of ApoM/S1P in AMD has not been explored. We investigated the effect of S1P on proangiogenic factors in human retinal pigment epithelium (RPE) cell lines in vitro. S1P promoted the expression of vascular endothelial growth factor in RPE cells. Hypoxia inducible factor-1α expression was also upregulated. These S1P-induced enhancements in growth factors and chemotactic cytokines in RPE cells were significantly inhibited by ApoM treatment. Additionally, in vivo experiments using a laser-induced CNV murine model demonstrated that intravitreal ApoM injection significantly reduced the progression of CNV formation. Although the detailed mechanisms remain to be elucidated, the present results provide a novel potential therapeutic target for AMD, and demonstrate a suppressive role for ApoM and S1P in the pathology of CNV progression.
Collapse
|
82
|
Shen J, He J, Wang F. Isolation and Culture of Primary Mouse Retinal Pigment Epithelial (RPE) Cells with Rho-Kinase and TGFβR-1/ALK5 Inhibitor. Med Sci Monit 2017; 23:6132-6136. [PMID: 29279601 PMCID: PMC5751728 DOI: 10.12659/msm.905569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Primary RPE cells could be a reliable model for representing in vivo status of RPE compared with cell lines. We present a protocol for in vitro isolation and culture of primary RPE cells from C57BL mice. Material/Methods We used C57BL mice ages 7 days to 4 months. The RPE layer was separated from the neural retina layer by digestion with 2% Dispase for 45 min and scraped off from the choroid after 25-min incubation in 37°C. Collected RPE sheets were gently pipetted up into smaller sheets. RPE sheets were transferred into well plates and cultured in vitro for 2 weeks. To inhibit epithelial-mesenchymal transition (EMT) of RPE cells, we used Y27632 and Repsox to treat cultured primary RPE cells. Results RPE cells isolated from C57BL mice maintained pigmented and hexagonal morphology in culture. However, long-term in vitro culture lead to the periphery cells of a RPE sheet becoming mesenchymal-like cells. In contrast to the control group, Y27632 and Repsox, which are inhibitors of Rho-kinase or TGFβR-1/ALK5, promoted primary RPE cells to maintain epithelial-like morphology and eventually become confluent. Conclusions RPE cells isolated from C57BL mice could be a powerful cell model to study the biological function of RPE. Especially, C57BL mice with different defective genetic background resulting in ocular diseases, would expand the genome type of RPE cells. The method presented here could be an efficient and applicable technique to obtain large numbers of primary RPE cells that maintain some characteristics of in vivo RPE.
Collapse
Affiliation(s)
- Junhui Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jianfeng He
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
83
|
Liao R, Yan F, Zeng Z, Wang H, Qiu K, Xu J, Zheng W. Insulin-like growth factor-1 activates PI3K/Akt signalling to protect human retinal pigment epithelial cells from amiodarone-induced oxidative injury. Br J Pharmacol 2017; 175:125-139. [PMID: 29057462 DOI: 10.1111/bph.14078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Amiodarone is one of the most effective anti-arrhythmic drugs available, but its clinical applications are limited by toxic side effects including optic toxicity. The purpose of this study was to investigate the toxic effect of amiodarone on D407 cells (a human retinal pigmented epithelial (RPE) cell line) and the mechanisms of the protective effect of insulin-like growth factor-1 (IGF-1). EXPERIMENTAL APPROACH The involvement of the kinases, Akt and ERK, was analysed by Western blot. Intracellular accumulation of ROS was measured using fluorophotometric quantification. A pharmacological approach with inhibitors was used to investigate the pathways involved in the protective action of IGF-1. KEY RESULTS Amiodarone concentration-dependently augmented the production of ROS, lipid peroxidation and apoptosis in D407 cells. IGF-1 time- and concentration-dependently reversed these effects of amiodarone and protected D407 cells from amiodarone-mediated toxicity. Amiodarone inhibited the pAkt but not pErk, and IGF-1 reversed this inhibitory effect of amiodarone. However, IGF-1 failed to suppress amiodarone-induced cytotoxicity in the presence of PI3K/Akt inhibitor LY294002 suggesting the direct involvement of the PI3K/Akt pathway. Furthermore, in vivo rat flash electroretinogram (FERG) recordings showed that IGF-1 reverses the amiodarone-induced decrease in a- and b-waves. The immunocytochemistry findings confirmed that vitreous IGF-1 injections promote the survival of RPE cells in rat retina treated with amiodarone. CONCLUSION AND IMPLICATIONS IGF-1 can protect RPE cells from amiodarone-mediated injury via the PI3K/Akt pathway in vivo and in vitro. IGF-1 has potential as a protective drug for the prevention and treatment of amiodarone-induced optic toxicity.
