51
|
Anderson J, Akkina R. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection. Gene Ther 2007; 14:1287-97. [PMID: 17597795 DOI: 10.1038/sj.gt.3302958] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CCR5 co-receptor is necessary for cellular entry by R5 tropic viral strains involved in primary HIV infection, but is dispensable for normal human physiology. Owing to its crucial role in HIV-1 infection, the CCR5 co-receptor has been the subject of many therapeutic approaches, including gene therapy. siRNA targeting was shown to be effective in downregulating CCR5 expression and conferring significant protection against HIV-1 in susceptible cells. However, complete knockdown of CCR5 expression has not been achieved and thus remains an elusive goal. In these studies, we identified new CCR5 siRNAs capable of achieving complete knockdown of the co-receptor expression. Our transfection studies have shown that longer 28-mer short hairpin siRNAs are very effective in gene downregulation as assessed by fluorescence-activated cell sorting and transcript quantitation by quantitative real-time polymerase chain reaction. These siRNAs conferred strong antiviral protection during viral challenge. To obtain stable expression, highly potent siRNA expression cassettes were introduced into lentiviral vectors. Similar high levels of CCR5 downregulation were observed in stably transduced cells with concomitant viral protection in cultured cell lines. To translate these results to a stem cell gene therapy setting, CD34 hematopoietic progenitor cells were transduced with lentiviral vectors to derive transgenic macrophages. The transgenic cells also exhibited high levels of CCR5 downregulation and viral resistance. With regard to Pol-III promoter-mediated siRNA expression, higher efficacies were obtained with U6-driven CCR5 siRNAs. However, in contrast to previous reports, no apparent cytotoxicities were observed in transgenic cells containing U6-driven siRNA constructs. Thus the above anti-CCR5 siRNAs are among the most effective demonstrated to date and are very promising candidates for clinical applications.
Collapse
Affiliation(s)
- J Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
52
|
Westerhout EM, Berkhout B. A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 2007; 35:4322-30. [PMID: 17576691 PMCID: PMC1934999 DOI: 10.1093/nar/gkm437] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNAi efficiency is influenced by local RNA structure of the target sequence. We studied this structure-based resistance in detail by targeting a perfect RNA hairpin and subsequently destabilized its tight structure by mutation, thereby gradually exposing the target sequence. Although the tightest RNA hairpins were completely resistant to RNAi, we observed an inverse correlation between the overall target hairpin stability and RNAi efficiency within a specific thermodynamic stability (ΔG) range. Increased RNAi efficiency was shown to be caused by improved binding of the siRNA to the destabilized target RNA hairpins. The mutational effects vary for different target regions. We find an accessible target 3′ end to be most important for RNAi-mediated inhibition. However, these 3′ end effects cannot be reproduced in siRNA-target RNA-binding studies in vitro, indicating the important role of RISC components in the in vivo RNAi reaction. The results provide a more detailed insight into the impact of target RNA structure on RNAi and we discuss several possible implications. With respect to lentiviral-mediated delivery of shRNA expression cassettes, we present a ΔG window to destabilize the shRNA insert for vector improvement, while avoiding RNAi-mediated self-targeting during lentiviral vector production.
Collapse
Affiliation(s)
| | - Ben Berkhout
- *To whom correspondence should be addressed. +31 20 566 4822+31 20 691 6531
| |
Collapse
|
53
|
Segura T, Schmokel H, Hubbell JA. RNA interference targeting hypoxia inducible factor 1alpha reduces post-operative adhesions in rats. J Surg Res 2007; 141:162-70. [PMID: 17561118 DOI: 10.1016/j.jss.2006.07.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/24/2006] [Accepted: 07/31/2006] [Indexed: 01/17/2023]
Abstract
BACKGROUND To investigate the use of RNA interference mediated gene down-regulation targeting hypoxia inducible factor 1alpha (HIF-1alpha) and plasminogen activator inhibitor 1 (PAI-1) in an effort to prevent abdominal adhesion formation. MATERIALS AND METHODS Real time PCR and a PAI-1 protein activity assay were used in vitro to determine the efficacy of small interfering RNAs (siRNAs). For in vivo experiments, 57 white female rats were operated to generate ischemic and serosal injury to the uterine horns, and treated with saline, siRNA(Lamin A/C) (negative control), siRNA(HIF-1alpha), siRNA(PAI-1), or siRNA(HIF-1alpha) plus siRNA(PAI-1). The cationic polyer poly(ethylenimine) (PEI) was used as the delivery vehicle for all siRNAs delivered in vivo. Adhesions were analyzed by a blinded surgeon 8 days post-surgery. RESULTS After in vitro transfection with siRNA, at least 69% gene down-regulation was obtained for all siRNAs tested. In vitro siRNA-mediated down-regulation of HIF-1alpha, PAI-1 or their simultaneous delivery resulted in a significant decrease of PAI-1 protein activity (at least P < 0.05). Administration of 4 nmol siRNA(HIF-1alpha)/PEI complexes after injury to the uterine horns achieved a statistical reduction of post-operative adhesion formation with a reduction by 52% (P < 0.05). Delivery of 4 nmol siRNA(PAI-1)/PEI complexes and the simultaneous delivery of 2 nmol siRNA(HIF-1alpha) plus 2 nmol siRNA(PAI-1), resulted in a reduction of abdominal adhesion by 36% and 42%, respectively, with the reduction being statistically significant when compared directly to the saline control (P < 0.01). CONCLUSION These data show that administration of siRNA/PEI complexes within the peritoneal cavity can be used to prevent post-operative abdominopelvic adhesions.
Collapse
Affiliation(s)
- Tatiana Segura
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Bioengineering and Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | | | |
Collapse
|
54
|
Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P, Yee JK, Rossi J, Zaia J, Akkina R. Safety and efficacy of a lentiviral vector containing three anti-HIV genes--CCR5 ribozyme, tat-rev siRNA, and TAR decoy--in SCID-hu mouse-derived T cells. Mol Ther 2007; 15:1182-1188. [PMID: 17406343 DOI: 10.1038/sj.mt.6300157] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/27/2007] [Indexed: 11/08/2022] Open
Abstract
Gene therapeutic strategies show promise in controlling human immunodeficiency virus (HIV) infection and in restoring immunological function. A number of efficacious anti-HIV gene constructs have been described so far, including small interfering RNAs (siRNAs), RNA decoys, transdominant proteins, and ribozymes, each with a different mode of action. However, as HIV is prone to generating escape mutants, the use of a single anti-HIV construct would not be adequate to afford long range-viral protection. On this basis, a combination of highly potent anti-HIV genes--namely, a short hairpin siRNA (shRNA) targeting rev and tat, a transactivation response (TAR) decoy, and a CCR5 ribozyme--have been inserted into a third-generation lentiviral vector. Our recent in vitro studies with this construct, Triple-R, established its efficacy in both T-cell lines and CD34 cell-derived macrophages. In this study, we have evaluated this combinatorial vector in vivo. Vector-transduced CD34 cells were injected into severe combined immunodeficiency (SCID)-hu mouse thy/liv grafts to determine their capacity to give rise to T cells. Our results show that phenotypically normal transgenic T cells are generated that are able to resist HIV-1 infection when challenged in vitro. These important attributes of this combinatorial vector show its promise as an excellent candidate for use in human clinical trials.
Collapse
Affiliation(s)
- Joseph Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort, Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59:75-86. [PMID: 17449137 PMCID: PMC1978219 DOI: 10.1016/j.addr.2007.03.005] [Citation(s) in RCA: 626] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 03/04/2007] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) was discovered less than a decade ago and already there are human clinical trials in progress or planned. A major advantage of RNAi versus other antisense based approaches for therapeutic applications is that it utilizes cellular machinery that efficiently allows targeting of complementary transcripts, often resulting in highly potent down-regulation of gene expression. Despite the excitement about this remarkable biological process for sequence specific gene regulation, there are a number of hurdles and concerns that must be overcome prior to making RNAi a real therapeutic modality, which include off-target effects, triggering of type I interferon responses, and effective delivery in vivo. This review discusses mechanistic aspects of RNAi, the potential problem areas and solutions and therapeutic applications. It is anticipated that RNAi will be a major therapeutic modality within the next several years, and clearly warrants intense investigation to fully understand the mechanisms involved.
