51
|
Mariani J, Beretta S, Diamanti S, Versace A, Martini B, Viganò M, Castiglioni L, Sironi L, Carone D, Cuccione E, Monza L, Giussani C, Ferrarese C. Head Down Tilt 15° in Acute Ischemic Stroke with Poor Collaterals: A Randomized Preclinical Trial. Neuroscience 2023; 523:1-6. [PMID: 37211082 DOI: 10.1016/j.neuroscience.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Cerebral collaterals are recruited after arterial occlusion with a protective effect on tissue outcome in acute ischemic stroke. Head down tilt 15° (HDT15) is a simple, low cost and accessible procedure that could be applied as an emergency treatment, before recanalization therapies, with the aim to increase cerebral collateral flow. Spontaneously hypertensive rats have been shown to display anatomical differences in morphology and function of cerebral collaterals, compared to other rat strains, resulting in an overall poor collateral circulation. We investigate the efficacy and safety of HDT15 in spontaneously hypertensive (SHR) rats, which were considered as an animal stroke model with poor collaterals. Cerebral ischemia was induced by 90 minute endovascular occlusion of the middle cerebral artery (MCA). SHR rats were randomized to HDT15 or flat position (n = 19). HDT15 was applied 30 minutes after occlusion and lasted 60 minutes, until reperfusion. HDT15 application increased cerebral perfusion (+16.6% versus +6.1%; p = 0.0040) and resulted in a small reduction of infarct size (83.6 versus 107.1 mm3; - 21.89%; p = 0.0272), but it was not associated with early neurological improvement, compared to flat position. Our study suggests that the response to HDT15 during MCA occlusion is dependent on baseline collaterals. Nonetheless, HDT15 promoted a mild improvement of cerebral hemodynamics even in subjects with poor collaterals, without safety concerns.
Collapse
Affiliation(s)
- Jacopo Mariani
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; Milan Center for Neuroscience (NeuroMi), Milano, Italy.
| | - Simone Beretta
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; Milan Center for Neuroscience (NeuroMi), Milano, Italy; Department of Neuroscience, San Gerardo Hospital, ASST Monza, Via Pergolesi 33, 20900 Monza (MB), Italy
| | - Susanna Diamanti
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; Milan Center for Neuroscience (NeuroMi), Milano, Italy; Department of Neuroscience, San Gerardo Hospital, ASST Monza, Via Pergolesi 33, 20900 Monza (MB), Italy
| | - Alessandro Versace
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy
| | - Beatrice Martini
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy
| | - Martina Viganò
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy
| | - Laura Castiglioni
- Department of Pharmacology, University of Milan, Via Balzaretti 9, 20133 Milano (MI), Italy
| | - Luigi Sironi
- Department of Pharmacology, University of Milan, Via Balzaretti 9, 20133 Milano (MI), Italy
| | - Davide Carone
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy
| | - Elisa Cuccione
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy
| | - Laura Monza
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy
| | - Carlo Giussani
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; Milan Center for Neuroscience (NeuroMi), Milano, Italy; Department of Neuroscience, San Gerardo Hospital, ASST Monza, Via Pergolesi 33, 20900 Monza (MB), Italy
| | - Carlo Ferrarese
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; Milan Center for Neuroscience (NeuroMi), Milano, Italy; Department of Neuroscience, San Gerardo Hospital, ASST Monza, Via Pergolesi 33, 20900 Monza (MB), Italy
| |
Collapse
|
52
|
Li Y, Tan L, Yang C, He L, Liu L, Deng B, Liu S, Guo J. Distinctions between the Koizumi and Zea Longa methods for middle cerebral artery occlusion (MCAO) model: a systematic review and meta-analysis of rodent data. Sci Rep 2023; 13:10247. [PMID: 37353569 PMCID: PMC10290095 DOI: 10.1038/s41598-023-37187-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023] Open
Abstract
Ischemic stroke in rodents is usually induced by intraluminal middle cerebral artery occlusion (MCAO) via the common carotid artery plugging filament invented by Koizumi et al. (MCAO-KM), or the external carotid artery plugging filament created by Zea Longa et al. (MCAO-LG). A systematic review of the distinctions between them is currently lacking. Here, we performed a meta-analysis in terms of model establishment, cerebral blood flow (CBF), and cerebral ischemia-reperfusion injury (CIRI) between them, Weighted Mean Differences and Standardized Mean Difference were used to analyze the combined effects, Cochrane's Q test and the I2 statistic were applied to determine heterogeneity, sensitivity analysis and subgroup analysis were performed to explore the source of heterogeneity. Literature mining suggests that MCAO-KM brings shorter operation time (p = 0.007), higher probability of plugging filament (p < 0.001) and molding establishment (p = 0.006), lower possibility of subarachnoid hemorrhage (p = 0.02), larger infarct volume (p = 0.003), severer brain edema (p = 0.002), and neurological deficits (p = 0.03). Nevertheless, MCAO-LG shows a more adequate CBF after ischemia-reperfusion (p < 0.001), a higher model survival rate (p = 0.02), and a greater infarct rate (p = 0.007). In conclusion, the MCAO-KM method is simple to operate with a high modeling success rate, and is suitable for the study of brain edema under long-term hypoperfusion, while the MCAO-LG method is highly challenging for novices, and is suitable for the study of CIRI caused by complete ischemia-reperfusion. These findings are expected to benefit the selection of intraluminal filament MCAO models before undertaking ischemic stroke preclinical effectiveness trials.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caixia Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liying He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowen Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
53
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
54
|
Chen HS, Zhang NN, Cui Y, Li XQ, Zhou CS, Ma YT, Zhang H, Jiang CH, Li RH, Wan LS, Jiao Z, Xiao HB, Li Z, Yan TG, Wang DL, Nguyen TN. A randomized trial of Trendelenburg position for acute moderate ischemic stroke. Nat Commun 2023; 14:2592. [PMID: 37147320 PMCID: PMC10163013 DOI: 10.1038/s41467-023-38313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
We aim to explore the effect of head-down position (HDP), initiated within 24 hours of onset, in moderate anterior circulation stroke patients with probable large artery atherosclerosis (LAA) etiology. This investigator-initiated, multi-center trial prospective, randomized, open-label, blinded-endpoint, multi-center and phase-2 trial was conducted in China and completed in 2021. Eligible patients were randomly assigned (1:1) into the HDP group receiving -20° Trendelenburg, or control group receiving standard care according to national guideline. The primary endpoint was proportion of modified Rankin Scale (mRS) of 0 to 2 at 90 days, which is a scale for measuring the degree of disability after stroke. 90-day mRS was assessed by a certified staff member who was blinded to group assignment. A total of 96 patients were randomized (47 in HDP group and 49 in control group) and 94 (97.9%) patients were included in the final analysis: 46 in HDP group and 48 in control group. The proportion of favorable outcome was 65.2% (30/46) in the HDP group versus 50.0% (24/48) in the control group (unadjusted: OR 2.05 [95%CI 0.87-4.82], P = 0.099). No severe adverse event was attributed to HDP procedures. This work suggests that the head-down position seems safe and feasible, but does not improve favorable functional outcome in acute moderate stroke patients with LAA. This trial was registered with ClinicalTrials.gov, NCT03744533.
Collapse
Affiliation(s)
- Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiao-Qiu Li
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Cheng-Shu Zhou
- Department of Neurology, Anshan Changda Hospital, Anshan, 114000, China
| | - Yu-Tong Ma
- Department of Neurology, Beipiao Central Hospital, Beipiao, 122100, China
| | - Hong Zhang
- Department of Neurology, Fukuang General Hospital of Liaoning Health Industry Group, Fushun, 113005, China
| | - Chang-Hao Jiang
- Department of Neurology, The Traditional Medicine Hospital of Dalian Lvshunkou, Dalian, 116045, China
| | - Run-Hui Li
- Department of Neurology, Central Hospital affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Li-Shu Wan
- Department of Neurology, Dandong First Hospital, Dandong, 118015, China
| | - Zhen Jiao
- Department of Neurology, Anshan Central Hospital, Anshan, 114000, China
| | - Hong-Bo Xiao
- Department of Neurology, Anshan Central Hospital, Anshan, 114000, China
| | - Zhuo Li
- Department of Neurology, Panjin Central Hospital, Panjin, 124010, China
| | - Ting-Guang Yan
- Department of Neurology, Chaoyang Central Hospital, Chaoyang, 122099, China
| | - Duo-Lao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thanh N Nguyen
- Neurology, Radiology, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
55
|
Fukuda KA, Liebeskind DS. Evaluation of Collateral Circulation in Patients with Acute Ischemic Stroke. Radiol Clin North Am 2023; 61:435-443. [PMID: 36931760 DOI: 10.1016/j.rcl.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The cerebral collateral circulation is an increasingly important consideration in the management of acute ischemic stroke and is a key determinant of outcomes. Growing evidence has demonstrated that better collaterals can predict the rate of infarct progression, degree of recanalization, the likelihood of hemorrhagic transformation and various therapeutic opportunities. Collaterals can also identify those unlikely to respond to reperfusion therapies, helping to optimize resources. More randomized trials are needed to evaluate the risks and benefits of endovascular reperfusion with consideration of collateral status. This reviews our current understanding of the pathophysiologic mechanisms, effect on outcomes and strategies for improvement of the collateral system.
Collapse
Affiliation(s)
- Keiko A Fukuda
- Department of Neurology, University of California, Los Angeles, UCLA Comprehensive Stroke Center, UCLA Neurovascular Imaging Research Core, 635 Charles East Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA
| | - David S Liebeskind
- Department of Neurology, University of California, Los Angeles, UCLA Comprehensive Stroke Center, UCLA Neurovascular Imaging Research Core, 635 Charles East Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| |
Collapse
|
56
|
Park TH, Lee HG, Cho SY, Park SU, Jung WS, Park JM, Ko CN, Cho KH, Kwon S, Moon SK. A Comparative Study on the Neuroprotective Effect of Geopung-Chunghyuldan on In Vitro Oxygen-Glucose Deprivation and In Vivo Permanent Middle Cerebral Artery Occlusion Models. Pharmaceuticals (Basel) 2023; 16:ph16040596. [PMID: 37111353 PMCID: PMC10143156 DOI: 10.3390/ph16040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Geopung-Chunghyuldan (GCD), which is a mixture of Chunghyuldan (CD), Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, is used to treat ischemic stroke in traditional Korean medicine. This study aimed to investigate the effects of GCD and CD on ischemic brain damage using in vitro and in vivo stroke models, as well as to elucidate the synergistic effects of GCD against ischemic insult. To study the effect of GCD in an in vitro ischemia model, SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD). Cell death after 16 h of OGD exposure was measured using the MTT assay and live/dead cell counting methods. An in vivo ischemia mice model was established through permanent middle cerebral artery occlusion (pMCAO). To determine the neuroprotective effect of GCD, it was orally administered immediately and 2 h after pMCAO. The infarct volume was measured through 2,3,5-triphenyltetrazolium chloride staining at 24 h after pMCAO. Compared with the control group, GCD treatment significantly reduced OGD-induced cell death in SH-SY5Y cells; however, CD treatment did not show a significant protective effect. In the pMCAO model, compared with the control group, treatment with GCD and CD significantly and mildly reduced the infarct volume, respectively. Our findings indicate that compared with CD, GCD may allow a more enhanced neuroprotective effect in acute ischemic stroke, indicating a potential synergistic neuroprotective effect. The possibility of GCD as a novel alternative choice for the prevention and treatment of ischemic stroke is suggested.
