51
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
52
|
Effect of Hepatitis C F Protein and Core Secondary Structure on Viral Replication and Infection*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
Fan ZC, Bird RC. An alternative -1/+2 open reading frame exists within viral N(pro)(1-19) region of bovine viral diarrhea virus SD-1. Virus Res 2011; 163:341-51. [PMID: 22079882 PMCID: PMC7172404 DOI: 10.1016/j.virusres.2011.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/22/2011] [Accepted: 10/27/2011] [Indexed: 12/26/2022]
Abstract
We previously reported the engineering of an N(pro)-disrupted bovine viral diarrhea virus (BVDV), BSD1-N(pro)/eGFP2A (Fan and Bird, 2008a). Here, we report that BSD1-N(pro)/eGFP2A survives a single nucleotide missing in its C-terminal eGFP region. By using our established reverse genetics system for BVDV, we confirm that the viral mutant is rescued through a -1/+2 ORF initiated in the N(pro)(1-19)/eGFP region of the mutant viral genome. We furthermore uncover that this event occurs in the N(pro)(1-19) region of BVDV strain SD-1. The rescued viral mutant showed dramatic reductions in levels of both viral RNA and viral protein in host cells. Although the mutant is similar to the native strain in viral kinetics, the peak yield of the mutant is decreased dramatically. These findings reveal the existence of an alternative -1/+2 ORF in the N(pro)(1-19) region during the replication of BVDV and open a new avenue to understand the life cycle and pathogenesis of pestiviruses.
Collapse
Affiliation(s)
- Zhen-Chuan Fan
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, USA.
| | | |
Collapse
|
54
|
Abstract
Hepatitis C viral protein translation occurs in a cap-independent manner through the use of an internal ribosomal entry site (IRES) present within the viral 5'-untranslated region. The IRES is composed of highly conserved structural domains that directly recruit the 40S ribosomal subunit to the viral genomic RNA. This frees the virus from relying on a large number of translation initiation factors that are required for cap-dependent translation, conferring a selective advantage to the virus especially in times when the availability of such factors is low. Although the mechanism of translation initiation on the Hepatitis C virus (HCV) IRES is well established, modulation of the HCV IRES activity by both cellular and viral factors is not well understood. As the IRES is essential in the HCV life cycle and as such remains well conserved in an otherwise highly heterogenic virus, the process of HCV protein translation represents an attractive target in the development of novel antivirals. This review will focus on the mechanisms of HCV protein translation and how this process is postulated to be modulated by cis-acting viral factors, as well as trans-acting viral and cellular factors. Numerous therapeutic approaches investigated in targeting HCV protein translation for the development of novel antivirals will also be discussed.
Collapse
Affiliation(s)
- Brett Hoffman
- Vaccine and Infectious Disease Organization/International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
55
|
Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, Part one: Advances in basic knowledge for hepatitis C virus vaccine design. Expert Opin Ther Pat 2011; 21:1811-30. [PMID: 22022980 DOI: 10.1517/13543776.2011.630662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Around 3% of the world population is infected with HCV, with 3 - 4 million newly infected subjects added to this reservoir every year. At least 10% of these people will develop liver cirrhosis or cancer over time, while no approved vaccine against HCV infection is available to date. AREAS COVERED This paper includes a detailed and correlated patent (selected by HCAPLUS search database) and literature (searched by PubMed) review on the HCV genome, proteins and key epitopes (including underestimated HCV proteins, alternate reading frame proteins), HCV immunology, immunosuppressive mechanisms and protective correlations of immunity in acute and chronic states of infection (features for prophylactic and therapeutic HCV vaccine design), recent HCV cell culture systems (HCV/JFH1) and animal models. In part two of this review, advances in HCV vaccine formulations and modalities as well as a detailed list of the current trials for HCV vaccine and discussion of the pros and cones of different strategies will be provided. EXPERT OPINION By using the advanced basic knowledge and tools obtained about HCV vaccinology in recent years and the application of novel formulations and modalities, at least partially effective vaccines will become available in the near future to prevent (or treat) the chronic (if not the acute) state of HCV infection. A few of such vaccines are already in clinical trials.
Collapse
Affiliation(s)
- Farzin Roohvand
- Pasteur Institute of Iran, Hepatitis & AIDS Department, Pasteur Ave., Tehran, Iran.
| | | |
Collapse
|
56
|
Abstract
Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.
Collapse
|
57
|
Pang PS, Elazar M, Pham EA, Glenn JS. Simplified RNA secondary structure mapping by automation of SHAPE data analysis. Nucleic Acids Res 2011; 39:e151. [PMID: 21965531 PMCID: PMC3239176 DOI: 10.1093/nar/gkr773] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SHAPE (Selective 2′-hydroxyl acylation analysed by primer extension) technology has emerged as one of the leading methods of determining RNA secondary structure at the nucleotide level. A significant bottleneck in using SHAPE is the complex and time-consuming data processing that is required. We present here a modified data collection method and a series of algorithms, embodied in a program entitled Fast Analysis of SHAPE traces (FAST), which significantly reduces processing time. We have used this method to resolve the secondary structure of the first ∼900 nt of the hepatitis C virus (HCV) genome, including the entire core gene. We have also demonstrated the ability of SHAPE/FAST to detect the binding of a small molecule inhibitor to the HCV internal ribosomal entry site (IRES). In conclusion, FAST allows for high-throughput data processing to match the current high-throughput generation of data possible with SHAPE, reducing the barrier to determining the structure of RNAs of interest.
Collapse
Affiliation(s)
- Phillip S Pang
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
58
|
Abstract
The nucleotide sequence diversity present among hepatitis C virus (HCV) isolates allows rapid adjustment to exterior forces including host immunity and drug therapy. This viral response reflects a combination of a high rate of replication together with an error-prone RNA-dependent RNA polymerase, providing for the selection and proliferation of the viruses with the highest fitness. We examined HCV subtype 1a whole-genome sequences to identify positions contributing to genotypic and phenotypic diversity. Phylogenetic tree reconstructions showed two distinct clades existing within the 1a subtype with each clade having a star-like tree topology and lacking definite correlation between time or place of isolation and phylogeny. Identification of significant phylogenetically informative sites at the nucleotide level revealed positions not only contributing to clade differentiation, but which are located at or proximal to codons associated with resistance to protease inhibitors (NS3 Q41) or polymerase inhibitors (NS5B S368). Synonymous/nonsynonymous substitution mutation analyses revealed that the majority of nucleotide mutations yielded synonymous amino acids, indicating the presence of purifying selection pressure across the polyprotein with pockets of positive selection also being detected. Despite evidence for divergence at several loci, certain 1a characteristics were preserved including the length of the alternative reading frame/F protein (ARF/F) gene, and a subtype 1a-specific phosphorylation site in NS5A (S349). Our analysis suggests that there may be strain-specific differences in the development of antiviral resistance to viruses infecting patients who are dependent on the genetic variation separating these two clades.
Collapse
Affiliation(s)
- B E Pickett
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
59
|
Human cell types important for hepatitis C virus replication in vivo and in vitro: old assertions and current evidence. Virol J 2011; 8:346. [PMID: 21745397 PMCID: PMC3142522 DOI: 10.1186/1743-422x-8-346] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro.