Collapse
Affiliation(s)
- Lars Aagaard
- Division of Molecular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
56
|
Abstract
Inside eukaryotic cells, small RNA duplexes, called small interfering RNAs (siRNAs), activate a conserved RNA interference (RNAi) pathway which leads to specific degradation of complementary target mRNAs through base-pairing recognition. As with other viruses, studies have shown that replication of the HIV-1 in cultured cells can be targeted and inhibited by synthetic siRNAs. The relative ease of siRNA design and the versatility of RNAi to target a broad spectrum of mRNAs have led to the promise that drug discovery in the RNAi pathway could be effective against pathogens. This review discusses the current experimental principles that guide the application of RNAi against HIV and describes challenges and limitations that need to be surmounted in order for siRNAs to become practical antiviral drugs. The practical use of RNAi therapy for HIV infection will depend on overcoming several challenges, including the ability to establish long-term expression of siRNA without off-target effects and the capacity to counteract mutant escape viruses.
Collapse
Affiliation(s)
- Yamina Bennasser
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| | - Man Lung Yeung
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| |
Collapse
|
57
|
Sood V, Unwalla H, Gupta N, Chakraborti S, Banerjea AC. Potent knock down of HIV-1 replication by targeting HIV-1 Tat/Rev RNA sequences synergistically with catalytic RNA and DNA. AIDS 2007; 21:31-40. [PMID: 17148965 DOI: 10.1097/qad.0b013e3280118fb6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Ribozymes (Rzs) and DNA-enzymes (Dzs) possess the ability to prevent gene expression by cleaving target RNA in a catalytic and sequence-specific manner. Although Rzs or Dzs have been used earlier for HIV-1 gene suppression, the present study explored the possibility of using catalytic RNA and DNA simultaneously in a synergistic manner with the hope that this novel approach will allow more potent inhibition for a longer duration. METHODS In order to achieve long-term inhibition of HIV-1 replication, a novel non-GUX hammerhead Rz was designed by standard recombinant DNA technology and cloned it under the powerful CMV promoter containing expression vector. A 10-23 catalytic motif containing Dz that was targeted against the conserved second exon of HIV-1 Tat/Rev region was also assembled. RESULTS Both Rz and Dz possessed sequence-specific cleavage activities individually and simultaneously cleaved target RNA in a synergistic manner under the same in vitro cleavage conditions. These catalytic molecules inhibited HIV-1 replication in macrophages individually and exhibited potent inhibitory effects when used in combination. CONCLUSIONS The combination strategy described here can be widely used against any target RNA to achieve more effective gene inhibition that exploits the simultaneous sequence-specific cleavage potentials of catalytic RNA and DNA.
Collapse
Affiliation(s)
- Vikas Sood
- Laboratory of Virology, National Institute of Immunology, JNU Campus, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
58
|
Baba K, Mizukoshi F, Goto-Koshino Y, Setoguchi-Mukai A, Fujino Y, Ohno K, Tsujimoto H. Application of RNA interference for inhibiting the replication of feline immunodeficiency virus in chronically infected cell lines. Vet Microbiol 2006; 120:207-16. [PMID: 17125939 PMCID: PMC7117143 DOI: 10.1016/j.vetmic.2006.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi) is a process in which double-stranded RNA induces the post-transcriptional sequence-specific degradation of homologous messenger RNA. The present study was carried out to apply the RNAi technology to inhibit the replication of feline immunodeficiency virus (FIV). Four small interfering RNAs (siRNAs) homologous to the FIV gag gene were synthesized and transfected into a feline fibroblastic cell line chronically infected with FIV (CRFK/FIV). These synthetic siRNAs efficiently inhibited the replication of FIV. Next, we examined the effect of retroviral vector-mediated transfer of FIV-specific short hairpin RNA (shRNA) on the replication of FIV in a feline T-cell line chronically infected with FIV (FL4). The retroviral vector-mediated transfer of FIV-specific shRNA was shown to markedly inhibit the replication of FIV in the FL4 cells. These results provide useful information for the development of RNAi-based gene therapy strategy to control FIV infection.
Collapse
Affiliation(s)
- Kenji Baba
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
59
|
Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model. Retrovirology 2006; 3:76. [PMID: 17078891 PMCID: PMC1635423 DOI: 10.1186/1742-4690-3-76] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 11/01/2006] [Indexed: 11/29/2022] Open
Abstract
Background The currently well-established humanized mouse models, namely the hu-PBL-SCID and SCID-hu systems played an important role in HIV pathogenesis studies. However, despite many notable successes, several limitations still exist. They lack multi-lineage human hematopoiesis and a functional human immune system. These models primarily reflect an acute HIV infection with rapid CD4 T cell loss thus limiting pathogenesis studies to a short-term period. The new humanized Rag2-/-γc-/- mouse model (RAG-hu) created by intrahepatic injection of CD34 hematopoietic stem cells sustains long-term multi-lineage human hematopoiesis and is capable of mounting immune responses. Thus, this model shows considerable promise to study long-term in vivo HIV infection and pathogenesis. Results Here we demonstrate that RAG-hu mice produce human cell types permissive to HIV-1 infection and that they can be productively infected by HIV-1 ex vivo. To assess the capacity of these mice to sustain long-term infection in vivo, they were infected by either X4-tropic or R5-tropic HIV-1. Viral infection was assessed by PCR, co-culture, and in situ hybridization. Our results show that both X4 and R5 viruses are capable of infecting RAG-hu mice and that viremia lasts for at least 30 weeks. Moreover, HIV-1 infection leads to CD4 T cell depletion in peripheral blood and thymus, thus mimicking key aspects of HIV-1 pathogenesis. Additionally, a chimeric HIV-1 NL4-3 virus expressing a GFP reporter, although capable of causing viremia, failed to show CD4 T cell depletion possibly due to attenuation. Conclusion The humanized RAG-hu mouse model, characterized by its capacity for sustained multi-lineage human hematopoiesis and immune response, can support productive HIV-1 infection. Both T cell and macrophage tropic HIV-1 strains can cause persistent infection of RAG-hu mice resulting in CD4 T cell loss. Prolonged viremia in the context of CD4 T cell depletion seen in this model mirrors the main features of HIV infection in the human. Thus, the RAG-hu mouse model of HIV-1 infection shows great promise for future in vivo pathogenesis studies, evaluation of new drug treatments, vaccines and novel gene therapy strategies.
Collapse
Affiliation(s)
- Bradford K Berges
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - William H Wheat
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent E Palmer
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Elizabeth Connick
- Division of Infectious Disease, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
60
|
Abstract
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double‐stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene‐specific therapeutics. Copyright © 2006 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mali Ketzinel‐Gilad
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
61
|
Westerhout EM, ter Brake O, Berkhout B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology 2006; 3:57. [PMID: 16948865 PMCID: PMC1569866 DOI: 10.1186/1742-4690-3-57] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 09/04/2006] [Indexed: 02/07/2023] Open
Abstract
Background RNA interference (RNAi) has proven to be a powerful tool to suppress gene expression and can be used as a therapeutic strategy against human pathogenic viruses such as human immunodeficiency virus type 1 (HIV-1). Theoretically, RNAi-mediated inhibition can occur at two points in the replication cycle, upon viral entry before reverse transcription of the RNA genome, and on the newly transcribed viral RNA transcripts. There have been conflicting results on whether RNAi can target the RNA genome of infecting HIV-1 particles. We have addressed this issue with HIV-1-based lentiviral vectors. Results We determined the transduction efficiency of a lentiviral vector, as measured by GFP expressing cells, which reflects the number of successful integration events in a cell line stably expressing shNef. We did not observe a difference in the transduction efficiency comparing lentiviral vectors with or without the Nef target sequence in their genome. The results were similar with particles pseudotyped with either the VSV-G or HIV-1 envelope. Additionally, no reduced transduction efficiencies were observed with multiple other shRNAs targeting the vector genome or with synthetic siNef when transiently transfected prior to transduction. Conclusion Our findings indicate that the incoming HIV-1 RNA genome is not targeted by RNAi, probably due to inaccessibility to the RNAi machinery. Thus, therapeutic RNAi strategies aimed at preventing proviral integration should be targeting cellular receptors or co-factors involved in pre-integration events.