Collapse
Affiliation(s)
- Tae-Hoon Park
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Han-Gyul Lee
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
57
|
Li F, Ichinose K, Ishibashi S, Yamamoto S, Iwasawa E, Suzuki M, Yoshida-Tanaka K, Yoshioka K, Nagata T, Hirabayashi H, Mogushi K, Yokota T. Preferential delivery of lipid-ligand conjugated DNA/RNA heteroduplex oligonucleotide to ischemic brain in hyperacute stage. Mol Ther 2023; 31:1106-1122. [PMID: 36694463 PMCID: PMC10124084 DOI: 10.1016/j.ymthe.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Antisense oligonucleotide (ASO) is a major tool used for silencing pathogenic genes. For stroke in the hyperacute stage, however, the ability of ASO to regulate genes is limited by its poor delivery to the ischemic brain owing to sudden occlusion of the supplying artery. Here we show that, in a mouse model of permanent ischemic stroke, lipid-ligand conjugated DNA/RNA heteroduplex oligonucleotide (lipid-HDO) was unexpectedly delivered 9.6 times more efficiently to the ischemic area of the brain than to the contralateral non-ischemic brain and achieved robust gene knockdown and change of stroke phenotype, despite a 90% decrease in cerebral blood flow in the 3 h after occlusion. This delivery to neurons was mediated via receptor-mediated transcytosis by lipoprotein receptors in brain endothelial cells, the expression of which was significantly upregulated after ischemia. This study provides proof-of-concept that lipid-HDO is a promising gene-silencing technology for stroke treatment in the hyperacute stage.
Collapse
Affiliation(s)
- Fuying Li
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Keiko Ichinose
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Internal Medicine, Fukaya Red Cross Hospital, Saitama, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Eri Iwasawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motohiro Suzuki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kaoru Mogushi
- Innovative Human Resource Development Division, Institute of Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
58
|
Demir Unal E. Clinico-topographic evaluation of anterior versus posterior acute ischemic stroke and correlation with early mortality-based scale prediction. eNeurologicalSci 2023; 31:100458. [PMID: 37095895 PMCID: PMC10121384 DOI: 10.1016/j.ensci.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Objective Posterior circulation ischaemic strokes (PCIs) are a clinical syndrome associated with ischemia related to stenosis, in situ thrombosis, or embolic occlusion of the posterior circulation and differ from anterior circulation ischaemic strokes (ACIs) in many aspects. In this study, ACIs and PCIs were evaluated in terms of clinico-radiological and demographic aspects, and the relevance of objective scales to early disability and mortality was investigated. Methods The definition of ACIS or PCIS was classified according to the Oxfordshire Community Stroke Project (OCSP). There are mainly two groups divided into ACIs and PCIs. ACIs were included as total anterior circulation syndrome (TACS), partial anterior circulation syndrome (PACS) (right and left), and lacunar syndrome (LACS) (right and left), and PCIs were posterior circulation syndrome (POCS) (right and left). Arrival NIH Stroke Scale/Score (NIHSS) and Glasgow Coma Scale (GCS) scores were evaluated in clinical assessment and modified SOAR Score for Stroke (mSOAR) was for early mortality-based scale prediction. All data were compared, and mean, IQR (if applicable) values and ROC curve analysis were determined. Results A total of 100 AIS patients, 50 of whom were ACIs and 50 were PCIs, were included in the study and were evaluated within the first 24 h. Hypertension was the most common disease for both groups. The second most common was hyperlipidemia (82%) in the ACIs and diabetes mellitus (40%) in the PCIs. The frequency of right hemisphere ischemia was higher in ACIs (63.6%) and PCIs (48%). The mean NIHSS and GCS score (also median IQR) was higher in the right ACIs and the highest NIHSS mean was in the right partial anterior circulation syndrome (PACS) (respectively median (IQR): 9.5 (13) and median (IQR):14.5 (3)). The mean NIHSS and GCS score of bilateral posterior circulation syndrome (POCS) were the highest in PCIs (median (IQR):3 (17), (IQR):15 (4) respectively). The mSOAR mean was the highest in the right PACS in ACIs (median (IQR):2.5 (2)) and in bilateral POCs among PCIs (median(IQR):2(2)). Conclusion The association of PCIs with hyperlipidemia and the male gender was interpreted, and anterior infarcts were found to cause higher early clinical disability scores. The NIHSS scale was effective and reliable, especially in anterior acute strokes, but also emphasized the necessity of using the GCS assessment together in the first 24 h in the assessment of PCIs. mSOAR scale is a helpful predictor in estimating early mortality not only in ACIs but also in PCIs, similar to GCS.
Collapse
Affiliation(s)
- Esra Demir Unal
- Corresponding author at: Nevşehir State Hospital Neurology Clinic, Nevşehir 5004, Turkey.
| |
Collapse
|
59
|
Benemerito I, Mustafa A, Wang N, Narata AP, Narracott A, Marzo A. A multiscale computational framework to evaluate flow alterations during mechanical thrombectomy for treatment of ischaemic stroke. Front Cardiovasc Med 2023; 10:1117449. [PMID: 37008318 PMCID: PMC10050705 DOI: 10.3389/fcvm.2023.1117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
The treatment of ischaemic stroke increasingly relies upon endovascular procedures known as mechanical thrombectomy (MT), which consists in capturing and removing the clot with a catheter-guided stent while at the same time applying external aspiration with the aim of reducing haemodynamic loads during retrieval. However, uniform consensus on procedural parameters such as the use of balloon guide catheters (BGC) to provide proximal flow control, or the position of the aspiration catheter is still lacking. Ultimately the decision is left to the clinician performing the operation, and it is difficult to predict how these treatment options might influence clinical outcome. In this study we present a multiscale computational framework to simulate MT procedures. The developed framework can provide quantitative assessment of clinically relevant quantities such as flow in the retrieval path and can be used to find the optimal procedural parameters that are most likely to result in a favorable clinical outcome. The results show the advantage of using BGC during MT and indicate small differences between positioning the aspiration catheter in proximal or distal locations. The framework has significant potential for future expansions and applications to other surgical treatments.
Collapse
Affiliation(s)
- Ivan Benemerito
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Ivan Benemerito,
| | - Ahmed Mustafa
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Ning Wang
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Ana Paula Narata
- Department of Neuroradiology, University Hospital of Southampton, Southampton, United Kingdom
| | - Andrew Narracott
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Alberto Marzo
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
60
|
Zang J, Tang X, Su X, Zhang T, Lu D, Xu A. Systematic Analysis of RNA Expression Profiles in Different Ischemic Cortices in MCAO Mice. Cell Mol Neurobiol 2023; 43:859-878. [PMID: 35449428 DOI: 10.1007/s10571-022-01220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
Abstract
The prognosis of ischemic stroke patients is highly associated with the collateral circulation. And the competing endogenous RNAs (ceRNAs) generated from different compensatory supply regions may also involve in the regulation of ischemic tissues prognosis. In this study, we found the apoptosis progress of ischemic neurons in posterior circulation-supplied regions (close to PCA, cortex2) was much slower than that in anterior circulation-supplied territory (close to ACA, cortex1) in MCAO-3-h mice. Using the RNA sequencing and functional enrichment analysis, we analyzed the difference between RNA expression profile in cortex1 and cortex2 and the related biological processes. The results indicated that the differential expressed ceRNAs in cortex1 were involved in cell process under acute injury, while the differential expressed ceRNAs in cortex2 was more likely to participate in long-term injury and repair process. Besides, by establishing the miRNA-ceRNA interaction network we further sorted out two specifically distributed miRNAs, namely mmu-miR446i-3p (in cortex1) and mmu-miR3473d (in cortex2). And the specifically increased mmu-miR3473d in cortex2 mainly involved the angiogenesis and cell proliferation after ischemic stroke, which may be the critical reason for the longer therapeutic time window in cortex2. In conclusion, the present study reported the specific changes of ceRNAs in distinct compensatory regions potentially involved in the evolution of cerebral ischemic tissues and the unbalance prognosis after stroke. It provided more evidence for the collateral compensatory effects on patients' prognosis and carried out the new targets for the ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xionglin Tang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuanlin Su
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianyuan Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China. .,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China. .,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
61
|
Li W, Xu P, Kong L, Feng S, Shen N, Huang H, Wang W, Xu X, Wang X, Wang G, Zhang Y, Sun W, Hu W, Liu X. Elabela-APJ axis mediates angiogenesis via YAP/TAZ pathway in cerebral ischemia/reperfusion injury. Transl Res 2023; 257:78-92. [PMID: 36813109 DOI: 10.1016/j.trsl.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Angiogenesis helps to improve neurological recovery by repairing damaged brain tissue and restoring cerebral blood flow (CBF). The role of the Elabela (ELA)-Apelin receptor (APJ) system in angiogenesis has gained much attention. We aimed to investigate the function of endothelial ELA on postischemic cerebral angiogenesis. Here, we demonstrated that the endothelial ELA expression was upregulated in the ischemic brain and treatment with ELA-32 mitigated brain injury and enhanced the restoration of CBF and newly formed functional vessels following cerebral ischemia/reperfusion (I/R) injury. Furthermore, ELA-32 incubation potentiated proliferation, migration, and tube formation abilities of the mouse brain endothelial cells (bEnd.3 cells) under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. RNA sequencing analysis indicated that ELA-32 incubation had a role in the Hippo signaling pathway, and improved angiogenesis-related gene expression in OGD/R-exposed bEnd.3 cells. Mechanistically, we depicted that ELA could bind to APJ and subsequently activate YAP/TAZ signaling pathway. Silence of APJ or pharmacological blockade of YAP abolished the pro-angiogenesis effects of ELA-32. Together, these findings highlight the ELA-APJ axis as a potential therapeutic strategy for ischemic stroke by showing how activation of this pathway promotes poststroke angiogenesis.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuo Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongmei Huang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuxuan Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Sun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
62
|
The prognostic value of caveolin-1 levels in ischemic stroke patients after mechanical thrombectomy. Neurol Sci 2023; 44:2081-2086. [PMID: 36746844 DOI: 10.1007/s10072-023-06606-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE The impact of serum caveolin-1 (Cav-1) on clinical outcomes in patients after mechanical thrombectomy (MT) is unclear. We aimed to investigate the association between serum cav-1 levels and the 3-month functional outcome. METHODS We prospectively enrolled and analyzed patients with an anterior circulation large vessel occlusion who underwent MT. Serum cav-1 concentrations were tested after admission. The primary outcome was a 90-day modified Rankin Scale score of 3-6. RESULTS Of the 237 recruited patients (mean age, 69.7 ± 12.1 years; 152 male), 131 (55.3%) experienced a 90-day poor outcome. After adjustment for demographic characteristics and other covariates, patients with higher serum Cav-1 levels had a reduced risk of poor outcome at 3 months (Per 1-standard deviation increase; odd ratios [OR], 0.59; 95% confidence interval [CI], 0.39 - 0.89, P = 0.013). Elevated Cav-1 concentrations (Per 1-standard deviation increase; OR, 0.59; 95% CI, 0.40 - 0.88, P = 0.011) were significantly associated with a favorable shift in modified Rankin Scale score distribution. Similar results were confirmed when the Cav-1 levels were analyzed as a categorical variable. Furthermore, the restricted cubic spline showed a linear association between Cav-1 levels and 90-day poor outcome (P = 0.032 for linearity). CONCLUSIONS Increased serum Cav-1 levels were associated with improved prognosis at 3 months in ischemic stroke patients after MT, suggesting that Cav-1 may be a potential prognostic biomarker for ischemic stroke after reperfusion therapy.