Collapse
|
60
|
Dalagiorgou G, Vassilaki N, Foka P, Boumlic A, Kakkanas A, Kochlios E, Khalili S, Aslanoglou E, Veletza S, Orfanoudakis G, Vassilopoulos D, Hadziyannis SJ, Koskinas J, Mavromara P. High levels of HCV core+1 antibodies in HCV patients with hepatocellular carcinoma. J Gen Virol 2011; 92:1343-1351. [DOI: 10.1099/vir.0.023010-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The core region of the hepatitis C virus (HCV) genome possesses an overlapping ORF that has been shown to encode a protein, known as the alternate reading frame protein (ARFP), F or core+1. The biological role of this protein remains elusive, as it appears to be non-essential for virus replication. However, a number of independent studies have shown that the ARFP/F/core+1 protein elicits humoral and cellular immune responses in HCV-infected individuals and interacts with important cellular proteins. To assess the significance of the core+1 humoral response in HCV-infected patients, we examined the prevalence of anti-core+1 antibodies in sera from patients with hepatocellular carcinoma (HCC) in comparison with chronically HCV-infected individuals without HCC. We produced two HCV core+1 histidine-tagged recombinant proteins for genotypes 1a (aa 11–160) and 1b (aa 11–144), as well as a non-tagged highly purified recombinant core+1/S protein (aa 85–144) of HCV-1b. Using an in-house ELISA, we tested the prevalence of core+1 antibodies in 45 patients with HCC in comparison with 47 chronically HCV-infected patients without HCC and 77 negative-control sera. More than 50 % of the serum samples from HCC patients reacted with all core+1 antigens, whereas <26 % of the sera from the non-HCC HCV-infected individuals tested positive. No core+1-specific reactivity was detected in any of the control samples. In conclusion, the high occurrence of anti-core+1 antibodies in the serum of HCC patients suggests a role for the ARFP/F/core+1 protein in the pathogenesis of HCC.
Collapse
Affiliation(s)
- G. Dalagiorgou
- Democritus University of Thrace Medical School, Alexandroupolis, Greece
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - N. Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - P. Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - A. Boumlic
- University of Strasbourg-CNRS FRE 3211, Oncoprotein group, IREBS, Illkirch, France
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - A. Kakkanas
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - E. Kochlios
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - S. Khalili
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - E. Aslanoglou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - S. Veletza
- Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - G. Orfanoudakis
- University of Strasbourg-CNRS FRE 3211, Oncoprotein group, IREBS, Illkirch, France
| | - D. Vassilopoulos
- Academic Department of Medicine, Athens University School of Medicine, Hippokration General Hospital, Athens, Greece
| | - S. J. Hadziyannis
- Department of Medicine and Hepatology, Henry Dunant Hospital, Athens, Greece
| | - J. Koskinas
- Second Department of Internal Medicine, Medical School of Athens, Hippokration General Hospital, Athens, Greece
| | - P. Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
61
|
Dolganiuc A, Szabo G. Dendritic cells in hepatitis C infection: can they (help) win the battle? J Gastroenterol 2011; 46:432-47. [PMID: 21327958 DOI: 10.1007/s00535-011-0377-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV) is a public health problem; it establishes a chronic course in ~85% of infected patients and increases their risk for developing liver cirrhosis, hepatocellular carcinoma, and significant extrahepatic manifestations. The mechanisms of HCV persistence remain elusive and are largely related to inefficient clearance of the virus by the host immune system. Dendritic cells (DCs) are the most efficient inducers of immune responses; they are capable of triggering productive immunity and maintaining the state of tolerance to self- and non-self antigens. During the past decade, multiple research groups have focused on DCs, in hopes of unraveling an HCV-specific DC signature or DC-dependent mechanisms of antiviral immunity which would lead to a successful HCV elimination strategy. This review incorporates the latest update in the current status of knowledge on the role of DCs in anti-HCV immunity as it relates to several challenging questions: (a) the phenotype and function of diverse DC subsets in HCV-infected patients; (b) the characteristics of non-human HCV infection models from the DCs' point of view; (c) how can in vitro systems, ranging from HCV protein- or peptide-exposed DC to HCV protein-expressing DCs, and in vivo systems, ranging from HCV protein-expressing transgenic mice to HCV-infected non-human primates, be employed to dissect the role of DCs in triggering/maintaining a robust antiviral response; and (d) the prospect of DC-based strategy for managing and finding a cure for HCV infection.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB-270-H, Worcester, MA 01605, USA.
| | | |
Collapse
|
62
|
Qureshi H, Qazi R, Hamid S, Qureshi SA. Identification of immunogenic regions within the alternative reading frame protein of hepatitis C virus (genotype 3). Eur J Clin Microbiol Infect Dis 2011; 30:1075-83. [DOI: 10.1007/s10096-011-1194-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/25/2011] [Indexed: 01/29/2023]
|
63
|
Synonymous mutations in the core gene are linked to unusual serological profile in hepatitis C virus infection. PLoS One 2011; 6:e15871. [PMID: 21283512 PMCID: PMC3017048 DOI: 10.1371/journal.pone.0015871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/25/2010] [Indexed: 01/18/2023] Open
Abstract
The biological role of the protein encoded by the alternative open reading frame (core+1/ARF) of the Hepatitis C virus (HCV) genome remains elusive, as does the significance of the production of corresponding antibodies in HCV infection. We investigated the prevalence of anti-core and anti-core+1/ARFP antibodies in HCV-positive blood donors from Cambodia, using peptide and recombinant protein-based ELISAs. We detected unusual serological profiles in 3 out of 58 HCV positive plasma of genotype 1a. These patients were negative for anti-core antibodies by commercial and peptide-based assays using C-terminal fragments of core but reacted by Western Blot with full-length core protein. All three patients had high levels of anti-core+1/ARFP antibodies. Cloning of the cDNA that corresponds to the core-coding region from these sera resulted in the expression of both core and core+1/ARFP in mammalian cells. The core protein exhibited high amino-acid homology with a consensus HCV1a sequence. However, 10 identical synonymous mutations were found, and 7 were located in the aa(99–124) region of core. All mutations concerned the third base of a codon, and 5/10 represented a T>C mutation. Prediction analyses of the RNA secondary structure revealed conformational changes within the stem-loop region that contains the core+1/ARFP internal AUG initiator at position 85/87. Using the luciferase tagging approach, we showed that core+1/ARFP expression is more efficient from such a sequence than from the prototype HCV1a RNA. We provide additional evidence of the existence of core+1/ARFP in vivo and new data concerning expression of HCV core protein. We show that HCV patients who do not produce normal anti-core antibodies have unusually high levels of antit-core+1/ARFP and harbour several identical synonymous mutations in the core and core+1/ARFP coding region that result in major changes in predicted RNA structure. Such HCV variants may favour core+1/ARFP production during HCV infection.
Collapse
|
64
|
Internal translation initiation stimulates expression of the ARF/core+1 open reading frame of HCV genotype 1b. Virus Res 2010; 155:213-20. [PMID: 20959129 DOI: 10.1016/j.virusres.2010.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 01/02/2023]
Abstract
The hepatitis C virus possesses an alternative open reading frame overlapping the Core gene, whose products are referred to as Core+1 or alternative reading frame (ARF) or F protein(s). Extensive studies on genotype HCV-1a demonstrated that ribosomal frameshifting supports the synthesis of core+1 protein, when ten consecutive As are present within core codons 9-11 whereas, in the absence of this motif, expression of the core+1 ORF is mediated mainly by internal translation initiation. However, in HCV-1b, no Core+1 isoforms produced by internal translation initiation have been described. Using constructs which contain the Core/Core+1(342-770) region from previously described HCV-1b clinical isolates from liver biopsies, we provide evidence for the synthesis of Core+1 proteins by internal translation initiation in transiently transfected mammalian cells using nuclear or cytoplasmic expression systems. Site directed mutagenesis analyses revealed that (a) the synthesis of Core+1 proteins is independent from the polyprotein expression, as we observed an increase of Core+1 protein expression from constructs lacking the polyprotein translation initiator, (b) the main Core+1 product is expressed from AUG(85), similarly to the Core+1/S protein of HCV-1a, (c) synthesis of Core+1 isoforms is also mediated from GUG(58) or under certain conditions GUG(26) internal codons, albeit at lower efficiency. Finally, comparable to HCV-1a Core+1 proteins, the HCV-1b Core+1 products are negatively regulated by core expression and the proteaosomal pathway. The expression of Core+1 ORF from HCV-1b clinical isolates and the preservation of translation initiation mechanism that stimulates its expression encourage investigating the role of these proteins in HCV pathogenesis.
Collapse
|
65
|
Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses 2010; 2:2108-2133. [PMID: 21994721 PMCID: PMC3185750 DOI: 10.3390/v2092108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today.
