51
|
Pan Q, Zhou R, Su M, Li R. The Effects of Plumbagin on Pancreatic Cancer: A Mechanistic Network Pharmacology Approach. Med Sci Monit 2019; 25:4648-4654. [PMID: 31230062 PMCID: PMC6604675 DOI: 10.12659/msm.917240] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to use a network pharmacology approach to establish the effects of plumbagin on pancreatic cancer (PC) and to predict core targets and biological functions, pathways, and mechanisms of action. MATERIAL AND METHODS Genes associated with the pathogenesis of PC were obtained from a database of gene-disease associations (DisGeNET). Putative genes associated with plumbagin were identified from the databases of drug target identification (PharmMapper), target prediction of bioactive components (SwissTargetPrediction), and comprehensive drug target information (DrugBank). PC targets of plumbagin were harvested by using a functional enrichment analysis tool (FunRich). The data of function-related protein-protein interactions (PPIs) with a confidence score >0.9 were obtained by using functional protein association networks (STRING). The network interactions of plumbagin and PC targets and function-related proteins were constructed through complex network analysis and visualization (Cytoscape). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were used to identify the effects of plumbagin. RESULTS The most important biotargets for plumbagin in PC were identified as TP53, MAPK1, BCL2, and IL6. A total of 1,731 annotations and 121 enriched pathways for plumbagin and PC were identified by KEGG and GO analysis. The top 10 signaling pathways of plumbagin and PC were screened, followed by identification of biological components and functions. CONCLUSIONS Network pharmacology established the effects of plumbagin on PC, predicted core targets, biological functions, pathways, and mechanisms of action. Further studies are needed to validate these predictive biotargets in PC.
Collapse
Affiliation(s)
- Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China (mainland)
| | - Rui Zhou
- Department of Hepatobiliary Surgery, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China (mainland)
| | - Min Su
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Rong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China (mainland)
| |
Collapse
|
52
|
Otsuru T, Kobayashi S, Wada H, Takahashi T, Gotoh K, Iwagami Y, Yamada D, Noda T, Asaoka T, Serada S, Fujimoto M, Eguchi H, Mori M, Doki Y, Naka T. Epithelial-mesenchymal transition via transforming growth factor beta in pancreatic cancer is potentiated by the inflammatory glycoprotein leucine-rich alpha-2 glycoprotein. Cancer Sci 2019; 110:985-996. [PMID: 30575211 PMCID: PMC6398893 DOI: 10.1111/cas.13918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
We previously showed that an inflammation‐related, molecule leucine‐rich alpha‐2 glycoprotein (LRG) enhances the transforming growth factor (TGF)‐β1‐induced phosphorylation of Smad proteins and is elevated in patients with pancreatic ductal adenocarcinoma (PDAC). As TGF‐β/Smad signaling is considered to play a key role in epithelial‐mesenchymal transition (EMT), we attempted to clarify the mechanism underlying LRG‐related EMT in relation to metastasis in PDAC. We cultured LRG‐overexpressing PDAC cells (Panc1/LRG) and evaluated the morphology, EMT‐related molecules and TGF‐β/Smad signaling pathway in these cells. We also assessed the LRG levels in plasma and resected specimens from patients with PDAC. Inflammatory cytokines induced LRG production in PDAC cells. A spindle‐like shape was visualized more frequently than other shapes in Panc1/LRG with TGF‐β1 exposure. The expression of E‐cadherin in Panc1/LRG was decreased with TGF‐β1 exposure. Invasion increased with TGF‐β1 stimulation of Panc1/LRG. The phosphorylation of smad2 in Panc1/LRG was increased in comparison with parental Panc1 under TGF‐β1 stimulation. In the plasma LRG‐high group, the recurrence rate tended to be higher and the recurrence‐free survival (RFS) tended to be worse in comparison with the plasma LRG‐low group. LRG enhanced EMT induced by TGF‐β signaling, thus indicating that LRG has a significant effect on the metastasis of PDAC.
Collapse
Affiliation(s)
- Toru Otsuru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Testuji Naka
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| |
Collapse
|
53
|
Circulating interleukin-6 is associated with disease progression, but not cachexia in pancreatic cancer. Pancreatology 2019; 19:80-87. [PMID: 30497874 PMCID: PMC6613190 DOI: 10.1016/j.pan.2018.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/09/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cachexia is a wasting syndrome characterized by involuntary loss of >5% body weight due to depletion of adipose and skeletal muscle mass. In cancer, the pro-inflammatory cytokine interleukin-6 (IL-6) is considered a mediator of cachexia and a potential biomarker, but the relationship between IL-6, weight loss, and cancer stage is unknown. In this study we sought to evaluate IL-6 as a biomarker of cancer cachexia while accounting for disease progression. METHODS We retrospectively studied 136 subjects with biopsy-proven pancreatic ductal adenocarcinoma (PDAC), considering the high prevalence of cachexia is this population. Clinical data were abstracted from subjects in all cancer stages, and plasma IL-6 levels were measured using a multiplex array and a more sensitive ELISA. Data were evaluated with univariate comparisons, including Kaplan-Meier survival curves, and multivariate Cox survival models. RESULTS On multiplex, a total of 43 (31.4%) subjects had detectable levels of plasma IL-6, while by ELISA all subjects had detectable IL-6 levels. We found that increased plasma IL-6 levels, defined as detectable for multiplex and greater than median for ELISA, were not associated with weight loss at diagnosis, but rather with the presence of metastasis (p < 0.001 for multiplex and p = 0.007 for ELISA). Further, while >5% weight loss was not associated with worse survival, increased plasma IL-6 by either methodology was. CONCLUSION Circulating IL-6 levels do not correlate with cachexia (when defined by weight loss), but rather with advanced cancer stage. This suggests that IL-6 may mediate wasting, but should not be considered a diagnostic biomarker for PDAC-induced cachexia.
Collapse
|
54
|
Yakovenko A, Cameron M, Trevino JG. Molecular therapeutic strategies targeting pancreatic cancer induced cachexia. World J Gastrointest Surg 2018; 10:95-106. [PMID: 30622678 PMCID: PMC6314860 DOI: 10.4240/wjgs.v10.i9.95] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) induced cachexia is a complex metabolic syndrome associated with significantly increased morbidity and mortality and reduced quality of life. The pathophysiology of cachexia is complex and poorly understood. Many molecular signaling pathways are involved in PC and cachexia. Though our understanding of cancer cachexia is growing, therapeutic options remain limited. Thus, further discovery and investigation of the molecular signaling pathways involved in the pathophysiology of cachexia can be applied to development of targeted therapies. This review focuses on three main pathophysiologic processes implicated in the development and progression of cachexia in PC, as well as their utility in the discovery of novel targeted therapies.
Skeletal muscle wasting is the most prominent pathophysiologic anomaly in cachectic patients and driven by multiple regulatory pathways. Several known molecular pathways that mediate muscle wasting and cachexia include transforming growth factor-beta (TGF-β), myostatin and activin, IGF-1/PI3K/AKT, and JAK-STAT signaling. TGF-β antagonism in cachectic mice reduces skeletal muscle catabolism and weight loss, while improving overall survival. Myostatin/activin inhibition has a great therapeutic potential since it plays an essential role in skeletal muscle regulation. Overexpression of insulin-like growth factor binding protein-3 (IGFBP-3) leads to increased ubiquitination associated proteolysis, inhibition of myogenesis, and decreased muscle mass in PC induced cachexia. IGFBP-3 antagonism alleviates muscle cell wasting.