Collapse
|
63
|
Klancik V, Kočka V, Sulzenko J, Widimsky P. The many roles of urgent catheter interventions: from myocardial infarction to acute stroke and pulmonary embolism. Expert Rev Cardiovasc Ther 2023; 21:123-132. [PMID: 36706282 DOI: 10.1080/14779072.2023.2174101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Cardiovascular diseases (CVDs) are the leading cause of cardiovascular mortality and a major contributor to disability worldwide. The prevalence of CVDs is continuously increasing, and from 1990 to 2019, it has doubled. Global cardiovascular mortality has increased from 12.1 million in 1990 to 18.6 million cases in 2019. The development of therapeutic options for these diseases is at the forefront of interest concerning the extensive socio-economic consequences. Modern endovascular transcatheter therapeutic options contribute to the reduction of cardiovascular morbidity and mortality. AREAS COVERED The article concentrates on the triad of the most common causes of acute cardiovascular mortality and morbidity - myocardial infarction, ischemic stroke, and pulmonary embolism. Current evidence-based indications, specific interventional techniques, and remaining unsolved issues are reviewed and compared. A personal perspective on the possible implications for the future is provided. EXPERT OPINION Primary angioplasty for ST-segment elevation myocardial infarction is a well-established therapeutic option with proven mortality benefits. We suppose that catheter-based interventions for acute stroke will spread quickly from centers of excellence to routine clinical practice. We believe that ongoing research will provide a basis for the expansion of interventional treatment of pulmonary embolism soon.
Collapse
Affiliation(s)
- Viktor Klancik
- Department of Cardiology, Ceske Budejovice Hospital, Inc, Ceske Budejovice, Czech Republic.,Department of Cardiology, Charles University, Czech Republic
| | - Viktor Kočka
- Department of Cardiology, Charles University, Czech Republic.,Department of Cardiology, University Hospital Kralovske Vinohrady, Czech Republic
| | - Jakub Sulzenko
- Department of Cardiology, Charles University, Czech Republic.,Department of Cardiology, University Hospital Kralovske Vinohrady, Czech Republic
| | - Petr Widimsky
- Department of Cardiology, Charles University, Czech Republic.,Department of Cardiology, University Hospital Kralovske Vinohrady, Czech Republic
| |
Collapse
|
64
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
65
|
Muacevic A, Adler JR, Alhazzani A, Alahmari F, Wassel Y, Elsayed E, Abdrabou A, Bassiouny Mohamed AA. Correlation Between Pre-treatment Collateral Status and Short-Term Functional Outcome in Patients With Mild to Moderate Stroke After Reperfusion Therapy in a Local Primary Stroke Center in the Southwestern Part of Saudi Arabia. Cureus 2023; 15:e33997. [PMID: 36811050 PMCID: PMC9939011 DOI: 10.7759/cureus.33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Background Stroke is a substantial cause of disability and mortality worldwide and is characterized by the sudden onset of acute neurological deficit. During acute ischemia, cerebral collateral circulations are crucial in preserving blood supply to the ischemic region. Recombinant tissue plasminogen activator (r-tPA) and endovascular mechanical thrombectomy (MT) are the primary standards of care for acute recanalization therapy. Methodology From August 2019 through December 2021, we enrolled patients treated in our local primary stroke center with anterior circulation acute ischemic stroke (AIS) treated with intravenous thrombolysis (IVT) with or without MT. Only patients diagnosed with mild to moderate anterior ischemic stroke, as measured by the National Institutes of Health Stroke Scale (NIHSS), were included in the study. The candidate patients underwent non-contrast CT scanning (NCCT) and CT angiography (CTA) at admission. The modified Rankin scale (mRS) was used to assess the functional outcome of the stroke. The modified Tan scale, graded on a scale of 0-3, was used to determine the collateral status. Results This study comprised a total of 38 patients who had anterior circulation ischemic strokes. The mean age was 34. 8±13. All patients received IVT; eight patients (21.1%) underwent MT following r-tPA. In 26.3% of cases, hemorrhagic transformation (HT), both symptomatic and asymptomatic, was evident. Thirty-three participants (86.8%) had a moderate stroke, whereas five participants (13.2%) had a minor stroke. With a P-value of 0.003, a poor collateral status on the modified Tan score is substantially associated with a short, poor functional outcome. Conclusion In our study, patients with mild to moderate AIS with good collateral scores at admission had better short-term outcomes. Patients with poor collaterals tend to present with a disturbed level of consciousness more than patients with good collaterals.
Collapse
|
66
|
Zhao ZA, Zhang NN, Cui Y, Chen HS. The effect of head-down tilt in experimental acute ischemic stroke. Eur J Neurol 2023; 30:155-161. [PMID: 36256506 DOI: 10.1111/ene.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Collateral therapeutics exert a promising protective effect on the outcome of acute ischemic stroke. Cerebral blood flow (CBF) may be modulated by different head positioning. The current study aimed to determine the effect of head-down tilt (HDT) on stroke in a rodent model. METHODS The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was used in this study. Neurological deficit scoring, 2,3,5-triphenyltetrazolium chloride staining, brain water content, perivascular aquaporin protein-4 (AQP4) localization, pericyte marker platelet-derived growth factor receptor β (PDGFRβ), and CBF velocity were evaluated at 24 h after MCAO/R and HDT treatment. RESULTS In the rat model of MCAO/R, brain infarct volume and neurological deficit score were significantly alleviated in the -30° and -60° groups compared to those in the lying flat (0°) group. Compared with the 0° group, an increase in CBF velocity was detected in the -30° group through two-photon microscopy imaging at 24 h after MCAO/R. Compared with the SHAM group, a decrease in PDGFRβ was observed in both the MCAO/R and HDT treatment (-30°) groups. The integrated optical density of PDGFRβ was found to be higher in the HDT treatment (-30°) group than in the MCAO/R group. An impairment in perivascular AQP4 polarity and an increase in brain water content were observed after MCAO/R, which were not exacerbated by HDT treatment (-30°). CONCLUSIONS Our findings suggest that HDT treatment at certain degrees may exert a neuroprotective effect after MCAO/R through improving CBF velocity and the protection of pericytes.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
67
|
Zhou Q, Chen Z, Liu YH, El Amki M, Glück C, Droux J, Reiss M, Weber B, Wegener S, Razansky D. Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation. Nat Commun 2022; 13:7969. [PMID: 36577750 PMCID: PMC9797555 DOI: 10.1038/s41467-022-35733-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Wide-field fluorescence imaging is an indispensable tool for studying large-scale biodynamics. Limited space-bandwidth product and strong light diffusion make conventional implementations incapable of high-resolution mapping of fluorescence biodistribution in three dimensions. We introduce a volumetric wide-field fluorescence microscopy based on optical astigmatism combined with fluorescence source localization, covering 5.6×5.6×0.6 mm3 imaging volume. Two alternative configurations are proposed exploiting multifocal illumination or sparse localization of point emitters, which are herein seamlessly integrated in one system. We demonstrate real-time volumetric mapping of the murine cortical microcirculation at capillary resolution without employing cranial windows, thus simultaneously delivering quantitative perfusion information across both brain hemispheres. Morphological and functional changes of cerebral vascular networks are further investigated after an acute ischemic stroke, enabling cortex-wide observation of concurrent collateral recruitment events occurring on a sub-second scale. The reported technique thus offers a wealth of unmatched possibilities for non- or minimally invasive imaging of biodynamics across scales.
Collapse
Affiliation(s)
- Quanyu Zhou
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Yu-Hang Liu
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Jeanne Droux
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, Zurich, Switzerland.
| |
Collapse
|
68
|
Bui TA, Jickling GC, Winship IR. Neutrophil dynamics and inflammaging in acute ischemic stroke: A transcriptomic review. Front Aging Neurosci 2022; 14:1041333. [PMID: 36620775 PMCID: PMC9813499 DOI: 10.3389/fnagi.2022.1041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. Restoring blood flow through recanalization is currently the only acute treatment for cerebral ischemia. Unfortunately, many patients that achieve a complete recanalization fail to regain functional independence. Recent studies indicate that activation of peripheral immune cells, particularly neutrophils, may contribute to microcirculatory failure and futile recanalization. Stroke primarily affects the elderly population, and mortality after endovascular therapies is associated with advanced age. Previous analyses of differential gene expression across injury status and age identify ischemic stroke as a complex age-related disease. It also suggests robust interactions between stroke injury, aging, and inflammation on a cellular and molecular level. Understanding such interactions is crucial in developing effective protective treatments. The global stroke burden will continue to increase with a rapidly aging human population. Unfortunately, the mechanisms of age-dependent vulnerability are poorly defined. In this review, we will discuss how neutrophil-specific gene expression patterns may contribute to poor treatment responses in stroke patients. We will also discuss age-related transcriptional changes that may contribute to poor clinical outcomes and greater susceptibility to cerebrovascular diseases.
Collapse
Affiliation(s)
- Truong An Bui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
69
|
Parray A, Akhtar N, Pir GJ, Pananchikkal SV, Ayadathil R, Mir FA, Francis R, Own A, Shuaib A. Increase in repulsive guidance molecule-a (RGMa) in lacunar and cortical stroke patients is related to the severity of the insult. Sci Rep 2022; 12:20788. [PMID: 36456640 PMCID: PMC9715939 DOI: 10.1038/s41598-022-24481-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Repulsive guidance molecule-a (RGMa) inhibits angiogenesis and increases inflammation. Animal models of cerebral ischemia have shown that an increased expression of RGMa leads to larger infarction and its inhibition attenuates effects of ischemia. We report on the relationship of RGMa to stroke types and severity. This is a prospective study in patients admitted to the stroke service in Qatar. We collected the clinical determinants, including NIHSS at admission, imaging and outcome at discharge and 90-days. RGMa levels were determined by measuring mRNA levels extracted from peripheral blood mononuclear cells (PBMCs) within 24 h of onset and at 5 days. There were 90 patients (lacunar: 64, cortical: 26) and 35 age-matched controls. RGMa mRNA levels were significantly higher in the stroke patients: day 1: 1.007 ± 0.13 versus 2.152 ± 0.19 [p < 0.001] and day-5: 3.939 ± 0.36 [p < 0.0001]) and significantly higher in patients with severe stroke (NIHSS ≥ 8) compared to milder symptoms (NIHSS < 8) at day 1 (NIHSS ≥ 8: 2.563 ± 0.36; NIHSS < 8: 1.947 ± 0.2) and day 5 (NIHSS ≥ 8: 5.25 ± 0.62; NIHSS < 8: 3.259 ± 0.419). Cortical stroke patients had marginally higher RGMa mRNA levels compared to lacunar stroke at day 1 (cortical stroke: 2.621 ± 0.46 vs lacunar stroke: 1.961 ± 0.19) and day 5 (cortical stroke: 4.295 ± 0.76 vs lacunar stroke: 3.774 ± 0.39). In conclusion, there is an increase in the level of RGMa mRNA in patients with acute stroke and seen in patients with lacunar and cortical stroke. The increase in RGMa mRNA levels is related to the severity of the stroke and increases over the initial 5 days. Further studies are required to determine the effects of the increase in RGMa on stroke recovery.