Collapse
Affiliation(s)
- Ellen M Westerhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Olivier ter Brake
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
62
|
Anderson J, Akkina R. TRIM5alpharh expression restricts HIV-1 infection in lentiviral vector-transduced CD34+-cell-derived macrophages. Mol Ther 2006; 12:687-96. [PMID: 16081321 DOI: 10.1016/j.ymthe.2005.07.291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/28/2005] [Accepted: 07/04/2005] [Indexed: 11/24/2022] Open
Abstract
Species-specific innate resistance against viral infections offers novel avenues for antiviral therapeutic and prophylactic approaches. The retroviral and lentiviral restriction factors Ref1 and Lv1 are variants of the tripartite motif protein TRIM5alpha, a component of cytoplasmic bodies. TRIM5alpha severely restricts productive retroviral infections at the postentry and preintegration steps by destabilizing the incoming viral capsid via ubiquitination. Using this approach, resistance to HIV-1 infection could be conferred by TRIM5alpha(rh) expression in otherwise susceptible cells. Here we show that stable expression of simian TRIM5alpha(rh) via a lentiviral vector in a permissive cell culture line, Magi-CXCR4, conferred resistance to HIV-1. To translate these findings into a stem cell gene therapy setting, the TRIM5alpha(rh) transgene was stably introduced into CD34(+) hematopoietic progenitor cells to derive transgenic macrophages. Upon viral challenge, TRIM5alpha(rh)-expressing macrophages were highly resistant to HIV-1 infection compared to control cells. Human macrophages expressing TRIM5alpha(rh) were also found to be phenotypically and functionally normal, expressing the characteristic surface markers CD14, CD4, CCR5, CXCR4, MHC II, and B7.1. These results demonstrate that the species-specific restriction factor TRIM5alpha(rh) is effective in conferring HIV-1 resistance in a stem cell setting, thus paving the way for its application in AIDS gene therapy.
Collapse
Affiliation(s)
- Joseph Anderson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, 80523, USA
| | | |
Collapse
|
63
|
Nishitsuji H, Kohara M, Kannagi M, Masuda T. Effective suppression of human immunodeficiency virus type 1 through a combination of short- or long-hairpin RNAs targeting essential sequences for retroviral integration. J Virol 2006; 80:7658-66. [PMID: 16840344 PMCID: PMC1563699 DOI: 10.1128/jvi.00078-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Small interfering RNA (siRNA) could provide a new therapeutic approach to treating human immunodeficiency virus type 1 (HIV-1) infection. For long-term suppression of HIV-1, emergence of siRNA escape variants must be controlled. Here, we constructed lentiviral vectors encoding short-hairpin RNAs (shRNA) corresponding to conserved target sequences within the integrase (int) and the attachment site (att) genes, both of which are essential for HIV-1 integration. Compared to shRNA targeting of the HIV-1 transcription factor tat (shTat), shRNA against int (shIN) or the U3 region of att (shU3) showed a more potent inhibitory effect on HIV-1 replication in human CD4+ T cells. Infection with a high dose of HIV-1 resulted in the emergence of escape mutants during long-term culture. Of note, limited genetic variation was observed in the viruses resistant to shIN. A combination of shINs against wild-type and escape mutant sequences had a negative effect on their antiviral activities, indicating a potentially detrimental effect when administering multiple shRNA targeting the same region to combat HIV-1 variants. The combination of shIN and shU3 att exhibited the strongest anti-HIV-1 activity, as seen by complete abrogation of viral DNA synthesis and viral integration. In addition, a modified long-hairpin RNA spanning the 50 nucleotides in the shIN target region effectively suppressed wild-type and shIN-resistant mutant HIV-1. These results suggest that targeting of incoming viral RNA before proviral DNA formation occurs through the use of nonoverlapping multiple siRNAs is a potent approach to achieving sustained, efficient suppression of highly mutable viruses, such as HIV-1.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
64
|
An DS, Qin FXF, Auyeung VC, Mao SH, Kung SKP, Baltimore D, Chen ISY. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006; 14:494-504. [PMID: 16844419 PMCID: PMC2562632 DOI: 10.1016/j.ymthe.2006.05.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022] Open
Abstract
Specific, potent, and sustained short hairpin RNA (shRNA)-mediated gene silencing is crucial for the successful application of RNA interference technology to therapeutic interventions. We examined the effects of shRNA expression in primary human lymphocytes (PBLs) using lentiviral vectors bearing different RNA polymerase III promoters. We found that the U6 promoter is more efficient than the H1 promoter for shRNA expression and for reducing expression of CCR5 in PBLs. However, shRNA expression from the U6 promoter resulted in a gradual decline of the transduced cell populations. With one CCR5 shRNA this decline could be attributed to elevated apoptosis but another CCR5 shRNA that caused cytotoxicity did not show evidence of apoptosis, suggesting sequence-specific mechanisms for cytotoxicity. In contrast to the U6 promoter, PBLs transduced by vectors expressing shRNAs from the H1 promoter could be maintained without major cytotoxic effects. Since a lower level of shRNA expression appears to be advantageous to maintaining the shRNA-transduced population, lentiviral vectors bearing the H1 promoter are more suitable for stable transduction and expression of shRNA in primary human T lymphocytes. Our results suggest that functional shRNA screens should include tests for both potency and adverse metabolic effects upon primary cells.
Collapse
Affiliation(s)
- Dong Sung An
- Department of Hematology and Oncology, UCLA AIDS Institute, David Geffen School of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - F. Xiao-Feng Qin
- Department of Immunology, M. D. Anderson Cancer Center, University of Texas, Unit 901, 7455 Fannin Street, Houston, TX 77030, USA
| | - Vincent C. Auyeung
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Si Hua Mao
- Department of Microbiology, Immunology, and Molecular Genetics and Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Sam K. P. Kung
- Department of Immunology, University of Manitoba, 608 Basic Medical Sciences Building, 730 William Avenue, Winnipeg, MB, Canada R3E 0W3
| | - David Baltimore
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology, and Molecular Genetics and Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
- To whom correspondence and reprint requests should be addressed. Fax: +1 310 267 1875. E-mail:
| |
Collapse
|
65
|
Unwalla HJ, Rossi JJ. RNA interference as a potential antiviral. Future Virol 2006. [DOI: 10.2217/17460794.1.4.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small interfering RNAs have been used to silence the expression of mRNAs containing homologous sequences by a phenomenon termed RNA interference (RNAi); this is a highly conserved, ubiquitous, endogenous mechanism that uses small RNAs to silence gene expression post-transcriptionally. Numerous studies have demonstrated the utility of small interfering RNA for silencing genes either for target validation or for therapeutic applications, ranging from cancer to viral infections. Although most proof-of-concept experiments have succeeded in demonstrating the efficacy of these antivirals, reports of off-target effects have raised flags of caution and prompted researchers to design approaches to mitigate this problem by careful bioinformatic screening of potential off targets, targeted tissue delivery or conditional expression systems. This review focusses on the recent advantages and potential challenges to employing RNAi for viral gene therapy and how viruses have evolved to evade this antiviral mechanism.
Collapse
Affiliation(s)
- Hoshang J Unwalla
- Beckman Research Institute of The City of Hope, Division of Molecular Biology, Duarte, CA 91010, USA
| | - John J Rossi
- Beckman Research Institute of The City of Hope, Division of Molecular Biology, Duarte, CA 91010, USA
| |
Collapse
|
66
|
Abstract
The field of directed RNA interference (RNAi) has rapidly developed into a highly promising approach for specifically down regulating genes to alleviate disease pathology. This technology is especially well-suited to treating viral infections, and numerous examples now illustrate that a wide range of viruses can be inhibited with RNAi, both in vitro and in vivo. One principle that has arisen from this work is that antiviral RNAi therapies must be tailored to the unique life cycle of each pathogen, including the choice of delivery vehicle, route of administration, gene(s) targeted and regulation and duration of RNAi induction. Although effective strategies will be customized to each virus, all such therapies must overcome similar challenges. Importantly, treatment strategies must compensate for the inevitable fact that viral genome sequences evolve extremely rapidly, and computational and bioinformatics approaches may aid in the development of therapies that resist viral escape. Furthermore, all RNAi strategies involve the delivery of nucleic acids to target cells, and all will therefore benefit from the development of enhanced gene design and delivery technologies. Here, we review the substantial progress that has been made towards identifying effective antiviral RNAi targets and discuss strategies for translating these findings into effective clinical therapies.
Collapse
Affiliation(s)
- J N Leonard
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| | - D V Schaffer
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| |
Collapse
|
67
|
Abstract
Lentiviral vectors portend a promising system to deliver antiviral genes for treating viral infections such as HIV-1 as they are capable of stably transducing both dividing and nondividing cells. Recently, small interfering RNAs (siRNAs) have been shown to be quite efficacious in silencing target genes. RNA interference is a natural mechanism, conserved in nature from Yeast to Humans, by which siRNAs operate to specifically and potently down regulate the expression of a target gene either transcriptionally (targeted to DNA) or post-transcriptionally (targeted to mRNA). The specificity and relative simplicity of siRNA design insinuate that siRNAs will prove to be favorable therapeutic agents. Since siRNAs are a small nucleic acid reagents, they are unlikely to elicit an immune response and genes encoding these siRNAs can be easily manipulated and delivered by lentiviral vectors to target cells. As such, lentiviral vectors expressing siRNAs represent a potential therapeutic approach for the treatment of viral infections such as HIV-1. This review will focus on the development, lentiviral based delivery, and the potential therapeutic use of siRNAs in treating viral infections.