Collapse
Affiliation(s)
- Rifang Liao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fengxia Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuanping Zeng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haitao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinying Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, and UM Zhuhai Research Institute, Zhuhai, China.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital and the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
84
|
Dong X, Wu W, Ma L, Liu C, Bhuckory MB, Wang L, Nandrot EF, Xu H, Li K, Liu Y, Zhou W. Collectin-11 Is an Important Modulator of Retinal Pigment Epithelial Cell Phagocytosis and Cytokine Production. J Innate Immun 2017; 9:529-545. [PMID: 28772263 DOI: 10.1159/000478042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023] Open
Abstract
In this paper, we report previously unknown roles for collectin-11 (CL-11, a soluble C-type lectin) in modulating the retinal pigment epithelial (RPE) cell functions of phagocytosis and cytokine production. We found that CL-11 and its carbohydrate ligand are expressed in both the murine and human neural retina; these resemble each other in terms of RPE and photoreceptor cells. Functional analysis of murine RPE cells showed that CL-11 facilitates the opsonophagocytosis of photoreceptor outer segments and apoptotic cells, and also upregulates IL-10 production. Mechanistic analysis revealed that calreticulin on the RPE cells is required for CL-11-mediated opsonophagocytosis whereas signal-regulatory protein α and mannosyl residues on the cells are involved in the CL-11-mediated upregulation of IL-10 production. This study is the first to demonstrate the role of CL-11 and the molecular mechanisms involved in modulating RPE cell phagocytosis and cytokine production. It provides a new insight into retinal health and disease and has implications for other phagocytic cells.
Collapse
Affiliation(s)
- Xia Dong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1113-1126. [PMID: 28664762 DOI: 10.1080/14712598.2017.1346079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In age-related macular degeneration (AMD), stem cells could possibly replace or regenerate disrupted pathologic retinal pigment epithelium (RPE), and produce supportive growth factors and cytokines such as brain-derived neurotrophic factor. Induced pluripotent stem cells (iPSCs)-derived RPE was first subretinally transplanted in a neovascular AMD patient in 2014. Areas covered: Induced PSCs are derived from the introduction of transcription factors to adult cells under specific cell culture conditions, followed by differentiation into RPE cells. Induced PSC-derived RPE cells exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression that is similar to native RPE. Despite having similar in vitro function, morphology, immunostaining and microscopic analysis, it remains to be seen if iPSC-derived RPE can replicate the myriad of in vivo functions, including immunomodulatory effects, of native RPE cells. Historically, adjuvant RPE transplantation during CNV resections were technically difficult and complicated by immune rejection. Autologous iPSCs are hypothesized to reduce the risk of immune rejection, but their production is time-consuming and expensive. Alternatively, allogenic transplantation using human leukocyte antigen (HLA)-matched iPSCs, similar to HLA-matched organ transplantation, is currently being investigated. Expert opinion: Challenges to successful transplantation with iPSCs include surgical technique, a pathologic subretinal microenvironment, possible immune rejection, and complications of immunosuppression.
