51
|
Gołyszny M, Zieliński M, Paul-Samojedny M, Filipczyk Ł, Pałasz A, Obuchowicz E. Escitalopram alters the hypothalamic OX system but does not affect its up-regulation induced by early-life stress in adult rats. Neurosci Res 2022; 180:58-71. [PMID: 35219722 DOI: 10.1016/j.neures.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023]
Abstract
We hypothesized that there is a relationship between the orexinergic system (OX) alterations and changes elicited by escitalopram or venlafaxine in adult rats subjected to maternal separation (MS). This animal model of childhood adversity induces long-lasting consequences in adult physiology and behavior. Male Wistar rats from the control and MS groups were injected with escitalopram or venlafaxine (10 mg/kg) IP from postnatal day (PND) 69-89. Adult rats were subjected to behavioral assessment, estimation of hypothalamic-pituitary-adrenal (HPA) axis activity and analysis of the OX system (quantitative PCR and immunohistochemistry) in the hypothalamus and amygdala. MS caused anxiety- and depressive-like behavior, endocrine stress-related response, and up-regulation of the OX system in the hypothalamus. Escitalopram, but not venlafaxine, increased the activity of hypothalamic OX system in the control rats and both drugs had no effect on OXs in the MS group. The disturbed signaling of the OX pathway may be significant for harmful long-term consequences of early-life stress. Our data show that the normal brain and brain altered by MS respond differently to escitalopram. Presumably, anti-anxiety and antidepressant effects of this drug do not depend on the activity of hypothalamic OX system.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jedności 8, Sosnowiec 41-200, Poland
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| |
Collapse
|
52
|
Ullah H, Khan A, Rengasamy KRR, Di Minno A, Sacchi R, Daglia M. The Efficacy of S-Adenosyl Methionine and Probiotic Supplementation on Depression: A Synergistic Approach. Nutrients 2022; 14:2751. [PMID: 35807931 PMCID: PMC9268496 DOI: 10.3390/nu14132751] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Depression is a common and serious health issue affecting around 280 million people around the world. Suicidal ideation more frequently occurs in people with moderate to severe depression. Psychotherapy and pharmacological drugs are the mainstay of available treatment options for depressive disorders. However, pharmacological options do not offer complete cure, especially in moderate to severe depression, and are often seen with a range of adverse events. S-adenosyl methionine (SAMe) supplementation has been widely studied, and an impressive collection of literature published over the last few decades suggests its antidepressant efficacy. Probiotics have gained significant attention due to their wide array of clinical uses, and multiple studies have explored the link between probiotic species and mood disorders. Gut dysbiosis is one of the risk factors in depression by inducing systemic inflammation accompanied by an imbalance in neurotransmitter production. Thus, concomitant administration of probiotics may be an effective treatment strategy in patients with depressed mood, particularly in resistant cases, as these can aid in dysbiosis, possibly resulting in the attenuation of systemic inflammatory processes and the improvement of the therapeutic efficacy of SAMe. The current review highlights the therapeutic roles of SAMe and probiotics in depression, their mechanistic targets, and their possible synergistic effects and may help in the development of food supplements consisting of a combination of SAMe and probiotics with new dosage forms that may improve their bioavailability.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan;
| | - Kannan R. R. Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy;
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
53
|
Cuskelly A, Hoedt EC, Harms L, Talley NJ, Tadros MA, Keely S, Hodgson DM. Neonatal immune challenge influences the microbiota and behaviour in a sexually dimorphic manner. Brain Behav Immun 2022; 103:232-242. [PMID: 35491004 DOI: 10.1016/j.bbi.2022.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022] Open
Abstract
There is comorbidity between anxiety disorders and gastrointestinal disorders, with both linked to adverse early life events. The microbiome gut-brain-axis, a bidirectional communication system, is plastic throughout the neonatal period and is a possible mediator of this relationship. Here, we used a well-established neonatal rodent immune activation model to investigate the long-term effect of neonatal lipopolysaccharide (LPS) exposure on adult behaviour and the relationship to microbiome composition. Wistar rats were injected with LPS (0.05 mg/kg) or saline (equivolume) on postnatal days 3 and 5. In adulthood, behavioural tests were performed to assess anxiety-like behaviour, and microbiota sequencing was performed on stool samples. There were distinctly different behavioural phenotypes for LPS-exposed males and females. LPS-exposed males displayed typical anxiety-like behaviours with significantly decreased social interaction (F(1,22) = 7.576, p = 0.009) and increased defecation relative to saline controls (F(1,23) = 8.623, p = 0.005). LPS-exposed females displayed a different behavioural phenotype with significantly increased social interaction (F(1,22) = 6.094, p = 0.018), and exploration (F(1,24) = 6.359, p = 0.015), compared to saline controls. With respect to microbiota profiling data, Bacteroidota was significantly increased for LPS-exposed females (F(1,14) = 4.931p = 0.035) and Proteobacteria was decreased for LPS-exposed rats of both sexes versus controls (F(1,30) = 4.923p = 0.035). Furthermore, alterations in predicted functional pathways for neurotransmitters in faeces were observed with a decrease in the relative abundance of D-glutamine and D-glutamate metabolism in LPS exposed females compared to control females (p < 0.05). This suggests that neonatal immune activation alters both later life behaviour and adult gut microbiota in sex-specific ways. These findings highlight the importance of sex in determining the impact of neonatal immune activation on social behaviour and the gut microbiota.
Collapse
Affiliation(s)
- A Cuskelly
- School of Psychological Sciences, University of Newcastle, Callaghan, NSW, Australia; Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) Program, Hunter Medical Research Institute (HMRI), Newcastle, NSW, Australia.
| | - E C Hoedt
- Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) Program, Hunter Medical Research Institute (HMRI), Newcastle, NSW, Australia; NHMRC Centre of Research Excellence (CRE) in Digestive Health, HMRI, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - L Harms
- School of Medicine and Public Health, University of Newcastle, New Lambton, NSW, Australia
| | - N J Talley
- Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) Program, Hunter Medical Research Institute (HMRI), Newcastle, NSW, Australia; NHMRC Centre of Research Excellence (CRE) in Digestive Health, HMRI, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, New Lambton, NSW, Australia
| | - M A Tadros
- School of Medicine and Public Health, University of Newcastle, New Lambton, NSW, Australia
| | - S Keely
- Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) Program, Hunter Medical Research Institute (HMRI), Newcastle, NSW, Australia; NHMRC Centre of Research Excellence (CRE) in Digestive Health, HMRI, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, New Lambton, NSW, Australia
| | - D M Hodgson
- School of Psychological Sciences, University of Newcastle, Callaghan, NSW, Australia; Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) Program, Hunter Medical Research Institute (HMRI), Newcastle, NSW, Australia
| |
Collapse
|
54
|
Dandekar MP, Palepu MSK, Satti S, Jaiswal Y, Singh AA, Dash SP, Gajula SNR, Sonti R. Multi-strain Probiotic Formulation Reverses Maternal Separation and Chronic Unpredictable Mild Stress-Generated Anxiety- and Depression-like Phenotypes by Modulating Gut Microbiome-Brain Activity in Rats. ACS Chem Neurosci 2022; 13:1948-1965. [PMID: 35735411 DOI: 10.1021/acschemneuro.2c00143] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Depression is a debilitating mental disorder that affects >322 million people worldwide. Despite the availability of several antidepressant agents, many patients remain treatment refractory. A growing literature study has indicated the role of gut microbiota in neuropsychiatric disorders. Herein, we examined the psychobiotic-like activity of multi-strain probiotic formulation in maternal separation (MS) and chronic unpredictable mild stress (CUMS) models of anxiety- and depression-like phenotypes in Sprague-Dawley rats. Early- and late-life stress was employed in both male and female rats by exposing them to MS and CUMS. The multi-strain probiotic formulation (Cognisol) containing Bacillus coagulans Unique IS-2, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Bifidobacterium lactis UBBLa-70, Bifidobacterium breve UBBr-01, and Bifidobacterium infantis UBBI-01 at a total strength of 10 billion cfu along with l-glutamine was administered for 6 weeks via drinking water. Neurobehavioral assessment was done using the forced swim test (FST), sucrose preference test (SPT), elevated plus maze (EPM), and open field test (OFT). Animals were sacrificed after behavioral assessment, and blood, brain, and intestine samples were collected to analyze the levels of cytokines, metabolites, and neurotransmitters and histology. Animals exposed to stress showed increased passivity, consumed less sucrose solution, and minimally explored the open arms in the FST, SPT, and EPM, respectively. Administration of multi-strain probiotics along with l-glutamine for 6 weeks ameliorated the behavioral abnormalities. The locomotor activity of animals in the OFT and their body weight remained unchanged across the groups. Cognisol treatment reversed the decreased BDNF and serotonin levels and increased CRP, TNF-α, and dopamine levels in the hippocampus and/or frontal cortex. Administration of Cognisol also restored the plasma levels of l-tryptophan, l-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid; the Firmicutes-to-Bacteroides ratio; the levels of acetate, propionate, and butyrate in fecal samples; the villi/crypt ratio; and the goblet cell count, which manifested in the restoration of intestinal functions. We suggest that the multi-strain probiotic and glutamine formulation (Cognisol) ameliorated the MS + UCMS-generated anxiety- and depression-like phenotypes by reshaping the gut microbiome-brain activity in both sexes.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
55
|
Carvalho M, Morais-Silva G, Caixeta GAB, Marin MT, Amaral VCS. Alcohol Deprivation Differentially Changes Alcohol Intake in Female and Male Rats Depending on Early-Life Stressful Experience. NEUROSCI 2022; 3:214-225. [PMID: 39483372 PMCID: PMC11523756 DOI: 10.3390/neurosci3020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/03/2024] Open
Abstract
Experiencing early-life adverse events has enduring effects on individual vulnerability to alcohol abuse and the development of addiction-related behaviors. In rodents, it can be studied using maternal separation (MS) stress. Studies have shown that, depending on the protocol used, MS can affect the mother and pups' behavior and are associated with behavioral alterations later in adulthood, associated with both positive or negative outcomes. However, it is not fully elucidated how MS affects relapse-like behaviors when experienced by female or male individuals. Therefore, the aim of our study was to evaluate the effects of brief and prolonged MS on the alcohol deprivation effect (ADE) in female and male rats. Female and male Wistar rats were exposed to brief (15 min/day) or prolonged (180 min/day) MS from postnatal day (PND) 2 to 10. Later, during adulthood (PND 70), animals were submitted to an ADE protocol. Brief MS exposure prevented the ADE in both females and males, while prolonged MS exposure also prevented the ADE in female rats. Moreover, the ADE was more robust in females when compared to males. In conclusion, we showed that male and female rats are differentially affected by alcohol deprivation periods depending on their early-life experiences.
