51
|
Schwarcz HP, McNally EA, Botton GA. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. J Struct Biol 2014; 188:240-8. [DOI: 10.1016/j.jsb.2014.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/12/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
52
|
Abdalrahman T, Scheiner S, Hellmich C. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J Theor Biol 2014; 365:433-44. [PMID: 25452137 DOI: 10.1016/j.jtbi.2014.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/28/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls.
Collapse
Affiliation(s)
- T Abdalrahman
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| | - S Scheiner
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| | - C Hellmich
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| |
Collapse
|
53
|
Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014; 2:14017. [PMID: 26273526 PMCID: PMC4472121 DOI: 10.1038/boneres.2014.17] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CaP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.
Collapse
|
54
|
Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater 2014; 10:3815-26. [PMID: 24914825 DOI: 10.1016/j.actbio.2014.05.024] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/24/2022]
Abstract
Bone is a complex hierarchically structured family of materials that includes a network of cells and their interconnected cell processes. New insights into the 3-D structure of various bone materials (mainly rat and human lamellar bone and minipig fibrolamellar bone) were obtained using a focused ion beam electron microscope and the serial surface view method. These studies revealed the presence of two different materials, the major material being the well-known ordered arrays of mineralized collagen fibrils and associated macromolecules, and the minor component being a relatively disordered material composed of individual collagen fibrils with no preferred orientation, with crystals inside and possibly between fibrils, and extensive ground mass. Significantly, the canaliculi and their cell processes are confined within the disordered material. Here we present a new hierarchical scheme for several bone tissue types that incorporates these two materials. The new scheme updates the hierarchical scheme presented by Weiner and Wagner (1998). We discuss the structures at different hierarchical levels with the aim of obtaining further insights into structure-function-related questions, as well as defining some remaining unanswered questions.
Collapse
|
55
|
Rossi AL, Campos APC, Barroso MMS, Klautau M, Archanjo BS, Borojevic R, Farina M, Werckmann J. Long-range crystalline order in spicules from the calcareous sponge Paraleucilla magna (Porifera, Calcarea). Acta Biomater 2014; 10:3875-84. [PMID: 24487057 DOI: 10.1016/j.actbio.2014.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 11/20/2022]
Abstract
We investigated the ultrastructure and crystallographic orientation of spicules from the calcareous sponge Paraleucilla magna (subclass Calcaronea) by transmission and scanning electron microscopy using two different methods of sample preparation: ultramicrotomy and focused ion beam (FIB). It was found that the unpaired actine from the spicules was oriented in the [211] zone axis. The plane that contains the unpaired actine and divides symmetrically the paired actines is the (-120). This plane is a mirror plane of the hexagonal lattice system. All the spicule types analyzed presented the same crystallographic orientation. Electron nanodiffraction maps from 4μm×4μm regions prepared by FIB showed disorientation of <2° between diffraction patterns obtained from neighbor regions, indicating the presence of a unique, highly aligned calcite crystalline phase. Among the eight FIB sections obtained, four presented high pore density. In one section perpendicular to the actine axis pores were observed only in the center of the spicule aligned in a circular pattern and surrounded by a faint circular contour with a larger radius. The presence of amorphous carbon representative of organic molecules detected by electron energy loss spectroscopy was correlated neither with porosity nor with specific lattice planes.
Collapse
Affiliation(s)
- Andre L Rossi
- Centro Brasileiro de Pesquisas Físicas, Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Laboratório de Biomineralização, CEP 21941-590 Rio de Janeiro, Brazil
| | - Andrea P C Campos
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Divisão de Metrologia de Materiais, Duque de Caxias, CEP 25250-020 Rio de Janeiro, Brazil
| | - Madalena M S Barroso
- Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Laboratório de Biomineralização, CEP 21941-590 Rio de Janeiro, Brazil
| | - Michelle Klautau
- Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Zoologia, Laboratório de Biologia de Porifera, CEP 21941-590 Rio de Janeiro, Brazil
| | - Bráulio S Archanjo
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Divisão de Metrologia de Materiais, Duque de Caxias, CEP 25250-020 Rio de Janeiro, Brazil
| | - Radovan Borojevic
- Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Laboratório de Biomineralização, CEP 21941-590 Rio de Janeiro, Brazil; Instituto Nacional de Metrologia, Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Duque de Caxias, CEP 25250-020 Rio de Janeiro, Brazil
| | - Marcos Farina
- Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Laboratório de Biomineralização, CEP 21941-590 Rio de Janeiro, Brazil.
| | - Jacques Werckmann
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Duque de Caxias, CEP 25250-020 Rio de Janeiro, Brazil
| |
Collapse
|
56
|
Soto SA, Chiappe Barbará A. Bisphosphonates: Pharmacology and Clinical Approach to Their Use in Equine Osteoarticular Diseases. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
57
|
Geith T, Amarie S, Milz S, Bamberg F, Keilmann F. Visualisation of methacrylate-embedded human bone sections by infrared nanoscopy. JOURNAL OF BIOPHOTONICS 2014; 7:418-424. [PMID: 23420621 DOI: 10.1002/jbio.201200172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/19/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
A recently developed ultra-resolving near-field infrared nanoscope is applied to investigate methyl methacrylate embedded, un-decalcified human bone sections. Results show detail at a resolution of 30 nm. Specific contrasting of mineral components is enabled by choosing an appropriate infrared wavelength, here 9.47 μm, in the phosphate vibrational band. The method is surface-sensitive, probing to a depth of about 30 nm into the surface. The obtained infrared images are presented in direct comparison with optical and electron micrographs of the identical specimen. Lamellar bone organization, peri-cellular mineral deposition, and regional differences in mineral content are clearly detectable. Individual fibrils are resolved. - Infrared nanoscopy requires just standard hard tissue preparation techniques combined with section surface polishing. It can be integrated into existing laboratory environments without impeding subsequent routine staining and evaluation methods.