Collapse
Affiliation(s)
- Arup Banerjee
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ratna B. Ray
- Department of Pathology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 2nd Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ranjit Ray
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
- Molecular Microbiology & Immunology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-314- 977-9034; Fax: 1-314-771-3816
| |
Collapse
|
66
|
The C-terminal alpha-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus. J Virol 2010; 84:11532-41. [PMID: 20719944 DOI: 10.1128/jvi.01021-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently demonstrated that human apolipoprotein E (apoE) is required for the infectivity and assembly of hepatitis C virus (HCV) (K. S. Chang, J. Jiang, Z. Cai, and G. Luo, J. Virol. 81:13783-13793, 2007; J. Jiang and G. Luo, J. Virol. 83:12680-12691, 2009). In the present study, we have determined the molecular basis underlying the importance of apoE in HCV assembly. Results derived from mammalian two-hybrid studies demonstrate a specific interaction between apoE and HCV nonstructural protein 5A (NS5A). The C-terminal third of apoE per se is sufficient for interaction with NS5A. Progressive deletion mutagenesis analysis identified that the C-terminal α-helix domain of apoE is important for NS5A binding. The N-terminal receptor-binding domain and the C-terminal 20 amino acids of apoE are dispensable for the apoE-NS5A interaction. The NS5A-binding domain of apoE was mapped to the middle of the C-terminal α-helix domain between amino acids 205 and 280. Likewise, deletion mutations disrupting the apoE-NS5A interaction resulted in blockade of HCV production. These findings demonstrate that the specific apoE-NS5A interaction is required for assembly of infectious HCV. Additionally, we have determined that using different major isoforms of apoE (E2, E3, and E4) made no significant difference in the apoE-NS5A interaction. Likewise, these three major isoforms of apoE are equally compatible with infectivity and assembly of infectious HCV, suggesting that apoE isoforms do not differentially modulate the infectivity and/or assembly of HCV in cell culture.
Collapse
|
67
|
Abstract
Hepatitis C (HCV) is the disease that has affected around 200 million people globally. HCV is a life threatening human pathogen, not only because of its high prevalence and worldwide burden but also because of the potentially serious complications of persistent HCV infection. Chronicity of the disease leads to cirrhosis, hepatocellular carcinoma and end-stage liver disease. HCV positive hepatocytes vary between less than 5% and up to 100%, indicating the high rate of replication of viral RNA. HCV has a very high mutational rate that enables it to escape the immune system. Viral diversity has two levels; the genotypes and Quasiaspecies. Major HCV genotypes constitute genotype 1, 2, 3, 4, 5 and 6 while more than 50 subtypes are known. All HCV genotypes have their particular patterns of geographical distribution and a slight drift in viral population has been observed in some parts of the globe.
Collapse
Affiliation(s)
- Nazish Bostan
- Department of Biological Sciences, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | | |
Collapse
|
68
|
Sequence variability and evolution of the terminal overlapping VP5 gene of the infectious bursal disease virus. Virus Genes 2010; 41:59-66. [DOI: 10.1007/s11262-010-0485-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
69
|
Boumlic A, Nominé Y, Charbonnier S, Dalagiorgou G, Vassilaki N, Kieffer B, Travé G, Mavromara P, Orfanoudakis G. Prevalence of intrinsic disorder in the hepatitis C virus ARFP/Core+1/S protein. FEBS J 2010; 277:774-89. [PMID: 20067524 DOI: 10.1111/j.1742-4658.2009.07527.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) Core+1/S polypeptide, also known as alternative reading frame protein (ARFP)/S, is an ARFP expressed from the Core coding region of the viral genome. Core+1/S is expressed as a result of internal initiation at AUG codons (85-87) located downstream of the polyprotein initiator codon, and corresponds to the C-terminal part of most ARFPs. Core+1/S is a highly basic polypeptide, and its function still remains unclear. In this work, untagged recombinant Core+1/S was expressed and purified from Escherichia coli in native conditions, and was shown to react with sera of HCV-positive patients. We subsequently undertook the biochemical and biophysical characterization of Core+1/S. The conformation and oligomeric state of Core+1/S were investigated using size exclusion chromatography, dynamic light scattering, fluorescence, CD, and NMR. Consistent with sequence-based disorder predictions, Core+1/S lacks significant secondary structure in vitro, which might be relevant for the recognition of diverse molecular partners and/or for the assembly of Core+1/S. This study is the first reported structural characterization of an HCV ARFP/Core+1 protein, and provides evidence that ARFP/Core+1/S is highly disordered under native conditions, with a tendency for self-association.
Collapse
Affiliation(s)
- Anissa Boumlic
- Université de Strasbourg, CNRS FRE 3211, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kanamori H, Yuhashi K, Ohnishi S, Koike K, Kodama T. RNA-dependent RNA polymerase of hepatitis C virus binds to its coding region RNA stem-loop structure, 5BSL3.2, and its negative strand. J Gen Virol 2010; 91:1207-12. [PMID: 20053824 DOI: 10.1099/vir.0.016907-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The hepatitis C virus NS5B RNA-dependent RNA polymerase (RdRp) is a key enzyme involved in viral replication. Interaction between NS5B RdRp and the viral RNA sequence is likely to be an important step in viral RNA replication. The C-terminal half of the NS5B-coding sequence, which contains the important cis-acting replication element, has been identified as an NS5B-binding sequence. In the present study, we confirm the specific binding of NS5B to one of the RNA stem-loop structures in the region, 5BSL3.2. In addition, we show that NS5B binds to the complementary strand of 5BSL3.2 (5BSL3.2N). The bulge structure of 5BSL3.2N was shown to be indispensable for tight binding to NS5B. In vitro RdRp activity was inhibited by 5BSL3.2N, indicating the importance of the RNA element in the polymerization by RdRp. These results suggest the involvement of the RNA stem-loop structure of the negative strand in the replication process.
Collapse
Affiliation(s)
- Hiroshi Kanamori
- Department of Gastroenterology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | |
Collapse
|
71
|
Liang JW, Tian FL, Lan ZR, Huang B, Zhuang WZ. Selection characterization on overlapping reading frame of multiple-protein-encoding P gene in Newcastle disease virus. Vet Microbiol 2009; 144:257-63. [PMID: 20079581 DOI: 10.1016/j.vetmic.2009.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/21/2009] [Indexed: 01/08/2023]
Abstract
The aim of this study was to characterize the molecular evolution of P and V protein genes of the Newcastle disease virus (NDV). The P gene sequences of 55 NDV isolates, representing different chronological and geographic origins, were obtained from GenBank. In this paper, the evolution of the specific regions of the NDV P gene, encoding the P and V proteins, was analyzed. The nucleotides from the shared P/V region encoded the co-amino terminus of the two proteins, while the P-V/V-P region was respectively encoded by the nucleotides within the P ORF or the V ORF in the common sequence (after the mRNA editing site). As well, the P-cut region exclusively encoded the P protein. Finally, the P-V and V-P regions were further broken down into P1 and P2 fragments with the corresponding V1 and V2 fragments. In the P gene, the P-cut portion corresponding to the C-terminal of the P protein was the most highly conserved, while the P-V region was the most variable. This was interpreted as a lower constraint for function in the common sequence than in the unique P sequence that is known to contain an important function. Interestingly, in the common P-V/V-P function, variability of V1 was compensated by a higher conservation of the corresponding P1, and conversely for the P2/V2, which suggested that the flexibility of one ORF with less function served the purpose of allowing positive selection in the other overlapping ORF that exhibited more function.