Collapse
Affiliation(s)
- Aijaz Parray
- grid.413548.f0000 0004 0571 546XThe Neuroscience Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Naveed Akhtar
- grid.413548.f0000 0004 0571 546XThe Neuroscience Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Ghulam Jeelani Pir
- grid.413548.f0000 0004 0571 546XThe Neuroscience Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Sajitha V. Pananchikkal
- grid.413548.f0000 0004 0571 546XThe Neuroscience Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Raheem Ayadathil
- grid.413548.f0000 0004 0571 546XThe Neuroscience Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Fayaz Ahmad Mir
- grid.413548.f0000 0004 0571 546XQatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Reny Francis
- grid.413548.f0000 0004 0571 546XThe Neuroscience Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Ahmed Own
- grid.413548.f0000 0004 0571 546XThe Neuroscience Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Ashfaq Shuaib
- grid.17089.370000 0001 2190 316XDivision of Neurology, Faculty of Medicine, University of Alberta, Edmonton, T6G 2G3 Canada
| |
Collapse
|
70
|
Value of CT Perfusion for Collateral Status Assessment in Patients with Acute Ischemic Stroke. Diagnostics (Basel) 2022; 12:diagnostics12123014. [PMID: 36553021 PMCID: PMC9777468 DOI: 10.3390/diagnostics12123014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
Good collateral status in acute ischemic stroke patients is an important indicator for good outcomes. Perfusion imaging potentially allows for the simultaneous assessment of local perfusion and collateral status. We combined multiple CTP parameters to evaluate a CTP-based collateral score. We included 85 patients with a baseline CTP and single-phase CTA images from the MR CLEAN Registry. We evaluated patients' CTP parameters, including relative CBVs and tissue volumes with several time-to-maximum ranges, to be candidates for a CTP-based collateral score. The score candidate with the strongest association with CTA-based collateral score and a 90-day mRS was included for further analyses. We assessed the association of the CTP-based collateral score with the functional outcome (mRS 0-2) by analyzing three regression models: baseline prognostic factors (model 1), model 1 including the CTA-based collateral score (model 2), and model 1 including the CTP-based collateral score (model 3). The model performance was evaluated using C-statistic. Among the CTP-based collateral score candidates, relative CBVs with a time-to-maximum of 6-10 s showed a significant association with CTA-based collateral scores (p = 0.02) and mRS (p = 0.05) and was therefore selected for further analysis. Model 3 most accurately predicted favorable outcomes (C-statistic = 0.86, 95% CI: 0.77-0.94) although differences between regression models were not statistically significant. We introduced a CTP-based collateral score, which is significantly associated with functional outcome and may serve as an alternative collateral measure in settings where MR imaging is not feasible.
Collapse
|
71
|
Xu M, Wu Q, Cheng Y, Zhang S, Tao W, Zhang S, Wang D, Liu M, Wu B. Circle of Willis Morphology in Primary Intracerebral Hemorrhage. Transl Stroke Res 2022; 13:736-744. [PMID: 35184272 PMCID: PMC9391241 DOI: 10.1007/s12975-022-00997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
We aimed to study the distribution of Circle of Willis (CoW) morphology and its association with intracerebral hemorrhage (ICH) etiology and cerebral small vessel disease (CSVD) burden. Patients with primary ICH who had brain MRIs were consecutively enrolled between March 2012 and January 2021. CoW morphology, CSVD features and the combined CSVD burden (including global CSVD burden, total hypertensive arteriopathy [HA] burden, and total cerebral amyloid angiopathy [CAA] burden) were assessed. CoW morphology included poor CoW (defined as CoW score 0-2), incomplete CoW, and complete fetal-variant of the posterior communicating artery (CFPcoA). Among 296 patients enrolled, 215 were included in the analysis. There was no significant difference among HA-, CAA-, and mixed-ICH in each CoW morphology. Exploratory subgroup analyses suggested that poor CoW was associated with a greater incidence of HA-ICH and low incidence of mixed ICH in patients aged < 60 years, while mixed ICH occurred more frequently in patients with CFPcoA, especially in those without hypertension history (all p < 0.050). Additionally, incomplete CoW was correlated with a larger incidence of lacunes (adjusted OR [adOR] 2.114, 95% CI 1.062-4.207), microbleeds ≥ 5 (adOR 2.437, 95% CI 1.187-5.002), and therefore the combined CSVD burden (adOR 1.194, 95% CI 1.004-1.419 for global CSVD burden, adOR 1.343, 95% CI 1.056-1.707 for total CAA burden), independent of modifiable vascular risk factors, but not age and sex. The CoW might therefore have a potential impact on ICH etiology and is associated with a greater CSVD burden. Our findings are novel, and need to be verified in future studies.
Collapse
Affiliation(s)
- Mangmang Xu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yajun Cheng
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuting Zhang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wendan Tao
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shihong Zhang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Deren Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
72
|
Zhao ZA, Zhang NN, Tao L, Cui Y, Li M, Qi SL, Chen HS. Effect of head-down tilt on clinical outcome and cerebral perfusion in ischemic stroke patients: A case series. Front Neurol 2022; 13:992885. [PMID: 36226083 PMCID: PMC9548884 DOI: 10.3389/fneur.2022.992885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background The effect of head position on stroke is not clear. The current study aimed to observe the effect of head-down tilt on acute ischemic stroke (AIS) patients with large vessel occlusion. Methods We observed the influence of head-down tilt position on clinical outcomes, myocardial enzymogram and N-terminal pro b-type Natriuretic Peptide in 4 AIS patients who suffered early neurological deterioration (END). Cerebral perfusion imaging was performed in 3 patients using arterial spin labeling. Results In series of AIS patients with END, head down tilt (-20°) prevented further neurological deterioration and improved clinical outcomes. An increase in cerebral blood flow was observed by arterial spin labeling after head down tilt treatment. No obvious adverse events occurred. Conclusion The case series suggest that head-down tilt may improve clinical outcome in AIS patients through increasing the cerebral perfusion with no obvious adverse events. The finding needs to be confirmed in future clinical trials.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Lin Tao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Meng Li
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Shou-Liang Qi
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Hui-Sheng Chen
| |
Collapse
|
73
|
Liu S, Fan D, Zang F, Gu N, Yin Y, Ge X, Zhang L, Chen X, Zhang Z, Xie C. Collateral circulation detected by arterial spin labeling predicts outcome in acute ischemic stroke. Acta Neurol Scand 2022; 146:635-642. [PMID: 36062837 DOI: 10.1111/ane.13694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/16/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Robust collateral circulation is strongly associated with good outcomes in acute ischemic stroke (AIS). AIMS To determine whether collateral circulation detected by arterial spin labeling (ASL) magnetic resonance imaging could predict good clinical outcome in AIS patients with 90 days follow-up. MATERIALS AND METHODS Total 58 AIS patients with anterior circulation stroke were recruited. Collateral circulation was defined as arterial transit artifact in ASL images. Modified Rankin Scale (mRS), the Barthel Index, and National Institutes of Health Stroke Scale (NIHSS) were employed to evaluate neurological function for the baseline and 90 days follow-up. The percent changes of these scores were also calculated, respectively. Finally, a support vector classifier model of machine learning and receiver operating characteristic curve were employed to estimate the power of ASL collaterals (ASLcs) predicting the clinical outcome. RESULTS Patients with ASLcs represented higher rate of good outcome (83.30% vs. 31.25%, p < .001) and lower follow-up mRS scores (p < .001), when compared to patients without ASLcs. There were significant differences for percent changes of mRS scores and NIHSS scores between these two groups. Further, the presence of ASLcs could predict good clinical outcome (OR, 1.54; 95% CI, 1.10-2.16), even after controlling for baseline NIHSS scores. The SVC model incorporating baseline NIHSS scores and ASLcs had significant predictive effect (accuracy, 79.3%; AUC, 0.806) on clinical prognosis for AIS patients. DISCUSSION We targeted on the non-invasive assessment of collateral circulation using ASL technique and found that patients with ASLcs were more likely to have a good clinical outcome after AIS. This finding is of guiding significance for treatment selection and prognostic prediction. CONCLUSIONS Early ASLcs assessment provides a good powerful tool to predict clinical outcome for AIS patients with 90 days follow-up.
Collapse
Affiliation(s)
- Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feifei Zang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Nan Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yun Yin
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Ge
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiang Chen
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhengsheng Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
74
|
Shrestha S, Bao H, Gu H, Gao C, Zeng Y, Xie K, Shi Y, Zhao L, He B, Zhao W, Tang Z, Li Z. Association of dissection features and primary collateral circulation with ischemic stroke in patients with spontaneous internal carotid artery dissection: evaluated using vessel wall-MRI and MRA. Br J Radiol 2022; 95:20210845. [PMID: 35816551 PMCID: PMC10996963 DOI: 10.1259/bjr.20210845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/15/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To study the ischemic stroke risk factors in spontaneous internal carotid artery dissection (ICAD) patients via analyzing the dissection features and primary collateral circulation using vessel wall-MRI and magnetic resonance angiography. METHODS ICAD patients who had undergone VW-MRI were included in this study. A total of 36 patients were included and divided into ICAD stroke (N = 23) and non-stroke (N = 13) group. Dissection imaging features [intramural hematoma (IMH), length of IMH, intimal flap, double lumen, intraluminal thrombus, degree of stenosis] and primary collateral status were analyzed. The primary collateral score (0-4) was evaluated based on presence of anterior communicating and ipsilateral anterior cerebral artery A1 segment (0-2) and ipsilateral posterior communicating artery (0-2). RESULTS There were no significant differences in dissection imaging features such as presence of double lumen, intimal flap, IMH, length of IMH and intraluminal thrombus between the two groups. Degree of stenosis and primary collateral score showed significant differences between the two groups. CONCLUSION Both the poor primary collateral circulation and severe stenosis may play an important role in occurrence of ischemic stroke for spontaneous ICAD patients and good primary collateral circulation can help to reduce the incidence of infarction. ADVANCES IN KNOWLEDGE ICAD is one of the major causes of ischemic stroke. Early evaluation of the status of the Circle of Willis in ICAD patients by MRI may help to make treatment strategies and improve clinical outcome.