Collapse
Affiliation(s)
- Peter Bracha
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nicholas A Moore
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
86
|
Expression and differential regulation of HLA-G isoforms in the retinal pigment epithelial cell line, ARPE-19. Hum Immunol 2017; 78:414-420. [DOI: 10.1016/j.humimm.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
|
87
|
Zheng W, Meng Q, Wang H, Yan F, Little PJ, Deng X, Lin S. IGF-1-Mediated Survival from Induced Death of Human Primary Cultured Retinal Pigment Epithelial Cells Is Mediated by an Akt-Dependent Signaling Pathway. Mol Neurobiol 2017; 55:1915-1927. [PMID: 28238097 DOI: 10.1007/s12035-017-0447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Degeneration of the human retinal pigmented epithelium (hRPE) is involved in several eye disorders such as age-related macular degeneration (AMD). In this study, we investigated the protective effect of IGF-1 on human primary cultured RPE cells and its underlying mechanism. IGF-1 dose- and time-dependently promoted the survival of RPE cells from serum deprivation. Western blot showed that IGF-1 stimulated the activation of the PI3K/Akt and MAPK pathways in hRPE. Inhibition of the PI3K/Akt pathway by the PI3K-specific inhibitor, LY294002 or inhibition of Akt by Akt-specific inhibitors Akt inhibitor VIII or SN-38, or downregulation Akt with siRNA specific for Akt blocked the effect of IGF-1 on hRPE. In contrast, blockade of the MAPK pathway with a specific inhibitor PD98059 had no effect. Interestingly, vitreous IGF-1 injection reversed the inhibitory effect of light exposure (a dry AMD model) on both a wave and b wave. Immunocytochemistry showed that vitreous IGF-1 injections promoted the survival of RPE cells in rat retina and the expression of RPE65 in RPE cells from light injury. These results indicate that IGF-1 is able to protect hRPE cell from different insults in vivo and in vitro. Further detailed studies may lead the way to a therapeutic intervention for retinal diseases in which cell death is an underlying contributory mechanism.
Collapse
Affiliation(s)
- Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China. .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Qian Meng
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China
| | - Haitao Wang
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengxia Yan
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence (PACE), The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia
| | - Xinguo Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaofen Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
88
|
Ren L, Tao J, Chen H, Bian Y, Yang X, Chen G, Zhang X, Liang G, Wu W, Song Z, Wang Y. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury. Toxicol Appl Pharmacol 2017; 317:1-11. [DOI: 10.1016/j.taap.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
|
89
|
|
90
|
ASSOCIATION BETWEEN AQUEOUS HUMOR CXC MOTIF CHEMOKINE LIGAND 13 LEVELS AND SUBFOVEAL CHOROIDAL THICKNESS IN NORMAL OLDER SUBJECTS. Retina 2016; 36:192-8. [PMID: 26121407 DOI: 10.1097/iae.0000000000000668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the association of subfoveal choroidal thickness with intraocular inflammatory cytokines and chemokines. METHODS The subjects consisted of 76 eyes of consecutive cataract patients at the Japan Community Health Care Organization Tokyo Shinjuku Medical Center between September 2010 and August 2012. In addition, two autopsy eyes from elderly males were used for immunohistochemical study. Subfoveal choroidal thickness was measured using spectral domain optical coherence tomography before cataract surgery. At the beginning of cataract surgery, a sample of undiluted aqueous humor was manually aspirated and the concentrations of the following cytokines were determined using a multiplex cytokine assay: IP-10, MCP-1, MMP-9, IL-6, IL-10, CXCL1, CXCL12, CXCL13, and CCL11. The association of subfoveal choroidal thickness with intraocular cytokine concentration was analyzed. Expression of CXCL13 was examined in autopsy eyes. RESULTS Among these factors, higher concentration of CXCL13 was associated with thicker choroid. In particular, multiple regression analysis showed that the concentration of CXCL13 was associated with subfoveal choroidal thickness (P = 0.001), independently of axial length (P = 0.049). By immunostaining, CXCL13 was clearly detected in choroidal endothelial cells. CONCLUSION Aqueous humor concentration of CXCL13 is correlated with subfoveal choroidal thickness in normal subjects.