Collapse
Affiliation(s)
- Marielly Carvalho
- Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products, State University of Goias, Exact and Technological Sciences Campus, Anapolis 75132-903, CO, Brazil; (M.C.); (G.A.B.C.)
- Graduate Program in Sciences Applied to Health Products (PPGCAPS) UEG, Anápolis 75132-903, GO, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.M.-S.); (M.T.M.)
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar/UNESP, São Carlos, Araraquara 14801-903, SP, Brazil
| | - Graziele Alícia Batista Caixeta
- Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products, State University of Goias, Exact and Technological Sciences Campus, Anapolis 75132-903, CO, Brazil; (M.C.); (G.A.B.C.)
- Graduate Program in Sciences Applied to Health Products (PPGCAPS) UEG, Anápolis 75132-903, GO, Brazil
| | - Marcelo T Marin
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.M.-S.); (M.T.M.)
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar/UNESP, São Carlos, Araraquara 14801-903, SP, Brazil
| | - Vanessa C S Amaral
- Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products, State University of Goias, Exact and Technological Sciences Campus, Anapolis 75132-903, CO, Brazil; (M.C.); (G.A.B.C.)
- Graduate Program in Sciences Applied to Health Products (PPGCAPS) UEG, Anápolis 75132-903, GO, Brazil
| |
Collapse
|
56
|
Duan S, Imamura N, Kondo T, Kanda H, Kogure Y, Okugawa T, Fukushima M, Tomita T, Oshima T, Fukui H, Noguchi K, Dai Y, Miwa H. Yokukansan Suppresses Gastric Hypersensitivity and Eosinophil-associated Microinflammation in Rats With Functional Dyspepsia. J Neurogastroenterol Motil 2022; 28:255-264. [PMID: 35362452 PMCID: PMC8978130 DOI: 10.5056/jnm21204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background/Aims Herbal medicine is an important complementary therapy for functional dyspepsia (FD). However, its effect against gastric hypersensitivity in patients with FD has rarely been evaluated. Yokukansan (YKS), a traditional Japanese herbal medicine, is effective against neuropathic and inflammatory pain. This study aims to use a maternal separation (MS) stress-induced FD model to investigate the effects of YKS against gastric hypersensitivity, gastric motility, and duodenal micro-inflammation. Methods The MS stress model was established by separating newborn Sprague-Dawley rats from their mothers for 2 hours a day from postnatal days 1 to 10. At the age of 7-8 weeks, the rats were treated with YKS at a dose of 5 mL/kg (1 g/kg) for 7 consecutive days. After YKS treatment, electromyographic activity in the acromiotrapezius muscle by gastric distention and the gastric-emptying rate were assessed. Immunohistochemical analysis of eosinophils in the duodenum and phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2 in the spinal cord was performed. Results YKS treatment suppressed MS stress-induced gastric hypersensitivity and decreased the elevated levels of p-ERK1/2 in the spinal cord. In the gastroduodenal tract, YKS inhibited eosinophil-associated micro-inflammation but did not improve gastric dysmotility. Conclusions YKS treatment improved gastric hypersensitivity by alleviating eosinophil-associated micro-inflammation in the gastroduodenal tract. This treatment may be considered an effective therapeutic option for epigastric pain and micro-inflammation in patients with FD.
Collapse
Affiliation(s)
- Shaoqi Duan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Nobuko Imamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Kondo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Takuya Okugawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Masashi Fukushima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
57
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Brief Maternal Separation Inoculates Against the Effects of Social Stress on Depression-Like Behavior and Cocaine Reward in Mice. Front Pharmacol 2022; 13:825522. [PMID: 35359840 PMCID: PMC8961977 DOI: 10.3389/fphar.2022.825522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to intermittent repeated social defeat (IRSD) increases the vulnerability of mice to the rewarding effects of cocaine in the conditioned place preference (CPP) paradigm. According to the "inoculation of stress" hypothesis, a brief period of maternal separation (MS) can provide protection against the negative effects of IRSD. The aim of the present study was to assess whether exposure to a brief episode of MS prevents the subsequent short-term effects of IRSD on depression- and anxiety-like behaviors and to explore its long-term effects on cocaine CPP in mice. Four groups of male C57BL/6 mice were employed; two groups were separated from their mother [6 h on postnatal day (PND) 9], while the other two groups were not (controls). On PND 47, 50, 53 and 56, mice that had experienced MS were exposed to social defeat in the cage of an aggressive resident mouse (MS + IRSD group) or were allowed to explore an empty cage (MS + EXPL group). The same procedure was performed with control mice that had not experienced MS (CONTROL + IRSD and CONTROL + EXPL groups). On PND57-58, all the mice performed the elevated plus maze and the hole-board, social interaction and splash tests. Three weeks after the last episode of defeat, all the mice underwent the CPP procedure with cocaine (1 mg/kg). Irrespective of whether or not MS had taken place, a reduction in open arms measures, dips, and social interaction was observed in mice that experienced IRSD. A higher latency of grooming and acquisition of cocaine-induced CPP were observed only in mice exposed to IRSD alone (CONTROL + IRSD). These results suggest that exposure to a brief episode of stress early in life increases the subsequent resilience of animals to the effects of social stress on vulnerability to cocaine.
Collapse
Affiliation(s)
- C Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M A Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M P García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - M A Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| |
Collapse
|
58
|
Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? SEXES 2022. [DOI: 10.3390/sexes3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, the gender perspective in scientific research and sex differences in biological studies on emotional disorders have become increasingly important. However, sex bias in basic research on anxiety and depression is still far from being covered. This review addresses the study of sex differences in the field of anxiety and depression using animal models that consider this issue so far. What can preclinical studies tell us and what are their main limitations? First, we describe the behavioral tests most frequently used in preclinical research to assess depressive-like and anxiety-like behaviors in rodents. Then, we analyze the main findings, strengths, and weaknesses of rodent models of anxiety and depression, dividing them into three main categories: sex chromosome complement-biased sex differences; gonadal hormone-biased sex differences; environmental-biased sex differences. Regardless of the animal model used, none can reproduce all the characteristics of such complex and multifactorial pathologies as anxiety and depressive disorders; however, each animal model contributes to elucidating the bases that underlie these disorders. The importance is highlighted of considering sex differences in the responses that emerge from each model.
Collapse
|
59
|
Chen Y, Zheng Y, Yan J, Zhu C, Zeng X, Zheng S, Li W, Yao L, Xia Y, Su WW, Chen Y. Early Life Stress Induces Different Behaviors in Adolescence and Adulthood May Related With Abnormal Medial Prefrontal Cortex Excitation/Inhibition Balance. Front Neurosci 2022; 15:720286. [PMID: 35058738 PMCID: PMC8765554 DOI: 10.3389/fnins.2021.720286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Early life stress is thought to be a risk factor for emotional disorders, particularly depression and anxiety. Although the excitation/inhibition (E/I) imbalance has been implicated in neuropsychiatric disorders, whether early life stress affects the E/I balance in the medial prefrontal cortex at various developmental stages is unclear. In this study, rats exposed to maternal separation (MS) that exhibited a well-established early life stress paradigm were used to evaluate the E/I balance in adolescence (postnatal day P43-60) and adulthood (P82-100) by behavior tests, whole-cell recordings, and microdialysis coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. First, the behavioral tests revealed that MS induced both anxiety- and depressive-like behaviors in adolescent rats but only depressive-like behavior in adult rats. Second, MS increased the action potential frequency and E/I balance of synaptic transmission onto L5 pyramidal neurons in the prelimbic (PrL) brain region of adolescent rats while decreasing the action potential frequency and E/I balance in adult rats. Finally, MS increases extracellular glutamate levels and decreased the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) of pyramidal neurons in the PrL of adolescent rats. In contrast, MS decreased extracellular glutamate levels and increased the paired-pulse ratio of evoked EPSCs of pyramidal neurons in the PrL of adult rats. The present results reveal a key role of E/I balance in different MS-induced disorders may related to the altered probability of presynaptic glutamate release at different developmental stages.
Collapse
Affiliation(s)
- Yiwen Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanan Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Xiamen Xianyue Hospital, Xiamen, China
| | - Xuan Zeng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoyi Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei-Wei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
60
|
Mundorf A, Bölükbas I, Freund N. Maternal separation: Does it hold the potential to model consequences of postpartum depression? Dev Psychobiol 2022; 64:e22219. [PMID: 35050513 DOI: 10.1002/dev.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
The postpartum period is a sensitive time where women are especially vulnerable to develop postpartum depression (PPD), with 10%-15% of women affected. This review investigates whether the maternal separation (MS) paradigm in rodents holds the potential to help to understand mothers suffering from PPD. MS is a well-established stress model to investigate effects on infants, whereas effects on the dam are often overlooked. The database PubMed was searched for studies investigating effects of daily MS within the first weeks after parturition on dams in rats and mice and compared to findings in PPD mothers. MS was categorized as brief MS (5-45 min) with or without handling of pups and long MS (3-4 h and longer). MS alters maternal care, depressive-like behavior, anxiety, and aggression; leads to alterations in neuronal gene expression; and affects hormone and neurotransmitter levels similar to observations in PPD patients. Even though there are disparities between human and rodent mothers, with some results differing in directionality, as well as the reason for separation (self-induced in PPD, externally induced in MS), the overall effects found on neurobiological, hormonal, and behavioral levels mostly coincide. Thus, the MS paradigm can add relevant knowledge to existing PPD animal models, further advancing the study of PPD.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.,Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Ibrahim Bölükbas
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
61
|
Arenas MC, Castro-Zavala A, Martín-Sánchez A, Blanco-Gandía MC, Miñarro J, Valverde O, Manzanedo C. Prepulse inhibition can predict the motivational effects of cocaine in female mice exposed to maternal separation. Behav Brain Res 2022; 416:113545. [PMID: 34437938 DOI: 10.1016/j.bbr.2021.113545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
The prepulse inhibition (PPI) of the startle response can identify the rodents that are more sensitive to the effects of cocaine. Mice with a lower PPI presented a higher vulnerability to the effects of cocaine and a higher susceptibility to developing a substance use disorder (SUD). Maternal separation with early weaning (MSEW) is a relevant animal model to induce motivational alterations throughout life. Nevertheless, only a few studies on females exist, even though they are more vulnerable to stress- and cocaine-related problems. Hence, the aim of the present study was to evaluate the ability of PPI to identify females with a greater vulnerability to the long-term consequences of early stress on the motivational effects of cocaine. Female mice underwent MSEW and were classified according to their high or low PPI. They were then assessed in the cocaine-induced locomotor sensitization test, the conditioned place preference paradigm or the operant self-administration paradigm. Additionally, they were also evaluated in the passive avoidance task, the tail-suspension and the splash tests. The results revealed that the females with lower PPI presented higher consequences of MSEW on the effects of cocaine and showed an increase in anhedonia-like behaviours. Our findings support that a PPI deficit could represent a biomarker of vulnerability to the effects of cocaine induced by MSEW.