Collapse
Affiliation(s)
- K V Morris
- Department of Molecular and Experimental Medicine, Division of Rheumatology, The Scripps Research Institute, La Jolla, CA USA
| | - J J Rossi
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA USA
| |
Collapse
|
68
|
Morris K, Castanotto D, Al-Kadhimi Z, Jensen M, Rossi J, Cooper LJN. Enhancing siRNA effects in T cells for adoptive immunotherapy. ACTA ACUST UNITED AC 2006; 10:461-7. [PMID: 16321811 DOI: 10.1080/10245330500233569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically manipulated T cells can be endowed with novel functions to obtain desired in vivo effects after adoptive transfer. This genetic approach is being used to introduce genes such as chimeric immunoreceptors and tumor-specific T cells are being evaluated in early phase clinic trials. However, the ability to alter the genetic programming of T cells also presents opportunities to remove unwanted T-cell functions in order to augment an anti-tumor effect or endow resistance such as to HIV infection. Specifically, the use of RNA interference (RNAi) to disrupt gene expression by targeting either the mRNA or the promoter, provides investigators with many new opportunities to genetically modify T cells that should prove useful in future applications of adoptive immunotherapy.
Collapse
Affiliation(s)
- Kevin Morris
- Division of Molecular Biology, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA 90010-3000, USA
| | | | | | | | | | | |
Collapse
|
69
|
Manjunath N, Kumar P, Lee SK, Shankar P. Interfering antiviral immunity: application, subversion, hope? Trends Immunol 2006; 27:328-35. [PMID: 16753342 PMCID: PMC7185794 DOI: 10.1016/j.it.2006.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 04/24/2006] [Accepted: 05/16/2006] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi), initially recognized as a natural antiviral mechanism in plants, has rapidly emerged as an invaluable tool to suppress gene expression in a sequence-specific manner in all organisms, including mammals. Its potential to inhibit the replication of a variety of viruses has been demonstrated in vitro and in vivo in mouse and monkey models. These results have generated profound interest in the use of this technology as a potential treatment strategy for viral infections for which vaccines and drugs are unavailable or inadequate. In this review, we discuss the progress made within the past 2–3 years towards harnessing the potential of RNAi for clinical application in viral infections and the hurdles that have yet to be overcome.
Collapse
Affiliation(s)
- N Manjunath
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
70
|
|
71
|
Morris KV, Rossi JJ. Lentivirus-Mediated RNA Interference Therapy for Human Immunodeficiency Virus Type 1 Infection. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
72
|
Zeng L, Planelles V, Sui Z, Gartner S, Maggirwar SB, Dewhurst S, Ye L, Nerurkar VR, Yanagihara R, Lu Y. HIV-1-based defective lentiviral vectors efficiently transduce human monocytes-derived macrophages and suppress replication of wild-type HIV-1. J Gene Med 2006; 8:18-28. [PMID: 16142830 PMCID: PMC2825118 DOI: 10.1002/jgm.825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Human monocytes play an important role in mediating human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS), and monocytes-derived macrophages (MDM) represent a major viral reservoir within the brain and other target organs. Current gene transduction of MDM is hindered by a limited efficiency. In this study we established a lentiviral vector-based technique for improved gene transfer into human MDM cultures in vitro and demonstrated significant protection of transduced MDM from super-infection with wild-type HIV-1. METHODS HIV-1-based lentiviral vector stocks were prepared in 293T cells by the established calcium phosphate transfection method. Human monocytes were isolated from donors' blood by Ficoll-Paque separation and cultured in vitro. To establish an effective technique for vector-mediated gene transfer, primary cultures of human MDM were transduced at varying multiplicities of infection (MOI) and at a range of time points following initial isolation of cells (time-in-culture). Transduced cells were then examined for transgene (green fluorescent protein (GFP)) expression by fluorescent microscopy and reverse transcription polymerase chain reaction (RT-PCR). These cultures were then exposed to wild-type HIV-1, and viral replication was quantitated by p24 assay; production of neurotoxic effector molecules by the transduced MDM was also examined, using indicator neurons. RESULTS We have demonstrated that primary human MDM could be efficiently transduced (>50%) with concentrated HIV-1-based defective lentiviral vectors (DLV). Furthermore, DLV-mediated gene transduction was stable, and the transduced cells exhibited no apparent difference from normal MDM in terms of their morphology, viability and neurotoxin secretion. Challenge of DLV-transduced MDM cultures with HIV-1(Ba-L) revealed a 4- to 5-fold reduction in viral replication, as measured by p24 antigen production. This effect was associated with the mobilization of the GFP-expressing DLV construct by the wild-type virus. CONCLUSIONS These data demonstrate the inhibition of HIV-1 replication in primary MDM, by a DLV vector that lacks any anti-HIV-1 transgene. These findings lay the initial groundwork for future studies on the ability of DLV-modified monocytes to introduce anti-HIV-1 genes into the CNS. Lentiviral vector-mediated gene delivery to the CNS by monocytes/macrophages is a promising, emerging strategy for treating neuro-AIDS.
Collapse
Affiliation(s)
- Lingbing Zeng
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Ziye Sui
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Suzanne Gartner
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay B. Maggirwar
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Linbai Ye
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Vivek R. Nerurkar
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Richard Yanagihara
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuanan Lu
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Correspondence to: Yuanan Lu, Retrovirology Research Laboratory, Leahi Hospital, 3675 Kilauea Avenue, Honolulu, Hawaii 96816, USA.
| |
Collapse
|
73
|
Morris KV, Rossi JJ. Lentivirus-Mediated RNA Interference Therapy for Human Immunodeficiency Virus Type 1 Infection. Hum Gene Ther 2006; 17:479-86. [PMID: 16716105 DOI: 10.1089/hum.2006.17.479] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi) is a natural mechanism by which small interfering RNAs (siRNAs) operate to specifically and potently downregulate the expression of a target gene. This downregulation has been demonstrated by targeting siRNAs to the mRNA (posttranscriptional gene silencing) as well as to the gene promoter, regulating gene expression epigenetically by transcriptional gene silencing. These observations significantly broaden the role RNA plays in the cell and suggest that siRNAs could prove to be a potent future therapeutic for the treatment of diseases such as human immunodeficiency virus type 1 (HIV-1) infection. The specificity and simplicity of design and the ability to express siRNAs from mammalian promoters make the use of siRNAs to target and suppress virtually any gene or gene promoter of interest a soon-to-be-realized technology. However, the delivery and stable expression of siRNAs to target cells remain an enigma that could be surmounted, at least regarding the treatment of HIV-1 infection, by the application of lentiviral vectors to deliver and express anti-HIV-1 siRNAs in target cells. This review focuses on the development, delivery, and potential therapeutic use of antiviral siRNAs in treating HIV-1.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
74
|
Cave E, Weinberg MS, Cilliers T, Carmona S, Morris L, Arbuthnot P. Silencing of HIV-1 subtype C primary isolates by expressed small hairpin RNAs targeted to gag. AIDS Res Hum Retroviruses 2006; 22:401-10. [PMID: 16706616 DOI: 10.1089/aid.2006.22.401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Discovery of sequence-specific silencing by activating the RNA interference (RNAi) pathway has led to exciting new strategies for treating infection with human immunodeficiency virus type 1 (HIV-1). Of the HIV-1 subtypes, C is especially common in areas of the world that are worst affected. Although prone to mutation, genome plasticity of this subtype is limited in functionally important regions. We identified conserved sequences within the HIV-1 subtype C gag open reading frame and assessed whether they are suitable targets for inhibition of viral replication by RNA Pol III-driven small hairpin RNAs (shRNAs). Initially, the efficacy of each of a panel of 10 shRNAs against HIV-1 was determined using a reporter assay. shRNAs A and B, which targeted the 5 end of gag, were most effective and were used to assess inhibition of replication in cultured cells of two R5 isolates (Du151 and Du422) and one X4 virus (SW7). These shRNAs diminished intracellular HIV-1 gag RNA and HIV-1 protein concentrations as well as p24 secretion by up to 80% without inducing an interferon response. However, shRNA-mediated knockdown efficacy against each of these viral isolates varied slightly. These data show successful activation of RNAi to inhibit the replication of biologically distinct HIV-1 subtype C isolates. The effector shRNAs described here are potential candidates for gene therapy applications against the most common global subtype of HIV-1.