Another component of cachexia is profound systemic inflammation driven by pro-cachectic cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interferon gamma (INF-γ). IL-6 antagonism has been shown to reduce inflammation, reduce skeletal muscle loss, and ameliorate cachexia. While TNF-α inhibitors are clinically available, blocking TNF-α signaling is not effective in the treatment of cancer cachexia. Blocking the synthesis or action of acute phase reactants and cytokines is a feasible therapeutic strategy, but no anti-cytokine therapies are currently approved for use in PC. Metabolic alterations such as increased energy expenditure and gluconeogenesis, insulin resistance, fat tissue browning, excessive oxidative stress, and proteolysis with amino acid mobilization support tumor growth and the development of cachexia. Current innovative nutritional strategies for cachexia management include ketogenic diet, utilization of natural compounds such as silibinin, and supplementation with ω3-polyunsaturated fatty acids. Elevated ketone bodies exhibit an anticancer and anticachectic effect. Silibinin has been shown to inhibit growth of PC cells, induce metabolic alterations, and reduce myofiber degradation. Consumption of ω3-polyunsaturated fatty acids has been shown to significantly decrease resting energy expenditure and regulate metabolic dysfunction.
Collapse
Affiliation(s)
- Anastasiya Yakovenko
- University of Florida College of Medicine, Gainesville, Florida 32610, United States
| | - Miles Cameron
- University of Florida College of Medicine, Gainesville, Florida 32610, United States
| | - Jose Gilberto Trevino
- Department of Surgery, University of Florida Health Sciences Center, Gainesville, Florida 32610, United States
| |
Collapse
|
55
|
Taher MY, Davies DM, Maher J. The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem Soc Trans 2018; 46:1449-1462. [PMID: 30467123 DOI: 10.1042/bst20180136] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that activates a classic signalling pathway upon binding to its membrane-bound receptor (IL-6R). Alternatively, IL-6 may 'trans-signal' in a manner that is facilitated by its binding to a soluble derivative of the IL-6 receptor (sIL-6R). Resultant signal transduction is, respectively, driven by the association of IL-6/IL-6R or IL-6/sIL-6R complex with the membrane-associated signal transducer, gp130 (Glycoprotein 130). Distinct JAK (Janus tyrosine kinase)/STAT (signal transducers and activators of transcription) and other signalling pathways are activated as a consequence. Of translational relevance, overexpression of IL-6 has been documented in several neoplastic disorders, including but not limited to colorectal, ovarian and breast cancer and several haematological malignancies. This review attempts to summarise our current understanding of the role of IL-6 in cancer development. In short, these studies have shown important roles for IL-6 signalling in tumour cell growth and survival, angiogenesis, immunomodulation of the tumour microenvironment, stromal cell activation, and ultimate disease progression. Given this background, we also consider the potential for therapeutic targeting of this system in cancer.
Collapse
Affiliation(s)
- Mustafa Yassin Taher
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, U.K
- Department of Laboratory Medicine, Taibah University, Medina 42353, Saudi Arabia
| | - David Marc Davies
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, U.K
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, U.K.
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, U.K
- Department of Immunology, Eastbourne Hospital, East Sussex BN21 2UD, U.K
| |
Collapse
|
56
|
Local and Systemic Cytokine Profiling for Pancreatic Ductal Adenocarcinoma to Study Cancer Cachexia in an Era of Precision Medicine. Int J Mol Sci 2018; 19:ijms19123836. [PMID: 30513792 PMCID: PMC6321633 DOI: 10.3390/ijms19123836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/28/2023] Open
Abstract
Cancer cachexia is a debilitating condition seen frequently in patients with pancreatic ductal adenocarcinoma (PDAC). The underlying mechanisms driving cancer cachexia are not fully understood but are related, at least in part, to the immune response to the tumor both locally and systemically. We hypothesize that there are unique differences in cytokine levels in the tumor microenvironment and systemic circulation between PDAC tumors and that these varying profiles affect the degree of cancer cachexia observed. Patient demographics, operative factors, oncologic factors, and perioperative data were collected for the two patients in the patient derived xenograft (PDX) model. Human pancreatic cancer PDX were created by implanting fresh surgical pancreatic cancer tissues directly into immunodeficient mice. At PDX end point, mouse tumor, spleen and muscle tissues were collected and weighed, muscle atrophy related gene expression measured, and tumor and splenic soluble proteins were analyzed. PDX models were created from surgically resected patients who presented with different degrees of cachexia. Tumor free body weight and triceps surae weight differed significantly between the PDX models and control (P < 0.05). Both PDX groups had increased atrophy related gene expression in muscle compared to control (FoxO1, Socs3, STAT3, Acvr2b, Atrogin-1, MuRF1; P < 0.05). Significant differences were noted in splenic soluble protein concentrations in 14 of 15 detected proteins in tumor bearing mice when compared to controls. Eight splenic soluble proteins were significantly different between PDX groups (P < 0.05). Tumor soluble proteins were significantly different between the two PDX groups in 15 of 24 detected proteins (P < 0.05). PDX models preserve the cachectic heterogeneity found in patients and are associated with unique cytokine profiles in both the spleen and tumor between different PDX. These data support the use of PDX as a strategy to study soluble cachexia protein markers and also further efforts to elucidate which cytokines are most related to cachexia in order to provide potential targets for immunotherapy.
Collapse
|
57
|
Neumann CCM, von Hörschelmann E, Reutzel-Selke A, Seidel E, Sauer IM, Pratschke J, Bahra M, Schmuck RB. Tumor-stromal cross-talk modulating the therapeutic response in pancreatic cancer. Hepatobiliary Pancreat Dis Int 2018; 17:461-472. [PMID: 30243879 DOI: 10.1016/j.hbpd.2018.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant solid tumor with a dismal prognosis. The stroma component makes up to 90% of the tumor mass and is thought to be one of the main reasons for the tumor's high chemoresistance. Cancer associated fibroblasts (CAFs) have previously been identified to be the key stromal players. This is the first time we provide detailed in vitro experiments investigating tumor-stromal interactions when exposed to three well-known chemotherapeutic agents. METHODS Monocultures, indirect and direct co-cultures of two PDAC cell lines (AsPC and Panc-1) and six primary patients derived CAFs were treated with gemcitabine, nab-paclitaxel and the γ-secretase-inhibitor (GSI) DAPT. The cell viability of each component was measured with XTT. Finally, IL-6 concentrations of the supernatants were analyzed. RESULTS On the contrary to PDAC cell lines, CAF monocultures hardly responded to any treatment which suggested that stroma (CAFs) itself is more resistant to standard chemo-treatments than the epithelial cancer cells. Moreover, only a weak chemotherapeutic response was observed in direct co-cultures of cancer cells with CAFs. A change in the morphology of direct co-cultures was accompanied with the chemoresistance. CAFs were observed to build cage-like structures around agglomerates of tumor cells. High levels of IL-6 were also associated with a reduced response to therapy. Indirect co-cultures make the tumor-stromal interaction more complex. CONCLUSIONS CAFs are highly chemoresistant. Direct cell-cell contact and high levels of IL-6 correlate with a high chemoresistance.
Collapse
Affiliation(s)
- Christopher C M Neumann
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Ellen von Hörschelmann
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Elisabeth Seidel
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Igor Maximilian Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Marcus Bahra
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Rosa Bianca Schmuck
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitatsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
58
|
Activation of the IL-6/JAK2/STAT3 pathway induces plasma cell mastitis in mice. Cytokine 2018; 110:150-158. [DOI: 10.1016/j.cyto.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 01/02/2023]
|
59
|
Cullis J, Das S, Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031849. [PMID: 29229670 DOI: 10.1101/cshperspect.a031849] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent breakthroughs in immunotherapy as curative treatments in certain tumor types, there has been renewed interest in the relationship between immunity and tumor growth. Although we are gaining a greater understanding of the complex interplay of immune modulating components in the tumor microenvironment, the specific role that tumor cells play in shaping the immune milieu is still not well characterized. In this review, we focus on how mutant Kras tumor cells contribute to tumor immunity, with a specific focus on processes induced directly or indirectly by the oncogene.