Collapse
Affiliation(s)
- Jun-Wen Liang
- College of Life Science, Shandong Normal University, Wenhua East Road, Shandong Province, Jinan 250014, China
| | | | | | | | | |
Collapse
|
72
|
Drouin C, Lamarche S, Bruneau J, Soudeyns H, Shoukry NH. Cell-mediated immune responses directed against hepatitis C virus (HCV) alternate reading frame protein (ARFP) are undetectable during acute infection. J Clin Virol 2009; 47:102-3. [PMID: 19955014 DOI: 10.1016/j.jcv.2009.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 01/29/2023]
|
73
|
Abstract
GB virus C/hepatitis G virus (GBV-C/HGV) is the most closely related human virus to hepatitis C virus (HCV). GBV-C is lymphotropic and not associated with any known disease, although it is associated with improved survival in HIV-infected individuals. In peripheral blood mononuclear cells, GBV-C induces the release of soluble ligands for HIV entry receptors (RANTES, MIP-1a, MIP-1b and SDF-1), suggesting that GBV-C may interact with lymphocytes to induce a chemokine and/or cytokine milieu that is inhibitory to HIV infection. Expression of GBV-C envelope glycoprotein E2 in CD4+ T cells or addition of recombinant E2 to CD4 cells recapitulates the HIV inhibition seen with GBV-C infection. Like HCV E2, GBV-C E2 is predicted to be post-translationally processed in the endoplasmic reticulum and is involved with cell binding. The C-termini of GBV-C E1 and E2 proteins contain predicted transmembrane domains sharing features with HCV TM domains. To date, cellular receptor(s) for GBV-C E2 have not been identified. GBV-C E2-mediated HIV inhibition is dose-dependent and HIV replication is blocked at the binding and/or entry step. In addition, a putative GBV-C E2 fusion peptide interferes with HIV gp41 peptide oligomerization required for HIV-1 fusion, further suggesting that GBV-C E2 may inhibit HIV entry. Additional work is needed to identify the GBV-C E2 cellular receptor, characterize GBV-C E2 domains responsible for HIV inhibition, and to examine GBV-C E2-mediated fusion in the context of the entire envelope protein or viral-particles. Understanding the mechanisms of action may identify novel approaches to HIV therapy.
Collapse
Affiliation(s)
- Emma L. Mohr
- Department of Internal Medicine and the Interdisciplinary Program on Molecular and Cellular Biology, The University of Iowa
| | - Jack T. Stapleton
- Department of Internal Medicine and the Interdisciplinary Program on Molecular and Cellular Biology, The University of Iowa,The Iowa City VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
74
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
75
|
Vassilaki N, Mavromara P. The HCV ARFP/F/core+1 protein: production and functional analysis of an unconventional viral product. IUBMB Life 2009; 61:739-52. [PMID: 19548320 DOI: 10.1002/iub.201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus of the Flaviviridae family. It has a genome of about 9,600 nucleotides encoding a large polyprotein (about 3,000 amino acids) that is processed by cellular and viral proteases into at least 10 structural and nonstructural viral proteins. A novel HCV protein has also been identified by our laboratory and others. This protein--known as ARFP (alternative reading frame protein), F (for frameshift) or core+1 (to indicate the position) protein--is synthesized by an open reading frame overlapping the core gene at nucleotide +1 (core+1 ORF). However, almost 10 years after its discovery, we still know little of the biological role of the ARFP/F/core+1 protein. Abolishing core+1 protein production has no affect on HCV replication in cell culture or uPA-SCID mice, suggesting that core+1 protein is probably not important for the HCV reproductive cycle. However, the detection of specific anti-core+1 antibodies and T-cell responses in HCV-infected patients, as reported by many independent laboratories, provides strong evidence that this protein is produced in vivo. Furthermore, analyses of the HCV sequences isolated from patients with hepatocellular carcinoma and in vitro studies have provided strong preliminary evidence to suggest that core+1 protein plays a role in advanced liver disease and liver cancer. The available in vitro data also suggest that certain core function proteins may depend on production of the core+1 protein. We describe here the discovery of the various forms of the core+1 protein and what is currently known about the mechanisms of their production and their biochemical and functional properties. We also provide a detailed summary of the results of patient-based research.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| | | |
Collapse
|
76
|
Romero-López C, Berzal-Herranz A. A long-range RNA-RNA interaction between the 5' and 3' ends of the HCV genome. RNA 2009; 15:1740-52. [PMID: 19605533 DOI: 10.1261/rna.1680809] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis, replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are translated via an internal ribosome entry site (IRES) located at the 5' UTR, which acts as a scaffold for recruiting multiple protein factors. Replication of the viral genome is initiated at the 3' UTR. Bioinformatics methods have identified other structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform structure at the 3' end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 3' end of the genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range RNA-RNA interaction between the 5' and 3' ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 5'-3' end bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.
Collapse
Affiliation(s)
- Cristina Romero-López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | | |
Collapse
|
77
|
Sillanpää M, Melén K, Porkka P, Fagerlund R, Nevalainen K, Lappalainen M, Julkunen I. Hepatitis C virus core, NS3, NS4B and NS5A are the major immunogenic proteins in humoral immunity in chronic HCV infection. Virol J 2009; 6:84. [PMID: 19549310 PMCID: PMC2709157 DOI: 10.1186/1743-422x-6-84] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/23/2009] [Indexed: 12/11/2022] Open
Abstract
Background The viral genome of hepatitis C virus constitutes a 9.6-kb single-stranded positive-sense RNA which encodes altogether 11 viral proteins. In order to study the humoral immune responses against different HCV proteins in patients suffering from chronic HCV infection, we produced three structural (core, E1 and E2) and six nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) in Sf9 insect cells by using the baculovirus expression system. Results The recombinant HCV core, E1, E2, NS2, NS3, NS4A, NS4B, NS5A and NS5B proteins were purified and used in Western blot analysis to determine antibody responses against individual HCV protein in 68 HCV RNA and antibody positive human sera that were obtained from patients suffering from genotype 1, 2, 3 or 4 infection. These sera were also analysed with INNO-LIA Score test for HCV antibodies against core, NS3, NS4AB and NS5A, and the results were similar to the ones obtained by Western blot method. Based on our Western blot analyses we found that the major immunogenic HCV antigens were the core, NS4B, NS3 and NS5A proteins which were recognized in 97%, 86%, 68% and 53% of patient sera, respectively. There were no major genotype specific differences in antibody responses to individual HCV proteins. A common feature within the studied sera was that all except two sera recognized the core protein in high titers, whereas none of the sera recognized NS2 protein and only three sera (from genotype 3) recognised NS5B. Conclusion The data shows significant variation in the specificity in humoral immunity in chronic HCV patients.
Collapse
Affiliation(s)
- Maarit Sillanpää
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
78
|
Morice Y, Ratinier M, Miladi A, Chevaliez S, Germanidis G, Wedemeyer H, Laperche S, Lavergne JP, Pawlotsky JM. Seroconversion to hepatitis C virus alternate reading frame protein during acute infection. Hepatology 2009; 49:1449-59. [PMID: 19350656 PMCID: PMC2956746 DOI: 10.1002/hep.22821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED The existence of hepatitis C virus (HCV) proteins encoded by alternate reading frames overlapping the core-encoding region has been suggested. Several mechanisms of production have been postulated, and the functions of these proteins in the HCV life cycle remain unknown. We analyzed cases of seroconversion to an alternate reading frame protein in a group of 17 patients infected by one of the two HCV genotype 1b strains during an outbreak in a hemodialysis unit. Three patients seroconverted, and antibodies were transiently detected in another patient. Three of these patients were infected by one of the two HCV strains, whereas the strain infecting the remaining patient could not be identified. Quasispecies sequence analysis of the core-coding region showed no differences in the core or +1 reading frame sequences that could explain alternate reading frame protein seroconversion in some but not all of the patients infected by one of the HCV strains, and no such difference was found between the two strains. Because differences in the structure of RNA elements could play a role in frameshift events, we conducted a predictive analysis of RNA folding. No difference was found between the patients who did and did not seroconvert to alternate reading frame protein. CONCLUSION Our findings prove that alternate reading frame proteins can be produced during acute HCV infection. However, seroconversion does not occur in all patients for unknown reasons. Alternate reading frame protein could be generated by minority quasispecies variants or variants that occur transiently.