Collapse
Affiliation(s)
- Tobias Geith
- Department of Clinical Radiology, Ludwig-Maximilians-University, Großhadern Campus, 81377 München, Germany
| | | | | | | | | |
Collapse
|
58
|
Zhang R, Gong H, Zhu D, Gao J, Fang J, Fan Y. Seven day insertion rest in whole body vibration improves multi-level bone quality in tail suspension rats. PLoS One 2014; 9:e92312. [PMID: 24637608 PMCID: PMC3956900 DOI: 10.1371/journal.pone.0092312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Objective This study aimed to investigate the effects of low-magnitude, high-frequency vibration with rest days on bone quality at multiple levels. Methods Forty-nine three-month-old male Wistar rats were randomly divided into seven groups, namely, vibrational loading for X day followed by X day rest (VLXR, X = 1, 3, 5, 7), vibrational loading every day (VLNR), tail suspension (SPD), and baseline control (BCL). One week after tail suspension, rats were loaded by vibrational loading (35 Hz, 0.25 g, 15 min/day) except SPD and BCL. Fluorescence markers were used in all rats. Eight weeks later, femora were harvested to investigate macromechanical properties, and micro-computed tomography scanning and fluorescence test were used to evaluate microarchitecture and bone growth rate. Atomic force microscopy analyses and nanoindentation test were used to analyze the nanostructure and mechanical properties of bone material, respectively. Inductively coupled plasma optical emission spectroscopy was used for quantitative chemical analyses. Results Microarchitecture, mineral apposition rate and bone formation rate and macromechanical properties were improved in VL7R. Grain size and roughness were significantly different among all groups. No statistical difference was found for the mechanical properties of the bone material, and the chemical composition of all groups was almost similar. Conclusions Low-magnitude, high-frequency vibration with rest days altered bone microarchitecture and macro-biomechanical properties, and VL7R was more efficacious in improving bone loss caused by mechanical disuse, which provided theoretical basis and explored the mechanisms of vibration for improving bone quality in clinics.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
- * E-mail: (HG); (DZ)
| | - Dong Zhu
- Department of Orthopedic Surgery, No. 1 Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- * E-mail: (HG); (DZ)
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Juan Fang
- Department of Engineering Mechanics, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, People’s Republic of China
| |
Collapse
|
59
|
Hui J, Wang X. Hydroxyapatite nanocrystals: colloidal chemistry, assembly and their biological applications. Inorg Chem Front 2014. [DOI: 10.1039/c3qi00087g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, recent advances in the tunable synthesis, ion doping, assembly and applications of monodisperse HAp nanocrystals are summarized.
Collapse
Affiliation(s)
- Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering
- School of Chemical and Engineering
- Northwest University
- Xi'an, P. R. China
| | - Xun Wang
- Department of Chemistry
- Tsinghua University
- Beijing, P. R. China
| |
Collapse
|
60
|
Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille MM, Babonneau F, Azaïs T, Nassif N. Water-mediated structuring of bone apatite. NATURE MATERIALS 2013; 12:1144-53. [PMID: 24193662 DOI: 10.1038/nmat3787] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/18/2013] [Indexed: 05/24/2023]
Abstract
It is well known that organic molecules from the vertebrate extracellular matrix of calcifying tissues are essential in structuring the apatite mineral. Here, we show that water also plays a structuring role. By using solid-state nuclear magnetic resonance, wide-angle X-ray scattering and cryogenic transmission electron microscopy to characterize the structure and organization of crystalline and biomimetic apatite nanoparticles as well as intact bone samples, we demonstrate that water orients apatite crystals through an amorphous calcium phosphate-like layer that coats the crystalline core of bone apatite. This disordered layer is reminiscent of those found around the crystalline core of calcified biominerals in various natural composite materials in vivo. This work provides an extended local model of bone biomineralization.
Collapse
Affiliation(s)
- Yan Wang
- 1] Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574 CNRS, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France [2]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Milovanovic P, Djuric M, Neskovic O, Djonic D, Potocnik J, Nikolic S, Stoiljkovic M, Zivkovic V, Rakocevic Z. Atomic force microscopy characterization of the external cortical bone surface in young and elderly women: potential nanostructural traces of periosteal bone apposition during aging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1341-1349. [PMID: 23764147 DOI: 10.1017/s1431927613001761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
On the basis of the suggestion that bone nanostructure bears “tissue age” information and may reflect surface deposition/modification processes, we performed nanoscale characterization of the external cortical bone surface at the femoral neck in women using atomic force microscopy (AFM). The specific aims were to assess age-related differences in bone nanostructure and explore the existence of nanostructural traces of potential bone apposition at this surface. Our findings revealed that the external cortical surface represents a continuous phase composed of densely packed mineral grains. Although the grains varied in size and shape, there was a domination of small grains indicative of freshly deposited bone (mean grain size: young, 35 nm; old, 37 nm; p > 0.05). Advanced quantitative analysis of surface morphological patterns revealed comparable roughness and complexity of the surface, suggesting a similar rate of mineral particle deposition at the surface in both groups. Calcium/phosphorus ratio, a measure of bone tissue age, was within the same range in both groups. In summary, our AFM analyses showed consistent nanostructural and compositional bone features, suggesting existence of new bone at the periosteal bone surface in both young and elderly women. Considering observed age-related increase in the neck diameter, AFM findings may support the theory of continuous bone apposition at the periosteal surface.
Collapse
Affiliation(s)
- Petar Milovanovic
- University of Belgrade, School of Medicine, Institute of Anatomy, Laboratory for Anthropology, 4/2 Dr Subotica, 11 000 Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Li Y, Aparicio C. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone. PLoS One 2013; 8:e76782. [PMID: 24086763 PMCID: PMC3781166 DOI: 10.1371/journal.pone.0076782] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
Biomineralization templated by organic molecules to produce inorganic-organic nanocomposites is a fascinating example of nature using bottom-up strategies at nanoscale to accomplish highly ordered multifunctional materials. One such nanocomposite is bone, composed primarily of hydroxyapatite (HA) nanocrystals that are embedded within collagen fibrils with their c-axes arranged roughly parallel to the long axis of the fibrils. Here we discern the ultra-structure of biomimetic mineralized collagen fibrils (MCFs) as consisting of bundles of subfibrils with approximately 10 nm diameter; each one with an organic-inorganic core-shell structure. Through an amorphous calcium phosphate precursor phase the HA nanocrystals were specifically grown along the longitudinal direction of the collagen microfibrils and encapsulated them within the crystal lattice. They intercalated throughout the collagen fibrils such that the mineral phase surrounded the surface of collagen microfibrils forming an interdigitated network. It appears that this arrangement of collagen microfibrils in collagen fibrils is responsible for the observed ultrastructure. Such a subfibrillar nanostructure in MCFs was identified in both synthetic and natural bone, suggesting this is the basic building block of collagen-based hard tissues. Insights into the ultrastructure of mineralized collagen fibrils have the potential to advance our understanding on the biomineralization principles and the relationship between bone’s structure and mechanical properties, including fracture toughness mechanisms. We anticipate that these principles from biological systems can be applied to the rational design of new nanocomposites with improved performance.