Collapse
Affiliation(s)
- Eleanor Cave
- HBV Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are described.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
76
|
Anderson JS, Bandi S, Kaufman DS, Akkina R. Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy. Retrovirology 2006; 3:24. [PMID: 16623949 PMCID: PMC1462997 DOI: 10.1186/1742-4690-3-24] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/19/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many novel studies and therapies are possible with the use of human embryonic stem cells (hES cells) and their differentiated cell progeny. The hES cell derived CD34 hematopoietic stem cells can be potentially used for many gene therapy applications. Here we evaluated the capacity of hES cell derived CD34 cells to give rise to normal macrophages as a first step towards using these cells in viral infection studies and in developing novel stem cell based gene therapy strategies for AIDS. RESULTS Undifferentiated normal and lentiviral vector transduced hES cells were cultured on S17 mouse bone marrow stromal cell layers to derive CD34 hematopoietic progenitor cells. The differentiated CD34 cells isolated from cystic bodies were further cultured in cytokine media to derive macrophages. Phenotypic and functional analyses were carried out to compare these with that of fetal liver CD34 cell derived macrophages. As assessed by FACS analysis, the hES-CD34 cell derived macrophages displayed characteristic cell surface markers CD14, CD4, CCR5, CXCR4, and HLA-DR suggesting a normal phenotype. Tests evaluating phagocytosis, upregulation of the costimulatory molecule B7.1, and cytokine secretion in response to LPS stimulation showed that these macrophages are also functionally normal. When infected with HIV-1, the differentiated macrophages supported productive viral infection. Lentiviral vector transduced hES cells expressing the transgene GFP were evaluated similarly like above. The transgenic hES cells also gave rise to macrophages with normal phenotypic and functional characteristics indicating no vector mediated adverse effects during differentiation. CONCLUSION Phenotypically normal and functionally competent macrophages could be derived from hES-CD34 cells. Since these cells are susceptible to HIV-1 infection, they provide a uniform source of macrophages for viral infection studies. Based on these results, it is also now feasible to transduce hES-CD34 cells with anti-HIV genes such as inhibitory siRNAs and test their antiviral efficacy in down stream differentiated cells such as macrophages which are among the primary cells that need to be protected against HIV-1 infection. Thus, the potential utility of hES derived CD34 hematopoietic cells for HIV-1 gene therapy can be evaluated.
Collapse
Affiliation(s)
- Joseph S Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sriram Bandi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Dan S Kaufman
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
77
|
Morris KV, Looney DJ. Characterization of human immunodeficiency virus (HIV)-2 vector mobilization by HIV-1. Hum Gene Ther 2006; 16:1463-72. [PMID: 16390277 DOI: 10.1089/hum.2005.16.1463] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conditionally replicating human immunodeficiency virus type 2 (crHIV-2) vectors can compete with HIV-1 for packaging in HIV-1-infected cells, indicating that the mobilization of vectors could selectively target as well as protect reservoirs susceptible to HIV-1 infection. The incorporation of HIV-1-specific antiviral transgenes in crHIV-2 vectors, although increasing the direct antiviral effect, may decrease mobilization and transmission to surrounding cells. To investigate how HIV-1-specific catalytic RNA cassettes (ribozymes) affect this balance between antiviral activity and mobilization, crHIV-2 vectors shown to display anti-HIV-1 activity were packaged by HIV-2 and used to transduce cells previously infected with HIV-1 or to transduce uninfected cells that were subsequently challenged with HIV-1. Vector mobilization was greater when HIV-1-infected cells were transduced with vector than when transduced cells were infected with HIV-1, and approximately 3-fold lower vector production was observed in cultures transduced with vectors expressing anti-HIV-1 ribozymes. Vector and antiviral effects could be transferred to new cultures by passaging supernatants to fresh cultures. No evidence of recombination with HIV-1 was observed. Vector mobilization and protection from HIV-1 infection were also demonstrated in human peripheral blood mononuclear cells. These data suggest that strategies employing vector mobilization for HIV-1 gene therapy should use vectors with maximal antiviral potency, despite resulting reductions in mobilization of the vector.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
78
|
Berkhout B, Haasnoot J. The interplay between virus infection and the cellular RNA interference machinery. FEBS Lett 2006; 580:2896-902. [PMID: 16563388 PMCID: PMC7094296 DOI: 10.1016/j.febslet.2006.02.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 12/04/2022]
Abstract
RNA interference (RNAi) plays a pivotal role in the regulation of gene expression to control cell development and differentiation. In plants, insects and nematodes RNAi also functions as an innate defence response against viruses. Similarly, there is accumulating evidence that RNAi functions as an antiviral defence mechanism in mammalian cells. Viruses have evolved highly sophisticated mechanisms for interacting with the host cell machinery, and recent evidence indicates that this also involves RNAi pathways. The cellular RNAi machinery can inhibit virus replication, but viruses may also exploit the RNAi machinery for their own replication. In addition, viruses can encode proteins or RNA molecules that suppress existing RNAi pathways or trigger the silencing of specific host genes. Besides the natural interplay between RNAi and viruses, induced RNAi provides an attractive therapy approach for the fight against human pathogenic viruses. Here, we summarize the latest news on virus–RNAi interactions and RNAi based antiviral therapy.
Collapse
Affiliation(s)
- Ben Berkhout
- Department of Human Retrovirology, K3-110, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | | |
Collapse
|
79
|
Abstract
Small interfering RNAs (siRNAs) are as effective as long double-stranded RNAs (dsRNAs) at targeting and silencing genes by RNA interference (RNAi). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. They are also promising reagents for developing gene-specific therapeutics. The specific inhibition of viral replication is particularly well suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on the recent advances in siRNA-based clinical trials.
Collapse
Affiliation(s)
- N Miyano-Kurosaki
- Department of Life and Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, 2-17-1 Narashino, Tsudanuma, 275-0016 Chiba, Japan
| | | |
Collapse
|
80
|
Erdmann V, Barciszewski J, Brosius J. Antiviral Applications of RNAi. Handb Exp Pharmacol 2006:105-16. [PMID: 16594613 PMCID: PMC7122589 DOI: 10.1007/3-540-27262-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
RNA interference is a natural mechanism by which small interfering (si)RNA operates to specifically and potently down-regulate the expression of a target gene. This down-regulation has been thought to predominantly function at the level of the messenger (m)RNA, post-transcriptional gene silencing (PTGS). Recently, the discovery that siRNAs can function to suppress a gene's expression at the level of transcription, i.e., transcriptional gene silencing (TGS), has created a major paradigm shift in mammalian RNAi. These recent findings significantly broaden the role RNA, specifically siRNAs and potentially microRNAs, plays in the regulation of gene expression as well as the breadth of potential siRNA target sites. Indeed, the specificity and simplicity of design makes the use of siRNAs to target and suppress virtually any gene or gene promoter of interest a realized technology. Furthermore, since siRNAs are a small nucleic acid reagent, they are unlikely to elicit an immune response, making them a theoretically good future therapeutic. This review will focus on the development, delivery, and potential therapeutic use of antiviral siRNAs in treating viral infections as well as emerging viral threats.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
81
|
Abstract
In the age of extensive global traffic systems, the close neighborhood of man and livestock in some regions of the world, as well as inadequate prevention measures and medical care in poorer countries, greatly facilitates the emergence and dissemination of new virus strains. The appearance of avian influenza viruses that can infect humans, the spread of the severe acute respiratory syndrome (SARS) virus, and the unprecedented raging of human immunodeficiency virus (HIV) illustrate the threat of a global virus pandemic. In addition, viruses like hepatitis B and C claim more than one million lives every year for want of efficient therapy. Thus, new approaches to prevent virus propagation are urgently needed. Antisense strategies are considered a very attractive means of inhibiting viral replication, as oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The ensuing targeted destruction of viral RNA should interfere with viral replication without entailing negative effects on ongoing cellular processes. In this review, we will give some examples of the employment of antisense oligonucleotides, ribozymes, and RNA interference strategies for antiviral purposes. Currently, in spite of encouraging results in preclinical studies, only a few antisense oligonucleotides and ribozymes have turned out to be efficient antiviral compounds in clinical trials. The advent of RNA interference now seems to be refueling hopes for decisive progress in the field of therapeutic employment of antisense strategies.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
82
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:2721-2725. [DOI: 10.11569/wcjd.v13.i23.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
83
|
Park J, Nadeau P, Zucali JR, Johnson CM, Mergia A. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs. Virology 2005; 343:275-82. [PMID: 16181654 DOI: 10.1016/j.virol.2005.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/10/2005] [Accepted: 08/29/2005] [Indexed: 11/20/2022]
Abstract
Viral vectors available for gene therapy are either inefficient or suffer from safety concerns for human applications. Foamy viruses are non-pathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. In this report, we describe the use of simian foamy virus type 1 (SFV-1) vector to examine the efficacy of therapeutic genes. Hairpin short-interfering RNA (siRNA) that targets the simian immunodeficiency virus (SIV) rev/env was placed under the control of the PolIII U6 snRNA promoter for expression and screened for silencing target genes using cognate target-reporter fusions. We have identified an effective siRNA (designated R2) which reduces the rev and env gene expression by 89% and 95%, respectively. Using the simian foamy virus type 1 (SFV-1) based vector, we delivered the PolIII expressed R2 siRNA into cultured cells and challenged with SIV. The results show that the R2 siRNA is a potent inhibitor of SIV replication as determined by p27 expression and reverse transcriptase assays. Vectors based on a non-pathogenic SFV-1 vector may provide a safe and efficient alternative to currently available vectors, and the SIV model will help devise protocols for effective anti-HIV gene therapy.