Collapse
Affiliation(s)
- Yoann Morice
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Maxime Ratinier
- IBCP, Institut de biologie et chimie des protéines
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Ahmed Miladi
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Stéphane Chevaliez
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology
Medical School HannoverHannover,DE
| | - Syria Laperche
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR
| | - Jean-Pierre Lavergne
- IBCP, Institut de biologie et chimie des protéines
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Jean-Michel Pawlotsky
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,* Correspondence should be adressed to: Jean-Michel Pawlotsky
| |
Collapse
|
79
|
Internal initiation stimulates production of p8 minicore, a member of a newly discovered family of hepatitis C virus core protein isoforms. J Virol 2009; 83:3104-14. [PMID: 19129450 DOI: 10.1128/jvi.01679-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The hepatitis C virus (HCV) core gene is more conserved at the nucleic acid level than is necessary to preserve the sequence of the core protein, suggesting that it contains information for additional functions. We used a battery of anticore antibodies to test the hypothesis that the core gene directs the synthesis of core protein isoforms. Infectious viruses, replicons, and RNA transcripts expressed a p8 minicore containing the C-terminal portion of the p21 core protein and lacking the N-terminal portion. An interferon resistance mutation, U271A, which creates an AUG at codon 91, upregulated p8 expression in Con1 replicons, suggesting that p8 is produced by an internal initiation event and that 91-AUG is the preferred, but not the required, initiation codon. Synthesis of p8 was independent of p21, as shown by the abundant production of p8 from transcripts containing an UAG stop codon that blocked p21 production. Three infectious viruses, JFH-1 (2a core), J6/JFH (2a core), and H77/JFH (1a core), and a bicistronic construct, Bi-H77/JFH, all expressed both p8 and larger isoforms. The family of minicores ranges in size from 8 to 14 kDa. All lack the N-terminal portion of the p21 core. In conclusion, the core gene contains an internal signal that stimulates the initiation of protein synthesis at or near codon 91, leading to the production of p8. Infectious viruses of both genotype 1 and 2 HCV express a family of larger isoforms, in addition to p8. Minicores lack significant portions of the RNA binding domain of p21 core. Studies are under way to determine their functions.
Collapse
|
80
|
Hou X, Yang W, Zhao Y, Agarwal A, Huang M. Internal cleavages of hepatitis C virus NS3 induced by P1 mutations at the NS3/4A cleavage site. Virology 2009; 383:271-8. [DOI: 10.1016/j.virol.2008.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/21/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
81
|
Abstract
The following article from Reviews in Medical Virology, Genetic diversity in hepatitis C virus (HCV) a brief review, by M Irshad, published online on December 16 2008 in Wiley InterScience (www.interscience.wiley.com) has been retracted by agreement between the author, the journal Editor in Chief, P.D. Griffiths, and the publisher Wiley Blackwell. The retraction has been agreed due to overlap with the following article by P Simmonds, Genetic diversity and evolution of hepatitis C virus fifteen years on, published in Journal of General Virology, 2004, 85, 3173-3178.
Collapse
Affiliation(s)
- Mohammad Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
82
|
Ratinier M, Boulant S, Crussard S, McLauchlan J, Lavergne JP. Subcellular localizations of the hepatitis C virus alternate reading frame proteins. Virus Res 2008; 139:106-10. [PMID: 18996421 DOI: 10.1016/j.virusres.2008.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/16/2008] [Accepted: 09/19/2008] [Indexed: 12/28/2022]
Abstract
Alternate reading frame proteins (ARFPs) resulting either from frameshifting, from transcriptional slippage or from internal initiation in the +1 open reading frame (ORF) of hepatitis C virus (HCV) core protein coding sequence have been described in vitro. As an approach to study the roles of these proteins, we investigate the subcellular localization of ARFPs fused with the green fluorescent protein (GFP) either at their N- or C-terminus. Most GFP fusion products have a diffuse localization, as revealed by confocal microscopy. One GFP chimeric protein, arising from internal initiation at codon 26 in the +1 ORF (ARFP(26-161)), is specifically targeted to mitochondria. Mitochondrial localization was confirmed by immunoblot with an anti-ARFP antibody of a mitochondria-enriched cellular fraction. Mitochondrial targeting of ARFP(26-161) mostly involved the N-terminal portion of the protein as revealed by the cellular localization of truncated mutants. Interestingly, ARFP(26-161) from both genotypes 1a and 1b, but not the protein from the genotype 2a JFH1 infectious sequence, exhibit mitochondrial localization. These results are the first concerning the cellular localization and the role of this HCV ARFP; they may serve as a platform for further studies on its mitochondrial effects and their role in the virus life cycle and pathogenesis.
Collapse
Affiliation(s)
- Maxime Ratinier
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université de Lyon, IFR 128 Biosciences, 7 passage du Vercors, 69367 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
83
|
Abstract
Hepatitis C virus (HCV) F protein is encoded by the +1 reading frame of the viral genome. It overlaps with the core protein coding sequence, and multiple mechanisms for its expression have been proposed. The full-length F protein that is synthesized by translational ribosomal frameshift at codons 9 to 11 of the core protein sequence is a labile protein. By using a combination of genetic, biochemical, and cell biological approaches, we demonstrate that this HCV F protein can bind to the proteasome subunit protein alpha3, which reduces the F-protein level in cells in a dose-dependent manner. Deletion-mapping analysis identified amino acids 40 to 60 of the F protein as the alpha3-binding domain. This alpha3-binding domain of the F protein together with its upstream sequence could significantly destabilize the green fluorescent protein, an otherwise stable protein. Further analyses using an F-protein mutant lacking lysine and a cell line that contained a temperature-sensitive E1 ubiquitin-activating enzyme indicated that the degradation of the F protein was ubiquitin independent. Based on these observations as well as the observation that the F protein could be degraded directly by the 20S proteasome in vitro, we propose that the full-length HCV F protein as well as the F protein initiating from codon 26 is degraded by an ubiquitin-independent pathway that is mediated by the proteasome subunit alpha3. The ability of the F protein to bind to alpha3 raises the possibility that the HCV F protein may regulate protein degradation in cells.
Collapse
|
84
|
Assessment of specific antibodies to F protein in serum samples from Chinese hepatitis C patients treated with interferon plus ribavarin. J Clin Microbiol 2008; 46:3746-51. [PMID: 18832124 DOI: 10.1128/jcm.00612-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The hepatitis C virus (HCV) alternate reading frame protein or F protein of the HCV 1b genotype is a double-frameshift product of the HCV core protein. In order to assess the presence of antibodies specific for F protein and their clinical relevance in sera from HCV patients, we produced recombinant F protein and core protein of the HCV 1b genotype in Escherichia coli. An enzyme-linked immunosorbent assay was developed using purified recombinant HCV core, F protein, and a 99-residue synthetic F peptide (F99). The seroprevalences of anticore, anti-F protein, and anti-F99 synthetic peptide were 95%, 68%, and 36%, respectively, in 168 HCV patients. The prevalence of anti-F antibodies did not correlate with viral load, genotype, or alanine aminotransferase level. Interferon combination therapy induced a decline in the level of anti-F antibodies in 55 responders (P < 0.01). Thirteen responders (24%) lost their anti-F recombinant protein antibodies, and 17 (31%) lost their anti-F synthetic peptide antibodies, whereas no decrease was observed for the 17 nonresponders. These changes were significant between responders and nonresponders (P < 0.05). Meanwhile, no change was found in the anticore antibody titer of the 72 treated patients. The percentage of anti-F-protein-negative patients (15/15 [100%]) who achieved a sustained virological response (SVR) was higher than that of the anti-F-positive patients (70%) (P < 0.05). Based on these findings, HCV F protein elicits a specific antibody response other than the anticore protein response. Our data also suggest that the presence and level of anti-F antibody responses might be influenced by the treatment (interferon plus ribavirin) and associated with an SVR in Chinese hepatitis C patients.