Collapse
Affiliation(s)
- Yuping Li
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB) Department of Restorative Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB) Department of Restorative Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
63
|
Liu Q, Huang S, Matinlinna JP, Chen Z, Pan H. Insight into biological apatite: physiochemical properties and preparation approaches. BIOMED RESEARCH INTERNATIONAL 2013; 2013:929748. [PMID: 24078928 PMCID: PMC3773917 DOI: 10.1155/2013/929748] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022]
Abstract
Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite.
Collapse
Affiliation(s)
- Quan Liu
- Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Shishu Huang
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong
| | | | - Zhuofan Chen
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
64
|
Wang X, Liu Z, Cui F. Biomimetic Synthesis of Self‐Assembled Mineralized Collagen‐Based Composites for Bone Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
65
|
Chandanshive BB, Rai P, Rossi AL, Ersen O, Khushalani D. Synthesis of hydroxyapatite nanotubes for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2981-6. [DOI: 10.1016/j.msec.2013.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/20/2013] [Accepted: 03/14/2013] [Indexed: 01/25/2023]
|
66
|
Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. NATURE MATERIALS 2013; 12:576-83. [PMID: 23603848 PMCID: PMC5833942 DOI: 10.1038/nmat3627] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/11/2013] [Indexed: 05/16/2023]
Abstract
The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.
Collapse
Affiliation(s)
- Sergio Bertazzo
- Department of Materials, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
67
|
Stein K, Prondvai E. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation. Biol Rev Camb Philos Soc 2013; 89:24-47. [DOI: 10.1111/brv.12041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Koen Stein
- Steinmann Institut für Geologie, Mineralogie und Paläontologie; University of Bonn; Bonn Germany
| | - Edina Prondvai
- Hungarian Academy of Sciences-Eötvös Loránd University “Lendület” Dinosaur Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
68
|
Prodanov L, Semeins C, van Loon J, te Riet J, Jansen J, Klein-Nulend J, Walboomers X. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies. Acta Biomater 2013; 9:6653-62. [PMID: 23415750 DOI: 10.1016/j.actbio.2013.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering.
Collapse
|
69
|
Lee JM, Kim JK, Jeong JM, Kim JG, Lee E, Kim YJ. Development of Multi-sample Loading Device for TEM Characterization of Hydroxyapatite Nanopowder. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.3.788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Lai M, Cai K, Hu Y, Zhang Y, Li L, Luo Z, Hou Y, Li J, Ding X, Chen X. Construction of microenvironment onto titanium substrates to regulate the osteoblastic differentiation of bone marrow stromal cells in vitro and osteogenesis in vivo. J Biomed Mater Res A 2013; 101:653-666. [PMID: 22927103 DOI: 10.1002/jbm.a.34371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/09/2012] [Indexed: 02/05/2023]
Abstract
To mimic the extracellular matrix of natural bone, apatite/gelatin composite was deposited onto nanostructured titanium substrates via a coprecipitation method, which was pretreated by potassium hydroxide and heat treatment to generate an anticorrosive nanostructured layer. The successful formation of the apatite/gelatin nanocomposite onto titanium surfaces was revealed by Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, atomic force microscopy (AFM), and thin film X-ray diffraction (TF-XRD) measurements, respectively. The immunofluorescence staining of vinculin revealed that the apatite/gelatin nanocomposite deposited titanium substrate was favorable for cell adhesion. More importantly, bone marrow stromal cells cultured onto the apatite/gelatin nanocomposite deposited titanium substrates displayed significantly higher (p < 0.05 or p < 0.01) proliferation and differentiation levels of alkaline phosphatase, mRNA expressions of osteocalcin (OC), osteopontin (OPN), and collagen type I (Col I), and OC content after culture for 7, 14, and 21 days, respectively, which was also revealed by the immunofluorescence analysis of OC and OPN expression. The deposition of apatite/gelatin nanocomposite improved bone density (p < 0.05) and bone-implant contact rate (p < 0.05), which was reflected by microcomputed tomography analysis and histological evaluation in vivo using a rabbit model. This work provides an approach to fabricate high-performance titanium-based implants with enhanced bone osseointegration.
Collapse
Affiliation(s)
- Min Lai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Alves Cardoso D, Jansen JA, Leeuwenburgh SCG. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res B Appl Biomater 2012; 100:2316-26. [PMID: 23015272 DOI: 10.1002/jbm.b.32794] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 01/02/2023]
Abstract
In the past two decades, nanotechnology has entered the field of regenerative medicine, resulting in the development of a novel generation of instructive, nanostructured biomaterials that are able to orchestrate cellular behavior by presenting specific morphological and biological cues. Using nanotechnology, materials containing nanosized features (e.g., pores, patterns, textures, grain sizes) can be obtained that exhibit properties that are considerably altered compared with micron-structured materials. Inspired by the hierarchical nanostructure of bone, the application of nanostructured materials for bone regeneration is gaining increasing interest in the field of biomaterials research. Because crystallographic and chemical studies have shown that synthetic hydroxyapatite closely resembles the inorganic phase found in bone and teeth, synthesis and applications of nanostructured calcium phosphate ceramics have been reviewed. Synthesis techniques for the preparation of calcium phosphate nanoparticles include precipitation, sol-gel, and hydrothermal processes, whereas four main biomedical applications of nanostructured calcium phosphate ceramics in bone regeneration have been addressed in more detail, that is, (1) polymer/calcium phosphate nanocomposites, (2) nanostructured monophasic calcium phosphate bone fillers, (3) nanostructured precursor phases for calcium phosphate cements, and (4) nanostructured calcium phosphate coatings.