Collapse
Affiliation(s)
- M Carmen Arenas
- Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain.
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - María Carmen Blanco-Gandía
- Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain; Universidad de Zaragoza, Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, C/ Ciudad Escolar s/n, 44003, Teruel, Spain
| | - José Miñarro
- Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Carmen Manzanedo
- Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| |
Collapse
|
62
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
63
|
Harauma A, Nakamura S, Wakinaka N, Mogi K, Moriguchi T. Influence of ω3 fatty acids on maternal behavior and brain oxytocin in the murine perinatal period. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102386. [PMID: 34896909 DOI: 10.1016/j.plefa.2021.102386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Perinatal women often experience mood disorders and postpartum depression due to the physical load and the rapid changes in hormone levels caused by pregnancy, childbirth, and nursing. When the mother's emotions become unstable, their parental behavior (maternal behavior) may decline, the child's attachment may weaken, and the formation of mother-child bonding can become hindered. As a result, the growth of the child may be adversely affected. The objective of this study was to investigate the effect of ω3 fatty acid deficiency in the perinatal period on maternal behavior and the oxytocin concentration and fatty acid composition in brain tissue. MATERIALS AND METHODS Virgin female C57BL/6 J mice fed a ω3 fatty acid-deficient (ω3-Def) or adequate (ω3-Adq) diet were mated for use in this study. To assess maternal behavior, nest shape was evaluated at a fixed time from gestational day (GD) 15 to postpartum day (PD) 13, and a retrieval test was conducted on PD 3. For neurochemical measurement, brains were removed from PD 1-6 dams and hippocampal fatty acids and hypothalamic oxytocin concentrations were assessed. RESULTS Peripartum nest shape scores were similar to those reported previously (Harauma et al., 2016); nests in the ω3-Def group were small and of poor quality whereas those in the ω3-Adq group were large and elaborate. The inferiority of nest shape in the ω3-Def group continued from PD 0-7. In the retrieval test performed on PD 3, dams in the ω3-Def group took longer on several parameters compared with those in the ω3-Adq group, including time to make contact with pups (sniffing time), time to start retrieving the next pup (interval time), and time to retrieve the last pup to the nest (grouping time). Hypothalamic oxytocin concentrations on PD 1-6 were lower in the ω3-Def group than in the ω3-Adq group. DISCUSSION Our data show that ω3 fatty acid deficiency reduces maternal behavior, a state that continued during pup rearing. This was supported by the observed decrease in hypothalamic oxytocin concentration in the ω3-Def group. These results suggest that ω3 fatty acid supplementation during the perinatal period is not only effective in delivering ω3 fatty acids to infants but is also necessary to activate high-quality parental behavior in mothers.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Shunichi Nakamura
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Natsuko Wakinaka
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Laboratory of Companion Animal Research, Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
64
|
Tan X, Zhang L, Wang D, Guan S, Lu P, Xu X, Xu H. Influence of early life stress on depression: from the perspective of neuroendocrine to the participation of gut microbiota. Aging (Albany NY) 2021; 13:25588-25601. [PMID: 34890365 PMCID: PMC8714134 DOI: 10.18632/aging.203746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Depression is the most common mental disorder and has become a heavy burden in modern society. Clinical studies have identified early life stress as one of the high-risk factors for increased susceptibility to depression. Alteration of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress is one of the key risk factors for depression susceptibility related to early life stress. Laboratory animal studies have demonstrated that maternal separation (MS) for extended periods elicits HPA axis changes. These changes persist into adulthood and resemble those present in depressed adult individuals, including hyperactivity of the HPA axis. In addition, there is growing evidence that inflammation plays an important role in depression susceptibility concerned with early life stress. Individuals that have experienced MS have higher levels of pro-inflammatory cytokines and are susceptible to depression. Recently, it has been found that the gut microbiota plays an important role in regulating behavior and is also associated with depression. The translocation of gut microbiota and the change of gut microbiota composition caused by early stress may be a reason. In this review, we discussed the mechanisms by which early life stress contributes to the development of depression in terms of these factors. These studies have facilitated a systematic understanding of the pathogenesis of depression related to early life stress and will provide new ideas for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaodi Guan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
65
|
Predictable maternal separation confers adult stress resilience via the medial prefrontal cortex oxytocin signaling pathway in rats. Mol Psychiatry 2021; 26:7296-7307. [PMID: 34561611 DOI: 10.1038/s41380-021-01293-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Early-life stress is normally thought of as a major risk for psychiatric disorders, but many researchers have revealed that adversity early in life may enhance stress resilience later in life. Few studies have been performed in rodents to address the possibility that exposure to early-life stress may enhance stress resilience, and the underlying neural mechanisms are far from being understood. Here, we established a "two-hit" stress model in rats by applying two different early-life stress paradigms: predictable and unpredictable maternal separation (MS). Predictable MS during the postnatal period promotes resilience to adult restraint stress, while unpredictable MS increases stress susceptibility. We demonstrate that structural and functional impairments occur in glutamatergic synapses in pyramidal neurons of the medial prefrontal cortex (mPFC) in rats with unpredictable MS but not in rats with predictable MS. Then, we used differentially expressed gene (DEG) analysis of RNA sequencing data from the adult male PFC to identify a hub gene that is responsible for stress resilience. Oxytocin, a peptide hormone, was the highest ranked differentially expressed gene of these altered genes. Predictable MS increases the expression of oxytocin in the mPFC compared to normal raised and unpredictable MS rats. Conditional knockout of the oxytocin receptor in the mPFC was sufficient to generate excitatory synaptic dysfunction and anxiety behavior in rats with predictable MS, whereas restoration of oxytocin receptor expression in the mPFC modified excitatory synaptic function and anxiety behavior in rats subjected to unpredictable MS. These findings were further supported by the demonstration that blocking oxytocinergic projections from the paraventricular nucleus of the hypothalamus (PVN) to the mPFC was sufficient to exacerbate anxiety behavior in rats exposed to predictable MS. Our findings provide direct evidence for the notion that predictable MS promotes stress resilience, while unpredictable MS increases stress susceptibility via mPFC oxytocin signaling in rats.
Collapse
|
66
|
Mejía-Chávez S, Venebra-Muñoz A, García-García F, Corona-Morales AA, Orozco-Vargas AE. Maternal Separation Modifies the Activity of Social Processing Brain Nuclei Upon Social Novelty Exposure. Front Behav Neurosci 2021; 15:651263. [PMID: 34803620 PMCID: PMC8599987 DOI: 10.3389/fnbeh.2021.651263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal separation has been shown to disrupt proper brain development and maturation, having profound consequences on the neuroendocrine systems in charge of the stress response, and has been shown to induce behavioral and cognitive abnormalities. At the behavioral level, maternal separation has been shown to increase offensive play-fighting in juvenile individuals and reduce social interest in adulthood. Since most of the studies that have evaluated the consequences of maternal separation on social behavior have focused on behavioral analysis, there is a need for a further understanding of the neuronal mechanisms underlying the changes in social behavior induced by maternal separation. Therefore, the aim of the present research was to assess the long-term effects of maternal separation on social interaction behavior and to assess the activity of several brain regions involved in the processing of social cues and reward upon social novelty exposure, using c-Fos immunohistochemistry as a marker of neuronal activity. Male Wistar rats were subjected to 4 h maternal separation during the neonatal period, 9:00 h-13:00 h from postnatal day 1 to 21, and exposed to social novelty during adulthood. After social novelty exposure, brains were fixed and coronal sections of the medial amygdala, lateral septum (LS), paraventricular nucleus of the hypothalamus, nucleus accumbens, and medial prefrontal cortex were obtained for c-Fos immunohistochemistry. Maternally separated rats spent less time investigating the novel peer, suggesting that maternal separation reduces social approach motivation. Furthermore, maternal separation reduced the number of c-Fos positive cells of the medial amygdala, paraventricular nucleus of the hypothalamus, LS, nucleus accumbens, and medial prefrontal cortex upon social novelty exposure. These findings suggest that maternal separation can reduce the plastic capacity of several brain nuclei, which constitute a physiological basis for the emergence of behavioral disorders presented later in life reported to be linked to early life adversity.
Collapse
Affiliation(s)
- Sara Mejía-Chávez
- Laboratorio de Neurobiología de la Adicción y Plasticidad Cerebral, Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Arturo Venebra-Muñoz
- Laboratorio de Neurobiología de la Adicción y Plasticidad Cerebral, Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Fabio García-García
- Laboratorio de Biología de Sueño, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | | |
Collapse
|
67
|
Early life and adult stress promote sex dependent changes in hypothalamic miRNAs and environmental enrichment prevents stress-induced miRNA and gene expression changes in rats. BMC Genomics 2021; 22:701. [PMID: 34583641 PMCID: PMC8480023 DOI: 10.1186/s12864-021-08003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The hypothalamus plays a key role in the stress response. While early life stress (ELS) increases susceptibility to psychiatric disorders including major depressive disorder (MDD), acute stress during adulthood can also precipitate MDD after ELS. AIM Here, we tested the expression of miRNAs following ELS and susceptibility to depression-like behavior and whether sex or acute stress exacerbates this response. We also tested whether environmental enrichment (Enr) promotes early life and adult behavioral stress resilience and its effect on hypothalamic miRNA and gene expression. Following rat maternal separation (MS) as an ELS model, Enr from weaning through adulthood, and restraint (RS) as acute adult stress, we tested both animal behavior and miRNA expression in the hypothalamus. Target genes and their enrichment and ontology were analyzed using bioinformatic tools. Target gene expression changes were tested using qPCR, and miRNA promoter methylation was studied using methylated-DNA immunoprecipitation qPCR. RESULTS MS, Enr, RS, and sex altered hypothalamic miRNAs, including several previously reported in MS literature: miRs-29, - 124, - 132, - 144, - 504. Sex had a significant effect on the greatest number of miRNAs. Also, Enr reversed downregulation of miR-29b-1-5p and -301b-3p in MS. qPCR showed that MAPK6 and MMP19, targets of miR-301b-3p, were upregulated in MS and reversed by Enr. Additionally, miR-219a was hypermethylated in MS coinciding with decreased miR-219a expression. CONCLUSIONS This study found that sex plays a critical role in the hypothalamic miRNA response to both ELS and acute stress, with males expressing greater changes following postnatal stress. Moreover, enrichment significantly altered behavior as well as hypothalamic miRNA expression and their gene targets. Because of its role as the initiator of the autonomic stress response and connection to hedonic and motivational behavior, the hypothalamic miRNA landscape may significantly alter both the short and long-term behavioral response to stress.
