51
|
Masteri-Farahani M, Ghorbani F, Mosleh N. Boric acid modified S and N co-doped graphene quantum dots as simple and inexpensive turn-on fluorescent nanosensor for quantification of glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118892. [PMID: 32916423 DOI: 10.1016/j.saa.2020.118892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
A new fluorescent nanosensor based on S and N co-doped graphene quantum dots (S,N-GQDs) modified by boric acid was designed for glucose detection. First, the S,N-GQDs was prepared via one pot hydrothermal process utilizing citric acid and thiourea as precursors. Then, S,N-GQDs was modified by boric acid to fabricate (B)/S,N-GQDs. The excitation dependent photoluminescence spectra of (B)/S,N-GQDs confirmed the heteroatom (S,N) dopant effect on GQDs emission. FT-IR and energy dispersive X-ray (EDX) spectroscopies confirmed the modification of S,N-GQDs with boric acid. The optical and electrochemical band gaps of the obtained (B)/S,N-GQDs were found to be 2.7 and 2.5 eV, respectively. The boric acid functionalized S,N-GQDs exhibited fluorescent enhancement at 455 nm upon addition of glucose. Such fluorescence response was used for glucose quantification with a detection limit of 5.5 μM which is comparable with previous boronic acid based fluorescent sensing systems. However, compared with earlier reported expensive boronic acid based glucose sensors, this modified system is simpler, more economical, and efficient. A mechanism was proposed for fluorescence enhancement based on the reaction of cis-diol units of glucose with the boric acid groups of (B)/S,N-GQDs which creates rigid (B)/S,N-GQDs-glucose structures, restricting the non-radiative intramolecular motions and results in the fluorescent enhancement.
Collapse
Affiliation(s)
- Majid Masteri-Farahani
- Faculty of Chemistry, Kharazmi University, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran.
| | - Fatemeh Ghorbani
- Faculty of Chemistry, Kharazmi University, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran
| | - Nazanin Mosleh
- Faculty of Chemistry, Kharazmi University, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
52
|
Electrocatalytic Oxidation of Glucose on Boron and Nitrogen Codoped Graphene Quantum Dot Electrodes in Alkali Media. Catalysts 2021. [DOI: 10.3390/catal11010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A novel solvothermal technique has been developed in the presence of C/N/B precursor for synthesizing B-N-coped graphene quantum dots (GQDs) as non-metal electrocatalysts towards the catalytic glucose oxidation reaction (GOR). Both N-doped GQD and B-N-codoped GQD particles (~4.0 nm) possess a similar oxidation and amidation level. The B-N-codoped GQD contains a B/C ratio of 3.16 at.%, where the B dopants were formed through different bonding types (i.e., N‒B, C‒B, BC2O, and BCO2) inserted into or decorated on the GQDs. The cyclic voltammetry measurement revealed that the catalytic activity of B-N-codoped GQD catalyst is significantly higher compared to the N-doped GQDs (~20% increase). It was also shown that the GOR activity was substantially enhanced due to the synergistic effect of B and N dopants within the GQD catalysts. Based on the analysis of Tafel plots, the B-N-codoped-GQD catalyst electrode displays an ultra-high exchange current density along with a reduced Tafel slope. The application of B-N-codoped GQD electrodes significantly enhances the catalytic activity and results in facile reaction kinetics towards the glucose oxidation reaction. Accordingly, the novel design of GQD catalyst demonstrated in this work sets the stage for designing inexpensive GQD-based catalysts as an alternative for precious metal catalysts commonly used in bio-sensors, fuel cells, and other electrochemical devices.
Collapse
|
53
|
Lu Q, Huang T, Zhou J, Zeng Y, Wu C, Liu M, Li H, Zhang Y, Yao S. Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118893. [PMID: 32916589 DOI: 10.1016/j.saa.2020.118893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rational design of detection strategy is the key to high-performance fluorescence analysis. In this article, we found that the glucose-induced limitations can greatly enhance the fluorescence of functionalized carbon nanoparticles (CNPs), which are synthesized through one-step thermal pyrolysis method using phenylboronic acid derivative as the precursors. The glucose can assembly onto the surface of the CNPs to form a "shell", limiting the surfaces' intramolecular rotation and reducing non-radiative decay, which hence resulted in enhanced fluorescence of the CNPs. Under optimal conditions, the fluorescence intensity of the CNPs is nearly 70-fold enhanced, and the method has low detection limit (10 μM) and linear response in the concentration range from 50 μM to 2000 μM. Based on this interesting "target-triggered limitation-induced fluorescence enhancement" phenomenon, a simple and effective non-enzymatic fluorescence enhancement method was developed and successfully applied to the determination of glucose in spiked serum samples. This work provides new insight into the design of fluorescence-enhanced detection strategies based on the limitation-induced property.