Collapse
Affiliation(s)
- Srijana Shrestha
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Han Bao
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Heyi Gu
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Chao Gao
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Yizhen Zeng
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Kaipeng Xie
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Yixin Shi
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Lei Zhao
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Bo He
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Wei Zhao
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| | - Zhiwei Tang
- Department of Neurosurgery, First Affiliated Hospital of
Kunming Medical University,
Kunming, China
| | - Zongfang Li
- Department of Radiology, First Affiliated Hospital of Kunming
Medical University, Kunming,
China
| |
Collapse
|
75
|
Cao F, Wang M, Fan S, Han S, Guo Y, Zaman A, Guo J, Luo Y, Kang Y. Cerebral Venous Oxygen Saturation in Hypoperfusion Regions May Become a New Imaging Indicator to Predict the Clinical Outcome of Stroke. Life (Basel) 2022; 12:life12091312. [PMID: 36143349 PMCID: PMC9504954 DOI: 10.3390/life12091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
To automatically and quantitatively evaluate the venous oxygen saturation (SvO2) in cerebral ischemic tissues and explore its value in predicting prognosis. A retrospective study was conducted on 48 AIS patients hospitalized in our hospital from 2015−2018. Based on quantitative susceptibility mapping and perfusion-weighted imaging, this paper measured the cerebral SvO2 in hypoperfusion tissues and its change after intraarterial rt-PA treatment. The cerebral SvO2 in different hypoperfusion regions between the favorable and unfavorable clinical outcome groups was analyzed using an independent t-test. Relationships between cerebral SvO2 and clinical scores were determined using the Pearson correlation coefficient. The receiver operating characteristic process was conducted to evaluate the accuracy of cerebral SvO2 in predicting unfavorable clinical outcomes. Cerebral SvO2 in hypoperfusion (Tmax > 4 and 6 s) was significantly different between the two groups at follow-up (p < 0.05). Cerebral SvO2 and its changes before and after treatment were negatively correlated with clinical scores. The positive predictive value, negative predictive value, accuracy, and area under the curve of the cerebral SvO2 were higher than those predicted by the ischemic core. Therefore, the cerebral SvO2 of hypoperfusion regions was a stronger imaging predictor of unfavorable clinical outcomes after stroke.
Collapse
Affiliation(s)
- Fengqiu Cao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingming Wang
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Shengyu Fan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Shanhua Han
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Asim Zaman
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY 10027, USA
- Correspondence: (J.G.); (Y.L.); (Y.K.); Tel.: +86-139-4047-2926 (Y.K.)
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
- Correspondence: (J.G.); (Y.L.); (Y.K.); Tel.: +86-139-4047-2926 (Y.K.)
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- Correspondence: (J.G.); (Y.L.); (Y.K.); Tel.: +86-139-4047-2926 (Y.K.)
| |
Collapse
|
76
|
Blockade of Platelet Glycoprotein Ibα Augments Neuroprotection in Orai2-Deficient Mice during Middle Cerebral Artery Occlusion. Int J Mol Sci 2022; 23:ijms23169496. [PMID: 36012752 PMCID: PMC9409377 DOI: 10.3390/ijms23169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte–platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2-/-) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα–von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2-/- mice. During ischemia–reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2-/- mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.
Collapse
|
77
|
Hua J, Zhou Y, Chen L, Tang X, Diao S, Fang Q. How do cardiovascular risk factors correlate with post-stroke cognitive function: Directly or indirectly through stroke severity? Front Neurol 2022; 13:917295. [PMID: 35989927 PMCID: PMC9389173 DOI: 10.3389/fneur.2022.917295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Cognitive impairment may affect one-third of stroke survivors. Cardiovascular risk factors and stroke severity were known to be associated with cognitive function after stroke. However, it is unclear whether cardiovascular risk factors directly affect cognition after stroke, indirectly affect cognition by changing stroke severity, or both. Moreover, the effect of a combination of hypertension and diabetes mellitus was conflicting. We aimed to investigate the multiple direct and indirect associations and inspire potential intervention strategies. Materials and methods From February 2020 to January 2021, 350 individuals received cognitive tests within 7 days after incident stroke. Cognitive tests were performed using the Chinese version of the Mini-Mental State Examination (MMSE). A moderated mediation model was constructed to test the indirect associations between cardiovascular and demographic risk factors and cognition mediated through stroke severity, the direct associations between risk factors and cognition, and the moderating effects of hypertension and diabetes. Results Age (estimate, -0.112), atrial fibrillation (estimate, -4.092), and stroke severity (estimate, -1.994) were directly associated with lower cognitive function after stroke. Vascular disease (estimate, 1.951) and male sex (estimate, 2.502) were directly associated with better cognition after stroke. Higher education level was associated with better cognition directly (estimate, 1.341) and indirectly (estimate, 0.227) through stroke severity. The combination of hypertension decreased the magnitude of the negative association between atrial fibrillation and cognition (estimate, from -4.092 to -3.580). Conclusion This is the first Chinese study exploring the moderated and mediating associations between cardiovascular risk factors, stroke severity, and cognitive function after stroke. Age, female sex, and atrial fibrillation were directly associated with lower cognition after stroke. The combination of hypertension might have a positive effect on cognition.
Collapse
Affiliation(s)
- Jianian Hua
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yixiu Zhou
- Department of Emergency, Children's Hospital of Soochow University, Suzhou, China
| | - Licong Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Tang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shanshan Diao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
78
|
Association of 24-hour blood pressure parameters post-thrombectomy with functional outcomes according to collateral status. J Neurol Sci 2022; 441:120369. [DOI: 10.1016/j.jns.2022.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
|
79
|
Zhao C, Luo W, Liu X, Luo J, Song J, Yuan J, Liu S, Huang J, Kong W, Hu J, Yang J, Sun R, Yue C, Xie D, Li L, Sang H, Qiu Z, Li F, Wu D, Zi W, Yang Q. Effect of atrial fibrillation on outcomes after mechanical thrombectomy and long-term ischemic recurrence in patients with acute basilar artery occlusion. Front Neurol 2022; 13:909677. [PMID: 35968276 PMCID: PMC9372365 DOI: 10.3389/fneur.2022.909677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction According to the literature on anterior circulation, comorbid atrial fibrillation (AF) is not associated with a worse functional outcome, lower reperfusion rates, or higher rates of intracranial hemorrhage after mechanical thrombectomy (MT) compared to intravenous thrombolysis (IVT) or treatment with supportive care. However, data are limited for the effect of comorbid AF on procedural and clinical outcomes of acute basilar artery occlusion (ABAO) after MT. This study aimed to investigate the effect of atrial fibrillation on outcomes after MT and long-term ischemic recurrence in patients with ABAO. Methods We performed a registered study of the Endovascular Treatment for Acute Basilar Artery Occlusion Study (BASILAR, which is registered in the Chinese Clinical Trial Registry, http://www.chictr.org.cn; ChiCTR1800014759) from January 2014 to May 2019, which included 647 patients who underwent MT for ABAO, 136 of whom had comorbid AF. Prospectively defined baseline characteristics, procedural outcomes, and clinical outcomes were reported and compared. Results On multivariate analysis, AF predicted a shorter puncture-to-recanalization time, higher first-pass effect rate, and lower incidence of angioplasty and/or stenting (p < 0.01). AF had no effect on intracranial hemorrhage incidence [adjusted odds ratio (aOR), 1.093; 95% confidence interval (CI), 0.451–2.652], 90-day functional outcomes (adjusted common odds ratio, 0.915; 95% CI, 0.588–1.424), or mortality (aOR, 0.851; 95% CI, 0.491–1.475) after MT. The main findings were robust in the subgroup and 1-year follow-up analyses. Comorbid AF was the remaining predictor of ischemic recurrence (aOR, 4.076; 95% CI, 1.137–14.612). Conclusions The study revealed no significant difference in the safety and efficacy of MT for ABAO regardless of whether patients had comorbid AF. However, a higher proportion of patients with AF experienced ischemic recurrence within 1 year after MT.
Collapse
Affiliation(s)
- Chenhao Zhao
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weidong Luo
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xing Liu
- Department of Medicine, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun Luo
- Department of Neurology, The 404th Hospital of Mianyang, Mianyang, China
| | - Jiaxing Song
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junjie Yuan
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuai Liu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiacheng Huang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weilin Kong
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinrong Hu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruidi Sun
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chengsong Yue
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongjing Xie
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linyu Li
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongfei Sang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongming Qiu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengli Li
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Deping Wu
- Huaian Medical District of Jingling Hospital, Medical School of Nanjing University, Huaian, China
| | - Wenjie Zi
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Wenjie Zi
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Qingwu Yang
| |
Collapse
|
80
|
Association between Deep Medullary Veins in the Unaffected Hemisphere and Functional Outcome in Acute Cardioembolic Stroke: An Observational Retrospective Study. Brain Sci 2022; 12:brainsci12080978. [PMID: 35892419 PMCID: PMC9330894 DOI: 10.3390/brainsci12080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Objective: To explore whether deep medullary veins (DMVs) in the unaffected hemisphere were associated with functional outcome in acute cardioembolic stroke patients. Methods: Acute cardioembolic stroke patients at a single center were retrospectively included. DMVs visibility in the unaffected hemisphere was assessed using a well-established four-grade scoring method based on susceptibility-weighted imaging (SWI): grades 0−3 (grade 0 for no visible DMVs; grade 1 for the numbers of conspicuous DMVs < 5; grade 2 for numbers raging from 5 to 10; grade 3 for more than 10). Patients were further divided into mild-to-moderate (grade 0−2) and severe DMVs (grade 3) groups. Functional outcomes were evaluated using the modified Rankin scale (mRS) score at three months. Poor outcome was defined as mRS ≥ 3. Binary logistic regression analysis was used to explore the association between DMVs grade and functional outcome. Results: A total of 170 patients were finally included. Compared with the mild-to-moderate DMVs group (149 patients), the severe DMVs group (21 patients) had higher baseline National Institutes of Health Stroke Scale (NIHSS) scores (p = 0.002), lower levels of admission systolic blood pressure (BP) (p = 0.031), and elevated rates of large infarction (p = 0.003). At three months, the severe DMVs group had higher mRS (p = 0.002). Patients in the poor outcome group (82/170, 48.2%) had older age, higher baseline NIHSS score, lower admission diastolic BP, higher rates of hemorrhagic transformation and large infarction, and an increased proportion of severe DMVs (all p < 0.05). After adjusting for confounders, multivariable regression analysis showed that the severe DMVs grade (adjusted odds ratio [OR] = 5.830, 95% confidence interval [CI] = 1.266−26.856, p = 0.024) was significantly associated with three-month functional outcomes without interaction with other potential risk factors (p for interaction > 0.05). Conclusions: DMVs grade in the unaffected hemisphere was independently associated with three-month functional outcome in acute cardioembolic stroke patients. Patients with severe DMVs were more likely to have a poor functional outcome at three months.
Collapse
|
81
|
Salahuddin H, Saherwala A, Pinho MC, Moore W, Castonguay A, Khan NI, Jeelani F, Uppal H, He H, Campbell J, Shang T. Association of distal hyperintense vessel sign and recurrent stroke in patients with symptomatic intracranial stenosis. J Stroke Cerebrovasc Dis 2022; 31:106616. [PMID: 35816788 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The distal hyperintense vessel sign (DHV) on fluid-attenuated inversion recovery magnetic resonance image (MRI) is an imaging biomarker of slow leptomeningeal collateral flow in the presence of large artery stenosis or occlusion reflecting impaired cerebral hemodynamics. In this study, we aim to investigate the significance of the DHV sign in patients with symptomatic ≥ 70% intracranial atherosclerotic stenosis. METHODS We retrospectively reviewed patients with ischemic stroke or transient ischemic attack admitted to a single center from January 2010 to December 2017. Patients were included if they had symptomatic ≥ 70% atherosclerotic stenosis of the intracranial internal carotid artery or middle cerebral artery. The presence of the DHV sign was evaluated by blinded neuroradiologist and vascular neurologists. Recurrent ischemic stroke in the vascular territory of symptomatic intracranial artery was defined as new neurological deficits with associated neuroimaging findings during the follow up period. RESULTS A total of 109 patients were included in the study, of which 55 had DHV sign. Average duration of follow up was 297 ± 326 days. Four patients were lost during follow up. Patients with the DHV sign had a higher rate of recurrent ischemic stroke (38%), compared to patients without the DHV sign (17%; p=0.018). In multivariate regression analysis, the presence of DHV sign was an independent predictor of recurrent ischemic stroke. A DHV score of ≥ 2 had a 63% sensitivity and 69% specificity for recurrent ischemic stroke. INTERPRETATION In patients with severe symptomatic intracranial atherosclerotic stenosis, those with a DHV sign on MRI are at higher risk of recurrent ischemic stroke.