Collapse
|
68
|
Friuli M, Eramo B, Valenza M, Scuderi C, Provensi G, Romano A. Targeting the Oxytocinergic System: A Possible Pharmacological Strategy for the Treatment of Inflammation Occurring in Different Chronic Diseases. Int J Mol Sci 2021; 22:10250. [PMID: 34638587 PMCID: PMC8508899 DOI: 10.3390/ijms221910250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Unresolved inflammation represents a central feature of different human pathologies including neuropsychiatric, cardiovascular, and metabolic diseases. The epidemiologic relevance of such disorders justifies the increasing interest in further understanding the mechanisms underpinning the inflammatory process occurring in such chronic diseases to provide potential novel pharmacological approaches. The most common and effective therapies for controlling inflammation are glucocorticoids; however, a variety of other molecules have been demonstrated to have an anti-inflammatory potential, including neuropeptides. In recent years, the oxytocinergic system has seen an explosion of scientific studies, demonstrating its potential to contribute to a variety of physiological processes including inflammation. Therefore, the aim of the present review was to understand the role of oxytocin in the modulation of inflammation occurring in different chronic diseases. The criterion we used to select the diseases was based on the emerging literature showing a putative involvement of the oxytocinergic system in inflammatory processes in a variety of pathologies including neurological, gastrointestinal and cardiovascular disorders, diabetes and obesity. The evidence reviewed here supports a beneficial role of oxytocin in the control of both peripheral and central inflammatory response happening in the aforementioned pathologies. Although future studies are necessary to elucidate the mechanistic details underlying such regulation, this review supports the idea that the modulation of the endogenous oxytocinergic system might represent a new potential pharmacological approach for the treatment of inflammation.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Barbara Eramo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology of Toxicology, University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| |
Collapse
|
69
|
Bartick M, Hernández-Aguilar MT, Wight N, Mitchell KB, Simon L, Hanley L, Meltzer-Brody S, Lawrence RM. ABM Clinical Protocol #35: Supporting Breastfeeding During Maternal or Child Hospitalization. Breastfeed Med 2021; 16:664-674. [PMID: 34516777 DOI: 10.1089/bfm.2021.29190.mba] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A central goal of the Academy of Breastfeeding Medicine is the development of clinical protocols for managing common medical problems that may impact breastfeeding success. These protocols serve only as guidelines for the care of breastfeeding mothers and infants and do not delineate an exclusive course of treatment or serve as standards of medical care. Variations in treatment may be appropriate according to the needs of an individual patient. The Academy of Breastfeeding Medicine recognizes that not all lactating individuals identify as female. Using gender-inclusive language, however, is not possible in all languages and all countries and for all readers. The position of the Academy of Breastfeeding Medicine (https://doi.org/10.1089/bfm.2021.29188.abm) is to interpret clinical protocols within the framework of inclusivity of all breastfeeding, chestfeeding, and human milk-feeding individuals.
Collapse
Affiliation(s)
- Melissa Bartick
- Department of Medicine, Mount Auburn Hospital and Harvard Medical School, Cambridge and Boston, Massachusetts, USA
| | | | - Nancy Wight
- Retired; Neonatology, Sharp Mary Birch Hospital for Women and Newborns, San Diego, California, USA
| | - Katrina B Mitchell
- Breast Surgical Oncology, Ridley Tree Cancer Center at Sansum Clinic, Santa Barbara, California, USA
| | - Liliana Simon
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lauren Hanley
- Department of Psychiatry, UNC Center for Mood Disorders, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Samantha Meltzer-Brody
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert M Lawrence
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
70
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
71
|
Cai W, Ma H, Xun Y, Hou W, Wang L, Zhang X, Ran Y, Yuan W, Guo Q, Zhang J, Li L, Yang Y, Li Y, Lv Z, He Z, Jia R, Tai F. Involvement of the dopamine system in paternal behavior induced by repeated pup exposure in virgin male ICR mice. Behav Brain Res 2021; 415:113519. [PMID: 34389426 DOI: 10.1016/j.bbr.2021.113519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/06/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Like mothers, fathers play a vital role in the development of the brain and behavior of offspring in mammals with biparental care. Unlike mothers, fathers do not experience the physiological processes of pregnancy, parturition, or lactation before their first contact with offspring. Whether pup exposure can induce the onset of paternal behavior and the underlying neural mechanisms remains unclear. By using Slc:ICR male mice exhibiting maternal-like parental care, the present study found that repeated exposure to pups for six days significantly increased the total duration of paternal behavior and shortened the latency to retrieve and care for pups. Repeated pup exposure increased c-Fos-positive neurons and the levels of dopamine- and TH-positive neurons in the nucleus accumbens (NAc). In addition, inhibition of dopamine projections from the ventral tegmental area to the NAc using chemogenetic methods reduced paternal care induced by repeated pup exposure. In conclusion, paternal behavior in virgin male ICR mice can be initiated by repeated pup exposure via sensitization, and the dopamine system may be involved in this process.
Collapse
Affiliation(s)
- Wenqi Cai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Huan Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Xun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenjuan Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Limin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xueni Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yufeng Ran
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qianqian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Laifu Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitong Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zijian Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhixiong He
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Fadao Tai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
72
|
Cocaine-seeking behaviour is differentially expressed in male and female mice exposed to maternal separation and is associated with alterations in AMPA receptors subunits in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110262. [PMID: 33497752 DOI: 10.1016/j.pnpbp.2021.110262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
According with clinical data, women evolve differently from drug use to drug abuse. Among drugs of abuse, cocaine is the most consumed psychostimulant. Animal studies demonstrated that females show increased motivation to seek cocaine during the self-administration paradigm (SA) than males. Moreover, suffering childhood adversity or major depressive disorder are two factors that could increase the predisposition to suffer cocaine addiction. Maternal separation with early weaning (MSEW) is an animal model that allows examining the impact of early-life stress on cocaine abuse. In this study, we aimed to explore changes in MSEW-induced cocaine-seeking motivation to determine potential associations between despair-like behaviour and cocaine-seeking. We also evaluated possible alterations in the AMPA receptors (AMPArs) composition in the medial prefrontal cortex (mPFC) of these mice. We exposed mice to MSEW and the behavioural tests were performed during adulthood. Moreover, GluA1, GluA2 mRNA and protein expression were evaluated in the mPFC. Results show higher cocaine-seeking in standard nest females, as well as an increase in GluA1 and GluA2 protein expression. Moreover, MSEW induces downregulation of Gria2 and increases the Gria1/Gria2 ratio, only in male mice. In conclusion, female mice show different composition of the AMPA receptor in the mPFC and MSEW alters the glutamatergic system in the mPFC of male mice.
Collapse
|
73
|
Wu Z, Zhou L, Sun L, Xie Y, Xiao L, Wang H, Wang G. Brief postpartum separation from offspring promotes resilience to lipopolysaccharide challenge-induced anxiety and depressive-like behaviors and inhibits neuroinflammation in C57BL/6J dams. Brain Behav Immun 2021; 95:190-202. [PMID: 33766700 DOI: 10.1016/j.bbi.2021.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence indicates an important role for neuroinflammation in depression. Brief maternal separation promotes resilience to depression in offspring, but relatively little is known about the effects of different durations of postpartum separation (PS) from offspring on anxiety and depressive-like behaviors in dams following immune challenge. Lactating C57BL/6J mice were subjected to no separation (NPS), brief PS (15 min/day, PS15) or prolonged PS (180 min/day, PS180) from postpartum day (PPD) 1 to PPD21 and then injected with lipopolysaccharide (LPS). Behavioral tests, including the open field test (OFT) and forced swimming test (FST), were carried out at 24 h after the injection. LPSresulted in anxiety and depressive-like behaviors in NPS dams and activated ionized calcium-binding adaptor molecule (Iba1), an important biomarker of microglia, in the hippocampus. However, compared with NPS + LPS dams, PS15 + LPS dams spent significantly more time in the center of the OFT (anxiety-like behavior) and exhibited lower immobility time in the FST (depressive-like behavior), which indicated a phenomenon of resilience. Furthermore, the activation of neuroinflammation was inhibited in PS15 dams. Specifically, levels of the Iba1 mRNA and protein were decreased, while the mRNA expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome/interleukin-18 (IL-18)/nuclear factor kappa-B (NF-κB) was decreased in the hippocampus. Furthermore, positive linear correlations were observed between microglial activation and LPS-induced depressive-like behaviors in dams. Collectively, the findings of this study confirm that brief PS from offspring promotes resilience to LPS immune challenge-induced behavioral deficits and inhibits neuroinflammation in dams separated from their offspring during lactation.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
74
|
Rêgo DDSB, Pires JM, Foresti ML, Mello L, Leslie ATFS. Does neonatal manipulation on continuous or alternate days change maternal behavior? Int J Dev Neurosci 2021; 81:759-765. [PMID: 34143504 DOI: 10.1002/jdn.10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
Maternal separation and neonatal manipulation of pups produce changes in maternal behavior after the dam-pup reunion. Here, we examined whether continuous versus alternating days of neonatal manipulation during the first 8 postnatal days produces differential changes in maternal and non-maternal behaviors in rats. We found that both maternal separation protocols increased anogenital licking after dam-pup reunion, reflecting increased maternal care of pups.
Collapse
Affiliation(s)
| | - Jaime Moreira Pires
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Luiz Mello
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brasil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brasil
| | | |
Collapse
|
75
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
76
|
Borba LA, Broseghini LDR, Manosso LM, de Moura AB, Botelho MEM, Arent CO, Behenck JP, Hilsendeger A, Kammer LH, Valvassori SS, Quevedo J, Réus GZ. Environmental enrichment improves lifelong persistent behavioral and epigenetic changes induced by early-life stress. J Psychiatr Res 2021; 138:107-116. [PMID: 33848966 PMCID: PMC10494235 DOI: 10.1016/j.jpsychires.2021.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the effects of environmental enrichment (EE) in Wistar rats subjected to maternal deprivation (MD). MD was performed in the first post-natal days (PND) ten for 3 h/day. The groups were: control; deprived without EE; and deprived with EE. The EE was applied for 3 h/day. Forced swimming test (FST) and open field test were performed, and histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activities in the prefrontal cortex (PFC) and hippocampus were evaluated on 31, 41, and 61 PND. MD altered spontaneous locomotor activity and immobility time in FST, but the effects were sex- and developmental period dependent. In deprived females at PND 31, 41, and 61, HDAC and DNMT increased in the PFC and hippocampus. In females exposed to EE for 20 days, there was a decrease of HDAC in the hippocampus and DNMT in the PFC and hippocampus. Exposure of females to EE for 40 days can reverse HDAC and DNMT increase in all brain areas. In deprived males at PND 31, 41, and 61, HDAC and DNMT increased in the hippocampus, and in the group exposed to EE for 40 days, there was a decrease in hippocampal activity. In PFC of male deprived rats at PND 61 and EE for 40 days, there was a reduction of HDAC and DNMT. MD induced lifelong persistent behavioral and epigenetic changes, and such effects were more evident in female than male rats. EE can be considered an essential non-pharmacological strategy to treat long-term trauma-induced early life changes.