Collapse
Affiliation(s)
- Jeonghae Park
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
84
|
Morris KV, Looney DJ. Characterization of Human Immunodeficiency Virus (HIV)-2 Vector Mobilization by HIV-1. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
85
|
Chang LJ, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 2005; 12:1133-44. [PMID: 15750613 DOI: 10.1038/sj.gt.3302509] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high mutation rate of the human immunodeficiency virus (HIV) makes it difficult for any therapy employing a single anti-HIV targeting mechanism to sustain prolonged effect. In an attempt to explore novel therapy for AIDS, we developed and tested lentiviral small interfering RNA (siRNA) vectors targeting multiple highly conserved regions in the HIV type 1 (HIV-1) genome. The siRNA expression cassette was cloned into an extensively deleted HIV-1-derived lentiviral self-inactivating insulator (SIN) insulator [corrected] vector. Although some of the siRNAs targeting sites were also present in the helper construct of the vector system, the production of these lentiviral siRNA vectors were not significantly affected. When tested against different HIV-1 strains including pNL4-3 (subtype B), p89.6 (subtype B) and p90CF402.1.8 (subtype A/E recombinant), the siRNAs targeting conserved gag, pol, int and vpu, but not U3, nef or U5 regions, efficiently inhibited replication of all three viral strains. These lentiviral siRNA vectors also protected host cells from syncytium-forming macrophage- and T-cell-tropic HIV-1-induced cytotoxicity. Transduction of a long-term chronically infected human lymphoma cell line with lentiviral siRNAs resulted in stable inhibition of HIV-1 replication. Northern analysis showed that both genomic and subgenomic viral RNA species were downregulated. In addition, the viral RNA was inhibited in both the nuclear and cytoplasmic compartments of [corrected] chronically infected cells after prolonged passage, suggesting that [corrected] lentiviral siRNAs have a nuclear effect [corrected] Using these lentiviral siRNA [corrected] vectors, we further demonstrated reduced replication kinetics of HIV-1 in primary human peripheral blood lymphocytes. These results suggest that lentiviral siRNAs targeting multiple conserved HIV-1 sequences holds significant promise for the treatment of HIV-1 infections.
Collapse
Affiliation(s)
- L-J Chang
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
86
|
Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107:222-39. [PMID: 15908010 PMCID: PMC7112686 DOI: 10.1016/j.pharmthera.2005.03.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 12/23/2022]
Abstract
In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21–23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.
Collapse
|
87
|
ter Brake O, Berkhout B. A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs. JOURNAL OF RNAI AND GENE SILENCING : AN INTERNATIONAL JOURNAL OF RNA AND GENE TARGETING RESEARCH 2005. [PMID: 19771206 DOI: 10.1039/9781847558275-00296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA interference (RNAi) is an evolutionary conserved gene silencing mechanism in which small interfering RNA (siRNA) mediates the sequence specific degradation of mRNA. The recent discovery that exogenously delivered siRNA can trigger RNAi in mammalian cells raises the possibility to use this technology as a therapeutic tool against pathogenic viruses. Indeed, it has been shown that siRNAs can be used effectively to inhibit virus replication. The focus of this review is on RNA interference strategies against HIV-1 and how this new technology may be developed into a new successful therapy. One of the hallmarks of RNAi, its sequence specificity, also presents a way out for the virus, as single nucleotide substitutions in the target region can abolish the suppression. Strategies to prevent the emergence of resistant viruses have been suggested and involve the targeting of conserved sequences and the simultaneous use of multiple siRNAs, similar to current highly active antiretroviral therapy. We present an additional strategy aimed at preventing viral escape by using a second generation of siRNAs that recognize the mutated target sites.
Collapse
Affiliation(s)
- Olivier ter Brake
- Department of Human Retrovirology, University of Amsterdam, Academic Medical Center (AMC), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
88
|
Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ, Rossi JJ, Zaia JA. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11:823-42. [PMID: 15922953 DOI: 10.1016/j.ymthe.2005.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/21/2022] Open
Abstract
Progress in developing effective gene transfer approaches to treat HIV-1 infection has been steady. Many different transgenes have been reported to inhibit HIV-1 in vitro. However, effective translation of such results to clinical practice, or even to animal models of AIDS, has been challenging. Among the reasons for this failure are uncertainty as to the most effective cell population(s) to target, the diffuseness of these target cells in the body, and ineffective or insufficiently durable gene delivery. Better understanding of the HIV-1 replicative cycle, host factors involved in HIV-1 infection, vector biology and application, transgene technology, animal models, and clinical study design have all contributed vastly to planning current and future strategies for application of gene therapeutic approaches to the treatment of AIDS. This review focuses on the newest developments in these areas and provides a strong basis for renewed optimism that gene therapy will have an important role to play in treating people infected with HIV-1.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Braun SE, Wong FE, Connole M, Qiu G, Lee L, Gillis J, Lu X, Humeau L, Slepushkin V, Binder GK, Dropulic B, Johnson RP. Inhibition of simian/human immunodeficiency virus replication in CD4+ T cells derived from lentiviral-transduced CD34+ hematopoietic cells. Mol Ther 2005; 12:1157-67. [PMID: 16168713 DOI: 10.1016/j.ymthe.2005.07.698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/10/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022] Open
Abstract
We examined the ability of a HIV-1-based vector (VRX494) encoding a 937-bp antisense HIV-1 envelope sequence to inhibit the replication of chimeric SIV/HIV-1 viruses encoding the HIV-1 envelope. Challenge of VRX494-transduced CEMx174 cells resulted in potent inhibition of HIV-1 and several SHIV strains. To evaluate the potential efficacy of the VRX494 vector for stem cell gene therapy, rhesus CD34(+) bone marrow cells were transduced with VRX494 and then cultured on thymus stroma to induce T cell differentiation. Transduction conditions for CD34(+) cells were optimized to yield high transduction efficiency with minimal effective multiplicity of infection. Purified CD4(+) GFP(+) T cells derived from VRX494-transduced CD34(+) cells strongly inhibited SHIV HXBC2P 3.2 and SHIV 89.6P replication compared to controls. Southern blot analysis of VRX494-transduced T cell clones revealed a subset of cells with multiple proviral copies per cell. Expression of GFP and the antisense inhibitor in VRX494-transduced cells was upregulated by Tat. Analysis of HIV-1 envelope sequences in VRX494-transduced cells revealed modifications consistent with those mediated by double-stranded RNA-dependent adenosine deaminase. These results indicate that the macaque/SHIV model should serve as a useful preclinical model to evaluate this lentiviral vector expressing an HIV-1 antisense inhibitor for stem cell gene therapy for AIDS.