Collapse
Affiliation(s)
- D Alves Cardoso
- Department of Biomaterials, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
72
|
Milovanovic P, Djuric M, Rakocevic Z. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae. J Anat 2012; 221:427-33. [PMID: 22946475 DOI: 10.1111/j.1469-7580.2012.01556.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2012] [Indexed: 11/28/2022] Open
Abstract
There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
73
|
Eberhardsteiner L, Hellmich C, Scheiner S. Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput Methods Biomech Biomed Engin 2012; 17:48-63. [PMID: 22563708 PMCID: PMC3877913 DOI: 10.1080/10255842.2012.670227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/23/2012] [Indexed: 12/01/2022]
Abstract
Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range), as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as 'interfibrillar mineral' and 'extrafibrillar mineral', respectively. From a topological viewpoint, it is probable that the mineralisations start on the surfaces of the collagen fibrils ('mineral-encrusted fibrils'), from where the crystals grow both into the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009 J Theor Biol. 260(2): 230-252) - we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone. Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be related to overall elastoplastic material behaviour of the hierarchical material 'bone'. Extending this idea, the present paper is devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally evidenced phenomenon of bone viscoelasticity. In this context, a multiscale homogenisation scheme is extended to viscoelasticity, mineral-cluster-specific creep parameters are identified from three-point bending tests on hydrated bone samples, and the model is validated by statistically and physically independent experiments on partially dried samples. We expect this model to be relevant when it comes to prediction of time-dependent phenomena, e.g. in the context of bone remodelling.
Collapse
Affiliation(s)
- Lukas Eberhardsteiner
- Institute for Transportation Science, Research Center for Road Engineering, Vienna University of Technology, Vienna, Austria
| | - Christian Hellmich
- Institute for Mechanics of Material and Structures, Vienna University of Technology, Vienna, Austria
| | - Stefan Scheiner
- Institute for Mechanics of Material and Structures, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
74
|
McNally EA, Schwarcz HP, Botton GA, Arsenault AL. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One 2012; 7:e29258. [PMID: 22272230 PMCID: PMC3260135 DOI: 10.1371/journal.pone.0029258] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022] Open
Abstract
The relationship between the mineral component of bone and associated collagen has been a matter of continued dispute. We use transmission electron microscopy (TEM) of cryogenically ion milled sections of fully-mineralized cortical bone to study the spatial and topological relationship between mineral and collagen. We observe that hydroxyapatite (HA) occurs largely as elongated plate-like structures which are external to and oriented parallel to the collagen fibrils. Dark field images suggest that the structures (“mineral structures”) are polycrystalline. They are approximately 5 nm thick, 70 nm wide and several hundred nm long. Using energy-dispersive X-ray analysis we show that approximately 70% of the HA occurs as mineral structures external to the fibrils. The remainder is found constrained to the gap zones. Comparative studies of other species suggest that this structural motif is ubiquitous in all vertebrates.
Collapse
Affiliation(s)
- Elizabeth A. McNally
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Henry P. Schwarcz
- School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Gianluigi A. Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario, Canada
| | - A. Larry Arsenault
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
75
|
Rossi AL, Barreto IC, Maciel WQ, Rosa FP, Rocha-Leão MH, Werckmann J, Rossi AM, Borojevic R, Farina M. Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite. Bone 2012; 50:301-10. [PMID: 22057083 DOI: 10.1016/j.bone.2011.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/21/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
We report the ultrastructure of regenerated bone surrounding two types of biomaterials: hydroxyapatite-alginate composite and sintered hydroxyapatite. Critical defects in the calvaria of Wistar rats were filled with micrometer-sized spherical biomaterials and analyzed after 90 and 120 days of implantation by high-resolution transmission electron microscopy and Fourier transform infrared attenuated total reflectance microscopy, respectively. Infrared spectroscopy showed that hydroxyapatite of both biomaterials became more disordered after implantation in the rat calvaria, indicating that the biological environment induced modifications in biomaterials structure. We observed that the regenerated bone surrounding both biomaterials had a lamellar structure with type I collagen fibers alternating in adjacent lamella with angles of approximately 90°. In each lamella, plate-like apatite crystals were aligned in the c-axis direction, although a rotation around the c-axis could be present. Bone plate-like crystal dimensions were similar in regenerated bone around biomaterials and pre-existing bone in the rat calvaria. No epitaxial growth was observed around any of the biomaterials. A distinct mineralized layer was observed between new bone and hydroxyapatite-alginate biomaterial. This region presented a particular ultrastructure with crystallites smaller than those of the bulk of the biomaterial, and was possibly formed during the synthesis of alginate-containing composite or in the biological environment after implantation. Round nanoparticles were observed in regions of newly formed bone. The findings of this work contribute to a better understanding of the role of hydroxyapatite based biomaterials in bone regeneration processes at the nanoscale.
Collapse
Affiliation(s)
- Andre L Rossi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Song K, Kim YJ, Kim YI, Kim JG. Application of theta-scan precession electron diffraction to structure analysis of hydroxyapatite nanopowder. Microscopy (Oxf) 2011. [DOI: 10.1093/jmicro/dfr078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
77
|
Li Y, Thula TT, Jee S, Perkins SL, Aparicio C, Douglas EP, Gower LB. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. Biomacromolecules 2011; 13:49-59. [PMID: 22133238 DOI: 10.1021/bm201070g] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ideal biomaterials for bone grafts must be biocompatible, osteoconductive, osteoinductive and have appropriate mechanical properties. For this, the development of synthetic bone substitutes mimicking natural bone is desirable, but this requires controllable mineralization of the collagen matrix. In this study, densified collagen films (up to 100 μm thick) were fabricated by a plastic compression technique and cross-linked using carbodiimide. Then, collagen-hydroxyapatite composites were prepared by using a polymer-induced liquid-precursor (PILP) mineralization process. Compared to traditional methods that produce only extrafibrillar hydroxyapatite (HA) clusters on the surface of collagen scaffolds, by using the PILP mineralization process, homogeneous intra- and extrafibrillar minerals were achieved on densified collagen films, leading to a similar nanostructure as bone, and a woven microstructure analogous to woven bone. The role of collagen cross-links on mineralization was examined and it was found that the cross-linked collagen films stimulated the mineralization reaction, which in turn enhanced the mechanical properties (hardness and modulus). The highest value of hardness and elastic modulus was 0.7 ± 0.1 and 9.1 ± 1.4 GPa in the dry state, respectively, which is comparable to that of woven bone. In the wet state, the values were much lower (177 ± 31 and 8 ± 3 MPa) due to inherent microporosity in the films, but still comparable to those of woven bone in the same conditions. Mineralization of collagen films with controllable mineral content and good mechanical properties provide a biomimetic route toward the development of bone substitutes for the next generation of biomaterials. This work also provides insight into understanding the role of collagen fibrils on mineralization.