Collapse
Affiliation(s)
- Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Lia D R Broseghini
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Airam B de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Maria Eduarda M Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Amanda Hilsendeger
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Letícia H Kammer
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.
| |
Collapse
|
77
|
Kemp KM, Colson J, Lorenz RG, Maynard CL, Pollock JS. Early life stress in mice alters gut microbiota independent of maternal microbiota inheritance. Am J Physiol Regul Integr Comp Physiol 2021; 320:R663-R674. [PMID: 33655759 PMCID: PMC8163610 DOI: 10.1152/ajpregu.00072.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 02/02/2021] [Accepted: 02/27/2021] [Indexed: 01/04/2023]
Abstract
Exposure to early life stress (ELS) is associated with a greater risk of chronic disease development including depression and cardiovascular disease. Altered gut microbiota has been linked to both depression and cardiovascular disease in mice and humans. Rodent models of early life neglect are used to characterize the mechanistic links between early life stress (ELS) and the risk of disease later in life. However, little is understood about ELS exposure and the gut microbiota in the young mice and the influence of the maternal inheritance of the gut microbiota. We used a mouse model of ELS, maternal separation with early weaning (MSEW), and normally reared mice to determine whether the neonate microbiota is altered, and if so, are the differences attributable to changes in dam microbiota that are then transmitted to their offspring. Individual amplicon sequence variants (ASVs) displayed differential abundance in the microbiota of MSEW compared with normally reared pups at postnatal day (PD) 28. Additionally, ELS exposure reduced the alpha diversity and altered microbial community composition at PD28. The composition, levels of alpha diversity, and abundance of individual ASVs in the microbiota of dams were similar from MSEW or normally reared cohorts. Thus, the observed shifts in the abundance of individual bacterial ASVs in the neonates and young pups are likely driven by endogenous effects of MSEW in the offspring host and are not due to inherited differences from the dam. This knowledge suggests that exposure to ELS has a direct effect on microbial factors on the risk of chronic disease development.
Collapse
Affiliation(s)
- Keri M Kemp
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jackson Colson
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robin G Lorenz
- Department of Research Pathology, Genentech, South San Francisco, California
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
78
|
Miyaso H, Takano K, Nagahori K, Kawata S, Li ZL, Kuramasu M, Wu X, Ogawa Y, Itoh M. Neonatal maternal separation increases the number of p27-positive Sertoli cells in prepuberty. Reprod Toxicol 2021; 102:56-66. [PMID: 33845160 DOI: 10.1016/j.reprotox.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Neonatal maternal separation (NMS) is an experimental model for early life stress, which affects the growth and development of various organs, resulting in adverse health effects in humans and animals. In our previous study, we demonstrated that NMS [(0.5-, 1-, 2-h/day NMS, from postnatal day (PND) 1-10] induced morphological changes to the male reproductive system, including decreased Sertoli cell numbers in mouse testes at PND 70. To clarify the mechanism by which NMS decreases Sertoli cell numbers, we evaluated the effects of NMS on mouse testes at PNDs 10 and 16. At PND 10, the Sertoli cell number was not significantly different among experimental groups; however, it decreased in 0.5- and 2-h/day NMS mice at PND 16. The termination of Sertoli cell proliferation in prepuberty can be induced by p27, a cyclin-dependent kinase inhibitor. At PND 10, we observed an increase in the number of p27-positive Sertoli cells in 2-h/day NMS mice. The seminiferous tubule diameters decreased significantly in 1- and 2-h/day NMS mice, and the relative interstitial area increased in 2-h/day NMS mice. Serum corticosterone level significantly increased, and serum testosterone level significantly decreased in the 2-h/day NMS mice. At PND 16, the tubule diameters and height of seminiferous epithelium were significantly higher in 0.5- and 2-h/day NMS mice. Our results suggest that NMS disturbs serum corticosterone and testosterone levels and increases the number of p27-positive Sertoli cells at PND 10, resulting in a decrease in the number of Sertoli cells at PND 16.
Collapse
Affiliation(s)
- Hidenobu Miyaso
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Kaiya Takano
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Shinichi Kawata
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Zhong-Lian Li
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miyuki Kuramasu
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Xi Wu
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yuki Ogawa
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
79
|
Takashima M, Tanaka W, Matsuyama H, Tajiri H, Sakakibara H. Maternal Quercetin Consumption during Pregnancy May Help Regulate Total Cholesterol/HDL-Cholesterol Ratio without Effect on Cholesterol Levels in Male Progeny Consuming High-Fat Diet. Nutrients 2021; 13:1242. [PMID: 33918820 PMCID: PMC8069367 DOI: 10.3390/nu13041242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Quercetin has been shown to have anti-obesity effects, but it is unknown whether these effects can be transmitted from mothers to their progeny. In this study, we investigated whether maternal quercetin consumption during pregnancy has a protective effect on high-fat diet-induced hyper lipid levels and overweight in progeny. Female mice consumed a control diet or a diet containing 1.0% quercetin during breeding. The male progeny were then divided into four groups that were (1) sacrificed at postnatal day 3; (2) born to dams fed the control diet and also fed the control diet (C-C), (3) born to dams fed the control diet and then fed a 30% high-fat diet (C-HF), or (4) born to dams fed the Q-diet and then fed the HF diet (Q-HF). Maternal consumption of quercetin did not affect body weight or blood lipid parameters in either dams or neonates at postnatal day 3. After 13 weeks, the Q-HF group exhibited greater body and liver weights, and higher blood cholesterol levels than the C-HF group. However, the total cholesterol/ high density lipoprotein (HDL)-cholesterol ratios in the Q-HF and C-C groups remained similar. In conclusion, maternal quercetin consumption does not appear to protect the next generation from high-fat diet-induced hyper cholesterol level in the blood and liver, and consequently overweight, but may help regulate the total cholesterol/HDL-cholesterol ratio.
Collapse
Affiliation(s)
| | | | | | | | - Hiroyuki Sakakibara
- Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan; (M.T.); (W.T.); (H.M.); (H.T.)
| |
Collapse
|
80
|
Saavedra LM, Hernández-Velázquez MG, Madrigal S, Ochoa-Zarzosa A, Torner L. Long-term activation of hippocampal glial cells and altered emotional behavior in male and female adult rats after different neonatal stressors. Psychoneuroendocrinology 2021; 126:105164. [PMID: 33611133 DOI: 10.1016/j.psyneuen.2021.105164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Early life stress increases the risk of developing psychiatric diseases in adulthood. Severe neonatal infections can also contribute to the development of affective illnesses. Stress and infections both trigger the immediate activation of the neuroimmune system. We compared the long-term effects of neonatal single or combined stress-immune challenges on emotional behavior and glial cell responses in the hippocampus. Male and female Sprague Dawley rats were randomly allocated across four conditions: (1) control + vehicle; (2) maternal separation (MS, 3 h/day on postnatal days [PN] 1-14) + vehicle; (3) control + lipopolysaccharide (LPS, 0.5. mg/kg, PN14); (4) MS + LPS. The rats' behaviors were analyzed from PN120 in males and from PN150 in diestrous females. LPS, but not MS, increased anxiety-like behavior in male rats; however, in females, it increased with both challenges. Depressive-like behavior increased after MS-but not LPS-in males and females. Combined stressors increased depressive-like behavior in both sexes. All stressors promoted microglial activation in CA3 and hilus in males and females. MS and LPS increased the astrocytic density within the male hilus, but LPS only increased it in CA3. MS prevented the rise in astrocytic density with LPS. In females, MS reduced the astrocytic population of the hilus and CA3 areas. Taken together, the behavioral and glial cell responses to early life challenges are sex-dependent and cell-type specific. This suggests a sexual dimorphism in the nature of the adverse event faced. These results have implications for understanding the emergence of psychiatric illnesses.
Collapse
Affiliation(s)
- Luis Miguel Saavedra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, México; Centro Multidisciplinario de Estudios en Biotecnología - FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, México
| | | | - Scarlette Madrigal
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, México
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología - FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, México
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, México.
| |
Collapse
|
81
|
Sun H, Zhang X, Kong Y, Gou L, Lian B, Wang Y, Jiang L, Li Q, Sun H, Sun L. Maternal Separation-Induced Histone Acetylation Correlates with BDNF-Programmed Synaptic Changes in an Animal Model of PTSD with Sex Differences. Mol Neurobiol 2021; 58:1738-1754. [PMID: 33245480 DOI: 10.1007/s12035-020-02224-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Maternal separation (MS) causes long-lasting epigenetic changes in the brain and increases vulnerability to traumatic events in adulthood. Of interest, there may be sex-specific differences in these epigenetic changes. In this study, the extent of histone acetylation in the hippocampus (HIP) and the expression of BDNF were measured to determine whether BDNF influences risk of PTSD following MS in early life. Rat offspring were separated from their dams (3 h/day or 6 h/day from PND2~PND14). Then, pups were treated with a single prolonged stress (SPS) procedure when they reached adulthood (PND80). In animals stressed with the SPS procedure in adulthood, those that had increased MS intensity in childhood demonstrated more significant changes in performance on tests of anxiety, depression, and contextual fear memory. Reduced levels of total BDNF mRNA and protein were observed after SPS treatment and further declined in groups with greater MS time in childhood. Interestingly, these changes were correlated with decreased H3K9ac levels and increased HDAC2 levels. Additional MS also led to more severe ultrastructural synaptic damage in rats that experienced the SPS procedure, particularly in the CA1 and CA3 region of the HIP, reflecting impaired synaptic plasticity in these regions. Interestingly, male rats in the MS3h-PTSD group showed decreased anxiety, but no similar changes were found in female rats, suggesting a degree of gender specificity in coping with stress after mild MS. In summary, this study suggests that the epigenetic signatures of the BDNF genes can be linked to HIP responses to stress, providing insights that may be relevant for people at risk of stress-related psychopathologies.