Collapse
|
91
|
Bazewicz M, Draganova D, Makhoul M, Chtarto A, Elmaleh V, Tenenbaum L, Caspers L, Bruyns C, Willermain F. Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines. Neurosci Lett 2016; 630:209-215. [PMID: 27478014 DOI: 10.1016/j.neulet.2016.07.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/13/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression.
Collapse
Affiliation(s)
- Magdalena Bazewicz
- I.R.I.B.H.M (Institute of Interdisciplinary Research), Université Libre De Bruxelles Campus Erasme, Brussels, Belgium; Department of Ophthalmology, CHU St-Pierre and Brugmann, Brussels, Belgium.
| | - Dafina Draganova
- I.R.I.B.H.M (Institute of Interdisciplinary Research), Université Libre De Bruxelles Campus Erasme, Brussels, Belgium; Department of Ophthalmology, CHU St-Pierre and Brugmann, Brussels, Belgium
| | - Maya Makhoul
- I.R.I.B.H.M (Institute of Interdisciplinary Research), Université Libre De Bruxelles Campus Erasme, Brussels, Belgium
| | - Abdel Chtarto
- I.R.I.B.H.M (Institute of Interdisciplinary Research), Université Libre De Bruxelles Campus Erasme, Brussels, Belgium
| | - Valerie Elmaleh
- Department of Ophthalmology, CHU St-Pierre and Brugmann, Brussels, Belgium
| | - Liliane Tenenbaum
- Clinical Neurosciences Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Laure Caspers
- Department of Ophthalmology, CHU St-Pierre and Brugmann, Brussels, Belgium
| | - Catherine Bruyns
- I.R.I.B.H.M (Institute of Interdisciplinary Research), Université Libre De Bruxelles Campus Erasme, Brussels, Belgium
| | - François Willermain
- I.R.I.B.H.M (Institute of Interdisciplinary Research), Université Libre De Bruxelles Campus Erasme, Brussels, Belgium; Department of Ophthalmology, CHU St-Pierre and Brugmann, Brussels, Belgium
| |
Collapse
|
92
|
Abstract
Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD).
Collapse
|
93
|
Kim Y, Kim TW, Park YS, Jeong EM, Lee DS, Kim IG, Chung H, Hwang YI, Lee WJ, Yu HG, Kang JS. The Role of Interleukin-22 and Its Receptor in the Development and Pathogenesis of Experimental Autoimmune Uveitis. PLoS One 2016; 11:e0154904. [PMID: 27166675 PMCID: PMC4864334 DOI: 10.1371/journal.pone.0154904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023] Open
Abstract
IL-22 is a pro- and anti-inflammatory cytokine that is mainly produced by T cells and NK cells. Recent studies have reported the increased number of IL-22 producing T cells in patients with autoimmune noninfectious uveitis; however, the correlation between IL-22 and uveitis remains unclear. In this study, we aimed to determine the specific role of IL-22 and its receptor in the pathogenesis of uveitis. Serum concentration of IL-22 was significantly increased in uveitis patients. IL-22Rα was expressed in the retinal pigment epithelial cell line, ARPE-19. To examine the effect of IL-22, ARPE-19 was treated with recombinant IL-22. The proliferation of ARPE-19 and the production of monocyte chemoattractant protein (MCP)-1 from ARPE-19 were clearly elevated. IL-22 induced MCP-1 which facilitated the migration of inflammatory cells. Moreover, IL-22 increased the IL-22Rα expression in ARPE-19 through the activation of PI3K/Akt. Experimental animal models of uveitis induced by interphotoreceptor retinoid binding protein 1-20 (IRBP1-20) exhibited elevation of hyperplasia RPE and IL-22 production. When CD4+ T cells from the uveitis patients were stimulated with IRBP1-20, the production of IL-22 definitely increased. In addition, we examine the regulatory role of cysteamine, which has an anti-inflammatory role in the cornea, in uveitis through the down-regulation of IL-22Rα expression. Cysteamine effectively suppressed the IRBP1-20-induced IL-22Rα expression and prevented the development of IRBP1-20-induced uveitis in the experimental animal model. These finding suggest that IL-22 and its receptor have a crucial role in the development and pathogenesis of uveitis by facilitating inflammatory cell infiltration, and that cysteamine may be a useful therapeutic drug in treating uveitis by down-regulating IL-22Rα expression in RPE.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Wan Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Rheumatology Institute and Research for Sensory Organs Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University, Boramae Medical Center, Seoul, Republic of Korea