Collapse
Affiliation(s)
- Yuping Li
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, United States
| | | | | | | | | | | | | |
Collapse
|
78
|
Melikhov IV, Simonov EF. A model of an evolutionary route for the preparation of functional materials. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2011. [DOI: 10.1134/s0040579511050253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
79
|
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. BIOMATTER 2011; 1:121-164. [PMID: 23507744 PMCID: PMC3549886 DOI: 10.4161/biom.18790] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
80
|
Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, Djuric M, Rakocevic Z. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater 2011; 7:3446-3451. [PMID: 21658479 DOI: 10.1016/j.actbio.2011.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022]
Abstract
Despite interest in investigating age-related hip fractures, the determinants of decreased bone strength in advanced age are not clear enough. Hitherto it has been obscure how the aging process affects the femoral neck nanostructure and composition, particularly in the lateral subregion of the femoral neck, which is considered as a fracture-initiating site. The femoral bone samples used in this study were obtained at autopsy in 10 women without skeletal disease (five younger: aged 20-40 years, and five elderly: aged 73-94 years). Atomic force microscopy (AFM) was applied to explore the mineral grain size in situ in young vs. old trabecular bone samples from the lateral femoral neck. The chemical compositions of the samples were determined using inductively coupled plasma optical emission spectroscopy and direct current argon arc plasma optical emission spectrometry. Our AFM study revealed differences in trabecular bone nanostructure between young and elderly women. The mineral grain size in the trabeculae of the old women was larger than that in the young (median: 95 vs. 59nm), with a particular bimodal distribution: 45% were small grains (similar to the young) and the rest were larger. Since chemical analyses showed that levels of calcium and phosphorus were unchanged with age, our study suggests that during aging the existing bone mineral is reorganized and forms larger aggregates. Given the mechanical disadvantage of large-grained structures (decreased material strength), the observed nanostructural differences contribute to our understanding of the increased fragility of the lateral femoral neck in aged females. Moreover, increasing data on mineral grains in natural bone is essential for advancing calcium-phosphate ceramics for bone tissue replacement.
Collapse
|
81
|
Lange C, Li C, Manjubala I, Wagermaier W, Kühnisch J, Kolanczyk M, Mundlos S, Knaus P, Fratzl P. Fetal and postnatal mouse bone tissue contains more calcium than is present in hydroxyapatite. J Struct Biol 2011; 176:159-67. [PMID: 21855638 DOI: 10.1016/j.jsb.2011.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/18/2022]
Abstract
It has been shown for developing enamel and zebrafish fin that hydroxyapatite (HA) is preceded by an amorphous precursor, motivating us to examine the mineral development in mammalian bone, particularly femur and tibia of fetal and young mice. Mineral particle thickness and arrangement were characterized by (synchrotron) small-angle X-ray scattering (SAXS) combined with wide-angle X-ray diffraction (WAXD) and X-ray fluorescence (XRF) analysis. Simultaneous measurements of the local calcium content and the HA content via XRF and WAXD, respectively, revealed the total calcium contained in HA crystals. Interestingly, bones of fetal as well as newborn mice contained a certain fraction of calcium which is not part of the HA crystals. Mineral deposition could be first detected in fetal tibia at day 16.5 by environmental scanning electron microscopy (ESEM). SAXS revealed a complete lack of orientation in the mineral particles at this stage, whereas 1day after birth particles were predominantly aligned parallel to the longitudinal bone axis, with the highest degree of alignment in the midshaft. Moreover, we found that mineral particle length increased with age as well as the thickness, while fetal particles were thicker but much shorter. In summary, this study revealed strong differences in size and orientation of the mineral particles between fetal and postnatal bone, with bulkier, randomly oriented particles at the fetal stage, and highly aligned, much longer particles after birth. Moreover, a part of the calcium seems to be present in other form than HA at all stages of development.
Collapse
Affiliation(s)
- C Lange
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14476 Potsdam, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hurng JM, Kurylo MP, Marshall GW, Webb SM, Ryder MI, Ho SP. Discontinuities in the human bone-PDL-cementum complex. Biomaterials 2011; 32:7106-17. [PMID: 21774982 DOI: 10.1016/j.biomaterials.2011.06.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
A naturally graded interface due to functional demands can deviate toward a discontinuous interface, eventually decreasing the functional efficiency of a dynamic joint. It is this characteristic feature in a human bone-tooth fibrous joint bone-PDL-tooth complex that will be discussed through histochemistry, and site-specific high resolution microscopy, micro tomography(Micro XCT™), X-ray fluorescence imaging and wet nanoindentation techniques. Results demonstrated two causes for the occurrence of 5-50 μm narrowed PDL-space: 1) microscopic scalloped regions at the PDL-insertion sites and macro-scale stratified layers of bone with rich basophilic lines, and 2) macroscopic bony protrusions. Narrowed PDL-complexes illustrated patchy appearance of asporin, and when imaged under wet conditions using an atomic force microscope (AFM), demonstrated structural reorganization of the PDL, collagen periodicity, organic-dominant areas at the PDL-cementum and PDL-bone entheses and within cementum and bone. Scanning electron microscopy (SEM) results confirmed AFM results. Despite the narrowed PDL, continuity between PDL and vasculature in endosteal spaces of bone was demonstrated using a Micro XCT™. The higher levels of Ca and P X-ray fluorescence using a microprobe were correlated with higher elastic modulus values of 0.1-1.4 and 0.1-1.2 GPa for PDL-bone and PDL-cementum using wet nanoindentation. The ranges in elastic modulus values for PDL-bone and PDL-cementum entheses in 150-380 μm wide PDL-complex were 0.1-1.0 and 0.1-0.6 GPa. Based on these results we propose that strain amplification at the entheses could be minimized with a gradual change in modulus profile, a characteristic of 150-380 μm wide functional PDL-space. However, a discontinuity in modulus profile, a characteristic of 5-50 μm wide narrowed PDL-space would cause compromised mechanotransduction. The constrictions or narrowed sites within the bone-tooth fibrous joint will become the new "load bearing sites" that eventually could cause direct local fusion of bone with cementum.
Collapse
Affiliation(s)
- Jonathan M Hurng
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
83
|
Poursamar SA, Azami M, Mozafari M. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloids Surf B Biointerfaces 2011; 84:310-316. [PMID: 21310596 DOI: 10.1016/j.colsurfb.2011.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
Abstract
During the last decades, there have been several attempts to combine bioactive materials with biocompatible and biodegradable polymers to create nanocomposite scaffolds with excellent biocompatibility, bioactivity, biodegradability and mechanical properties. In this research, the nanocomposite scaffolds with compositions based on PVA and HAp nanoparticles were successfully prepared using colloidal HAp nanoparticles combined with freeze-drying technique for tissue engineering applications. In addition, the effect of the pH value of the reactive solution and different percentages of PVA and HAp on the synthesis of PVA/HAp nanocomposites were investigated. The SEM observations revealed that the prepared scaffolds were porous with three dimensional microstructures, and in vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. According to the obtained results, the nanocomposite scaffolds could be considered as highly bioactive and potential bone tissue engineering implants.