Collapse
MESH Headings
- Acetylation
- Animals
- Behavior, Animal
- Brain-Derived Neurotrophic Factor/metabolism
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/ultrastructure
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/ultrastructure
- Corticosterone/blood
- Disease Models, Animal
- Elevated Plus Maze Test
- Fear
- Female
- Gene Expression Regulation
- Histone Deacetylase 2/genetics
- Histone Deacetylase 2/metabolism
- Histones/metabolism
- Immobilization
- Male
- Maternal Deprivation
- Open Field Test
- Rats, Sprague-Dawley
- Regression Analysis
- Sex Characteristics
- Stress Disorders, Post-Traumatic/blood
- Stress Disorders, Post-Traumatic/complications
- Stress Disorders, Post-Traumatic/metabolism
- Stress, Psychological/blood
- Stress, Psychological/complications
- Swimming
- Synapses/metabolism
- Synapses/ultrastructure
- Rats
Collapse
Affiliation(s)
- Haoran Sun
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Xianqiang Zhang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100083, People's Republic of China
| | - Yujia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Luping Gou
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Bo Lian
- School of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Yanyu Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Li Jiang
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang, 261205, Shandong, People's Republic of China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, Hong Kong, People's Republic of China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
82
|
Lundgaard Donovan L, Henningsen K, Flou Kristensen A, Wiborg O, Nieland JD, Lichota J. Maternal Separation Followed by Chronic Mild Stress in Adulthood Is Associated with Concerted Epigenetic Regulation of AP-1 Complex Genes. J Pers Med 2021; 11:jpm11030209. [PMID: 33809485 PMCID: PMC8002051 DOI: 10.3390/jpm11030209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
Depression is one of the most prevalent mental diseases worldwide. Patients with psychiatric diseases often have a history of childhood neglect, indicating that early-life experiences predispose to psychiatric diseases in adulthood. Two strong models were used in the present study: the maternal separation/early deprivation model (MS) and the chronic mild stress model (CMS). In both models, we found changes in the expression of a number of genes such as Creb and Npy. Strikingly, there was a clear regulation of expression of four genes involved in the AP-1 complex: c-Fos, c-Jun, FosB, and Jun-B. Interestingly, different expression levels were observed depending on the model, whereas the combination of the models resulted in a normal level of gene expression. The effects of MS and CMS on gene expression were associated with distinct histone methylation/acetylation patterns of all four genes. The epigenetic changes, like gene expression, were also dependent on the specific stressor or their combination. The obtained results suggest that single life events leave a mark on gene expression and the epigenetic signature of gene promoters, but a combination of different stressors at different life stages can further change gene expression through epigenetic factors, possibly causing the long-lasting adverse effects of stress.
Collapse
Affiliation(s)
- Lene Lundgaard Donovan
- Neurobiology Research and Drug Delivery Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg Øst, Denmark; (L.L.D.); (A.F.K.); (O.W.)
| | - Kim Henningsen
- Department of Biomedicine-Dandrite, Takeuchi Team, Aarhus University, 8000 Aarhus C, Denmark;
| | - Anne Flou Kristensen
- Neurobiology Research and Drug Delivery Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg Øst, Denmark; (L.L.D.); (A.F.K.); (O.W.)
| | - Ove Wiborg
- Neurobiology Research and Drug Delivery Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg Øst, Denmark; (L.L.D.); (A.F.K.); (O.W.)
| | - John Dirk Nieland
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg Øst, Denmark;
| | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg Øst, Denmark;
- Correspondence:
| |
Collapse
|
83
|
Serotonin deficiency induced after brain maturation rescues consequences of early life adversity. Sci Rep 2021; 11:5368. [PMID: 33686115 PMCID: PMC7940624 DOI: 10.1038/s41598-021-83592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKO × MS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.
Collapse
|
84
|
Percelay S, Billard JM, Freret T, Andrieux A, Boulouard M, Bouet V. Functional Dysregulations in CA1 Hippocampal Networks of a 3-Hit Mouse Model of Schizophrenia. Int J Mol Sci 2021; 22:2644. [PMID: 33807989 PMCID: PMC7961987 DOI: 10.3390/ijms22052644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
For a better translation from treatment designs of schizophrenia to clinical efficiency, there is a crucial need to refine preclinical animal models. In order to consider the multifactorial nature of the disorder, a new mouse model associating three factors (genetic susceptibility-partial deletion of the MAP6 gene, early-life stress-maternal separation, and pharmacological treatment-chronic Δ-9-tetrahydrocannabinol during adolescence) has recently been described. While this model depicts a schizophrenia-like phenotype, the neurobiological correlates remain unknown. Synaptic transmission and functional plasticity of the CA1 hippocampal region of male and female 3-hit mice were therefore investigated using electrophysiological recordings on the hippocampus slice. While basal excitatory transmission remained unaffected, NMDA receptor (NMDAr)-mediated long-term potentiation (LTP) triggered by theta-burst (TBS) but not by high-frequency (HFS) stimulation was impaired in 3-hit mice. Isolated NMDAr activation was not affected or even increased in female 3-hit mice, revealing a sexual dimorphism. Considering that the regulation of LTP is more prone to inhibitory tone if triggered by TBS than by HFS, the weaker potentiation in 3-hit mice suggests a deficiency of intrinsic GABA regulatory mechanisms. Indeed, NMDAr activation was increased by GABAA receptor blockade in wild-type but not in 3-hit mice. This electrophysiological study highlights dysregulations of functional properties and plasticity in hippocampal networks of 3-hit mice, one of the mechanisms suspected to contribute to the pathophysiology of schizophrenia. It also shows differences between males and females, supporting the sexual dimorphism observed in the disorder. Combined with the previously reported study, the present data reinforce the face validity of the 3-hit model that will help to consider new therapeutic strategies for psychosis.
Collapse
Affiliation(s)
- Solenn Percelay
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Jean-Marie Billard
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Thomas Freret
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Annie Andrieux
- Inserm U1216, CEA, Grenoble Institut Neurosciences, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Michel Boulouard
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Valentine Bouet
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| |
Collapse
|
85
|
Uliana DL, Gomes FV, Grace AA. Stress impacts corticoamygdalar connectivity in an age-dependent manner. Neuropsychopharmacology 2021; 46:731-740. [PMID: 33096542 PMCID: PMC8027626 DOI: 10.1038/s41386-020-00886-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/13/2023]
Abstract
Stress is a socio-environmental risk factor for the development of psychiatric disorders, with the age of exposure potentially determining the outcome. Several brain regions mediate stress responsivity, with a prominent role of the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) and their reciprocal inhibitory connectivity. Here we investigated the impact of stress exposure during adolescence and adulthood on the activity of putative pyramidal neurons in the BLA and corticoamygdalar plasticity using in vivo electrophysiology. 155 male Sprague-Dawley rats were subjected to a combination of footshock/restraint stress in either adolescence (postnatal day 31-40) or adulthood (postnatal day 65-74). Both adolescent and adult stress increased the number of spontaneously active putative BLA pyramidal neurons 1-2 weeks, but not 5-6 weeks post stress. High-frequency stimulation (HFS) of BLA and mPFC depressed evoked spike probability in the mPFC and BLA, respectively, in adult but not adolescent rats. In contrast, an adult-like BLA HFS-induced decrease in spike probability of mPFC neurons was found 1-2 weeks post-adolescent stress. Changes in mPFC and BLA neuron discharge were found 1-2 weeks post-adult stress after BLA and mPFC HFS, respectively. All these changes were transient since they were not found 5-6 weeks post adolescent or adult stress. Our findings indicate that stress during adolescence may accelerate the development of BLA-PFC plasticity, probably due to BLA hyperactivity, which can also disrupt the reciprocal communication of BLA-mPFC after adult stress. Therefore, precocious BLA-mPFC connectivity alterations may represent an early adaptive stress response that ultimately may contribute to vulnerability to adult psychiatric disorders.
Collapse
Affiliation(s)
- Daniela L. Uliana
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Felipe V. Gomes
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA ,grid.11899.380000 0004 1937 0722Present Address: Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anthony A. Grace
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
86
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. The environmental enrichment model revisited: A translatable paradigm to study the stress of our modern lifestyle. Eur J Neurosci 2021; 55:2359-2392. [PMID: 33638921 DOI: 10.1111/ejn.15160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 01/31/2023]
Abstract
Mounting evidence shows that physical activity, social interaction and sensorimotor stimulation provided by environmental enrichment (EE) exert several neurobehavioural effects traditionally interpreted as enhancements relative to standard housing (SH) conditions. However, this evidence rather indicates that SH induces many deficits, which could be ameliorated by exposing animals to an environment vaguely mimicking some features of their wild habitat. Rearing rodents in social isolation (SI) can aggravate such deficits, which can be restored by SH or EE. It is not surprising, therefore, that most preclinical stress models have included severe and unnatural stressors to produce a stress response prominent enough to be distinguishable from SH or SI-frequently used as control groups. Although current stress models induce a stress-related phenotype, they may fail to represent the stress of our urban lifestyle characterized by SI, poor housing and working environments, sedentarism, obesity and limited access to recreational activities and exercise. In the following review, we discuss the stress of living in urban areas and how exposures to and performing activities in green environments are stress relievers. Based on the commonalities between human and animal EE, we discuss how models of housing conditions (e.g., SI-SH-EE) could be adapted to study the stress of our modern lifestyle. The housing conditions model might be easy to implement and replicate leading to more translational results. It may also contribute to accomplishing some ethical commitments by promoting the refinement of procedures to model stress, diminishing animal suffering, enhancing animal welfare and eventually reducing the number of experimental animals needed.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica.,Instituto de Investigaciones en Salud, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
87
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
88
|
Peppas S, Pansieri C, Piovani D, Danese S, Peyrin-Biroulet L, Tsantes AG, Brunetta E, Tsantes AE, Bonovas S. The Brain-Gut Axis: Psychological Functioning and Inflammatory Bowel Diseases. J Clin Med 2021; 10:377. [PMID: 33498197 PMCID: PMC7863941 DOI: 10.3390/jcm10030377] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The brain-gut axis represents a complex bi-directional system comprising multiple interconnections between the neuroendocrine pathways, the autonomous nervous system and the gastrointestinal tract. Inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, is a chronic, relapsing-remitting inflammatory disorder of the gastrointestinal tract with a multifactorial etiology. Depression and anxiety are prevalent among patients with chronic disorders characterized by a strong immune component, such as diabetes mellitus, cancer, multiple sclerosis, rheumatoid arthritis and IBD. Although psychological problems are an important aspect of morbidity and of impaired quality of life in patients with IBD, depression and anxiety continue to be under-diagnosed. There is lack of evidence regarding the exact mechanisms by which depression, anxiety and cognitive dysfunction may occur in these patients, and whether psychological disorders are the result of disease activity or determinants of the IBD occurrence. In this comprehensive review, we summarize the role of the brain-gut axis in the psychological functioning of patients with IBD, and discuss current preclinical and clinical data on the topic and therapeutic strategies potentially useful for the clinical management of these patients. Personalized pathways of psychological supports are needed to improve the quality of life in patients with IBD.