Collapse
MESH Headings
- Adenosine Deaminase/metabolism
- Animals
- Antigens, CD34/biosynthesis
- Antigens, CD34/genetics
- Blotting, Southern
- Bone Marrow Cells/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation
- Cell Line
- Dose-Response Relationship, Drug
- Flow Cytometry
- Gene Products, env/metabolism
- Gene Products, rev/metabolism
- Gene Products, tat/metabolism
- Genetic Therapy/methods
- Genetic Vectors
- Green Fluorescent Proteins/metabolism
- HIV-1/genetics
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/virology
- Humans
- Lentivirus/genetics
- Leukocytes, Mononuclear/metabolism
- Macaca mulatta
- Models, Genetic
- Oligonucleotides, Antisense/chemistry
- RNA/chemistry
- Retroviridae/genetics
- Simian Immunodeficiency Virus/genetics
- Stem Cells/metabolism
- T-Lymphocytes/metabolism
- Up-Regulation
- Virus Replication
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Stephen E Braun
- Division of Immunology, New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J, Akkina R, Rossi JJ. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005; 12:900-9. [PMID: 16115802 DOI: 10.1016/j.ymthe.2005.07.524] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/11/2005] [Accepted: 07/11/2005] [Indexed: 11/15/2022] Open
Abstract
Combinatorial therapies for the treatment of HIV-1 infection have proven to be effective in reducing patient viral loads and slowing the progression to AIDS. We have developed a series of RNA-based inhibitors for use in a gene therapy-based treatment for HIV-1 infection. The transcriptional units have been inserted into the backbone of a replication-defective lentiviral vector capable of transducing a wide array of cell types, including CD34+ hematopoietic progenitor cells. The combinatorial therapeutic RNA vector harbors a U6 Pol III promoter-driven short hairpin RNA (shRNA) targeting the rev and tat mRNAs of HIV-1, a U6 transcribed nucleolar-localizing TAR RNA decoy, and a VA1-derived Pol III cassette that expresses an anti-CCR5 ribozyme. Each of these therapeutic RNAs targets a different gene product and blocks HIV infection by a distinct mechanism. Our results demonstrate that the combinatorial vector suppresses HIV replication long term in a more-than-additive fashion relative to the single shRNA or double shRNA/ribozyme or decoy combinations. Our data demonstrate the validity and efficacy of a combinatorial RNA-based gene therapy for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Ming-Jie Li
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Anderson J, Akkina R. CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2005; 2:53. [PMID: 16109172 PMCID: PMC1199620 DOI: 10.1186/1742-4690-2-53] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 08/18/2005] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Stable simultaneous knock down of the HIV-1 coreceptors CCR5 and CXCR4 is a promising strategy to protect cells from both R5 macrophage tropic and X4 T cell tropic as well as dual tropic viral infections. The potency of shRNAs in targeted gene silencing qualifies them as powerful tools for long term HIV gene therapy. Our previous work with a bispecific lentiviral vector containing CXCR4 and CCR5 shRNAs showed efficacy in down regulating both coreceptors and conferring viral resistance to both X4 and R5-tropic strains of HIV-1 in cultured cell lines. To extend these results to a stem cell gene therapy setting, here we show transduction of primary CD34+ hematopoietic progenitor cells to derive normal end stage cells that are resistant to HIV-1 infection. RESULTS The bispecific XHR lentiviral vector harboring CXCR4 and CCR5 shRNA expression cassettes was efficient in transducing CD34+ cells. The transduced cells gave rise to morphologically normal transgenic macrophages when cultured in cytokine media. There was a marked down regulation of both coreceptors in the stably transduced macrophages which showed resistance to both R5 and X4 HIV-1 strains upon in vitro challenge. Since off target effects by some shRNAs may have adverse effects on transgenic cells, the stably transduced macrophages were further analyzed to determine if they are phenotypically and functionally normal. FACS evaluation showed normal levels of the characteristic surface markers CD14, CD4, MHC class II, and B7.1. Phagocytic functions were also normal. The transgenic macrophages demonstrated normal abilities in up-regulating the costimulatory molecule B7.1 upon LPS stimulation. Furthermore, IL-1 and TNFalpha cytokine secretion in response to LPS stimulation was also normal. Thus, the transgenic macrophages appear to be phenotypically and functionally normal. CONCLUSION These studies have demonstrated for the first time that a bispecific lentiviral vector could be used to stably deliver shRNAs targeted to both CCR5 and CXCR4 coreceptors into CD34+ hematopoietic progenitor cells and derive transgenic macrophages. Transgenic macrophages with down regulated coreceptors were resistant to both R5 and X4 tropic HIV-1 infections. The differentiated cells were also phenotypically and functionally normal indicating no adverse effects of shRNAs on lineage specific differentiation of stem cells. It is now possible to construct gene therapeutic lentiviral vectors incorporating multiple shRNAs targeted to cellular molecules that aid in HIV-1 infection. Use of these vectors in a stem cell setting shows great promise for sustained HIV/AIDS gene therapy.
Collapse
Affiliation(s)
- Joseph Anderson
- Dept. Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ramesh Akkina
- Dept. Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
92
|
Joshi PJ, North TW, Prasad VR. Aptamers directed to HIV-1 reverse transcriptase display greater efficacy over small hairpin RNAs targeted to viral RNA in blocking HIV-1 replication. Mol Ther 2005; 11:677-86. [PMID: 15851006 DOI: 10.1016/j.ymthe.2005.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/14/2005] [Indexed: 10/25/2022] Open
Abstract
RNA molecules can be powerful inhibitors of HIV-1 replication. To determine the relative efficacy of siRNAs and RNA aptamers, a direct comparison of three anti-HIV reverse transcriptase aptamers and three shRNAs targeted to HIV-1(R3b) was made. U6 promoter-driven anti-HIV genes were delivered into CEMx174 cells via a retroviral vector, and transduced cells were sorted out via green fluorescent protein function and challenged with HIV. The results show that, at low virus input, shRNAs can block HIV as efficiently as aptamers. When expressed in target cells, both classes of inhibitors blocked early events of reverse transcription, suggesting they are both able to access intracellular reverse transcription complexes. However, at higher multiplicities of infection (m.o.i. of 50), while the aptamers could efficiently inhibit HIV replication, shRNAs did not. RNase protection assays indicated similar steady-state levels or nucleocytoplasmic distribution showing that the differential efficacy was not a reflection of intracellular concentration. The higher potency of anti-RT aptamers could be due to their ability to inhibit two successive rounds of reverse transcription owing to their unique ability to be encapsidated into virion particles. Furthermore, anti-RT aptamers expressed in T cells afforded protection against high-dose infection by chimeric RT-SHIV viruses.
Collapse
Affiliation(s)
- Pheroze J Joshi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, GB401, Bronx, NY 10461, USA
| | | | | |
Collapse
|
93
|
Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 2005; 56:401-23. [PMID: 15660519 DOI: 10.1146/annurev.med.56.082103.104606] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism for silencing gene expression. In primitive organisms, RNAi protects the genome from viruses and other insertable genetic elements and regulates gene expression during development. The antisense (guide) strand of short double-stranded RNAs is incorporated into an RNA-induced silencing complex that can either suppress protein expression or direct degradation of messenger RNAs that contain homologous sequence(s). The discovery that RNAi works in mammalian cells has sparked intense investigation into its role in normal mammalian cell function, its use as a tool to understand or screen for genes functioning in cellular pathways in healthy and diseased cells and animals, and its potential for therapeutic gene silencing. RNAi may provide an important new therapeutic modality for treating infection, cancer, neurodegenerative disease, and other illnesses, although in vivo delivery of small interfering RNAs into cells remains a significant obstacle.
Collapse
Affiliation(s)
- Derek M Dykxhoorn
- CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
94
|
Jiang M, Rubbi CP, Milner J. Gel-based application of siRNA to human epithelial cancer cells induces RNAi-dependent apoptosis. Oligonucleotides 2005; 14:239-48. [PMID: 15665592 DOI: 10.1089/oli.2004.14.239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Gene silencing by RNA interference (RNAi) operates at the level of mRNA that is targeted for destruction with exquisite sequence specificity. In principle, any disease-related mRNA sequence is a putative target for RNAi-based therapeutics. To develop this therapeutic potential, it is necessary to develop ways of inducing RNAi by clinically acceptable delivery procedures. Here, we ask if inducers of RNAi can be delivered to human cells via a gel-based medium. RNAi was induced using synthetic small interfering RNAs (siRNAs), which bypass the need for expression vectors and carry the added bonus of high potency and immediate efficacy. Established cultures of human cells of normal and tumor origin were overlaid with an agarose/liposome/siRNA gel formulation without adverse effects on cell viability or proliferation. Epithelial cancer cells (but not normal human fibroblasts) proved vulnerable to specific siRNAs delivered via the agarose/liposome/siRNA formulation. Moreover, proapoptotic siRNAs induced apoptosis of cervical carcinoma cells (treated with human papillomavirus [HPV] E7 siRNA) and of colorectal carcinoma cells (treated with Bcl-2 siRNA). Thus, we demonstrate successful topical gel-based delivery of inducers of RNAi to human epithelial cancer cells. Topical induction of RNAi opens an important new therapeutic approach for treatment of human diseases, including cervical cancer and other accessible disorders.