Collapse
Affiliation(s)
- S Ali Poursamar
- School of Science and Technology, The University of Northampton, Northampton, NN2 7AL, United Kingdom
| | | | | |
Collapse
|
84
|
Beniash E. Biominerals--hierarchical nanocomposites: the example of bone. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:47-69. [PMID: 20827739 PMCID: PMC3012754 DOI: 10.1002/wnan.105] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man-made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components under ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure, and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation, and functional properties of biominerals on the example the bone tissues.
Collapse
Affiliation(s)
- Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
85
|
Jee SS, Kasinath RK, DiMasi E, Kim YY, Gower L. Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process. CrystEngComm 2011. [DOI: 10.1039/c0ce00605j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
86
|
Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. CERAMICS INTERNATIONAL 2010; 36:2431-2439. [DOI: 10.1016/j.ceramint.2010.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
87
|
Zhang S, Zhang X, Cai Q, Wang B, Deng X, Yang X. Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition. Biomed Mater 2010; 5:065005. [PMID: 20966533 DOI: 10.1088/1748-6041/5/6/065005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.
Collapse
Affiliation(s)
- Shen Zhang
- The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
88
|
Beuvelot J, Bergeret C, Mallet R, Fernandez V, Cousseau J, Baslé MF, Chappard D. In vitro calcification of chemically functionalized carbon nanotubes. Acta Biomater 2010; 6:4110-7. [PMID: 20493282 DOI: 10.1016/j.actbio.2010.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/10/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
Abstract
Bone is composed of two phases. The organic phase is made of collagen fibrils assembled in broad fibers acting as a template for mineralization. The mineral phase comprises hydroxyapatite (HAP) crystals grown between and inside the collagen fibers. We have developed a biomimetic material using functionalized carbon nanotubes as scaffold to initiate in vitro mineralization. Biomimetic formation of HAP was performed on single-walled carbon nanotubes (SWCNTs) which have been grafted with carboxylic groups. Two types of nanotubes, HiPco(R) and Carbon Solutions(R), were oxidized via various acidic processes, leading to five different groups of carboxylated nanotubes, fully characterized by physical methods (thermogravimetric analysis, attenuated total reflectance infrared spectroscopy and X-ray photoelectron spectroscopy). All samples were dispersed in ultra-pure water and incubated for 2weeks in a synthetic body fluid, in order to induce the calcification of the SWCNTs. Scanning electron microscopy (SEM) and energy-dispersive X-ray analysis studies showed that Ca(2+) and PO(4)(3-) ions were deposited as round-shaped nodules (calcospherites) on the carboxylated SWCNTs. Fourier transform infrared and Raman spectroscopic studies confirmed the HAP formation, and image analysis made on SEM pictures showed that calcospherites and carboxylated SWCNTs were packed together. The size of calcospherites thus obtained in vitro from the HiPco(R) series was close to that issued from calcospherites observed in vivo. Functionalization of SWCNTs with carboxylic groups confers the capacity to induce calcification similar to woven bone.
Collapse
|
89
|
Guagliardi A, Giannini C, Cedola A, Mastrogiacomo M, Ladisa M, Cancedda R. Toward the x-ray microdiffraction imaging of bone and tissue-engineered bone. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:423-42. [PMID: 19537948 DOI: 10.1089/ten.teb.2009.0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hierarchical structure of bone makes the X-ray microdiffraction scanning techniques one of the most effective tool to investigate the structural features of this tissue at different length scales: the atomic/nanometer scale of the X-ray scattering signals and the macroscopic scale of the scanned sample area. The potentiality of the microdiffraction approach has been verified also by investigations on tissue-engineered bone substitutes used to repair large hard bone defects. The aim of this review is to present the most representative and recent results obtained through high-resolution scanning microdiffraction techniques studying both natural and tissue-engineered bone. The rapid evolution of the instrumental set-ups and the advanced methods of data analysis are described. Recent examples in which X-ray microbeams were used for imaging quantitative features of natural bone tissue and engineered bone substitutes are presented along with the qualitative and quantitative information extracted from the two-dimensional patterns collected on bone samples and on ex vivo cell seeded bioceramic implants. Thanks to the microdiffraction approach, several aspects of the mechanisms leading to the generation of the new bone, coupled to the scaffold resorption in the tissue-engineered constructs, have been tentatively interpreted. The potential of X-ray microdiffraction as an imaging tool in the field of bone tissue engineering is discussed and the key role of high-spatial resolution, availability of automatic tools (for dealing with the huge amount of experimental data) and advanced analysis techniques is elucidated. Finally, future perspectives in the field are presented.
Collapse
|
90
|
Chen ZX, Takao Y, Wang WX, Matsubara T, Ren LM. Surface characteristics and in vitro biocompatibility of titanium anodized in a phosphoric acid solution at different voltages. Biomed Mater 2010; 4:065003. [PMID: 19880985 DOI: 10.1088/1748-6041/4/6/065003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface of commercially pure titanium was modified by anodization treatment in a phosphoric acid solution at different voltages: 100 V, 200 V and 300 V. The surface characteristics of anodic TiO2 layers and their influence on the cell response were investigated. Micrographs by scanning electron microscopy revealed that the dense and uniform oxide layer obtained at 100 V exhibits a nanostructured surface which is similar to the surface of natural tooth cementum. In contrast, porous oxide layers without nanometer features were produced at higher voltages. Thin film x-ray diffraction analysis confirmed the existence of anatase in the oxide layer obtained at 300 V, but not in oxide layers obtained at 100 V and 200 V. The in vitro biocompatibility study of oxide layers demonstrated greater cell adhesion and proliferation of the oxide layer obtained at 100 V compared to the other two kinds of oxide layers.