Collapse
Affiliation(s)
- Jane Cullis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shipra Das
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
60
|
Vainer N, Dehlendorff C, Johansen JS. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018; 9:29820-29841. [PMID: 30038723 PMCID: PMC6049875 DOI: 10.18632/oncotarget.25661] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal cancer (GI) is a major health problem. Patients with gastric, pancreatic, colorectal, bile duct and gall bladder cancer often have advanced disease at the time of diagnosis and are generally difficult to cure, resulting in a dismal prognosis for most patients. Inflammation plays an important role in the development and growth of cancer, which has led to a growing interest in the pro-inflammatory cytokine interleukin 6 (IL-6). The aim of the present review was to evaluate the clinical use of IL-6 as a biomarker or therapeutic target in patients with GI cancer. We did a systematic review of studies (1993-2018), to assess the clinical use of IL-6 as a diagnostic, prognostic or predictive tumor biomarker or as a potential therapeutic target. This review includes 48 studies and 5316 patients. Circulating IL-6 levels appear to be an independent prognostic biomarker in patients with GI cancer, with high IL-6 levels associated with short overall survival (OS). The results for colorectal cancer were too ambiguous to give conclusive results. IL-6 seemed to be a marker for some of the clinical characteristics of GI cancer, and may have a role in the diagnostic workup in general practice. No published studies have examined the use of IL-6 as a therapeutic target in pancreatic, gastric, bile duct or colorectal cancer. In conclusion, high circulating IL-6 was associated with short OS in most studies in GI cancer patients. Whether inhibition of IL-6 would decrease GI cancer symptoms and increase quality of life is unknown.
Collapse
Affiliation(s)
- Noomi Vainer
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Dehlendorff
- Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
61
|
Sanguinete MMM, Oliveira PHD, Martins-Filho A, Micheli DC, Tavares-Murta BM, Murta EFC, Nomelini RS. Serum IL-6 and IL-8 Correlate with Prognostic Factors in Ovarian Cancer. Immunol Invest 2018; 46:677-688. [PMID: 28872976 DOI: 10.1080/08820139.2017.1360342] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the study was to correlate serum levels of IL-2, IL-5, IL-6, IL-8, IL-10, and TNF-α with clinical, laboratory, and pathological prognostic factors in patients with primary ovarian malignancy. Patients treated at the Pelvic Mass Ambulatory of the Discipline of Gynecology and Obstetrics/Oncology Research Institute (IPON) of the UFTM with confirmed diagnosis of malignant ovarian neoplasia (n = 26) were evaluated. Serum collection was performed preoperatively for the determination of tumor markers. The cytokines IL-2, IL-5, IL-6, IL-8, IL-10, and TNF-α were assayed by enzyme-linked immunosorbent assay (ELISA). The prognostic factors were compared using the Mann-Whitney test, with significance level lower than 0.05. When evaluating IL6, it was observed that higher serum levels were associated with overall survival less than 60 months (p = 0.0382). In the evaluation of IL8, higher serum levels were associated with neutrophil-to-lymphocyte ratio (NLR) ≥ 4 and platelet-to-lymphocyte ratio (PLR) ≥ 200 (p = 0.0198 and p = 0.0072, respectively), altered values of serum CA125 (p = 0.0457), and stage IIIC (p = 0.0486). Therefore, increased levels of IL-6 and IL-8 are associated with factors of worse prognosis in ovarian cancer. Additional studies with a larger sample of patients are needed to confirm the role of cytokines as prognostic factors, in the definition of treatment, and in the development of future target therapies.
Collapse
Affiliation(s)
- Marcela Moisés Maluf Sanguinete
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Paula Honório De Oliveira
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Agrimaldo Martins-Filho
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Douglas Côbo Micheli
- b Discipline of Pharmacology , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | | | - Eddie Fernando Candido Murta
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| | - Rosekeila Simões Nomelini
- a Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics , Federal University of Triângulo Mineiro , Uberaba , MG , Brazil
| |
Collapse
|
62
|
Bałan BJ, Zygmanowska E, Radomska-Leśniewska DM. Disorders noticed during development of pancreatic cancer: potential opportunities for early and effective diagnostics and therapy. Cent Eur J Immunol 2017; 42:377-382. [PMID: 29472816 PMCID: PMC5820973 DOI: 10.5114/ceji.2017.68698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, with a total five-year survival rate below 5%, represents a disease with a high level of malignancy. Some of the pancreatic cancer bad prognosis factors are nutrition disorders. Malnutrition, neither recognized nor properly referred to by the healthcare system, leads to well-documented negative health consequences in hospitalized patients including their impaired immunity, delayed post-surgery wound healing, a high risk of infectious complications, morbidity and mortality. There are numerous factors contributing to the development of pancreatic cancer, including telomerases, inflammation, angiogenesis, epigenetics and genetics factors, miRNA, pancreatic cancer stem cells. On the basis of molecular analyses, it has been established that precursor injuries may trigger pancreatic cancer when added to genetic alterations. Perhaps, combination of few presently used methods, like signal transduction modulated by K-ras, STAT3 activation, HMGB1 releasing, presence of oxidative stress and free radicals secretion, genes for proangiogenic growth factors activation or tissue-specific miRNA genes expression - will solve the problem of inadequate diagnostics.
Collapse
Affiliation(s)
- Barbara Joanna Bałan
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Poland
| | - Ewa Zygmanowska
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Poland
| | | |
Collapse
|
63
|
The Diagnostic Roles of Cytokines in Hepatobiliary Cancers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2979307. [PMID: 29410961 PMCID: PMC5749214 DOI: 10.1155/2017/2979307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Objectives The aim of this study was to investigate the role of several cytokines including IL-2, IL-6, IL-8, IL-10, and TNF-α in the diagnosis of HPB cancers. Materials and Methods The prospective study was performed between October 2007 and September 2014. The study included 226 patients who were divided into 5 groups depending on their postoperative and histopathologic diagnosis: Control group included 30 healthy volunteers. Hepatocellular cancer (HCC) group included 24 patients diagnosed with HCC. Gallbladder cancer (GBC) group included 36 patients diagnosed with GBC. Cholangiocellular carcinoma group included 64 patients diagnosed with cholangiocellular carcinoma. Pancreatic cancer group included 72 patients diagnosed with pancreatic cancer. Serum levels of IL-2, IL-6, IL-8, IL-10, and TNF-α were measured using an enzyme-linked immunosorbent assay kit in accordance with the guidelines of the producer. Results Serum TNF-α concentration was significantly higher in the cholangiocellular carcinoma and pancreatic cancer groups compared to other groups. IL-6 and IL-10 were significantly increased in both the HCC and GBC groups, IL-2, IL-6, IL-10, and TNF-α in the cholangiocellular carcinoma group, and IL-2, IL-6, IL-8, and TNF-α in the pancreatic cancer group. Conclusion We suggest that cytokines can be used as useful markers in the diagnosis of HPB cancers.