Collapse
Affiliation(s)
- Spyros Peppas
- Department of Gastroenterology, Athens Naval Hospital, 11521 Athens, Greece;
| | - Claudia Pansieri
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Inserm U1256 NGERE, Nancy University Hospital, Lorraine University, 54500 Vandoeuvre-les-Nancy, France;
| | - Andreas G. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Enrico Brunetta
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Argirios E. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| |
Collapse
|
89
|
Khaw YM, Majid D, Oh S, Kang E, Inoue M. Early-life-trauma triggers interferon-β resistance and neurodegeneration in a multiple sclerosis model via downregulated β1-adrenergic signaling. Nat Commun 2021; 12:105. [PMID: 33397973 PMCID: PMC7782805 DOI: 10.1038/s41467-020-20302-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Environmental triggers have important functions in multiple sclerosis (MS) susceptibility, phenotype, and trajectory. Exposure to early life trauma (ELT) has been associated with higher relapse rates in MS patients; however, the underlying mechanisms are not well-defined. Here we show ELT induces mechanistic and phenotypical alterations during experimental autoimmune encephalitis (EAE). ELT sustains downregulation of immune cell adrenergic receptors, which can be attributed to chronic norepinephrine circulation. ELT-subjected mice exhibit interferon-β resistance and neurodegeneration driven by lymphotoxin and CXCR2 involvement. These phenotypic changes are observed in control EAE mice treated with β1 adrenergic receptor antagonist. Conversely, β1 adrenergic receptor agonist treatment to ELT mice abrogates phenotype changes via restoration of immune cell β1 adrenergic receptor function. Our results indicate that ELT alters EAE phenotype via downregulation of β1 adrenergic signaling in immune cells. These results have implications for the effect of environmental factors in provoking disease heterogeneity and might enable prediction of long-term outcomes in MS.
Collapse
Affiliation(s)
- Yee Ming Khaw
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign Neuroscience Program, 405 North Matthews Avenue, Urbana, IL, 61801, USA
| | - Danish Majid
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign School of Molecular and Cell Biology, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Sungjong Oh
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign School of Molecular and Cell Biology, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Eunjoo Kang
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- University of Illinois at Urbana-Champaign Neuroscience Program, 405 North Matthews Avenue, Urbana, IL, 61801, USA
| | - Makoto Inoue
- University of Illinois at Urbana-Champaign Department of Comparative Biosciences, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- University of Illinois at Urbana-Champaign Neuroscience Program, 405 North Matthews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
90
|
Wang A, Zou X, Wu J, Ma Q, Yuan N, Ding F, Li X, Chen J. Early-Life Stress Alters Synaptic Plasticity and mTOR Signaling: Correlation With Anxiety-Like and Cognition-Related Behavior. Front Genet 2021; 11:590068. [PMID: 33381149 PMCID: PMC7767996 DOI: 10.3389/fgene.2020.590068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
Early-life stress (ELS) predisposes individuals to psychiatric disorders, including anxiety and depression, and cognitive impairments later in life. However, the underlying molecular mechanisms are not completely understood. Developmental deficits in hippocampal synaptic plasticity are among the primary detrimental alterations in brain function induced by ELS. Impaired synaptic plasticity is usually accompanied by decreased synaptic proteins, such as postsynaptic density 95 (PSD95) and synaptophysin, which are important for synaptic function. The mTOR signaling pathway plays a vital role in regulating protein translation, and mTOR activation is functionally associated with synaptic protein synthesis. In the present study, we observed whether ELS impacts synaptic protein synthesis and mTOR signaling, which is involved in synaptic plasticity. Herein, we established a maternal separation (MS) and chronic restraint stress (CRS) model and evaluated anxiety-like behavior and cognitive function (e.g., learning and memory) in adulthood through behavioral examination and analyzed hippocampal expression levels of PSD95 and synaptophysin. To explore whether the mTOR signaling pathway was associated with ELS, we also examined the activity of mTOR and s6. The behavior tests indicated that maternally separated mice showed increased anxiety-like behavior and cognitive impairments. PSD95 and synaptophysin mRNA and protein expression levels were decreased in the hippocampus, and phosphorylated mTOR and phosphorylated s6 were significantly decreased in maternally separated mice vs. those not exposed to MS. Our data demonstrate that MS impairs synaptic plasticity and inhibits mTOR signaling, specifically via s6. Therefore, we speculate that ELS decreased synaptic plasticity via the inhibition of the mTOR pathway in the hippocampus, which may underlie vulnerability to stress and mental disorders in adulthood.
Collapse
Affiliation(s)
- Anfeng Wang
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Zou
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiajia Wu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Fengmin Ding
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
91
|
Understanding stress: Insights from rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100013. [PMID: 36246514 PMCID: PMC9559100 DOI: 10.1016/j.crneur.2021.100013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/01/2023] Open
Abstract
Through incorporating both physical and psychological forms of stressors, a variety of rodent models have provided important insights into the understanding of stress physiology. Rodent models also have provided significant information with regards to the mechanistic basis of the pathophysiology of stress-related disorders such as anxiety disorders, depressive illnesses, cognitive impairment and post-traumatic stress disorder. Additionally, rodent models of stress have served as valuable tools in the area of drug screening and drug development for treatment of stress-induced conditions. Although rodent models do not accurately reproduce the biochemical or physiological parameters of stress response and cannot fully mimic the natural progression of human disorders, yet, animal research has provided answers to many important scientific questions. In this review article, important studies utilizing a variety of stress models are described in terms of their design and apparatus, with specific focus on their capabilities to generate reliable behavioral and biochemical read-out. The review focusses on the utility of rodent models by discussing examples in the literature that offer important mechanistic insights into physiologically relevant questions. The review highlights the utility of rodent models of stress as important tools for advancing the mission of scientific research and inquiry. Stressful life events may lead to the onset of severe psychopathologies in humans. Rodents may model many features of stress exposure in human populations. Induction of stress via pharmacological and psychological manipulations alter rodent behavior. Mechanistic rodent studies reveal key molecular targets critical for new therapeutic targets.
Collapse
|
92
|
Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Hexanal inhalation affects cognition and anxiety-like behavior in mice. Z NATURFORSCH C 2020; 75:409-415. [PMID: 32589610 DOI: 10.1515/znc-2019-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Hexanal is a 6-carbon aldehyde that smells like green leaves and urine to mammals. However, its physiological effects remain unclear. In particular, the effects of hexanal inhalation on the central nervous system have not been clarified. We investigated hexanal inhalation in mice and conducted a series of behavioral experiments to examine the neuropsychological effects of hexanal. After inhaling hexanal emissions for 30 min, mice were subjected to an open field test, a hot plate test, a grip strength test, an elevated plus maze test, a Y-maze test, a tail suspension test, and a forced swim test to examine the effects of hexanal odor on mouse behavior. Compared to controls, mice that inhaled hexanal exhibited reduced anxiety-like behavior in the elevated plus maze test. In addition, mice that inhaled hexanal displayed significantly improved spatial cognitive ability in the Y-maze test. However, in some behavioral experiments there was no significant difference between control mice and mice that inhaled hexanal. The results of this study suggest that hexanal inhalation causes anxiolytic effects and improves cognitive function in mice. These findings may have implications for safety management procedures and determining the effective use of household goods containing hexanal, though further work is required.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
| | - Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
93
|
Miyaso H, Nagahori K, Takano K, Omotehara T, Kawata S, Li ZL, Kuramasu M, Wu X, Ogawa Y, Itoh M. Neonatal maternal separation causes decreased numbers of sertoli cell, spermatogenic cells, and sperm in mice. Toxicol Mech Methods 2020; 31:116-125. [PMID: 33100103 DOI: 10.1080/15376516.2020.1841865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neonatal maternal separation is an experimental model used to evaluate the effects of toxic stress in neonates, or early life stress. Although various physiological and psychological stresses during childhood have been reported, the effects of neonatal maternal separation on the male reproductive system remain unclear. Therefore, the present study evaluated the effects of neonatal maternal separation on the male reproductive system. In neonatal male ICR mice, maternal separation was performed for 0.5, 1, 2, and 4 hours/day, from postnatal day 1 to 10. At 10 weeks of age, the neonatal maternal separation mice exhibited decreases in both testicular weight and epididymal sperm number, along with various testicular morphological changes involving germ cells, Sertoli cells, and interstitial cells. Notably, neonatal maternal separation mice showed decreased numbers of Sertoli cells. Animals subjected to 0.5-, 1-, and 2-h/day neonatal maternal separation exhibited decreases in serum levels of testosterone but not in those of gonadotropin (luteinizing hormone and follicle-stimulating hormone). Together, these data showed that neonatal maternal separation in male mice causes decreased Sertoli cell numbers following puberty, resulting in subsequent decreased spermatogenic activity.
Collapse
Affiliation(s)
- Hidenobu Miyaso
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Kaiya Takano
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | | | - Shinichi Kawata
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Zhong-Lian Li
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Miyuki Kuramasu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Xi Wu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Yuki Ogawa
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
94
|
Hernández-Arteaga E, Hernández-González M, Bonilla-Jaime H, Guevara MA, Ågmo A. Pubertal stress decreases sexual motivation and supresses the relation between cerebral theta rhythms and testosterone levels in adult male rats. Brain Res 2020; 1745:146937. [PMID: 32505750 DOI: 10.1016/j.brainres.2020.146937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
This study evaluated the effect of stress during puberty on sexual motivation and the correlation between serum testosterone levels (T) and the absolute power of the theta electroencephalographic rhythms, recorded in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) of adult male rats. Thirty males of the stressed group (SG, housed 1 per cage from days 25-50) and 30 controls (CG, housed 5 per cage), were tested in copulatory interactions at 90 days of age. The above mentioned physiological parameters were obtained during the awake-quiet state in a sub-group without sexual motivation (WSM, n = 15, stimulated with a nonreceptive female) and a sub-group with sexual motivation (SM, n = 15, stimulated with a receptive-female). Pearson correlations (r) between these parameters were calculated for each sub-group and brain structure and then compared between sub-groups. SG presented higher mount and intromission latencies than CG. While CG-WSM showed a positive r between T levels and theta band (0.23-0.59), those CG-SM presented a negative r (-0.23 to -0.67). An r that tended towards zero (-0.31 to 0.29) was obtained in both stressed sub-groups. This study shows that pubertal stress suppresses the relation between serum T levels and theta rhythms in the mPFC and BLA in adult male rats. This is one of the first studies evaluating the association between these two physiological parameters specifically in the context of sexual motivation; thus increasing our understanding of the effect of pubertal stress on prefrontal-amygdaline functioning during the sexually-motivated state in male rats.