Collapse
Affiliation(s)
- Z X Chen
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-koen 6-1, Kasuga, Fukuoka 816-8580, Japan.
| | | | | | | | | |
Collapse
|
91
|
Reisinger AG, Pahr DH, Zysset PK. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 2010; 9:499-510. [PMID: 20135190 DOI: 10.1007/s10237-010-0190-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/18/2010] [Indexed: 11/29/2022]
Abstract
The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlying topology and the constituents' material properties. These input data are still afflicted by great uncertainties and their influence on computed elastic constants of a bone fibril-array remains unclear. In this work, mean field methods are applied to model mineralized fibrils, the extra-fibrillar matrix and the resulting fibril-array. The isotropic or transverse isotropic elastic constants of these constituents are computed as a function of degree of mineralization, mineral distribution between fibrils and extra-fibrillar matrix, collagen stiffness and fibril volume fraction. The linear sensitivity of the elastic constants was assessed at a default set of the above parameters. The strain ratios between the constituents as well as the axial and transverse indentation moduli of the fibril-array were calculated for comparison with experiments. Results indicate that the degree of mineralization and the collagen stiffness dominate fibril-array elasticity. Interestingly, the stiffness of the extra-fibrillar matrix has a strong influence on transverse and shear moduli of the fibril-array. The axial strain of the intra-fibrillar mineral platelets is 30-90% of the applied fibril strain, depending on mineralization and collagen stiffness. The fibril-to-fibril-array strain ratio is essentially ~1. This study provides an improved insight in the parameters, which govern the fibril-array stiffness of mineralized tissues such as bone.
Collapse
Affiliation(s)
- Andreas G Reisinger
- Vienna University of Technology, Institute of Lightweight Design and Structural Biomechanics, Austria.
| | | | | |
Collapse
|
92
|
Finnilä MAJ, Zioupos P, Herlin M, Miettinen HM, Simanainen U, Håkansson H, Tuukkanen J, Viluksela M, Jämsä T. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on bone material properties. J Biomech 2010; 43:1097-103. [PMID: 20132933 DOI: 10.1016/j.jbiomech.2009.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 11/18/2009] [Accepted: 12/10/2009] [Indexed: 01/02/2023]
Abstract
Dioxins are known to decrease bone strength, architecture and density. However, their detailed effects on bone material properties are unknown. Here we used nanoindentation methods to characterize the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on nanomechanical behaviour of bone matrix. Pregnant rats were treated with a single intragastric dose of TCDD (1 microg/kg) or vehicle on gestational day 11. Tibias of female offspring were sampled on postnatal day (PND) 35 or 70, scanned at mid-diaphysis with pQCT, and evaluated by three-point bending and nanoindentation. TCDD treatment decreased bone mineralization (p<0.05), tibial length (p<0.01), cross-sectional geometry (p<0.05) and bending strength (p<0.05). Controls showed normal maturation pattern between PND 35 and 70 with decreased plasticity by 5.3% and increased dynamic hardness, storage and complex moduli by 26%, 13% and 12% respectively (p<0.05), while similar maturation was not observed in TCDD-exposed pups. In conclusion, for the first time, we demonstrate retardation of bone matrix maturation process in TCDD-exposed animals. In addition, the study confirms that developmental TCDD exposure has adverse effects on bone size, strength and mineralization. The current results in conjunction with macromechanical behaviour suggest that reduced bone strength caused by TCDD is more associated with the mineralization and altered geometry of bones than with changes at the bone matrix level.
Collapse
Affiliation(s)
- Mikko A J Finnilä
- Department of Medical Technology, University of Oulu, P.O. Box 5000, 90014 University of Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Hayakawa S, Li Y, Tsuru K, Osaka A, Fujii E, Kawabata K. Preparation of nanometer-scale rod array of hydroxyapatite crystal. Acta Biomater 2009; 5:2152-60. [PMID: 19286435 DOI: 10.1016/j.actbio.2009.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 11/16/2022]
Abstract
Fabrication of nano- or micro-structured scaffolds to mimic structural and three-dimensional details of natural bone or teeth has been the subject of much interest, and this study proposes a new strategy for self-assembling one-dimensional hydroxyapatite (HAp) nanorods into organized superstructures. A nanometer-scale rod array of HAp having preferred orientation to the c-axis was successfully prepared simply by soaking calcium-containing silicate glass substrates in Na(2)HPO(4) aqueous solution at 80 degrees C for various periods. Those HAp rods grew perpendicularly to the glass surface, and the crystallites covered the glass surface uniformly, resulting in a "dental enamel-like" rod array structure consisting of "pine-leaf-like" structure units.
Collapse
|
94
|
Hong SI, Hong SK, Kohn DH. Nanostructural analysis of trabecular bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1419-1426. [PMID: 19266266 DOI: 10.1007/s10856-009-3708-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 02/06/2009] [Indexed: 05/27/2023]
Abstract
The mechanical properties of bone are dictated by the size, shape and organization of the mineral and matrix phases at multiple levels of hierarchy. While much is known about structure-function relations at the macroscopic level, less is known at the nanoscale, especially for trabecular bone. In this study, high resolution transmission electron microscopy (HRTEM) was carried out to analyze shape and orientation of apatite crystals in murine femoral trabecular bone. The distribution and orientation of mineral apatites in trabecular bone were different from lamellar bone and the c-axis of the tablet-like mineral apatite crystals in trabecular bone was arranged with no preferred orientation. The difference in the orientation distribution of apatite crystals of trabecular bone in the present study compared with that of lamellar bone found in the literature can be attributed to the more complex local stress state in trabecular bone. Apatite crystals were also found to be multi-crystalline, not single crystalline, from dark field image analysis. From the observations of this study, it is suggested that Wolff's law can be applicable to the nanostructural orientation and distribution of apatite crystals in trabecular bone. It was also found that small round crystalline particles observed adjacent to collagen fibrils were similar in size and shape to the apatite crystals in biomimetically nucleated synthetic amorphous calcium phosphate, which suggests that they are bone mineral apatite nuclei.