Collapse
Affiliation(s)
- Hisham Salahuddin
- Department of Neurology, Antelope Valley Hospital, Los Angeles, CA USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX USA; Department of Neurology, University of Toledo, Toledo, OH USA
| | - Ali Saherwala
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Marco C Pinho
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX USA.
| | - William Moore
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX USA.
| | | | - Nadeem I Khan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Faraz Jeelani
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Hardeep Uppal
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX USA.
| | - Henry He
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX USA.
| | - Joel Campbell
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Ty Shang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX USA.
| |
Collapse
|
82
|
Xu M, Guo W, Rascle L, Mechtouff L, Nighoghossian N, Eker O, Wang L, Henninger N, Mikati AG, Zhang S, Wu B, Liu M. Leukoaraiosis Distribution and Cerebral Collaterals: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:869329. [PMID: 35812112 PMCID: PMC9263359 DOI: 10.3389/fneur.2022.869329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background and Objective Microvascular failure might result in the collapse of cerebral collaterals. However, controversy remains regarding the role of leukoaraiosis (LA) in collateral recruitment. We, therefore, performed a systematic review and meta-analysis of the association between LA and cerebral collaterals. Methods Ovid Medline, PubMed, Embase, Web of Science, and three Chinese databases were searched from inception to August 2021. Two types of cerebral collaterals, including Circle of Willis (CoW) and leptomeningeal collaterals (LC), were investigated separately. Random effect models were used to calculate the pooled odds ratio (OR). Meta-regression and subgroup analyses were performed to explore the potential sources of heterogeneity. Results From 14 studies (n = 2,451) that fulfilled our inclusion criteria, data from 13 could be pooled for analysis. Overall, there was a significant association between severe LA and incomplete CoW (pooled OR 1.66, 95% CI 1.18–2.32, p = 0.003), with low heterogeneity (I2 = 5.9%). This association remained significant in deep LA (pooled OR 1.48, 95% CI 1.04–2.11, p = 0.029, I2 = 0), but not periventricular LA. Similarly, there was a significant association between LA and LC (pooled OR 1.73, 95% CI 1.03–2.90, p = 0.037), but with high heterogeneity (I2 = 67.2%). Meta-regression indicated a negative association of sample size with the effect sizes (p = 0.029). In addition, most of the studies (7/9) included into the analysis of the relationship of severe LA with poor LC enrolled subjects with large vessel occlusion stroke, and this relationship remained significant when pooling the seven studies, but with high heterogeneity. Conclusion Severe LA is associated with a higher prevalence of poor collaterals. This association is robust for CoW but weak for LC. Further studies are required to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Mangmang Xu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Guo
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lucie Rascle
- Department of Vascular Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Laura Mechtouff
- Department of Vascular Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Norbert Nighoghossian
- Department of Vascular Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Omer Eker
- Department of Neuroradiology of Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon, France
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Nils Henninger
- Department of Neurology and Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Abdul Ghani Mikati
- Department of Neurosurgery, Tampa General Hospital, University of South Florida, Tampa, FL, United States
| | - Shihong Zhang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ming Liu
| |
Collapse
|
83
|
Ghozy S, Reda A, Varney J, Elhawary AS, Shah J, Murry K, Sobeeh MG, Nayak SS, Azzam AY, Brinjikji W, Kadirvel R, Kallmes DF. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol 2022; 13:870141. [PMID: 35711268 PMCID: PMC9195142 DOI: 10.3389/fneur.2022.870141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States.,Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | - Mohamed Gomaa Sobeeh
- Faculty of Physical Therapy, Sinai University, Cairo, Egypt.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Sandeep S Nayak
- Department of Internal Medicine, NYC Health + Hospitals/Metropolitan, New York, NY, United States
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Waleed Brinjikji
- Department of Neurosurgery, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - David F Kallmes
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
84
|
Small vessel disease and collaterals in ischemic stroke patients treated with thrombectomy. J Neurol 2022; 269:4708-4716. [PMID: 35384484 DOI: 10.1007/s00415-022-11099-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND PURPOSE To determine the influence of the cerebral small vessel disease (SVD) burden on collateral recruitment in patients treated with mechanical thrombectomy (MT) for anterior circulation acute ischemic stroke (AIS). METHODS Patients with AIS due to large vessel occlusion (LVO) from the Thrombectomie des Artères Cérébrales (THRACE) trial and prospective cohorts from 2 academic comprehensive stroke centers treated with MT were pooled and retrospectively analyzed. Collaterals' adequacy was assessed using the American Society of Interventional and Therapeutic Radiology/Society of Interventional Radiology (ASITN/SIR) score on initial digital subtraction angiography and dichotomized as good (3,4) versus poor (0-2) collaterals. The SVD burden was rated with the global SVD score on MRI. Multivariable logistic regression analyses were used to determine relationships between SVD and ASITN/SIR scores. RESULTS A total of 312 participants were included (53.2% males, mean age 67.8 ± 14.9 years). Two hundred and seven patients had poor collaterals (66.4%), and 133 (42.6%) presented with any SVD signature. In multivariable analysis, patients demonstrated worse leptomeningeal collaterality with increasing SVD burden before and after adjustment for SVD risk factors (adjusted odds ratio [aOR] 0.69; 95%CI [0.52-0.89] and aOR 0.66; 95%CI [0.5-0.88], respectively). Using individual SVD markers, poor collaterals were significantly associated with the presence of lacunes (aOR 0.40, 95% CI [0.20-0.79]). CONCLUSION Our study provides evidence that in patients with AIS due to LVO treated with MT, the burden of SVD assessed by pre-treatment MRI is associated with poorer recruitment of leptomeningeal collaterals.
Collapse
|
85
|
Benemerito I, Narata AP, Narracott A, Marzo A. Determining Clinically-Viable Biomarkers for Ischaemic Stroke Through a Mechanistic and Machine Learning Approach. Ann Biomed Eng 2022; 50:740-750. [PMID: 35364704 PMCID: PMC9079032 DOI: 10.1007/s10439-022-02956-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
Assessment of distal cerebral perfusion after ischaemic stroke is currently only possible through expensive and time-consuming imaging procedures which require the injection of a contrast medium. Alternative approaches that could indicate earlier the impact of blood flow occlusion on distal cerebral perfusion are currently lacking. The aim of this study was to identify novel biomarkers suitable for clinical implementation using less invasive diagnostic techniques such as Transcranial Doppler (TCD). We used 1D modelling to simulate pre- and post-stroke velocity and flow wave propagation in a typical arterial network, and Sobol’s sensitivity analysis, supported by the use of Gaussian process emulators, to identify biomarkers linked to cerebral perfusion. We showed that values of pulsatility index of the right anterior cerebral artery > 1.6 are associated with poor perfusion and may require immediate intervention. Three additional biomarkers with similar behaviour, all related to pulsatility indices, were identified. These results suggest that flow pulsatility measured at specific locations could be used to effectively estimate distal cerebral perfusion rates, and ultimately improve clinical diagnosis and management of ischaemic stroke.
Collapse
Affiliation(s)
- Ivan Benemerito
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK. .,Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK.
| | - Ana Paula Narata
- Department of Neuroradiology, University Hospital of Southampton, Southampton, UK
| | - Andrew Narracott
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Alberto Marzo
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
| |
Collapse
|
86
|
Hung SH, Kramer S, Werden E, Campbell BCV, Brodtmann A. Pre-stroke Physical Activity and Cerebral Collateral Circulation in Ischemic Stroke: A Potential Therapeutic Relationship? Front Neurol 2022; 13:804187. [PMID: 35242097 PMCID: PMC8886237 DOI: 10.3389/fneur.2022.804187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Favorable cerebral collateral circulation contributes to hindering penumbral tissue from progressing to infarction and is associated with positive clinical outcomes after stroke. Given its clinical importance, improving cerebral collateral circulation is considered a therapeutic target to reduce burden after stroke. We provide a hypothesis-generating discussion on the potential association between pre-stroke physical activity and cerebral collateral circulation in ischemic stroke. The recruitment of cerebral collaterals in acute ischemic stroke may depend on anatomical variations, capacity of collateral vessels to vasodilate, and individual risk factors. Physical activity is associated with improved cerebral endothelial and vascular function related to vasodilation and angiogenic adaptations, and risk reduction in individual risk factors. More research is needed to understand association between cerebral collateral circulation and physical activity. A presentation of different methodological considerations for measuring cerebral collateral circulation and pre-stroke physical activity in the context of acute ischemic stroke is included. Opportunities for future research into cerebral collateral circulation, physical activity, and stroke recovery is presented.