| | - Yun Seong Park
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Sup Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hum Chung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-il Hwang
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wang Jae Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kang
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
94
|
Benhar I, Reemst K, Kalchenko V, Schwartz M. The retinal pigment epithelium as a gateway for monocyte trafficking into the eye. EMBO J 2016; 35:1219-35. [PMID: 27107049 DOI: 10.15252/embj.201694202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/21/2016] [Indexed: 11/09/2022] Open
Abstract
The choroid plexus epithelium within the brain ventricles orchestrates blood-derived monocyte entry to the central nervous system under injurious conditions, including when the primary injury site is remote from the brain. Here, we hypothesized that the retinal pigment epithelium (RPE) serves a parallel role, as a gateway for monocyte trafficking to the retina following direct or remote injury. We found elevated expression of genes encoding leukocyte trafficking determinants in mouse RPE as a consequence of retinal glutamate intoxication or optic nerve crush (ONC). Blocking VCAM-1 after ONC interfered with monocyte infiltration into the retina and resulted in a local pro-inflammatory cytokine bias. Live imaging of the injured eye showed monocyte accumulation first in the RPE, and subsequently in the retina, and peripheral leukocytes formed close contact with the RPE Our findings further implied that the ocular milieu can confer monocytes a phenotype advantageous for neuroprotection. These results suggest that the eye utilizes a mechanism of crosstalk with the immune system similar to that of the brain, whereby epithelial barriers serve as gateways for leukocyte entry.
Collapse
Affiliation(s)
- Inbal Benhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Kitty Reemst
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Vyacheslav Kalchenko
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
95
|
Devarajan G, Niven J, Forrester JV, Crane IJ. Retinal Pigment Epithelial Cell Apoptosis is Influenced by a Combination of Macrophages and Soluble Mediators Present in Age-Related Macular Degeneration. Curr Eye Res 2016; 41:1235-44. [DOI: 10.3109/02713683.2015.1109129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gayathri Devarajan
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| | - Jennifer Niven
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| | - John V. Forrester
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| | - Isabel J. Crane
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| |
Collapse
|
96
|
Effect ofToxoplasma gondiiinfection on the junctional complex of retinal pigment epithelial cells. Parasitology 2016; 143:568-75. [DOI: 10.1017/s0031182015001973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYOcular toxoplasmosis is the most frequent cause of uveitis, leading to partial or total loss of vision, with the retina the main affected structure. The cells of the retinal pigment epithelium (RPE) play an important role in the physiology of the retina and formation of the blood–retinal barrier. Several pathogens induce barrier dysfunction by altering tight junction (TJ) integrity. Here, we analysed the effect of infection byToxoplasma gondiion TJ integrity in ARPE-19 cells. Loss of TJ integrity was demonstrated inT. gondii-infected ARPE-19 cells, causing increase in paracellular permeability and disturbance of the barrier function of the RPE. Confocal microscopy also revealed alteration in the TJ protein occludin induced byT. gondiiinfection. Disruption of junctional complex was also evidenced by scanning and transmission electron microscopy. Cell–cell contact loss was noticed in the early stages of infection byT. gondiiwith the visualization of small to moderate intercellular spaces. Large gaps were mostly observed with the progression of the infection. Thus, our data suggest that the alterations induced byT. gondiiin the structural organization of the RPE may contribute to retinal injury evidenced by ocular toxoplasmosis.