Collapse
Affiliation(s)
| | | | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Anders Ågmo
- Psychology Department, Tromsø University, Tromsø, Norway
| |
Collapse
|
95
|
Cordier JM, Aguggia JP, Danelon V, Mir FR, Rivarola MA, Mascó D. Postweaning Enriched Environment Enhances Cognitive Function and Brain-Derived Neurotrophic Factor Signaling in the Hippocampus in Maternally Separated Rats. Neuroscience 2020; 453:138-147. [PMID: 33039520 DOI: 10.1016/j.neuroscience.2020.09.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Adverse environments during early life may lead to different neurophysiological and behavioral consequences, including depression and learning and memory deficits that persist into adulthood. Previously, we demonstrated that exposure to an enriched environment during adolescence mitigates the cognitive impairment observed after maternal separation in a task-specific manner. However, underlying neural mechanisms are still not fully understood. The current study examines the effects of neonatal maternal separation (MS) and postweaning environmental enrichment (EE) on spatial learning and memory performance in a short version of the Barnes Maze, active and passive behaviors in the forced swim test, and on TrkB/BDNF receptor expression in the hippocampus. Our results revealed that MS impaired acquisition learning and that enriched rats performed better than non-enriched rats in acquisition trials, regardless of early conditions. During the probe, enriched-housed rats demonstrated better performance than those reared in standard conditions. No significant differences between groups were found in the forced swim test. Both MS and EE increase full-length TrkB expression, and the combination of MS and EE treatment caused the highest levels of this protein expression. Similarly, truncated TrkB expression was higher in the MS/EE group. Animal facility rearing (AFR) non-enriched groups present the lowest activation of phosphorylated Erk, a canonical downstream kinase of TrkB signaling. Taken together, our results demonstrate the importance of enriched environment as an intervention to ameliorate the effects of maternal separation on spatial learning and memory. TrkB/BDNF signaling could mediate neuroplastic changes related to learning and memory during exposure to enriched environment.
Collapse
Affiliation(s)
- Javier Maximiliano Cordier
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba -Córdoba, Argentina
| | - Julieta Paola Aguggia
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo. Ciudad Universitaria, CP: 5016, Córdoba, Argentina
| | - Víctor Danelon
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP: 5016, Córdoba, Argentina
| | - Franco Rafael Mir
- Cátedra de Fisiología Animal, Departamento de Ciencias Exactas Físicas y Naturales, Universidad Nacional de La Rioja, Av. Luis M. de la Fuente S/N, Ciudad Universitaria de la Ciencia y de la Técnica, F5300 La Rioja, Argentina; Cátedra de Fisiología Animal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 X5000JJC- Córdoba, Argentina
| | - María Angélica Rivarola
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo. Ciudad Universitaria, CP: 5016, Córdoba, Argentina; Cátedra de Fisiología Animal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 X5000JJC- Córdoba, Argentina.
| | - Daniel Mascó
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP: 5016, Córdoba, Argentina
| |
Collapse
|
96
|
Modified limited bedding and nesting is a model of early-life stress that affects reproductive physiology and behavior in female and male Long-Evans rats. Physiol Behav 2020; 224:113037. [PMID: 32603746 DOI: 10.1016/j.physbeh.2020.113037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
Abstract
We used a modification of the limited bedding and nesting (LBN) model to evaluate the effects of early-life stress (ELS) on female and male reproductive physiology and behavior in Long-Evans rats. On postnatal day (PD) 2, dams and pups were transferred to a cage containing 100 mL of bedding (LBN condition) or to a cage containing 500 mL of bedding (control condition); bedding conditions remained until PD 10. In female rats, we measured vaginal opening, estrous cyclicity, female sexual behavior and motivation, and anxiety-like behavior. In male rats, we measured preputial separation, the development of male copulatory behavior, sexual motivation, and anxiety-like behavior. We found that relative to controls, female rats reared with LBN experienced precocious puberty and enhanced sexual motivation, but normal estrous cyclicity. Relative to controls, male rats reared with LBN experienced delayed puberty and enhanced sexual motivation, but normal development of copulatory behavior. Anxiety-like behavior was not affected by LBN in either female or male rats. In summary, the ELS of being reared with LBN affected the onset of puberty in the opposite direction in females and males, but enhanced sexual motivation in both. The current study is the first to examine the effects of ELS on sexual motivation using the LBN model. These findings further support the hypothesis that maternal care affects the development of sexual maturation and sexual motivation.
Collapse
|
97
|
Alves RL, Portugal CC, Summavielle T, Barbosa F, Magalhães A. Maternal separation effects on mother rodents’ behaviour: A systematic review. Neurosci Biobehav Rev 2020; 117:98-109. [DOI: 10.1016/j.neubiorev.2019.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/30/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
|
98
|
Francis-Oliveira J, Shieh IC, Vilar Higa GS, Barbosa MA, De Pasquale R. Maternal separation induces changes in TREK-1 and 5HT 1A expression in brain areas involved in the stress response in a sex-dependent way. Behav Brain Res 2020; 396:112909. [PMID: 32949645 DOI: 10.1016/j.bbr.2020.112909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022]
Abstract
Depression is a prevalent disease in modern society, and has been linked to stressful events at early ages. Women are more susceptible to depression, and the neural basis for this are still under investigation. Serotonin is known to be involved in depression, and a decrease in 5HT1A expression is observed on temporal and cortical areas in both men and women with depression. As knockout animals for TREK-1 are resilient to depression, this channel has emerged as a new potential pharmacological target for depression treatment. In this study, maternal separation (MS) was used to emulate early-life stress, and evaluate behaviour, as well as TREK-1 and 5HT1A expression in the brain using immunohistochemistry. In juvenile females, 5HT1A reduction coupled to increased TREK-1 in the dentate gyrus (DG) was associated with behavioural despair, as well as increased TREK-1 expression in basolateral amygdala (BLA) and prelimbic cortex (PL). In juvenile males, MS induced an increase in 5HT1A in the BLA, and in TREK-1 in the PL, while no behavioural despair was observed. Anhedonia and anxiety-like behaviour were not induced by MS. We conclude stress-induced increase in TREK-1 in PL and GD is associated to depression, while 5HT1A changes coupled to TREK-1 changes may be necessary to induce depression, with females being more vulnerable to MS effects than males. Thus, TREK-1 and 5HT1A may be potential pharmacological targets for antidepressants development.
Collapse
Affiliation(s)
- J Francis-Oliveira
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil.
| | - I C Shieh
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - G S Vilar Higa
- Neurogenetics Laboratory, Mathematics Computation Cognition Center, Rua Arcturus 03, 09606-070, São Bernardo do Campo, SP, Brazil
| | - M A Barbosa
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - R De Pasquale
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
99
|
Sher LD, Geddie H, Olivier L, Cairns M, Truter N, Beselaar L, Essop MF. Chronic stress and endothelial dysfunction: mechanisms, experimental challenges, and the way ahead. Am J Physiol Heart Circ Physiol 2020; 319:H488-H506. [PMID: 32618516 DOI: 10.1152/ajpheart.00244.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although chronic stress is an important risk factor for cardiovascular diseases (CVD) onset, the underlying mechanisms driving such pathophysiological complications remain relatively unknown. Here, dysregulation of innate stress response systems and the effects of downstream mediators are strongly implicated, with the vascular endothelium emerging as a primary target of excessive glucocorticoid and catecholamine action. Therefore, this review article explores the development of stress-related endothelial dysfunction by focusing on the following: 1) assessing the phenomenon of stress and complexities surrounding this notion, 2) discussing mechanistic links between chronic stress and endothelial dysfunction, and 3) evaluating the utility of various preclinical models currently employed to study mechanisms underlying the onset of stress-mediated complications such as endothelial dysfunction. The data reveal that preclinical models play an important role in our efforts to gain an increased understanding of mechanisms underlying stress-mediated endothelial dysfunction. It is our understanding that this provides a good foundation going forward, and we propose that further efforts should be made to 1) more clearly define the concept of stress and 2) standardize protocols of animal models with specific guidelines to better indicate the mental complications that are simulated.
Collapse
Affiliation(s)
- Lucien Derek Sher
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Hannah Geddie
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lukas Olivier
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nina Truter
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Leandrie Beselaar
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
100
|
Long Q, Liu X, Guo SW. Early maternal separation accelerates the progression of endometriosis in adult mice. Reprod Biol Endocrinol 2020; 18:63. [PMID: 32532293 PMCID: PMC7291455 DOI: 10.1186/s12958-020-00600-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A large body of research highlights the importance of early-life environmental impact on the health outcome in adulthood. However, whether early-life adversity (ELA) has any impact on the development of endometriosis is completely unclear. In this study, we tested the hypothesis that ELA, as manifested by neonatal separation, can accelerate the progression of endometriosis in mouse through activation of the adrenergic receptor β2 (ADRB2) signaling pathway, leading to increased angiogenesis and progression of endometriotic lesions. METHODS Eight female Balb/C mice, in late pregnancy, were used used for this study, which later gave birth to 22 female newborn pubs. Eleven additional female Balb/C mice were also used as donors of uterine tissues. The 22 newborn pubs were randomly divided into 2 equal-sized groups, maternal separation (MS) and no separation (NS). Pubs in the MS group were separated from their dams for 3 h/day from postnatal day (PND) 1 to 21, while those in the NS control remained in the home cage with their dams. In adulthood (8-week old), 3 mice in each group were randomly selected to undergo a battery of behavior tests. The remaining 8 mice in each group were induced with endometriosis by intraperitoneal injection of uterine fragments from donor mice. Four weeks after the induction, all mice were sacrificed and their endometriotic lesions were excised for quantification and then prepared for immunohistochemistry analysis. RESULTS We confirmed that MS during infancy resulted in anxiety and depression-like behaviors as previously reported. We also found that in MS mice the lesion weight was increased by over 2 folds and generalized hyperalgesia was also significantly increased as compared with NS mice. Immunostaining analysis demonstrated that MS accelerated the development of endometriosis likely through decreased dopamine receptor D2 (DRD2) expression and activation of the ADRB2/cAMP-response element binding protein (CREB) signaling pathway, leading to increased angiogenesis and progression of endometriotic lesions. CONCLUSIONS Exposure of female mouse pups to ELA such as MS during their infancy period accelerates the progression of endometriosis, possibly through altered neuronal wiring and hyperactivity of the hypothalamic-pituitary-adrenal axis.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Animals, Newborn
- Anxiety/psychology
- Behavior, Animal
- Cyclic AMP Response Element-Binding Protein/metabolism
- Depression/psychology
- Disease Models, Animal
- Disease Progression
- Endometriosis/metabolism
- Endometriosis/pathology
- Endometriosis/physiopathology
- Endometriosis/psychology
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Hyperalgesia/psychology
- Hypothalamo-Hypophyseal System/metabolism
- Injections, Intraperitoneal
- Maternal Deprivation
- Mice, Inbred BALB C
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Peritoneal Diseases/metabolism
- Peritoneal Diseases/pathology
- Peritoneal Diseases/physiopathology
- Peritoneal Diseases/psychology
- Pituitary-Adrenal System/metabolism
- Random Allocation
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine D2/metabolism
- Signal Transduction
- Uterus/transplantation
- Stress, Psychological
Collapse
Affiliation(s)
- Qiqi Long
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
- Shanghai Obstetrics and Gynecology Hospital, Fudan University Shanghai College of Medicine, 419 Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|