Collapse
|
64
|
Siddiqui I, Erreni M, Kamal MA, Porta C, Marchesi F, Pesce S, Pasqualini F, Schiarea S, Chiabrando C, Mantovani A, Allavena P. Differential role of Interleukin-1 and Interleukin-6 in K-Ras-driven pancreatic carcinoma undergoing mesenchymal transition. Oncoimmunology 2017; 7:e1388485. [PMID: 29308316 DOI: 10.1080/2162402x.2017.1388485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 02/07/2023] Open
Abstract
K-Ras mutations are a hallmark of human pancreatic adenocarcinoma (PDAC) and epithelial-mesenchymal-transition (EMT) is a driver of progression. Oncogenic K-Ras causes the constitutive activation of NF-kB and the switch-on of an inflammatory program, which further fuels NF-kB and STAT3 activation. In this study we investigated how inflammatory pathways triggered by oncogenic K-Ras are regulated in human pancreatic cancer cells with distict epithelial or mesenchymal phenotype. Our results demonstrate that in cells with epithelial features, K-Ras driven inflammation is under the control of IL-1, while in cells undergoing EMT, is IL-1 independent. In pancreatic tumor cells with EMT phenotype, treatment with IL-1R antagonist (Anakinra) did not inhibit inflammatory cytokine production and tumor growth in mice. In these cells IL-6 is actively transcribed by the EMT transcription factor TWIST. Targeting of mesenchymal pancreatic tumors in vivo with anti-IL-6RmAb (RoActemra) successfully decreased tumor growth in immunodeficient mice, inhibited the inflammatory stroma and NF-kB-p65 and STAT3 phosphorylation in cancer cells. The results confirm that IL-1 is an important driver of inflammation in epithelial pancreatic tumors; however, tumor cells undergoing EMT will likely escape IL-1R inhibition, as IL-6 is continuously transcribed by TWIST. These findings have implications for the rational targeting of inflammatory pathways in human pancreatic cancer.
Collapse
Affiliation(s)
- Imran Siddiqui
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy
| | - Marco Erreni
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy
| | - Mohammad Azhar Kamal
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università Piemonte Orientale, Novara, Italy
| | - Federica Marchesi
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Samantha Pesce
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy
| | - Fabio Pasqualini
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy
| | - Silvia Schiarea
- Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Chiara Chiabrando
- Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Alberto Mantovani
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy.,Humanitas University, Rozzano (Milano), Italy
| | - Paola Allavena
- Department of Immunology, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milano), Italy.,Humanitas University, Rozzano (Milano), Italy
| |
Collapse
|
65
|
Yu D, Ye T, Xiang Y, Shi Z, Zhang J, Lou B, Zhang F, Chen B, Zhou M. Quercetin inhibits epithelial-mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial-mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells. Onco Targets Ther 2017; 10:4719-4729. [PMID: 29026320 PMCID: PMC5626388 DOI: 10.2147/ott.s136840] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a flavone, is multifaceted, having anti-oxidative, anti-inflammatory, and anticancer properties. In the present study, we explored the effects of quercetin on the epithelial–mesenchymal transition (EMT) and invasion of pancreatic cancer cells and the underlying mechanisms. We noted that quercetin exerted pronounced inhibitory effects in PANC-1 and PATU-8988 cells. Moreover, quercetin inhibited EMT and decreased the secretion of matrix metalloproteinase (MMP). Meanwhile, we determined the activity of STAT3 after quercetin treatment. STAT3 phosphorylation decreased following treatment with quercetin. We also used activating agent of STAT3, IL-6, to induce an increase in cell malignancy and to observe the effects of treatment with quercetin. As expected, the EMT and MMP secretion increased with activation of the STAT3 signaling pathway, and quercetin reversed IL-6-induced EMT, invasion, and migration. Therefore, our results demonstrate that quercetin triggers inhibition of EMT, invasion, and metastasis by blocking the STAT3 signaling pathway, and thus, quercetin merits further investigation.
Collapse
Affiliation(s)
- Dinglai Yu
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tingting Ye
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yukai Xiang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Zhehao Shi
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Zhang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Bin Lou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Fan Zhang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.,Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
66
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
67
|
Inflammatory cytokines and angiogenic factors as potential biomarkers in South African pancreatic ductal adenocarcinoma patients: A preliminary report. Pancreatology 2017; 17:438-444. [PMID: 28377069 DOI: 10.1016/j.pan.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Several studies have investigated the association of differentially expressed cytokines with pancreatic ductal adenocarcinoma (PDAC), but none in African countries. This study aimed at investigating T-helper (Th) cell and angiogenic markers as diagnostic or prognostic biomarkers for PDAC in Black South Africans. METHODS We conducted a prospective, case-control study comprising of 34 PDAC patients and 27 control participants with either critical limb ischemia, abdominal aortic aneurysm or other abdominal pathology from causes other than pancreatic disease. Plasma levels of IL-2, IL-4, IL-6, IL-10, TNF, IFN-γ, IL-17A, VEGF, sVEGF-R1, FGF, PIGF, PDGF and P-selectin were measured using commercially available cytometric bead array, ELISA and multi-analyte Luminex kits. RESULTS Significantly higher levels of IFN-γ (p < 0.001), TNF (p < 0.001), IL-2 (p = 0.001), IL-4 (p < 0.01), IL-10 (p < 0.01), IL-17A (p < 0.01), PlGF (p < 0.0001) and basic FGF (p < 0.0001) were found in cases compared to control participants. PDAC patients with irresectable tumours had higher levels of VEGF (p = 0.02) and IL-6 (p = 0.01). A univariate analysis showed significant associations between IFN-γ, TNF, IL-10, -4, -2, basic FGF, PlGF and PDAC. In a multivariate logistic regression model, basic FGF (p = 0.002) and PlGF (p = 0.007) were independent risk factors for PDAC with a combined sensitivity of 71% and specificity of 100%. CONCLUSION Our preliminary data suggests a potential role for basic FGF and PlGF as diagnostic, and VEGF and IL-6 as prognostic biomarkers of PDAC in Black South African patients.
Collapse
|
68
|
Wei ZR, Liang C, Feng D, Cheng YJ, Wang WM, Yang DJ, Wang YX, Cai QP. Low tristetraprolin expression promotes cell proliferation and predicts poor patients outcome in pancreatic cancer. Oncotarget 2017; 7:17737-50. [PMID: 26894969 PMCID: PMC4951246 DOI: 10.18632/oncotarget.7397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
Tristetraprolin (also known as TTP, TIS11, ZFP36, and Nup475) is a well-characterized tumor suppressor that is down-regulated in several tumor types. In the current study, we found that TTP expression was markedly reduced in pancreatic cancer samples as compared to matched normal tissues. Low TTP level was associated with age (P=0.037), tumor size (P=0.008), tumor differentiation (P=0.004), postoperative T stage (pT stage, P<0.001), postoperative N stage (pN stage, P=0.008) and TNM stage (P<0.001). Moreover, low TTP expression predicted reduced survival rates and poor patient outcome. We also found that TTP impairs pancreatic cancer cell proliferation both in vivo and in vitro. Fluorescence Activated Cell Sorting (FACS) assay showed that TTP over-expression both increases apoptosis and decreases proliferation in pancreatic cancer cells. RNA-sequencing analysis showed that TTP over-expression downregulates several tumor-related factors, including Pim-1 and IL-6. Our findings indicate that TTP could serve as a potential prognostic indicator in pancreatic cancer.
Collapse
Affiliation(s)
- Zi-Ran Wei
- Department of Gastro-Intestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chao Liang
- Department of Gastro-Intestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ya-Jun Cheng
- Department of Gastro-Intestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Min Wang
- Department of Gastro-Intestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - De-Jun Yang
- Department of Gastro-Intestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yue-Xiang Wang
- SIBS (Institute of Health Sciences)-Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), Key Laboratory of Stem Cell Biology, Institute of Health Sciences, SIBS, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai, China
| | - Qing-Ping Cai
- Department of Gastro-Intestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
69
|
Pop VV, Seicean A, Lupan I, Samasca G, Burz CC. IL-6 roles - Molecular pathway and clinical implication in pancreatic cancer - A systemic review. Immunol Lett 2017; 181:45-50. [PMID: 27876525 DOI: 10.1016/j.imlet.2016.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 11/18/2016] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer has attracted a great deal of attention owing to the poor outcome, increasing prevalence in the last years and delay diagnosis. Known as a complex disease, it involves genetic mutations, changes in tumour microenvironment and inflammatory component dominated by interleukin-6 and its activated pathways, like Janus Kinase-Signal Transducer and Activator of Translation3, Mitogen Activated Protein Kinase and Androgen receptor. The pro-inflammatory cytokine, plays a central role in oncogenesis, cancer progression, invasiveness, microenvironment changes, treatment resistance, prognosis and associated co morbidities like cachexia and depression. Fulfilling these roles IL-6 requires special attention to understand its complexity in PC development.