Collapse
|
97
|
Tao L, Qiu Y, Fu X, Lin R, Lei C, Wang J, Lei B. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-κB pathways in human retinal pigment epithelium. J Neuroinflammation 2016; 13:35. [PMID: 26862037 PMCID: PMC4748536 DOI: 10.1186/s12974-016-0489-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023] Open
Abstract
Background Retinal inflammation is a devastating pathological process in ocular diseases. Functional impairment of retinal pigment epithelium (RPE) is associated with inflammatory retinal diseases. Enhancing the protective axis namely ACE2/Ang-(1-7)/Mas by activation of ACE2 presents anti-inflammatory properties. We investigated whether diminazene aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, prevented lipopolysaccharide (LPS)-induced inflammatory response by activating the protective axis and whether the effect was mediated by inhibiting the mitogen-activated protein kinase (MAPK) and the nuclear factor-κB (NF-κB) pathways. Methods Cell counting kit-8 (CCK-8) assay and real-time PCR were used to determine the optimum concentration and incubation time of DIZE. ARPE-19 cells and primary cultured human retinal pigment epithelia (hRPE) were incubated with or without 10 μg/mL DIZE for 6 h before stimulated with 5 μg/mL LPS for 24 h. The mRNA expression of inflammatory cytokines, AT1R, and AT2R was analyzed. The protein level of inflammatory cytokines, Ang II, and Ang-(1-7) was detected. Phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphorylated transcription inhibition factor-κB-α (p-IκB-α) were measured. Inhibitors of MAPKs and NF-κB were added to verify the involvement of these pathways. A small interfering RNA (siRNA) targeted to ACE2 and a selective Ang-(1-7) antagonist A779 was used to confirm the role of ACE2 and the involvement of ACE2/Ang-(1-7)/Mas axis. Results DIZE remarkably increased the expression of ACE2 and inhibited the expression of IL-6, IL-8, and MCP-1 at both mRNA and protein levels in both RPE cell lines stimulated with LPS. Inhibitors of p38, ERK1/2, JNK, and NF-κB significantly decreased LPS-induced overproduction of IL-6, IL-8, and MCP-1. DIZE reduced the expression of Ang II and AT1R, whereas increased Ang-(1-7). Furthermore, DIZE downregulated the phosphorylation of p38MAPK, ERK1/2, JNK, and the activation of NF-κB upon stimulation with LPS. Downregulating ACE2 and pre-treatment with A779 abrogated the effects of DIZE on production of cytokines, the expression of Ang II, Ang-(1-7), AT1R, phosphorylation of MAPKs and activation of NF-κB. Conclusions DIZE inhibits LPS-induced inflammatory response by activating ACE2/Ang-(1-7)/Mas axis in human RPE cells. The protective effect is mediated by inhibiting the p38MAPK, ERK1/2, JNK, and NF-κB pathways.
Collapse
Affiliation(s)
- Lifei Tao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Yiguo Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Xinyu Fu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Ru Lin
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Chunyan Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Jiaming Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Bo Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| |
Collapse
|
98
|
Choudhary M, Malek G. A Brief Discussion on Lipid Activated Nuclear Receptors and their Potential Role in Regulating Microglia in Age-Related Macular Degeneration (AMD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:45-51. [PMID: 26427392 DOI: 10.1007/978-3-319-17121-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness and visual impairment in individuals over 60 years of age in the Western World. A common morphological denominator in all forms of AMD is the accumulation of microglia within the sub-retinal space, which is believed to be a contributing factor to AMD progression. However, the signaling pathway and molecular players regulating microglial recruitment have not been completely identified. Multiple in-vitro and in-vivo studies, to date, have highlighted the contributions of nuclear receptor ligands in the treatment of inflammation related disorders such as atherosclerosis and Alzheimer's disease. Given that inflammation and the immune response play a vital role in the initiation and progression of AMD, in this brief review we will highlight some of these studies with a particular focus on the lipid activated "adopted orphan" nuclear receptors, the liver x receptors (LXRs) and the peroxisome proliferator-activated receptors (PPARs). The results of these studies strongly support the rationale that treatment with LXR and PPAR ligands may ameliorate microglial activation in the sub-retinal space and ultimately slow down or reverse the progression of AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Departments of Ophthalmology and Pathology, Albert Eye Research Institute, Duke University, 2351 Erwin Road, AERI Room 4000, 27710, Durham, NC, USA.