Collapse
|
85
|
Role of the hepatitis C virus core+1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication. J Virol 2008; 82:11503-15. [PMID: 18799568 DOI: 10.1128/jvi.01640-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Four conserved RNA stem-loop structures designated SL47, SL87, SL248, and SL443 have been predicted in the hepatitis C virus (HCV) core encoding region. Moreover, alternative translation products have been detected from a reading frame overlapping the core gene (core+1/ARFP/F). To study the importance of the core+1 frame and core-RNA structures for HCV replication in cell culture and in vivo, a panel of core gene silent mutations predicted to abolish core+1 translation and affecting core-RNA stem-loops were introduced into infectious-HCV genomes of the isolate JFH1. A mutation disrupting translation of all known forms of core+1 and affecting SL248 did not alter virus production in Huh7 cells and in mice xenografted with human liver tissue. However, a combination of mutations affecting core+1 at multiple codons and at the same time, SL47, SL87, and SL248, delayed RNA replication kinetics and substantially reduced virus titers. The in vivo infectivity of this mutant was impaired, and in virus genomes recovered from inoculated mice, SL87 was restored by reversion and pseudoreversion. Mutations disrupting the integrity of this stem-loop, as well as that of SL47, were detrimental for virus viability, whereas mutations disrupting SL248 and SL443 had no effect. This phenotype was not due to impaired RNA stability but to reduced RNA translation. Thus, SL47 and SL87 are important RNA elements contributing to HCV genome translation and robust replication in cell culture and in vivo.
Collapse
|
86
|
Chuang WCM, Allain JP. Differential reactivity of putative genotype 2 hepatitis C virus F protein between chronic and recovered infections. J Gen Virol 2008; 89:1890-1900. [PMID: 18632960 DOI: 10.1099/vir.0.83677-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To date, all studies regarding hepatitis C virus (HCV) F protein have been based on expression in vitro/in vivo of recombinant protein or monoclonal antibodies derived from genotype 1a or 1b sequences, but not from other genotypes. The objective of this study was to prepare a putative genotype 2 recombinant F protein and evaluate its reactivity in plasma from individuals with chronic HCV infection or who had recovered from infection. One genotype 2 strain was selected for F protein (F-2) and core expression in bacterial culture. An ELISA was developed and applied to samples from patients with chronic infection or recovered infection of various genotypes. The anti-F-2 response in 117 samples showed a significantly higher reactivity in chronic than in recovered HCV-infected blood donors (P<0.001), but no difference was found among genotypes. However, the correlation between anti-F and anti-core was more significant in genotypes 1 and 2 than in genotype 3. Anti-F-2 titres were also significantly higher in chronic than in recovered individuals (P<0.0001). Antibody titres to recombinant genotype 2 core protein or to genotype 1 multiple proteins used in commercial anti-HCV assays paralleled the anti-F-2 end-point antibody titre. This study thus demonstrated the antigenicity of genotype 2 HCV F protein, although the exact location of the natural frameshift position remains unknown. The difference in anti-F-2 response between chronic and recovered infection, the cross-reactivity irrespective of genotype and the correlation of antibody response with structural and non-structural antigens suggest that the immune response to F protein is an integral part of the natural HCV infection.
Collapse
Affiliation(s)
- Wing Chia-Ming Chuang
- Department of Haematology, Division of Transfusion Medicine, Cambridge Blood Centre, University of Cambridge, Long Road, Cambridge CB2 2PT, UK
| | - Jean-Pierre Allain
- Department of Haematology, Division of Transfusion Medicine, Cambridge Blood Centre, University of Cambridge, Long Road, Cambridge CB2 2PT, UK
| |
Collapse
|
87
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
88
|
Ratinier M, Boulant S, Combet C, Targett-Adams P, McLauchlan J, Lavergne JP. Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. J Gen Virol 2008; 89:1569-1578. [PMID: 18559926 DOI: 10.1099/vir.0.83614-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the first report of frameshifting in HCV-1, its sequence has been the paradigm for examining the mechanism that directs alternative translation of the hepatitis C virus (HCV) genome. The region encoding the core protein from this strain contains a cluster of 10 adenines at codons 8-11, which is thought to direct programmed ribosomal frameshifting (PRF), but formal evidence for this process has not been established unequivocally. To identify the mechanisms of frameshifting, this study used a bicistronic dual luciferase reporter system in a coupled transcription/translation in vitro assay. This approach revealed +1 as well as -1 frameshifting, whereas point mutations, selectively introduced between codons 8 and 11, demonstrated that PRF did not readily account for frameshifting in strain HCV-1. Sequence analysis of cDNAs derived from RNA transcribed by T7 RNA polymerase in the dual luciferase reporter system, as well as in both a subgenomic replicon and an infectious clone derived from strain JFH1, identified additions and deletions of adenines between codons 8 and 11 due to transcriptional slippage (TS). Moreover, RNA isolated from cells infected with virus generated by JFH1 containing the A-rich tract also contained heterogeneity in the adenine sequence, strongly suggesting TS by the NS5B viral polymerase. These findings have important implications for insight into frameshifting events in HCV-1 and demonstrate for the first time the involvement of transcriptional slippage in this recoding event.
Collapse
Affiliation(s)
- Maxime Ratinier
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| | - Steeve Boulant
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Christophe Combet
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| | - Paul Targett-Adams
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - John McLauchlan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Jean-Pierre Lavergne
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| |
Collapse
|
89
|
de Groot S, Mailund T, Lunter G, Hein J. Investigating selection on viruses: a statistical alignment approach. BMC Bioinformatics 2008; 9:304. [PMID: 18616801 PMCID: PMC2478691 DOI: 10.1186/1471-2105-9-304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 07/10/2008] [Indexed: 01/14/2023] Open
Abstract
Background Two problems complicate the study of selection in viral genomes: Firstly, the presence of genes in overlapping reading frames implies that selection in one reading frame can bias our estimates of neutral mutation rates in another reading frame. Secondly, the high mutation rates we are likely to encounter complicate the inference of a reliable alignment of genomes. To address these issues, we develop a model that explicitly models selection in overlapping reading frames. We then integrate this model into a statistical alignment framework, enabling us to estimate selection while explicitly dealing with the uncertainty of individual alignments. We show that in this way we obtain un-biased selection parameters for different genomic regions of interest, and can improve in accuracy compared to using a fixed alignment. Results We run a series of simulation studies to gauge how well we do in selection estimation, especially in comparison to the use of a fixed alignment. We show that the standard practice of using a ClustalW alignment can lead to considerable biases and that estimation accuracy increases substantially when explicitly integrating over the uncertainty in inferred alignments. We even manage to compete favourably for general evolutionary distances with an alignment produced by GenAl. We subsequently run our method on HIV2 and Hepatitis B sequences. Conclusion We propose that marginalizing over all alignments, as opposed to using a fixed one, should be considered in any parametric inference from divergent sequence data for which the alignments are not known with certainty. Moreover, we discover in HIV2 that double coding regions appear to be under less stringent selection than single coding ones. Additionally, there appears to be evidence for differential selection, where one overlapping reading frame is under positive and the other under negative selection.
Collapse
Affiliation(s)
- Saskia de Groot
- Department of Statistics, University of Oxford, 1 South Parks Road, OX1 3TG, UK.