Collapse
Affiliation(s)
- Vlad-Vasile Pop
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. Of Immunology and Allergology, Cluj-Napoca, Romania
| | - Andrada Seicean
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. Of Internal Medicine, Gastroenterology, Cluj-Napoca, Romania; Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Iulia Lupan
- Babes Bolyai University, Department of Molecular Biology, Cluj-Napoca, Romania
| | - Gabriel Samasca
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. Of Immunology and Allergology, Cluj-Napoca, Romania; Emergency Hospital for Children, Cluj-Napoca, Romania.
| | - Claudia-Cristina Burz
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. Of Immunology and Allergology, Cluj-Napoca, Romania; Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| |
Collapse
|
70
|
Tao M, Liu L, Shen M, Zhi Q, Gong FR, Zhou BP, Wu Y, Liu H, Chen K, Shen B, Wu MY, Shou LM, Li W. Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac. Cell Cycle 2016; 15:381-93. [PMID: 26761431 DOI: 10.1080/15384101.2015.1127468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway-dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB-dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway-dependent PP2Ac repression.
Collapse
Affiliation(s)
- Min Tao
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China.,b PREMED Key Laboratory for Precision Medicine, Soochow University , Suzhou , China.,c Jiangsu Institute of Clinical Immunology , Suzhou , China.,d Institute of Medical Biotechnology, Soochow University , Suzhou , China
| | - Lu Liu
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Meng Shen
- e Department of General Surgery , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Qiaoming Zhi
- e Department of General Surgery , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Fei-Ran Gong
- f Department of Hematology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Binhua P Zhou
- g Markey Cancer Center, University of Kentucky College of Medicine , Lexington , KY , USA.,h Departments of Molecular and Cellular Biochemistry , University of Kentucky College of Medicine , Lexington , KY , USA
| | - Yadi Wu
- g Markey Cancer Center, University of Kentucky College of Medicine , Lexington , KY , USA.,i Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine , Lexington , KY , USA
| | - Haiyan Liu
- j Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University , Suzhou , Jiangsu Province , China
| | - Kai Chen
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Bairong Shen
- k Center for Systems Biology, Soochow University , Suzhou , China
| | - Meng-Yao Wu
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Liu-Mei Shou
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China.,l Department of Oncology , the First Affiliated Hospital of Zhejiang Chinese Medicine University , Hangzhou , China
| | - Wei Li
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China.,b PREMED Key Laboratory for Precision Medicine, Soochow University , Suzhou , China.,c Jiangsu Institute of Clinical Immunology , Suzhou , China.,k Center for Systems Biology, Soochow University , Suzhou , China
| |
Collapse
|
71
|
Leal AS, Sporn MB, Pioli PA, Liby KT. The triterpenoid CDDO-imidazolide reduces immune cell infiltration and cytokine secretion in the KrasG12D;Pdx1-Cre (KC) mouse model of pancreatic cancer. Carcinogenesis 2016; 37:1170-1179. [PMID: 27659181 DOI: 10.1093/carcin/bgw099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-KrasG12D/+;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4-8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA and
| | - Michael B Sporn
- Department of Pharmacology, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Karen T Liby
- Department of Pharmacology, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA, .,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA and
| |
Collapse
|
72
|
Increased neutrophil-to-lymphocyte ratio after neoadjuvant therapy is associated with worse survival after resection of borderline resectable pancreatic ductal adenocarcinoma. Surgery 2016; 160:1288-1293. [PMID: 27450715 DOI: 10.1016/j.surg.2016.04.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (neutrophil count divided by lymphocyte count) is a marker of inflammation associated with poor cancer outcomes. The role of neutrophil-to-lymphocyte ratio in borderline resectable pancreatic ductal adenocarcinoma is unknown. We hypothesized that increased neutrophil-to-lymphocyte ratio in patients with borderline resectable pancreatic ductal adenocarcinoma after neoadjuvant therapy is inversely associated with survival. METHODS We used our borderline resectable pancreatic ductal adenocarcinoma database to identify patients who had completed neoadjuvant therapy and underwent resection. The neutrophil-to-lymphocyte ratio difference was calculated as the neutrophil-to-lymphocyte ratio after neoadjuvant therapy minus the neutrophil-to-lymphocyte ratio before neoadjuvant therapy. Patients were assigned to the increased neutrophil-to-lymphocyte ratio cohort if the difference was ≥2.5 units; all others were assigned to the stable neutrophil-to-lymphocyte ratio cohort. Statistical analyses were performed with t test and regression. RESULTS Of 62 patients identified, 43 were assigned to the stable neutrophil-to-lymphocyte ratio cohort, and 19 to the increased neutrophil-to-lymphocyte ratio cohort. There were no differences in stage, age, or sex. The preneoadjuvant neutrophil-to-lymphocyte ratio was 3.1 ± 2.4, whereas the postneoadjuvant neutrophil-to-lymphocyte ratio was 4.4 ± 3.5 (P = .002). Overall survival was worse in the increased neutrophil-to-lymphocyte ratio cohort compared with the stable neutrophil-to-lymphocyte ratio cohort (P = .009) with a Cox hazard ratio of 2.9 (P = .02). N0 disease conferred a survival advantage over N1 disease (Cox hazard ratio = 0.3, P = .01). On multivariate Cox hazard regression analysis, both increased neutrophil-to-lymphocyte ratio and N1 stage were associated with worse survival (P < .01). CONCLUSION This investigation shows an independent, inverse association between survival and decreased neutrophil-to-lymphocyte ratio in patients with borderline resectable pancreatic ductal adenocarcinoma. These findings support exploring predictive inflammatory biomarkers, such as neutrophil-to-lymphocyte ratio, to investigate inflammation and improve outcomes.
Collapse
|
73
|
Banerjee J, Papu John AM, Al-Wadei MH, Schuller HM. Prevention of pancreatic cancer in a hamster model by cAMP decrease. Oncotarget 2016; 7:44430-44441. [PMID: 27281617 PMCID: PMC5190108 DOI: 10.18632/oncotarget.9790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/22/2016] [Indexed: 02/06/2023] Open
Abstract
Smoking and alcoholism are risk factors for the development of pancreatitis-associated pancreatic ductal adenocarcinoma (PDAC). We have previously shown that these cancers overexpressed stress neurotransmitters and cyclic adenosine monophosphate (cAMP) while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) was suppressed. Using a hamster model, the current study has tested the hypothesis that cAMP decrease by GABA supplementation in the drinking water prevents the development of pancreatitis-associated PDAC. Our data reveal strong preventive effects of GABA supplementation on the development of PDAC and pancreatic intraductal neoplasia (PanIN). ELISA assays and immunohistochemistry revealed significant decreases in the levels of cAMP and interleukin 6 accompanied by reductions in the expression of several cancer stem cell markers and phosphorylated signaling proteins, which stimulate cell proliferation, and migration in pancreatic exocrine cells of GABA treated animals. We conclude that cAMP decrease by GABA supplementation inhibits multiple cancer stimulating pathways in cancer stem cells, differentiated cancer cells and the immune system, identifying this approach as promising novel tool for the prevention of PDAC in individuals with a history of smoking and alcoholism.