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, AERI Room 4006, 27710, Durham, NC, USA.
| |
Collapse
|
99
|
High-Salt Enhances the Inflammatory Response by Retina Pigment Epithelium Cells following Lipopolysaccharide Stimulation. Mediators Inflamm 2015; 2015:197521. [PMID: 26783382 PMCID: PMC4689981 DOI: 10.1155/2015/197521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 12/27/2022] Open
Abstract
High-salt has been shown to play a role in the pathogenesis of autoimmune disease. In this study, we investigated the effect of high-salt on the production of inflammatory mediators by ARPE-19 cells and the possible mechanisms involved. ARPE-19 cells were cultured with LPS in DMEM to which extra NaCl had been added (20 mM and 40 mM). NaCl had no influence on the apoptosis and proliferation of ARPE-19. Addition of 40 mM NaCl significantly induced IL-6 and MCP-1 production but had no effect on IL-8 secretion. High mannitol, as an osmotic stress control, did not affect the secretion of inflammatory mediators by ARPE-19 cells indicating that the effect was not mediated by osmolarity. Coculture of ARPE-19 cells with NaCl resulted in significant increases in the phosphorylation of p38 MAPK, Akt, and NF-κB and an upregulation of the transcription factors NFAT5 and SGK1. High-salt significantly promotes IL-6 and MCP-1 production by ARPE-19 cells and is associated with activation of the p38 MAPK, Akt, and NF-κB pathway and NFAT-SGK1 pathways.
Collapse
|
100
|
Qiu Y, Tao L, Lei C, Wang J, Yang P, Li Q, Lei B. Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells. Sci Rep 2015; 5:14362. [PMID: 26415877 PMCID: PMC4586461 DOI: 10.1038/srep14362] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress and inflammation are two interrelated biological events implicated in the pathogenesis of many diseases. Reactive oxygen species (ROS) produced under oxidative stress play a key role in pathological conditions. Inhibition of p22phox, an indispensable component of the NADPH oxidase (NOX) complex comprising the main source of ROS, plays a protective role in many ocular conditions by inhibiting the activation of NOXs and the generation of ROS. However, little is understood regarding the role of p22phox in oxidative stress-related inflammation in the eye. We used a p22phox small interfering RNA (siRNA) to transfect the retinal pigment epithelium (RPE)-derived cell line ARPE-19, and human primary RPE (hRPE) cells, then stimulated with Ang II. We observed a potent anti-inflammatory effect and studied the underlying mechanism. Downregulating p22phox resulted in decreased ROS generation, a reduction of NOXs (NOX1, 2, 4) and a decrease in inflammatory cytokine. In addition, p22phox downregulation reduced the activation of the MAPK and NF-κB signaling pathways. We conclude that inhibition of p22phox has an anti-inflammatory effect in Ang II-induced oxidative stress. Suppressing the MAPK and NF-κB pathways is involved in this protective effect. These results suggest that p22phox may provide a promising therapeutic target for oxidative stress-induced ocular inflammation
Collapse
Affiliation(s)
- Yiguo Qiu
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Lifei Tao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Chunyan Lei
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Jiaming Wang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Peizeng Yang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Qiuhong Li
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Bo Lei
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|