Collapse
Affiliation(s)
- Sun Ig Hong
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| | | | | |
Collapse
|
95
|
Jongpaiboonkit L, Franklin-Ford T, Murphy WL. Growth of hydroxyapatite coatings on biodegradable polymer microspheres. ACS APPLIED MATERIALS & INTERFACES 2009; 1:1504-11. [PMID: 20161578 PMCID: PMC2806690 DOI: 10.1021/am9001716] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mineral-coated microspheres were prepared via a bioinspired, heterogeneous nucleation process at physiological temperature. Poly(d,l-lactide-co-glycolide) (PLG) microspheres were fabricated via a water-in-oil-in-water emulsion method and were mineral-coated via incubation in a modified simulated body fluid (mSBF). X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy with associated energy-dispersive X-ray spectroscopy confirmed the presence of a continuous mineral coating on the microspheres. The mineral grown on the PLG microsphere surface has characteristics analogous to those of bone mineral (termed "bonelike" mineral), with a carbonate-containing hydroxyapatite phase and a porous structure of platelike crystals at the nanometer scale. The assembly of mineral-coated microspheres into aggregates was observed when microsphere concentrations above 0.50 mg/mL were incubated in mSBF for 7 days, and the size of the aggregates was dependent on the microsphere concentration in solution. In vitro mineral dissolution studies performed in Tris-buffered saline confirmed that the mineral formed was resorbable. A surfactant additive (Tween 20) was incorporated into mSBF to gain insight into the mineral growth process, and Tween 20 not only prevented aggregation but also significantly inhibited mineral formation and influenced the characteristics of the mineral formed on the surface of PLG microspheres. Taken together, these findings indicate that mineral-coated PLG microspheres or mineral-coated microsphere aggregates can be synthesized in a controllable manner using a bioinspired process. These materials may be useful in a range of applications, including controlled drug delivery and biomolecule purification.
Collapse
Affiliation(s)
| | | | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
96
|
Calcium Orthophosphates in Nature, Biology and Medicine. MATERIALS 2009; 2:399-498. [PMCID: PMC5445702 DOI: 10.3390/ma2020399] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 02/07/2023]
Abstract
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers) and pathological (i.e. those appearing due to various diseases) calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium ortho-phosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
97
|
Zhang X, Li Z, Zhu XX. Biomimetic Mineralization Induced by Fibrils of Polymers Derived from a Bile Acid. Biomacromolecules 2008; 9:2309-14. [DOI: 10.1021/bm800204t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xu Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China, and Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Zhanyong Li
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China, and Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - X. X. Zhu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China, and Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
98
|
Hjorten R, Hansen U, Underwood RA, Telfer HE, Fernandes RJ, Krakow D, Sebald E, Wachsmann-Hogiu S, Bruckner P, Jacquet R, Landis WJ, Byers PH, Pace JM. Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone 2007; 41:535-42. [PMID: 17693149 PMCID: PMC2030487 DOI: 10.1016/j.bone.2007.06.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 06/12/2007] [Accepted: 06/20/2007] [Indexed: 01/29/2023]
Abstract
COL27A1 is a member of the collagen fibrillar gene family and is expressed in cartilaginous tissues including the anlage of endochondral bone. To begin to understand its role in skeletogenesis, the temporospatial distributions of its RNA message and protein product, type XXVII collagen, were determined in developing human skeletal tissues. Laser capture microdissection and quantitative reverse-transcription polymerase chain reaction demonstrated that gene expression occurred throughout the growth plate and that it was higher in the resting and proliferative zones than in hypertrophic cartilage. Immunohistochemical analyses showed that type XXVII collagen was most evident in hypertrophic cartilage at the primary ossification center and at the growth plate and that it accumulated in the pericellular matrix. Synthesis of type XXVII collagen overlapped partly with that of type X collagen, a marker of chondrocyte hypertrophy, preceded the transition of cartilage to bone, and was associated with cartilage calcification. Immunogold electron microscopy of extracted ECM components from mouse growth plate showed that type XXVII collagen was a component of long non-banded fibrous structures, filamentous networks, and thin banded fibrils. The timing and location of synthesis suggest that type XXVII collagen plays a role during the calcification of cartilage and the transition of cartilage to bone.
Collapse
Affiliation(s)
- Rebecca Hjorten
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Uwe Hansen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | | | - Helena E. Telfer
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Russell J. Fernandes
- Department of Orthopædics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Deborah Krakow
- Department of Obstetrics and Gynecology, UCLA, Los Angeles, CA, USA
| | - Eiman Sebald
- Department of Obstetrics and Gynecology, UCLA, Los Angeles, CA, USA
| | | | - Peter Bruckner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Robin Jacquet
- Department of Microbiology, Immunology and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA
| | - William J. Landis
- Department of Microbiology, Immunology and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA
| | - Peter H. Byers
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - James M. Pace
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
99
|
Bertran CA, Allegretti LJM, Bertazzo S. Synthesis of Calcium Phosphate Nanoparticles in Collagen Medium. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/masy.200750710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Kaflak A, Kolodziejski W. Phosphorus-31 spin-lattice NMR relaxation in bone apatite and its mineral standards. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2007; 31:174-83. [PMID: 17621456 DOI: 10.1016/j.ssnmr.2007.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 05/13/2023]
Abstract
Phosphorus-31 spin-lattice relaxation, both in the laboratory (B(0)=4.7 T) and rotating frame (B(1)=2.2 mT), was studied in the following samples: mineral of whole human bone (samples B1-B6), apatite prepared from bone (BHA), natural brushite (BRU), synthetic hydroxyapatite hydrated (HAh) and calcined (HAc), and synthetic carbonatoapatite of type B (CHA-B) with 9 wt% of CO(3)(2-). The T(1)(P) relaxation time was determined directly using the saturation recovery technique, while the T(1 rho)(P) relaxation time was measured via (1)H-->(31)P CP by incrementing the (31)P spin-lock. In order to avoid an effect of magic-angle spinning (MAS) on CP and relaxation, the experiments were carried out on static samples. The (31)P spin-lattice relaxation was discussed for trabecular and cortical bone tissue from adult subjects in comparison to the synthetic mineral standards. None of the reference materials has matched accurately the relaxation behaviour of the bone mineral. The most striking differences between the examined substances were observed for T(1)(P), which for human bone was sample dependent and appeared in the range 55-100 s, while for HAh, HAc, and CHA-B was 7.2, 10.0, and 25.8 s, respectively. Possible reasons of so large relaxation diversity were discussed. It has been suggested that T(1)(P) of apatites is to some extent dependent on the concentration of the structural hydroxyl groups, and this in turn is controlled by the material crystallinity. It was also found that T(1)(P) decreased on hydration by ca. 30%. For T(1rho)(P), both its magnitude and dependence on the CP contact time gave useful structural information. The dehydrated samples (HAc and BHA) had long T(1 rho)(P) over 250 ms. Those, which contained water, either structural (BRU) or adsorbed on the crystal surface (HAh, CHA-B, and B1-B6), had shorter T(1 rho)(P) below 120 ms. It was concluded that the effect of water on T(1 rho)(P) is much more pronounced than on T(1)(P). The interpretation has involved P-OH groups and adsorbed water, which cover the apatite crystal surface.
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul Banacha 1, Warszawa, Poland
| | | |
Collapse
|