Collapse
Affiliation(s)
- Jheelam Banerjee
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Arokya M.S. Papu John
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Mohammed H. Al-Wadei
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Hildegard M. Schuller
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
74
|
Chen J, Wang S, Su J, Chu G, You H, Chen Z, Sun H, Chen B, Zhou M. Interleukin-32α inactivates JAK2/STAT3 signaling and reverses interleukin-6-induced epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer cells. Onco Targets Ther 2016; 9:4225-37. [PMID: 27471397 PMCID: PMC4948719 DOI: 10.2147/ott.s103581] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-32 is a newly discovered cytokine that has multifaceted roles in inflammatory bowel disease, cancer, and autoimmune diseases and participates in cell apoptosis, cancer cell growth inhibition, accentuation of inflammation, and angiogenesis. Here, we investigated the potential effects of IL-32α on epithelial-mesenchymal transition, metastasis, and invasion, and the JAK2/STAT3 signaling pathway in pancreatic cancer cells. The human pancreatic cancer cell lines PANC-1 and SW1990 were used. Epithelial-mesenchymal transition-related markers, including E-cadherin, N-cadherin, Vimentin, Snail, and Zeb1, as well as extracellular matrix metalloproteinases (MMPs), including MMP2, MMP7, and MMP9, were detected by immunofluorescence, Western blotting, and real-time polymerase chain reaction. The activation of JAK2/STAT3 signaling proteins was detected by Western blotting. Wound healing assays, real-time polymerase chain reaction, and Western blotting were performed to assess cell migration and invasion. The effects of IL-32α on the IL-6-induced activation of JAK2/STAT3 were also evaluated. In vitro, we found that IL-32α inhibits the expressions of the related markers N-cadherin, Vimentin, Snail, and Zeb1, as well as JAK2/STAT3 proteins, in a dose-dependent manner in pancreatic cancer cell lines. Furthermore, E-cadherin expression was increased significantly after IL-32α treatment. IL-32α downregulated the expression of MMPs, including MMP2, MMP7, and MMP9, and decreased wound healing in pancreatic cancer cells. These consistent changes were also found in IL-6-induced pancreatic cancer cells following IL-32α treatment. This study showed that reversion of epithelial-mesenchymal transition, inhibition of invasiveness and metastasis, and activation of the JAK2/STAT3 signaling pathway could be achieved through the application of exogenous IL-32α.
Collapse
Affiliation(s)
- Jingfeng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou; Department of Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui
| | - Silu Wang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Jiadong Su
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Guanyu Chu
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Heyi You
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Zongjing Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou; Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| |
Collapse
|
75
|
Błogowski W, Bodnarczuk T, Starzyńska T. Concise Review: Pancreatic Cancer and Bone Marrow-Derived Stem Cells. Stem Cells Transl Med 2016; 5:938-45. [PMID: 27217346 PMCID: PMC4922853 DOI: 10.5966/sctm.2015-0291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Pancreatic adenocarcinoma remains one of the most challenging diseases of modern gastroenterology, and, even though considerable effort has been put into understanding its pathogenesis, the exact molecular mechanisms underlying the development and/or systemic progression of this malignancy still remain unclear. Recently, much attention has been paid to the potential role of bone marrow-derived stem cells (BMSCs) in this malignancy. Hence, herein, we comprehensively review the most recent discoveries and current achievements and concepts in this field. Specifically, we discuss the significance of identifying pancreatic cancer stem cells and novel therapeutic approaches involving molecular interference of their metabolism. We also describe advances in the current understanding of the biochemical and molecular mechanisms responsible for BMSC mobilization during pancreatic cancer development and systemic spread. Finally, we summarize experimental, translational, and/or clinical evidence regarding the contribution of bone marrow-derived mesenchymal stem cells, endothelial progenitor cells, hematopoietic stem/progenitor cells, and pancreatic stellate cells in pancreatic cancer development/progression. We also present their potential therapeutic value for the treatment of this deadly malignancy in humans. SIGNIFICANCE Different bone marrow-derived stem cell populations contribute to the development and/or progression of pancreatic cancer, and they might also be a promising "weapon" that can be used for anticancer treatments in humans. Even though the exact role of these stem cells in pancreatic cancer development and/or progression in humans still remains unclear, this concept continues to drive a completely novel scientific avenue in pancreatic cancer research and gives rise to innovative ideas regarding novel therapeutic modalities that can be safely offered to patients.
Collapse
Affiliation(s)
- Wojciech Błogowski
- Department of Internal Medicine, University of Zielona Góra, Zielona Góra, Poland
| | - Tomasz Bodnarczuk
- Division of Internal Medicine, 109th Military Hospital, Szczecin, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
76
|
Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2016; 30:355-85. [PMID: 26883357 PMCID: PMC4762423 DOI: 10.1101/gad.275776.115] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ying et al. review pancreatic ductal adenocarcinoma (PDAC) genetics and biology, particularly altered cancer cell metabolism, the complexity of immune regulation in the tumor microenvironment, and impaired DNA repair processes. With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wantong Yao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
77
|
Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol 2016; 54:28-41. [PMID: 26860754 PMCID: PMC4867234 DOI: 10.1016/j.semcdb.2016.02.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients.
Collapse
Affiliation(s)
- Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Melissa L Fishel
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
78
|
Belizário JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. SPRINGERPLUS 2016; 5:619. [PMID: 27330885 PMCID: PMC4870483 DOI: 10.1186/s40064-016-2197-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
Abstract
Adult skeletal tissue is composed of heterogeneous population of cells that constantly self-renew by means of a controlled process of activation and proliferation of tissue-resident stem cells named satellite cells. Many growth factors, cytokines and myokines produced by skeletal muscle cells play critical roles in local regulation of the inflammatory process and skeletal muscle regeneration during different pathological conditions. IL-6 is a pleiotropic cytokine released in large amount during infection, autoimmunity and cancer. Low levels of IL-6 can promote activation of satellite cells and myotube regeneration while chronically elevated production promote skeletal muscle wasting. These distinct effects may be explained by a crosstalk of the IL-6/IL-6 receptor and gp130 trans-signaling pathway that oppose to regenerative and anti-inflammatory of the classical IL-6 receptor signaling pathway. Here we discuss on potential therapeutic strategies using monoclonal antibodies to IL-6R for the treatment of skeletal muscle wasting and cachexia. We also highlight on the IL-6/JAK/STAT and FGF/p38αβ MAPK signaling pathways in satellite cell activation and the use of protein kinase inhibitors for tailoring and optimizing satellite cell proliferation during the skeletal muscle renewal. Future investigations on the roles of the IL-6 classical and trans-signaling pathways in both immune and non-immune cells in skeletal muscle tissue will provide new basis for therapeutic approaches to reverse atrophy and degeneration of skeletal muscles in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | | | - Janaina Padua Borges
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | - Janete Akemi Kashiabara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | - Edouard Vannier
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, MA 02111 USA
| |
Collapse
|
79
|
Alterations in inflammatory biomarkers and energy intake in cancer cachexia: a prospective study in patients with inoperable pancreatic cancer. Med Oncol 2016; 33:54. [PMID: 27119533 DOI: 10.1007/s12032-016-0768-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Chronic systemic inflammatory response is proposed as an underlying mechanism for development of cancer cachexia. We conducted a prospective study to examine changes in inflammatory biomarkers during the disease course and the relationship between inflammatory biomarkers and cachexia in patients with inoperable pancreatic cancer. Twenty patients, median (range) age 67.5 (35-79) years, 5 females, were followed for median 5.5 (1-12) months. Cachexia was diagnosed according to the 2011 consensus-based classification system (weight loss >5 % past six months, BMI < 20 kg/m(2) and weight loss >2 %, or sarcopenia) and the modified Glasgow Prognostic score (mGPS) that combines CRP and albumin levels. Inflammatory biomarkers were measured by enzyme immunoassays. The patients had increased levels of most inflammatory biomarkers, albeit not all statistically significant, both at study entry and close to death, indicating ongoing inflammation. According to the consensus-based classification system, eleven (55 %) patients were classified as cachectic upon inclusion. They did not differ from non-cachectic patients with regard to inflammatory biomarkers or energy intake. According to the mGPS, seven (35 %) were defined as cachectic and had a higher IL-6 (p < 0.001) than the non-cachectic patients. They also had a slightly, but insignificantly longer survival than non-cachectic patients (p = 0.08). The mGPS should be considered as an additional framework for identification of cancer cachexia.