| | | | | | | |
Collapse
|
90
|
Cannon NA, Donlin MJ, Fan X, Aurora R, Tavis JE. Hepatitis C virus diversity and evolution in the full open-reading frame during antiviral therapy. PLoS One 2008; 3:e2123. [PMID: 18463735 PMCID: PMC2373758 DOI: 10.1371/journal.pone.0002123] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/19/2008] [Indexed: 12/19/2022] Open
Abstract
Background Pegylated interferon plus ribavirin therapy for hepatitis C virus (HCV) fails in approximately half of genotype 1 patients. Treatment failure occurs either by nonresponse (minimal declines in viral titer) or relapse (robust initial responses followed by rebounds of viral titers during or after therapy). HCV is highly variable genetically. To determine if viral genetic differences contribute to the difference between response and relapse, we examined the inter-patient genetic diversity and mutation pattern in the full open reading frame HCV genotype 1a consensus sequences. Methodology/Principal Findings Pre- and post-therapy sequences were analyzed for 10 nonresponders and 10 relapsers from the Virahep-C clinical study. Pre-therapy interpatient diversity among the relapsers was higher than in the nonresponders in the viral NS2 and NS3 genes, and post-therapy diversity was higher in the relapsers for most of HCV's ten genes. Pre-therapy diversity among the relapsers was intermediate between that of the non-responders and responders to therapy. The average mutation rate was just 0.9% at the amino acid level and similar numbers of mutations occurred in the nonresponder and relapser sequences, but the mutations in NS2 of relapsers were less conservative than in nonresponders. Finally, the number and distribution of regions under positive selection was similar between the two groups, although the nonresponders had more foci of positive selection in E2. Conclusions/Significance The HCV sequences were unexpectedly stable during failed antiviral therapy, both nonresponder and relapser sequences were under selective pressure during therapy, and variation in NS2 may have contributed to the difference in response between the nonresponder and relapser groups. These data support a role for viral genetic variability in determining the outcome of anti-HCV therapy, with those sequences that are more distant from an optimal sequence being less able to resist the pressures of interferon-based therapy. Trial registration ClinicalTrials.gov NCT00038974
Collapse
Affiliation(s)
- Nathan A. Cannon
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maureen J. Donlin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Xiaofeng Fan
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| | | |
Collapse
|
91
|
Ma HC, Lin TW, Li H, Iguchi-Ariga SMM, Ariga H, Chuang YL, Ou JH, Lo SY. Hepatitis C virus ARFP/F protein interacts with cellular MM-1 protein and enhances the gene trans-activation activity of c-Myc. J Biomed Sci 2008; 15:417-25. [PMID: 18398700 DOI: 10.1007/s11373-008-9248-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/22/2008] [Indexed: 12/20/2022] Open
Abstract
The ARFP/F protein is synthesized from the +1 reading frame of the hepatitis C virus (HCV) core protein gene. The function of this protein remains unknown. To study the function of the HCV ARFP/F protein, we have conducted the yeast two-hybrid screening experiment to identify cellular proteins that may interact with the ARFP/F protein. MM-1, a c-Myc interacting protein, was found to interact with HCV ARFP/F protein in this experiment. The physical interaction between ARFP/F and MM-1 proteins was further confirmed by the GST pull-down assay, the co-immunoprecipitation assay and confocal microscopy. As MM-1 can inhibit the gene transactivation activity of c-Myc, we have conducted further analysis to examine the possible effect of the ARFP/F protein on c-Myc. Our results indicate that the HCV ARFP/F protein can enhance the gene trans-activation activity of c-Myc, apparently by antagonizing the inhibitory effect of MM-1. The ability of the ARFP/F protein to enhance the activity of c-Myc raises the possibility that ARFP/F protein might play a role in hepatocellular transformation in HCV patients.
Collapse
Affiliation(s)
- Hsin-Chieh Ma
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Wolf M, Dimitrova M, Baumert TF, Schuster C. The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression. Nucleic Acids Res 2008; 36:3054-64. [PMID: 18400784 PMCID: PMC2396417 DOI: 10.1093/nar/gkn111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a human RNA virus encoding 10 proteins in a single open reading frame. In the +1 frame, an ‘alternate reading frame’ (ARF) overlaps with the core protein-encoding sequence and encodes the ARF protein (ARFP). Here, we investigated the molecular regulatory mechanisms of ARFP expression in HCV target cells. Chimeric HCV-luciferase reporter constructs derived from the infectious HCV prototype isolate H77 were transfected into hepatocyte-derived cell lines. Translation initiation was most efficient at the internal AUG codon at position 86/88, resulting in the synthesis of a truncated ARFP named 86/88ARFP. Interestingly, 86/88ARFP synthesis was markedly enhanced in constructs containing an inactivated core protein reading frame. This enhancement was reversed by co-expression of core protein in trans, demonstrating suppression of ARFP synthesis by HCV core protein. In conclusion, our results indicate that translation of ARFP occurs mainly by alternative internal initiation at position 86/88 and is regulated by HCV core protein expression. The suppression of ARFP translation by HCV core protein suggests that ARFP expression is inversely linked to the level of viral replication. These findings define key mechanisms regulating ARFP expression and set the stage for further studies addressing the function of ARFP within the viral life cycle.
Collapse
Affiliation(s)
- Marie Wolf
- Inserm, U748, Université Louis Pasteur, Strasbourg and Service d'Hépatogastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000, France
| | | | | | | |
Collapse
|
93
|
Arbuthnot P, Thompson LJ. Harnessing the RNA interference pathway to advance treatment and prevention of hepatocellular carcinoma. World J Gastroenterol 2008; 14:1670-81. [PMID: 18350598 PMCID: PMC2695907 DOI: 10.3748/wjg.14.1670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/27/2008] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is the fifth most common malignancy in the world and is a leading cause of cancer-related mortality. Available treatment for hepatocellular carcinoma (HCC), the commonest primary liver cancer, is rarely curative and there is a need to develop therapy that is more effective. Specific and powerful gene silencing that can be achieved by activating RNA interference (RNAi) has generated enthusiasm for exploiting this pathway for HCC therapy. Many studies have been carried out with the aim of silencing HCC-related cellular oncogenes or the hepatocarcinogenic hepatitis B virus (HBV) and hepatitis C virus (HCV). Proof of principle studies have demonstrated promising results, and an early clinical trial assessing RNAi-based HBV therapy is currently in progress. Although the data augur well, there are several significant hurdles that need to be overcome before the goal of RNAi-based therapy for HCC is realized. Particularly important are the efficient and safe delivery of RNAi effecters to target malignant tissue and the limitation of unintended harmful non-specific effects.
Collapse
|
94
|
Vassilaki N, Kalliampakou KI, Mavromara P. Differences in the expression of the hepatitis C virus core+1 open reading frame between a nuclear and a cytoplasmic expression system. J Gen Virol 2008; 89:222-231. [PMID: 18089746 DOI: 10.1099/vir.0.83260-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hepatitis C virus (HCV) genome possesses an open reading frame (ORF) overlapping the core gene at +1 nucleotide (core+1 ORF). Initial in vitro studies suggested that the core+1 ORF is translated by a ribosomal -2/+1 frameshift mechanism during elongation of the viral polyprotein. Recent studies, however, based on transfection of mammalian cells with reporter constructs have shown that translation of the core+1 ORF is mediated from internal core+1 codons. To resolve the apparent discrepancies associated with the mechanism of core+1 translation, we examined the expression of the HCV-1 and HCV-1a (H) core+1 ORF in a cytoplasmic transcription system based on Huh-7/T7 cells that constitutively synthesize the T7 RNA polymerase in comparison to that in Huh-7 cells. We showed that the efficiency of both the -2/+1 and -1/+2 frameshift events operating at the HCV-1 core codons 8-11 is significantly enhanced in the Huh-7/T7 cytoplasmic transcription system and is dependent on the presence of the consecutive adenine (A) residues within core codons 8-11. In contrast, internal translation initiation at core+1 codons 85/87 occurs in both the nuclear and cytoplasmic transcription systems and is not repressed by the ribosomal frameshifting event. Finally, although core+1 codons 85/87 is the most efficient site for internal initiation of core+1 translation, it may not be unique, as additional internal core+1 codon(s) appear to drive translation at low levels.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, Athens 11521, Greece
| | - Katerina I Kalliampakou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, Athens 11521, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, Athens 11521, Greece
| |
Collapse
|
95
|
Glenn JS. Molecular virology of the hepatitis C virus: implication for novel therapies. Infect Dis Clin North Am 2008; 20:81-98. [PMID: 16527650 DOI: 10.1016/j.idc.2006.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With the advent of second-generation agents that for the first time specifically target individual HCV proteins, HCV-specific therapy has arrived. The study of HCV molecular virology has helped make this possible and is helping us to identify additional new antiviral targets that will be targeted by third-generation drugs. Key to these efforts is the development of high-efficiency HCV replicons. The future effective pharmacologic control of HCV will likely consist of a cocktail of simultaneously administered virus-specific agents with independent targets. This should minimize the emergence of resistance against any single agent. The way we treat HCV should change dramatically over the next few years.