Collapse
Affiliation(s)
- Stanley Hughwa Hung
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Kramer
- Centre for Quality and Patient Safety Research, Alfred Health Partnership, Melbourne, VIC, Australia.,Faculty of Health, School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Bruce C V Campbell
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
87
|
Fan JL, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, Fisher JP, Tzeng YC. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:387-403. [PMID: 34259070 PMCID: PMC8985438 DOI: 10.1177/0271678x211032029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management. Due to its unique anatomy and physiology, the cerebrovascular circulation is often treated as a stand-alone system rather than an integral component of the cardiovascular system. In order to optimize the strategies for BP management in acute ischemic stroke, a critical reappraisal of the mechanisms involved in CBF control is needed. In this review, we highlight the important role of collateral circulation and re-examine the pathophysiology of CBF control, namely the determinants of cerebral perfusion pressure gradient and resistance, in the context of stroke. Finally, we summarize the state of our knowledge regarding cardiovascular and cerebrovascular interaction and explore some potential avenues for future research in ischemic stroke.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Fiona D McBryde
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Department of Surgery & Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
88
|
Kim HJ, Roh HG. Imaging in Acute Anterior Circulation Ischemic Stroke: Current and Future. Neurointervention 2022; 17:2-17. [PMID: 35114749 PMCID: PMC8891584 DOI: 10.5469/neuroint.2021.00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Clinical trials on acute ischemic stroke have demonstrated the clinical effectiveness of revascularization treatments within an appropriate time window after stroke onset: intravenous thrombolysis (NINDS and ECASS-III) through the administration of tissue plasminogen activator within a 4.5-hour time window, endovascular thrombectomy (ESCAPE, REVASCAT, SWIFT-PRIME, MR CLEAN, EXTEND-IA) within a 6-hour time window, and extending the treatment time window up to 24 hours for endovascular thrombectomy (DAWN and DEFUSE 3). However, a substantial number of patients in these trials were ineligible for revascularization treatment, and treatments of some patients were considerably futile or sometimes dangerous in the clinical trials. Guidelines for the early management of patients with acute ischemic stroke have evolved to accept revascularization treatment as standard and include eligibility criteria for the treatment. Imaging has been crucial in selecting eligible patients for revascularization treatment in guidelines and clinical trials. Stroke specialists should know imaging criteria for revascularization treatment. Stroke imaging studies have demonstrated imaging roles in acute ischemic stroke management as follows: 1) exclusion of hemorrhage and stroke mimic disease, 2) assessment of salvageable brain, 3) localization of the site of vascular occlusion and thrombus, 4) estimation of collateral circulation, and 5) prediction of acute ischemic stroke expecting hemorrhagic transformation. Here, we review imaging methods and criteria to select eligible patients for revascularization treatment in acute anterior circulation stroke, focus on 2019 guidelines from the American Heart Association/American Stroke Association, and discuss the future direction of imaging-based patient selection to improve treatment effects.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Radiology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Hong Gee Roh
- Department of Radiology, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
89
|
Goit RK, Taylor AW, Lo ACY. Anti-inflammatory α-Melanocyte-Stimulating Hormone Protects Retina After Ischemia/Reperfusion Injury in Type I Diabetes. Front Neurosci 2022; 16:799739. [PMID: 35281489 PMCID: PMC8914517 DOI: 10.3389/fnins.2022.799739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal ischemia/reperfusion (I/R) injury is a major cause of vision loss in many ocular diseases. Retinal I/R injury is common in diabetic retinopathy, which as a result of hyperglycemia damages the retina and can cause blindness if left untreated. Inflammation is a major contributing factor in the pathogenesis of I/R injury. α-Melanocyte-stimulating hormone (α-MSH) is an anti-inflammatory peptide hormone that has displayed protective effects against I/R-induced organ damages. Here, we aimed to investigate the protective role of α-MSH on I/R-induced diabetic retinal damage using hyperglycemic C57BL/6J Ins2Akita/+ mice. Experimental I/R injury was induced by blocking the right middle cerebral artery (MCA) for 2 h followed by 2 h or 22 h of reperfusion using the intraluminal method. Since ophthalmic artery originates proximal to the origin of the MCA, the filament also blocked blood supply to the retina. Upon treatment with α-MSH at 1 h after ischemia and 1 h after reperfusion, animals displayed significant improvement in amplitudes of b-wave and oscillatory potentials during electroretinography. α-MSH also prevented I/R-induced histological alterations and inhibited the development of retinal swelling. Loss of retinal ganglion cells as well as oxidative stress were significantly attenuated in the α-MSH-treated retinae. Level of interleukin 10 was significantly increased after α-MSH treatment. Moreover, gene expression of glutamate aspartate transporter 1, monocarboxylate transporter (MCT) 1 and MCT-2 were significantly higher after α-MSH administration. In conclusion, α-MSH mitigates the severity of I/R-induced retinal damage under hyperglycemic condition. These beneficial effects of α-MSH may have important therapeutic implications against retinal I/R injury under hyperglycemic condition.
Collapse
Affiliation(s)
- Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew W. Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Amy C. Y. Lo, , orcid.org/0000-0003-4239-6851
| |
Collapse
|
90
|
Hong Y, Fang J, Ma M, Su W, Zhou M, Tang L, Tang H, He L. The Hyperdense middle cerebral artery sign is associated with poor leptomeningeal collaterals in acute ischemic stroke: a retrospective study. BMC Neurol 2022; 22:51. [PMID: 35148711 PMCID: PMC8832774 DOI: 10.1186/s12883-022-02566-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
Background The hyperdense middle cerebral artery sign (HMCAS) is an early radiological marker to provide an early diagnosis and to identify ischemia. As reported, HMCAS is associated with heavy clot burden. Moreover, a heavy clot burden may cause obstruction of the orifices of arteries for leptomeningeal collateral flows and can lead to severe clinical conditions. However, the direct relationship between HMCAS and collateral flows remains unclear. Therefore, we explored the association between HMCAS and leptomeningeal collaterals in patients with acute ischemic stroke. Methods Consecutive ischemic stroke patients were enrolled from January 2015 to April 2021. HMCAS appearance and collateral status were detected by multimodal computed tomography at admission. Logistic regression analyses helped to identify the association between HMCAS, collateral flows and stroke severity. Results In 494 included patients, 180 (36.4%) presented with HMCAS. Ipsilateral collaterals were not seen or less prominent in patients with HMCAS (P < 0.001). The HMCAS appearance was significantly associated with less collaterals (odds ratio 5.17, 95% confidence interval 3.27-8.18, P < 0.001), internal carotid artery + M1/M1 occlusion, the initial stroke severity and follow-up outcomes. Subgroup analyses further confirmed HMCAS as an indicator of poor collaterals in ischemic stroke (all P values < 0.05). Conclusions HMCAS is associated with poor leptomeningeal collaterals, the stroke severity and a poor neurological outcome. Therefore, the HMCAS appearance can act as an early warning sign for healthcare professionals to be alert for poor collateral flows and poor neurological outcomes in ischemic stroke patients with middle cerebral artery occlusion.
Collapse
Affiliation(s)
- Ye Hong
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China.,Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Jinghuan Fang
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China.,Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Mengmeng Ma
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China.,Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Wei Su
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China.,Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Muke Zhou
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China.,Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Li Tang
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China.,Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Huairong Tang
- Department of Health Management Center, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China.
| | - Li He
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, Chengdu, 610041, Sichuan, China. .,Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
91
|
Fan W, Shi W, Rong J, Guo W, Lu S, Tan J, Yu B. Different Grades of Collateral Circulation for Evaluating Cerebral Hemodynamic Status in Carotid Artery Stenosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8484977. [PMID: 35154622 PMCID: PMC8828319 DOI: 10.1155/2022/8484977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
Abstract
Normally, ipsilateral hemodynamic compromise of patients with carotid stenosis (CS) is subjectively identified by collateral circulation through cerebral angiography in the clinical process. It is unclear whether collaterals would linearly determine cerebral perfusion in CS patients. This study aimed to investigate the independent role of collateral circulation on cerebral perfusion in CS patients and the underlying interrelations among them. From 2017 to 2020, 124 CS patients who underwent carotid endarterectomy (CEA) with both preoperative CTP and digital substruction angiography (DSA) images were enrolled. Division of subgroups was based on degree of CS (50-70%, 70-90%, and near-occlusion (NO)) and grades of collateral circulation by DSA. Differences in CTP parameters between CS patients with different collateral circulation were analyzed. Among 124 CS patients, grades 2 and 3 were highly associated with carotid NO (n = 22, 32.35% and n = 22, 32.35%) compared with others (P < 0.0001). The collateral circulation was found to have poor relation with cerebral perfusion parameters in all enrolled patients but significantly improved ipsilateral cerebral perfusion in patients with carotid NO (P < 0.05). Linear hemodynamic compromise was barely related to degree of CS in lobes supplied by middle cerebral artery (MCA) except the frontal lobe (P < 0.05). The grades of collateral circulation are positively associated with degree of CS while having nonsignificant effect on cerebral perfusion. Overall, severity of CS is poorly related to hemodynamic status while the perfectibility of compensation defined by grades of collateral circulation effectively alleviates ipsilateral cerebral perfusion deficit in carotid NO.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Wencheng Guo
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Shuangshuang Lu
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
92
|
Rasheed W, Wodeyar A, Srinivasan R, Frostig RD. Sensory stimulation-based protection from impending stroke following MCA occlusion is correlated with desynchronization of widespread spontaneous local field potentials. Sci Rep 2022; 12:1744. [PMID: 35110588 PMCID: PMC8810838 DOI: 10.1038/s41598-022-05604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
Abstract
In a rat model of ischemic stroke by permanent occlusion of the medial cerebral artery (pMCAo), we have demonstrated using continuous recordings by microelectrode array at the depth of the ischemic territory that there is an immediate wide-spread increase in spontaneous local field potential synchrony following pMCAo that was correlated with ischemic stroke damage, but such increase was not seen in control sham-surgery rats. We further found that the underpinning source of the synchrony increase is intermittent bursts of low multi-frequency oscillations. Here we show that such increase in spontaneous LFP synchrony after pMCAo can be reduced to pre-pMCAo baseline level by delivering early (immediately after pMCAo) protective sensory stimulation that reduced the underpinning bursts. However, the delivery of a late (3 h after pMCAo) destructive sensory stimulation had no influence on the elevated LFP synchrony and its underpinning bursts. Histology confirmed both protection for the early stimulation group and an infarct for the late stimulation group. These findings highlight the unexpected importance of spontaneous LFP and its synchrony as a predictive correlate of cerebral protection or stroke infarct during the hyperacute state following pMCAo and the potential clinical relevance of stimulation to reduce EEG synchrony in acute stroke.
Collapse
Affiliation(s)
- Waqas Rasheed
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Anirudh Wodeyar
- Department of Cognitive Science, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Ramesh Srinivasan
- Department of Cognitive Science, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
93
|
Gwak DS, Choi W, Kwon JA, Shim DH, Kim YW, Hwang YH. Perfusion profile evaluated by severity-weighted multiple Tmax strata predicts early neurological deterioration in minor stroke with large vessel occlusion. J Cereb Blood Flow Metab 2022; 42:329-337. [PMID: 34559021 PMCID: PMC9122513 DOI: 10.1177/0271678x211029165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Minor stroke due to large vessel occlusion (LVO) is associated with poor outcomes. Hypoperfused tissue fate may be more accurately predicted by severity-weighted multiple perfusion strata than by a single perfusion threshold. We investigated whether poor perfusion profile evaluated by multiple Tmax strata is associated with early neurological deterioration (END) in patients with minor stroke with LVO. Ninety-four patients with a baseline National Institute of Health Stroke Scale score ≤5 and anterior circulation LVO admitted within 24 hours of onset were included. Tmax strata proportions (Tmax 2-4 s, 4-6 s, 6-8 s, 8-10 s, and >10 s) against the entire hypoperfusion volume (Tmax >2 s) were measured. The perfusion profile was defined as the shift of the distribution of the Tmax strata proportions towards worse hypoperfusion severity compared with that of the entire cohort using the Wilcoxon-Mann-Whitney generalised odds ratio (OR); its performance to predict END was tested. The area under the curve of perfusion profile was 0.785 (95% confidence interval [CI]: 0.691-0.878, p < 0.001). Poor perfusion profile (generalised OR >1.052) was independently associated with END (adjusted OR 13.42 [95% CI: 4.38-41.15], p < 0.001). Thus, perfusion profile with severity-weighted multiple Tmax strata may predict END in minor stroke and LVO.