Collapse
Affiliation(s)
- Ming Jiang
- YCR P53 Research Group, Department of Biology, University of York, York, YO10 5DD, UK
| | | | | |
Collapse
|
95
|
Bot I, Guo J, Van Eck M, Van Santbrink PJ, Groot PHE, Hildebrand RB, Seppen J, Van Berkel TJC, Biessen EAL. Lentiviral shRNA silencing of murine bone marrow cell CCR2 leads to persistent knockdown of CCR2 function in vivo. Blood 2005; 106:1147-53. [PMID: 15886324 DOI: 10.1182/blood-2004-12-4839] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major barrier in hematopoietic gene function studies is posed by the laborious and time-consuming generation of knockout mice with an appropriate genetic background. Here we present a novel lentivirus-based strategy for the in situ generation of hematopoietic knockdowns. A short hairpin RNA (shRNA) was designed targeting murine CC-chemokine receptor 2 (CCR2), which was able to specifically blunt CCR2 expression at the mRNA, protein, and functional levels in vitro. Reconstitution of irradiated recipient mice with autologous bone marrow that had been ex vivo transduced with shRNA lentivirus led to persistent down-regulation of CCR2 expression, which translated into a 70% reduction in CCR2-dependent recruitment of macrophages to an inflamed peritoneal cavity without noticeable side effects on related chemokine receptors or general inflammation status. These findings clearly demonstrate the potential of shRNA lentivirus-infected bone marrow transplantation as a rapid and effective method to generate hematopoietic knockdowns for leukocyte gene function studies.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells
- Bone Marrow Transplantation
- Chemotaxis
- Down-Regulation
- Lentivirus/genetics
- Macrophages
- Methods
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- RNA Interference
- RNA, Messenger/drug effects
- RNA, Small Interfering/chemical synthesis
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Receptors, CCR2
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- Ilze Bot
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Lee SK, Dykxhoorn DM, Kumar P, Ranjbar S, Song E, Maliszewski LE, François-Bongarçon V, Goldfeld A, Swamy NM, Lieberman J, Shankar P. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 2005; 106:818-26. [PMID: 15831707 PMCID: PMC1895148 DOI: 10.1182/blood-2004-10-3959] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viral heterogeneity is a major hurdle for potential therapeutic use of RNA interference (RNAi) against HIV-1. To determine the extent of RNAi tolerance to mutations, we tested 3 viral target sites with differing propensity for mutations: a highly variable rev sequence, a gag sequence conserved only among clade B isolates, and a vif sequence highly conserved across clades. Lentiviral expression of all 3 shRNAs inhibited replication of the homologous HIV(IIIB) strain. However, they differed in their ability to protect primary CD4 T cells against multiple isolates within and across HIV clades. The least conserved rev sequence inhibited only 2 of 5 clade B isolates. The gag sequence (conserved within clade B) protected 5 of 5 clade B isolates but not other clade viruses with 2 or 3 mutations in the central region. In contrast, the vif sequence, which was conserved across clades except for single mutations at positions 14 and 17, inhibited viruses from 5 different clades. Moreover, siRNAs with introduced mutations at sites of gag sequence polymorphisms showed reduced antiviral activity, whereas mutations in vif siRNA only modestly decreased silencing. Thus, although 1 or 2 mutations at peripheral sites are tolerated, mutations in the central target cleavage region abolish RNAi activity.
Collapse
Affiliation(s)
- Sang-Kyung Lee
- The CBR Institute for Biomedical Research, 800 Huntington Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
The ability of small interfering RNA (siRNA) to mediate gene-specific post-transcriptional silencing in mammalian cells will undoubtedly revolutionise functional genomics, as well as drug target identification and validation. Furthermore, there is widespread excitement that siRNA itself might prove useful in the clinical setting. For those wishing to develop siRNA as a therapeutic agent, the most difficult obstacle to overcome will be delivery. Recently, several breakthroughs have highlighted viruses as excellent vehicles for siRNA delivery. Retroviruses, the transgene-delivery vector of choice for many experimental gene therapy studies, have been engineered to deliver and stably express therapeutic siRNA within cells, both in vitro and in vivo. These findings are important milestones for the development of siRNA as a gene therapy for treatment of viral infections, cancer, autoimmune syndromes and numerous genetic disorders. This review describes the development of retroviral siRNA vectors, highlights proof-of-concept experiments demonstrating their therapeutic efficacy and explores therapeutic targets particularly suitable for retroviral-mediated gene silencing.
Collapse
Affiliation(s)
- Eric Devroe
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School/Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | |
Collapse
|
98
|
Leonard JN, Schaffer DV. Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape. J Virol 2005; 79:1645-54. [PMID: 15650190 PMCID: PMC544124 DOI: 10.1128/jvi.79.3.1645-1654.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently developed antiviral strategies based upon RNA interference (RNAi), which harnesses an innate cellular system for the targeted down-regulation of gene expression, appear highly promising and offer alternative approaches to conventional highly active antiretroviral therapy or efforts to develop an AIDS vaccine. However, RNAi is faced with several challenges that must be overcome to fully realize its promise. Specifically, it degrades target RNA in a highly sequence-specific manner and is thus susceptible to viral mutational escape, and there are also challenges in delivery systems to induce RNAi. To aid in the development of anti-human immunodeficiency virus (anti-HIV) RNAi therapies, we have developed a novel stochastic computational model that simulates in molecular-level detail the propagation of an HIV infection in cells expressing RNAi. The model provides quantitative predictions on how targeting multiple locations in the HIV genome, while keeping the overall RNAi strength constant, significantly improves efficacy. Furthermore, it demonstrates that delivery systems must be highly efficient to preclude leaving reservoirs of unprotected cells where the virus can propagate, mutate, and eventually overwhelm the entire system. It also predicts how therapeutic success depends upon a relationship between RNAi strength and delivery efficiency and uniformity. Finally, targeting an essential viral element, in this case the HIV TAR region, can be highly successful if the RNAi target sequence is correctly selected. In addition to providing specific predictions for how to optimize a clinical therapy, this system may also serve as a future tool for investigating more fundamental questions of viral evolution.
Collapse
Affiliation(s)
- Joshua N Leonard
- Department of Chemical Engineering and The Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462, USA
| | | |
Collapse
|
99
|
Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005; 2:1. [PMID: 15813990 PMCID: PMC1074340 DOI: 10.1186/1742-6405-2-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/13/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4) and monocyte tropic (R5) viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. RESULTS: To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. CONCLUSIONS: Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.
Collapse
Affiliation(s)
- Joseph Anderson
- Dept Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ramesh Akkina
- Dept Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
100
|
Morris KV, Gilbert J, Wong-Staal F, Gasmi M, Looney DJ. Transduction of cell lines and primary cells by FIV-packaged HIV vectors. Mol Ther 2005; 10:181-90. [PMID: 15272479 DOI: 10.1016/j.ymthe.2004.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus, and feline immunodeficiency virus (FIV) are capable of packaging viral RNA derived from heterologous as well as homologous lentiviruses, a phenomenon referred to as "cross packaging." To remove the possibility of seroconversion to HIV proteins, and to avoid potential problems arising due to targeting of vector or packaging construct by antiviral genes, we investigated the feasibility of using an FIV-based packaging system to deliver human immunodeficiency virus type 2 (HIV-2)-based vectors bearing anti-HIV-1 RNA expression cassettes to target cells. In the absence of FIV rev, FIV was packaged by HIV-2 at only 3% the efficiency of FIV packaging by FIV, but this was increased to 39% of homologous controls by supplying FIV rev in trans. HIV-2 vectors were packaged by FIV at levels equal to or exceeding the homologous HIV-2 packaging system in the absence of HIV-1 tat and rev, and levels increased approximately four- to fivefold with the addition of tat and rev in trans. HIV-2 vectors bearing a polyribozyme cassette targeting multiple regions of HIV RNA were efficiently packaged by FIV and transferred to target cells. Upon challenge with cell-free HIV-1 (m.o.i. = 0.1) a significant reduction in replication was observed. These findings demonstrate that packaging HIV vectors with FIV is a viable alternative, which avoids use of HIV structural proteins.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|