Collapse
|
80
|
Huang L, Hu B, Ni J, Wu J, Jiang W, Chen C, Yang L, Zeng Y, Wan R, Hu G, Wang X. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:27. [PMID: 26847351 PMCID: PMC4743194 DOI: 10.1186/s13046-016-0301-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies have investigated the sustained aberrantly activated Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is crucial for pancreatic cancer growth and metastasis. Suppressor of cytokine signaling 3 (SOCS3), as a key negative feedback regulator of this signaling pathway, is usually down-regulated in various cancers. In the present study, we aim at exploring the biological function and the underlying molecular regulation mechanisms of SOCS3 in pancreatic cancer. METHODS The expression of SOCS3 and other genes in pancreatic cancer was examined by Quantitative real-time PCR, western blotting and immunohistochemical staining. The interaction between pSTAT3 and DNA Methyltransferase 1 (DNMT1) was investigated by co-immunoprecipitation assay. Luciferase reporter assay was used to investigate the transcriptional regulation of pSTAT3 and DNMT1 on the SOCS3 gene. The effects of SOCS3 on the biological behavior of pancreatic cancer cells were assessed both in vitro and vivo. Furthermore, we performed a comprehensive analysis of the expression of SOCS3 in a pancreatic cancer tissue microarray (TMA) and correlated our findings with pathological parameters and outcomes of the patients. RESULTS We showed that SOCS3 expression was decreased in phosphorylated STAT3 (pSTAT3)-positive tumors and was negatively correlated with pSTAT3 in pancreatic cancer cells. We also found that IL-6/STAT3 promoted SOCS3 promoter hypermethylation by increasing DNMT1 activity; silencing DNMT1 or 5-aza-2-deoxycytidine (5-AZA) treatment could reverse the down-regulation of SOCS3 mediated by IL-6. Using co-immunoprecipitation and luciferase reporter assays, we found that STAT3 recruited DNMT1 to the promoter region of SOCS3 and inhibited its transcriptional activity. Overexpression of SOCS3 significantly inhibited cell proliferation, which may be due to the increase in G1-S phase arrest; overexpression of SOCS3 also inhibited cell migration and invasion as well as tumorigenicity in nude mice. Pancreatic cancer tissue microarray analysis showed that high SOCS3 expression was a good prognostic factor and negatively correlated with tumor volume and metastasis. CONCLUSION We demonstrated that activated IL-6/STAT3 signaling could induce SOCS3 methylation via DNMT1, which led to pancreatic cancer growth and metastasis. These data also provided a mechanistic link between sustained aberrantly activated IL-6/STAT3 signaling and SOCS3 down-regulation in pancreatic cancer. Thus, inhibitors of STAT3 or DNMT1 may become novel strategies for treating pancreatic cancer.
Collapse
Affiliation(s)
- Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Bin Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| |
Collapse
|
81
|
Shultz DB, Pai J, Chiu W, Ng K, Hellendag MG, Heestand G, Chang DT, Tu D, Moore MJ, Parulekar WR, Koong AC. A Novel Biomarker Panel Examining Response to Gemcitabine with or without Erlotinib for Pancreatic Cancer Therapy in NCIC Clinical Trials Group PA.3. PLoS One 2016; 11:e0147995. [PMID: 26808546 PMCID: PMC4725948 DOI: 10.1371/journal.pone.0147995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/10/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose NCIC Clinical Trials Group PA.3 was a randomized control trial that demonstrated improved overall survival (OS) in patients receiving erlotinib in addition to gemcitabine for locally advanced or metastatic pancreatic cancer. Prior to therapy, patients had plasma samples drawn for future study. We sought to identify biomarkers within these samples. Experimental Design Using the proximity ligation assay (PLA), a probe panel was built from commercially available antibodies for 35 key proteins selected from a global genetic analysis of pancreatic cancers, and used to quantify protein levels in 20 uL of patient plasma. To determine if any of these proteins levels independently associated with OS, univariate and mulitbaraible Cox models were used. In addition, we examined the associations between biomarker expression and disease stage at diagnosis using Fisher's exact test. The correlation between Erlotinib sensitivity and each biomarkers was assessed using a test of interaction between treatment and biomarker. Results and Conclusion Of the 569 eligible patients, 480 had samples available for study. Samples were randomly allocated into training (251) and validation sets (229). Among all patients, elevated levels of interleukin-8 (IL-8), carcinoembryonic antigen (CEA), hypoxia-inducible factor 1-alpha (HIF-1 alpha), and interleukin-6 were independently associated with lower OS, while IL-8, CEA, platelet-derived growth factor receptor alpha and mucin-1 were associated with metastatic disease. Patients with elevated levels of receptor tyrosine-protein kinase erbB-2 (HER2) expression had improved OS when treated with erlotinib compared to placebo. In conclusion, PLA is a powerful tool for identifying biomarkers from archived, small volume serum samples. These data may be useful to stratify patient outcomes regardless of therapeutic intervention. Trial Registration ClinicalTrials.gov NCT00040183
Collapse
Affiliation(s)
| | - Jonathan Pai
- School of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Wayland Chiu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kendall Ng
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | | | - Gregory Heestand
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Daniel T. Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Dongsheng Tu
- NCIC Clinical Trials Group, Queen's University, Kingston, Canada
| | - Malcolm J. Moore
- British Columbia Cancer Agency, Vancouver, British Columbia, CA, United States of America
| | | | - Albert C. Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
82
|
Ke L, Xiang Y, Xia W, Yang J, Yu Y, Ye Y, Liang H, Guo X, Lv X. A prognostic model predicts the risk of distant metastasis and death for patients with nasopharyngeal carcinoma based on pre-treatment interleukin 6 and clinical stage. Clin Immunol 2016; 164:45-51. [PMID: 26780676 DOI: 10.1016/j.clim.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Because inflammation plays a critical role in nasopharyngeal carcinoma (NPC), this study aims to investigate the correlation between the pro-inflammation cytokine interleukin-6 (IL6) and the prognosis of NPC and develop a new prognostic model. IL6 levels were measured in the serum of 290 NPC patients by ELISA and the correlation between IL6 and prognosis of NPC was evaluated by Kaplan-Meier analysis and multivariate analysis. The results showed that elevated IL6 levels were positively correlated with poorer 9-year overall survival (OS), disease-free survival (DFS), distant metastasis-free survival (DMFS) and lung metastasis-free survival (lung-MFS). IL6 level was an independent prognostic factor for OS, DFS, DMFS and lung-MFS. The CI-model based on TNM stage and IL6 level could better predict the OS, DFS, DMFS and lung-MFS of NPC patients. Here, the newly developed prognostic CI-model for predicting distant metastasis and death of NPC patients could facilitate patients consulting and individualized immunotherapy.