Collapse
Affiliation(s)
- Dong-Seok Gwak
- Department of Neurology, 65396Kyungpook National University Hospital, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - WooChan Choi
- Department of Neurology, 65396Kyungpook National University Hospital, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jung-A Kwon
- Department of Neurology, 65396Kyungpook National University Hospital, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Dong-Hyun Shim
- Department of Neurology, 65396Kyungpook National University Hospital, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yong-Won Kim
- Department of Neurology, 65396Kyungpook National University Hospital, Kyungpook National University Hospital, Daegu, Republic of Korea.,Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, 65396Kyungpook National University Hospital, Kyungpook National University Hospital, Daegu, Republic of Korea.,Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
94
|
Risk Score for Symptomatic Intracranial Haemorrhage in Patients with Acute Ischaemic Stroke Receiving Endovascular Treatment. Clin Neurol Neurosurg 2022; 215:107184. [DOI: 10.1016/j.clineuro.2022.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
|
95
|
Arrarte Terreros N, van Willigen BG, Niekolaas WS, Tolhuisen ML, Brouwer J, Coutinho JM, Beenen LFM, Majoie CBLM, van Bavel E, Marquering HA. Occult blood flow patterns distal to an occluded artery in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:292-302. [PMID: 34550818 PMCID: PMC8795216 DOI: 10.1177/0271678x211044941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Residual blood flow distal to an arterial occlusion in patients with acute ischemic stroke (AIS) is associated with favorable patient outcome. Both collateral flow and thrombus permeability may contribute to such residual flow. We propose a method for discriminating between these two mechanisms, based on determining the direction of flow in multiple branches distal to the occluding thrombus using dynamic Computed Tomography Angiography (dynamic CTA). We analyzed dynamic CTA data of 30 AIS patients and present patient-specific cases that identify typical blood flow patterns and velocities. We distinguished patterns with anterograde (N = 10), retrograde (N = 9), and both flow directions (N = 11), with a large variability in velocities for each flow pattern. The observed flow patterns reflect the interplay between permeability and collaterals. The presented method characterizes distal flow and provides a tool to study patient-specific distal tissue perfusion.
Collapse
Affiliation(s)
- Nerea Arrarte Terreros
- Department of Biomedical Engineering and Physics,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
- Nerea Arrarte Terreros, Department
of Biomedical Engineering and Physics, Amsterdam UMC, location AMC,
Meibergdreef 9, 1011 AZ Amsterdam, the Netherlands.
| | - Bettine G van Willigen
- Department of Biomedical Engineering and Physics,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
- Cardiovascular Biomechanics, Eindhoven University of
Technology, Eindhoven, the Netherlands
| | - Wera S Niekolaas
- Department of Biomedical Engineering and Physics,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Manon L Tolhuisen
- Department of Biomedical Engineering and Physics,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Josje Brouwer
- Department of Neurology, Amsterdam UMC, location AMC,
Amsterdam, the Netherlands
| | - Jonathan M Coutinho
- Department of Neurology, Amsterdam UMC, location AMC,
Amsterdam, the Netherlands
| | - Ludo FM Beenen
- Department of Radiology and Nuclear Medicine,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Charles BLM Majoie
- Department of Radiology and Nuclear Medicine,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Henk A Marquering
- Department of Biomedical Engineering and Physics,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| |
Collapse
|
96
|
Predictores radiológicos del volumen final del infarto cerebral en pacientes con obstrucción vascular proximal. RADIOLOGIA 2022. [DOI: 10.1016/j.rx.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
97
|
Pharmacological brain cytoprotection in acute ischaemic stroke — renewed hope in the reperfusion era. Nat Rev Neurol 2022; 18:193-202. [PMID: 35079135 PMCID: PMC8788909 DOI: 10.1038/s41582-021-00605-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/08/2022]
Abstract
For over 40 years, attempts to develop treatments that protect neurons and other brain cells against the cellular and biochemical consequences of cerebral ischaemia in acute ischaemic stroke (AIS) have been unsuccessful. However, the advent of intravenous thrombolysis and endovascular thrombectomy has taken us into a new era of treatment for AIS in which highly effective reperfusion therapy is widely available. In this context, cytoprotective treatments should be revisited as adjunctive treatment to reperfusion therapy. Renewed efforts should focus on developing new drugs that target multiple aspects of the ischaemic cascade, and previously developed drugs should be reconsidered if they produced robust cytoprotective effects in preclinical models and their safety profiles were reasonable in previous clinical trials. Several development pathways for cytoprotection as an adjunct to reperfusion can be envisioned. In this Review, we outline the targets for cytoprotective therapy and discuss considerations for future drug development, highlighting the recent ESCAPE-NA1 trial of nerinetide, which produced the most promising results to date. We review new types of clinical trial to evaluate whether cytoprotective drugs can slow infarct growth prior to reperfusion and/or ameliorate the consequences of reperfusion, such as haemorrhagic transformation. We also highlight how advanced brain imaging can help to identify patients with salvageable ischaemic tissue who are likely to benefit from cytoprotective therapy. In this Review, Fisher and Savitz consider how the era of reperfusion therapy in ischaemic stroke provides new hope for the development of cytoprotective therapies to further improve outcomes, highlighting how promising recent findings can be built on to benefit patients. Highly successful reperfusion therapy with intravenous thrombolysis and endovascular thrombectomy is now widely available for the treatment of acute ischaemic stroke, making cytoprotective therapy a viable additional treatment approach. Previous attempts to develop cytoprotective therapy have been unsuccessful, but this approach should now be reconsidered as an adjunctive therapy to thrombolysis and thrombectomy. New cytoprotective drugs should be developed to target multiple aspects of the ischaemic cascade, and previously developed drugs should be reconsidered. Trials should be conducted to evaluate the effects of cytoprotective drugs when administered before or after reperfusion therapy or both. Advanced brain imaging should be used to select patients who are most likely to benefit from cytoprotective treatment for enrolment in new trials.
Collapse
|
98
|
Evolution of Hypodensity on Non-Contrast CT in Correlation with Collaterals in Anterior Circulation Stroke with Successful Endovascular Reperfusion. J Clin Med 2022; 11:jcm11020446. [PMID: 35054140 PMCID: PMC8777970 DOI: 10.3390/jcm11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction: The aim of the study was to assess the impact of collaterals on the evolution of hypodensity on non-contrast CT (NCCT) in anterior circulation stroke with reperfusion by mechanical thrombectomy (MT). Methods: We retrospectively included stroke patients with middle cerebral artery occlusion who were reperfused by MT in early and late time window. Artificial intelligence (AI)-based software was used to calculate of hypodensity volumes at baseline NCCT (V1) and at follow-up NCCT 24 h after MT (V2), along with the difference between the two volumes (V2-V1) and the follow-up (V2)/baseline (V1) volume ratio (V2/V1). The same software was used to classify collateral status by using a 4-point scale where the score of zero indicated no collaterals and the score of three represented contrast filling of all collaterals. The volumetric values were correlated with the collateral scores. Results: Collateral scores had significant negative correlation with V1 (p = 0.035), V2, V2− V1 and V2/V1 (p < 0.001). In cases with collateral score = 3, V2 was significantly smaller or absent compared to V1; in those with collateral score 2, V2 was slightly larger than V1, and in those with scores 1 and 0 V2 was significantly larger than V1. These relationships were observed in both early and late time windows. Conclusions: The collateral status determined the evolution of the baseline hypodensity on NCCT in patients with anterior circulation stroke who had MT reperfusion. Damage can be stable or reversible in patients with good collaterals while in those with poor collaterals tissues that initially appear normal will frequently appear as necrotic after 24 h. With good collaterals, it is stable or can be reversible while with poor collaterals, normal looking tissue frequently appears as necrotic in follow-up exam. Hence, acute hypodensity represents different states of the ischemic brain parenchyma.
Collapse
|
99
|
Platelet distribution width: A significant predictor of poor outcome after mechanical thrombectomy. J Stroke Cerebrovasc Dis 2021; 31:106273. [PMID: 34974240 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Elevated platelet distribution width (PDW) is a recognized marker of platelet activity. Herein, we investigated the association between admission PDW values and clinical outcome at 3 months in acute ischemic stroke (AIS) patients undergoing mechanical thrombectomy (MT). MATERIALS AND METHODS We retrospectively collected consecutive patients diagnosed with AIS following MT from two stroke centers. PDW was measured on admission. Subjects were divided into two groups according to the clinical outcome using the modified Rankin Scale at 3 months. Multiple regression analyses and receiver operating characteristic (ROC) curves were performed to determine the associations between admission PDW values, clinical parameters, and functional outcome. RESULTS A total of 162 subjects were enrolled. Patients in the poor outcome group had a significantly higher percentage of PDW >16.0 fL compared with the good outcome group (57.3% vs. 26.9%, P < 0.001). After adjusting for a range of confounding factors, multiple regression analysis showed that PDW >16.0 fL was an independent predictor of poor outcome at 3 months (odds ratio 4.572, 95% confidence interval 1.896-11.026, P = 0.001). ROC curve analysis revealed that PDW >16.0 fL predicted poor outcome with 57.3% sensitivity and 73.1% specificity (the area under the ROC curve 0.637, 95% confidence interval 0.558-0.711, P = 0.004). CONCLUSIONS Elevated PDW is an independent predictor of poor functional outcome in patients with anterior circulation AIS undergoing MT at 3 months.
Collapse
|
100
|
Kojima D, Fujimoto K, Kashimura H, Akamatsu Y. Successful Leptomeningeal Enhancement in a Patient with Tandem Occlusion of a Carotid and Middle Cerebral Artery Following Carotid Artery Stenting for Contralateral Carotid Artery Stenosis. JOURNAL OF NEUROENDOVASCULAR THERAPY 2021; 16:381-386. [PMID: 37502347 PMCID: PMC10370919 DOI: 10.5797/jnet.cr.2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/01/2021] [Indexed: 07/29/2023]
Abstract
Objective Although the presence of leptomeningeal anastomosis is known as a predictor of favorable outcome in patients with acute large vessel occlusion, the efficacy of enhancing leptomeningeal collateral flow has rarely been demonstrated. Case Presentation A 73-year-old man previously diagnosed with asymptomatic bilateral carotid stenosis was admitted to our emergency department 2 hours after the onset of fluctuating symptoms, including aphasia, left conjugate deviation, and right hemiparesis. CT demonstrated no hemorrhagic lesion. Considering the history of the patient, emergent angiography was performed and demonstrated tandem occlusion of the left cervical internal carotid artery (ICA) with left common carotid injection, leptomeningeal flow compensating for distal territory of occluded segment of left middle cerebral artery (MCA) via the left anterior cerebral artery through severe cervical ICA stenosis with right common carotid injection, and the proximal segment of the left MCA through the posterior communicating artery and occlusion of the M2 segment with left vertebral injection. Given the results of angiography and fluctuating symptoms, hemodynamic insufficiency was considered the underlying stroke mechanism for this case. Although recanalization of tandem lesions was initially considered, the risk of distal clot migration was a concern, so the patient underwent right carotid artery stenting (CAS) to enhance leptomeningeal collateral flow. This resulted in immediate resolution of symptoms after right CAS. Conclusion Stenting for carotid artery stenosis contralateral to tandem occlusive lesion may offer an effective alternative when both Willisian and leptomeningeal collaterals are robust.
Collapse
Affiliation(s)
- Daigo Kojima
- Department of Neurosurgery, Iwate Prefectural Chubu Hospital, Kitakami, Iwate, Japan
| | - Kentaro Fujimoto
- Department of Neurosurgery, Iwate Prefectural Chubu Hospital, Kitakami, Iwate, Japan
| | - Hiroshi Kashimura
- Department of Neurosurgery, Iwate Prefectural Chubu Hospital, Kitakami, Iwate, Japan
| | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Prefectural Chubu Hospital, Kitakami, Iwate, Japan
| |
Collapse
|