Collapse
Affiliation(s)
- Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine and Palo Alto Veterans Administration Medical Center, CCSR Building, Room 3115, 269 Campus Drive, Palo Alto, CA 94305-5187, USA.
| |
Collapse
|
96
|
Vassilaki N, Boleti H, Mavromara P. Expression studies of the HCV-1a core+1 open reading frame in mammalian cells. Virus Res 2008; 133:123-35. [PMID: 18243391 DOI: 10.1016/j.virusres.2007.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/22/2007] [Accepted: 10/24/2007] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus (HCV) genome possesses an open reading frame overlapping the core gene in the +1 frame (core+1 ORF). Initial studies, mainly in rabbit reticulocyte lysates, indicated that the HCV-1 core+1 ORF is expressed by a -2/+1 frameshift at codons 8-11 during translation elongation of the viral polyprotein, resulting in a protein known as alternative reading frame protein (ARFP), frameshift (F), or core+1. However, subsequent investigation, based on reporter constructs carrying portions of the core+1 ORF, suggested the function of alternative mechanisms for core+1 expression in mammalian cells, including translation initiation from internal codons 85/87 or 26. Because results from these studies have been variable, we sought to re-evaluate expression of the core+1 ORF using constructs carrying the complete core+1 coding sequence fused to GFP or LUC. We showed here that codons 85/87 serve as the predominant initiation sites for internal translation initiation of core+1 ORF in Huh-7 and Huh-7/T7 mammalian cells, which support nuclear or cytoplasmic transcription, respectively. We also showed that internal translation initiation can occur concomitantly with the expression of the core+1/F protein that is produced artificially in Huh-7 or naturally in Huh-7/T7 cells. Furthermore, translation of core+1 ORF is not significantly affected by the presence of the HCV IRES element. The core+1/S-GFP protein is cytoplasmic and exhibits an ER distribution similar to that of the core+1/F-GFP protein.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, 11521 Athens, Greece
| | | | | |
Collapse
|
97
|
Expression of alternate reading frame protein (F1) of hepatitis C virus in Escherichia coli and detection of antibodies for F1 in Indian patients. INFECTION GENETICS AND EVOLUTION 2008; 8:374-7. [PMID: 18280797 PMCID: PMC7106216 DOI: 10.1016/j.meegid.2007.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 12/15/2007] [Accepted: 12/26/2007] [Indexed: 12/16/2022]
Abstract
Apart from the core (21 kD), a novel hepatitis C virus (HCV) frame shift protein (F1) is synthesized from the initiation codon of the polyprotein sequence followed by ribosomal frame shift into the −2/+1 reading frame. To date, no information is available on F1 protein of Indian isolates, and hence detection of antibodies for F1 protein in Indian patients assumes great relevance. Specific primers have been designed to amplify sequence coding for 120aa of truncated F1 (tF1). The amplified tF1 has been cloned in bacterial expression vector, pET21b for expression in Escherichia coli. Partially purified expressed protein has been subjected to western blot analysis using patients’ sera. Three HCV positive sera employed in western analysis showed positive signals to tF1, while sera from uninfected individuals failed to give any signals. Further, results of western blots, carried out with patients sera titrated with purified core protein, confirmed the presence of antibodies specific to F1. The positive signal observed for F1 in western analysis with HCV infected sera suggests that F1 protein is synthesized in the natural course of HCV infection in Indian patients as well. Presence of antibodies against F1 protein of subtype 1c has been demonstrated, for the first time, in Indian patients.
Collapse
|
98
|
Sobesky R, Feray C, Rimlinger F, Derian N, Dos Santos A, Roque-Afonso AM, Samuel D, Bréchot C, Thiers V. Distinct hepatitis C virus core and F protein quasispecies in tumoral and nontumoral hepatocytes isolated via microdissection. Hepatology 2007; 46:1704-12. [PMID: 17935229 DOI: 10.1002/hep.21898] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) genetic variability may be involved in liver carcinogenesis. We investigated HCV core and corresponding putative F protein genetic variability in hepatocellular carcinoma (HCC) and cirrhotic nodules. Hepatocyte clusters from 7 patients with HCC and HCV1b-related cirrhosis were isolated via microdissection of HCC tissues and 2 nontumoral cirrhotic nodules. The HCV core complementary DNA was cloned and sequenced from each liver compartment and from the serum of 2 patients. Nucleotide diversity and synonymous and nonsynonymous substitutions were analyzed within and between compartments via phylogenetic analysis and Mantel's test. Liver HCV RNA accumulation was lower in HCC. Increased quasispecies diversity and complexity was observed with HCC in 6 of 7 patients. Mantel's test demonstrated marked compartmentalization of quasispecies between HCC and cirrhotic nodules in all 7 patients and also between the 2 nontumoral nodules in 5 of them. Synonymous-nonsynonymous substitution analysis indicated low selection against tumoral core quasispecies in all patients and a more selective pressure against F protein quasispecies in all compartments. In the 2 subjects analyzed, HCC and nontumoral hepatocyte quasispecies were only minor or undetected in serum. CONCLUSION In tumoral hepatocytes, low-replicating hepatitis C quasispecies are compartmentalized and more diversified and are subjected to low selective pressure. Our study supports the importance of core genetic variability in hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Rodolphe Sobesky
- Institut National de la Santé et de la Recherche Médicale (INSERM), U785, Villejuif, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
van Hemert FJ, Zaaijer HL, Berkhout B, Lukashov VV. Mosaic amino acid conservation in 3D-structures of surface protein and polymerase of hepatitis B virus. Virology 2007; 370:362-72. [PMID: 17935747 DOI: 10.1016/j.virol.2007.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 07/31/2007] [Accepted: 08/25/2007] [Indexed: 12/17/2022]
Abstract
Surface protein and polymerase of hepatitis B virus provide a striking example of gene overlap. Inclusion of more coding constraints in the phylogenetic analysis forces the tree toward accepted topology. Three-dimensional protein modeling demonstrates that participation in local protein function underlies the observed mosaic patterns of amino acid conservation and variability. Conserved amino acid residues of polymerase were typically clustered at the catalytic core marked by the YMDD motif. The proposed tertiary structure of surface protein displayed the expected transmembrane helices in a 2-domain constellation. Conserved amino acids like, for instance, cysteine residues are involved in the spatial orientation of the two domains, the exposed location of the a-determinant and the dimer formation of surface protein. By means of computational alanine replacement scanning, we demonstrated that the interfaces between domains in monomeric surface protein, between the monomers in dimeric surface protein and in a capsid-surface protein complex mainly consist of relatively well-conserved amino acid residues.
Collapse
Affiliation(s)
- Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
100
|
3' RNA elements in hepatitis C virus replication: kissing partners and long poly(U). J Virol 2007; 82:184-95. [PMID: 17942554 DOI: 10.1128/jvi.01796-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hepatitis C virus (HCV) genomic RNA possesses conserved structural elements that are essential for its replication. The 3' nontranslated region (NTR) contains several of these elements: a variable region, the poly(U/UC) tract, and a highly conserved 3' X tail, consisting of stem-loop 1 (SL1), SL2, and SL3. Studies of drug-selected, cell culture-adapted subgenomic replicons have indicated that an RNA element within the NS5B coding region, 5BSL3.2, forms a functional kissing-loop tertiary structure with part of the 3' NTR, 3' SL2. Recent advances now allow the efficient propagation of unadapted HCV genomes in the context of a complete infectious life cycle (HCV cell culture [HCVcc]). Using this system, we determine that the kissing-loop interaction between 5BSL3.2 and 3' SL2 is required for replication in the genotype 2a HCVcc context. Remarkably, the overall integrity of the 5BSL3 cruciform is not an absolute requirement for the kissing-loop interaction, suggesting a model in which trans-acting factor(s) that stabilize this interaction may interact initially with the 3' X tail rather than 5BSL3. The length and composition of the poly(U/UC) tract were also critical determinants of HCVcc replication, with a length of 33 consecutive U residues required for maximal RNA amplification. Interrupting the U homopolymer with C residues was deleterious, implicating a trans-acting factor with a preference for U over mixed pyrimidine nucleotides. Finally, we show that both the poly(U) and kissing-loop RNA elements can function outside of their normal genome contexts. This suggests that the poly(U/UC) tract does not function simply as an unstructured spacer to position the kissing-loop elements.
Collapse
|