Collapse
Affiliation(s)
- Liangru Ke
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Weixiong Xia
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Jing Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Yahui Yu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Yanfang Ye
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510060, PR China
| | - Hu Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China.
| | - Xing Lv
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China.
| |
Collapse
|
83
|
Cantharidin represses invasion of pancreatic cancer cells through accelerated degradation of MMP2 mRNA. Sci Rep 2015; 5:11836. [PMID: 26135631 PMCID: PMC4488834 DOI: 10.1038/srep11836] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
Cantharidin is an active constituent of mylabris, a traditional Chinese medicine, and is a potent and selective inhibitor of protein phosphatase 2A (PP2A) that plays an important role in cell cycle control, apoptosis, and cell-fate determination. In the present study, we found that cantharidin repressed the invasive ability of pancreatic cancer cells and downregulated matrix metalloproteinase 2 (MMP2) expression through multiple pathways, including ERK, JNK, PKC, NF-κB, and β-catenin. Interestingly, transcriptional activity of the MMP2 promoter increased after treatment with PP2A inhibitors, suggesting the involvement of a posttranscriptional mechanism. By using an mRNA stability assay, we found accelerated degradation of MMP2 mRNA after treatment of cantharidin. Microarray analyses revealed that multiple genes involved in the 3' → 5' decay pathway were upregulated, especially genes participating in cytoplasmic deadenylation. The elevation of these genes were further demonstrated to be executed through ERK, JNK, PKC, NF-κB, and β-catenin pathways. Knockdown of PARN, RHAU, and CNOT7, three critical members involved in cytoplasmic deadenylation, attenuated the downregulation of MMP2. Hence, we present the mechanism of repressed invasion by cantharidin and other PP2A inhibitors through increased degradation of MMP2 mRNA by elevated cytoplasmic deadenylation.
Collapse
|
84
|
Liu X, Wang J, Wang H, Yin G, Liu Y, Lei X, Xiang M. REG3A accelerates pancreatic cancer cell growth under IL-6-associated inflammatory condition: Involvement of a REG3A-JAK2/STAT3 positive feedback loop. Cancer Lett 2015; 362:45-60. [PMID: 25779676 DOI: 10.1016/j.canlet.2015.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
Abstract
Regenerating gene protein (REG) 3A is a 19 kD secretory pancreas protein with pro-growth function. Previously we demonstrated that overexpression of REG3A, acting as a key molecule for up-regulation of the JAK2/STAT3 pathway, contributed to inflammation-related pancreatic cancer (PaC) development. However the exact network associated with REG3A signaling still remains unclear. Here we determined that exposure of human PaC cells to cytokine IL-6 activated the oncogenic JAK2/STAT3 pathway, which directly upregulated REG3A expression, accelerated cell cycle progression by promoting CyclinD1 expression, and enhancing the expression of the anti-apoptosis Bcl family. Importantly, the activation of REG3A would instead enhance the JAK2/STAT3 pathway to constitute a REG3A-JAK2/STAT3 positive feedback loop, which leads to the amplification of the oncogenic effects of IL-6/JAK2/STAT3, a classic pathway linking to inflammation-related tumorigenesis, ultimately resulting in PaC cell over-proliferation and tumor formation both in vitro and in vivo. Moreover, EGFR was found to mediate the REG3A signal for PaC cell growth and JAK2/STAT3 activation, thus functioning as a REG3A receptor. Collectively, our results provide the first evidence for the presence of the synergistic effect of REG3A and IL-6 on PaC development via a REG3A-JAK2/STAT3 positive feedback loop.
Collapse
Affiliation(s)
- Xiulan Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430030, China
| | - Hongjie Wang
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, USA
| | - Guoxiao Yin
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Xiang Lei
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
85
|
Chu NJ, Armstrong TD, Jaffee EM. Nonviral oncogenic antigens and the inflammatory signals driving early cancer development as targets for cancer immunoprevention. Clin Cancer Res 2015; 21:1549-57. [PMID: 25623216 DOI: 10.1158/1078-0432.ccr-14-1186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Cancer immunoprevention is an emerging field that holds much promise. Within the past 20 years, prophylactic vaccines have been implemented on the population level for the immunoprevention of carcinomas induced by viruses, specifically hepatitis B virus (HBV) and human papillomavirus (HPV) infection. Armed with the success of prophylactic vaccines that prevent viral-induced tumors, the field must overcome its next hurdle: to develop robust prophylactic vaccines that prevent the remaining >80% of human cancers not induced by viral infection. In this review, we discuss some of the most promising non-virus-associated prophylactic vaccines that target endogenous neoantigens, including the earliest oncogene products, altered mucin 1 (MUC1) and α-enolase (ENO1), all of which produce new targets in the earliest stages of nonviral-induced tumorigenesis. We also highlight a novel attenuated Listeria monocytogenes-based vaccine expressing mutant oncogene Kras(G12D) (LM-Kras) effective in a pancreatic cancer model. A novel chimeric human/rat HER-2 plasmid vaccine (HuRT-DNA vaccine) effective in a breast cancer model is also discussed. In addition to prophylactic vaccine developments, this review highlights the potential use of classic drugs, such as aspirin and metformin, as chemopreventive agents that can potentially be used as adjuvants to enhance the anticancer immunogenicity and efficacy of noninfectious prophylactic vaccines by modulating the inflammatory pathways within the early tumor microenvironment (TME) that propels tumorigenesis. Finally, timing of prophylactic vaccine administration is critical to its immunopreventive efficacy, providing a necessary role of current and emerging biomarkers for cancer screening and early cancer detection.
Collapse
Affiliation(s)
- Nina J Chu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd D Armstrong
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
86
|
Liu TC, Liu QR, Huang Y. Effect of intraoperative glucose fluctuation and postoperative IL-6, TNF-α, CRP levels on the short-term prognosis of patients with intracranial supratentorial neoplasms. Asian Pac J Cancer Prev 2015; 15:10879-82. [PMID: 25605194 DOI: 10.7314/apjcp.2014.15.24.10879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effect of intraoperative glucose fluctuation and postoperative interlukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP) levels on the short-term prognosis of patients with intracranial supratentorial neoplasms. MATERIALS AND METHODS Eighty-six patients undergoing intracranial excision were selected in The Second Hospital of Jilin University. According to the condition of glucose fluctuation, the patients were divided into group A (glucose fluctuation <2.2 mmol/L, n=57) and group B (glucose fluctuation ≥2.2 mmol/L, n=29). Glucose was assessed by drawing 2 mL blood from internal jugular vein in two groups in the following time points, namely fasting blood glucose 1 d before operation (T0), 5 min after anesthesia induction (T1), intraoperative peak glucose (T2), intraoperative lowest glucose (T3), 5 min after closing the skull (T4), immediately after returning to intensive care unit (ICU) (T5) and 2 h after returning to ICU (T6). 1 d before operation and 1, 3 and 6 d after operation, serum IL-6 and TNF-α levels were detected with enzyme-linked immunosorbent assay (ELISA), and CRP level with immunoturbidimetry. Additionally, postoperative adverse reactions were monitored. RESULTS There was no statistical significance between two groups regarding the operation time, anesthesia time, amount of intraoperative bleeding and blood transfusion (P>0.05). The glucose levels in both groups at T1~T6 went up conspicuously compared with that at T0 (P<0.01), and those in group B at T2, T4, T5 and T6 were significantly higher than in group A (P<0.01). Serum IL-6, TNF-α and CRP levels in both groups 1, 3 and 6 d after operation increased markedly compared with 1 d before operation (P<0.01), but the increased range in group A was notably lower than in group B (P<0.05 or P<0.01). Postoperative incidences of hypoglycemia, hyperglycemia and myocardial ischemia in group A were significantly lower than in group B (P<0.05), and respiratory support time obviously shorter than in group B (P<0.01). CONCLUSIONS The glucose fluctuation of patients undergoing intracranial excision is related to postoperative IL-6, TNF-α and CRP levels and those with small range of glucose fluctuation have better prognosis.
Collapse
Affiliation(s)
- Tie-Cheng Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Jilin, China E-mail :
| | | | | |
Collapse
|