Collapse
Affiliation(s)
- Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ting Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jieqiong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yue Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
54
|
Li W, Zhang S, Chen Q, Zhong Q. Tailorable boron-doped carbon nanotubes as high-efficiency counter electrodes for quantum dot sensitized solar cells. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02266g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Tunable BCNTs are prepared by the pre-oxidation strategy. 2. B-Doped CNTs exhibit excellent activity for Sn2− reduction. 3. The QDSSC based on CdS/CdSe QDs and BCNT1 shows a PCE of 4.55% under one sunlight illumination.
Collapse
Affiliation(s)
- Wenhua Li
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Shule Zhang
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Qianqiao Chen
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Qin Zhong
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| |
Collapse
|
55
|
Pandian PM, Pandurangan A. Enhanced electrostatic potential with high energy and power density of a symmetric and asymmetric solid-state supercapacitor of boron and nitrogen co-doped reduced graphene nanosheets for energy storage devices. NEW J CHEM 2021. [DOI: 10.1039/d1nj00486g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of boron and nitrogen co-doped graphene nanosheets.
Collapse
Affiliation(s)
- P. Muthu Pandian
- Department of Chemistry
- Anna University
- Guindy Campus
- Chennai – 25
- India
| | - A. Pandurangan
- Department of Chemistry
- Anna University
- Guindy Campus
- Chennai – 25
- India
| |
Collapse
|
56
|
Xu L, Yang L, Liu A. Facile one-pot synthesis of Mn 3O 4 nanorods and their analytical application. NEW J CHEM 2021. [DOI: 10.1039/d1nj02513a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
One-pot synthesis of Mn3O4 nanorods in aqueous solution at room temperature without using templates and surfactants was achieved for the first time, opening a new route for preparing various metal nanorods for detecting H2O2-related targets.
Collapse
Affiliation(s)
- Lijun Xu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lu Yang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
57
|
|
58
|
Effect of the surface chemistry on the photoluminescence properties of boron doped carbon dots. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
59
|
Wang Y, Han C, Yu L, Wu J, Min Y, Tan J, Zhao Y, Zhang P. Etching-controlled suppression of fluorescence resonance energy transfer between nitrogen-doped carbon dots and Ag nanoprisms for glucose assay and diabetes diagnosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118713. [PMID: 32759033 DOI: 10.1016/j.saa.2020.118713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Numerous methods have been developed for glucose detection, only few cases can be really applied in clinical diagnosis. Herein, we report a new approach to achieve the detection of glucose in clinical samples and distinguishing the diabetic patients with healthy ones. Specifically, a fluorescence resonance energy transfer (FRET) system is established first, where nitrogen-doped carbon dots (N-CDs) and Ag nanoprisms (AgNPRs) with good spectral overlap act as energy donor and acceptor, respectively. Then, the FRET can be inhibited through oxidative etching of the energy acceptor in the presence of glucose and glucose oxidase, where hydrogen peroxide is generated to transform AgNPRs into Ag+ ions. Based on the turn-on fluorescent signal versus glucose concentration, a new method for quantitative detection of glucose is developed. This etching-induced analytical method is simple, reliable, robust and cost-effective, which is promising to assist the doctors to clinically diagnose diabetes and other diseases related to metabolic disorders.
Collapse
Affiliation(s)
- Yi Wang
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Chaoqin Han
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Lan Yu
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Jiangling Wu
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yuanhong Min
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Juan Tan
- Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yannan Zhao
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Pu Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
60
|
Qin LY, Zhang HL, Gong W, Luo HQ, Li NB, Li BL. Aggregation-induced responses (AIR) of 2D-derived layered nanostructures enable emerging colorimetric and fluorescence sensors. Analyst 2020; 145:7464-7476. [PMID: 33030157 DOI: 10.1039/d0an01522a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered nanostructures (LNs), including two-dimensional nanosheets, nanoflakes, and planar nanodots, show large surface-to-volume ratios, unique optical properties, and desired interfacial activities. LNs are highly promising as alternative probes and platforms due to numerous merits, e.g. signal amplification, improved recognition ability, and anti-interference capacity, for emerging sensing applications. Significantly, when stimuli-responsive aggregation occurs, the modified LNs show engineered morphologies, attractive optical absorption and fluorescence characteristics, which are remarkably programmable. On the basis of the altered aggregation behaviours of LNs, as well as their modulated physical and chemical characteristics, a series of novel sensing assays exhibiting enhanced sensitivity, simple operation, multiple functions, and improved anti-interference capacity are reported, contributing to both point-of-care testing and high-throughput measurements. Herein, the aggregation-induced response sensing strategies of LNs are comprehensively summarized with the classification of materials and variation of aggregated routes aiming at understanding dimension-dependent features, expanding nanoscale biosensor applications, and addressing key issues in disease diagnosis and environmental analysis.
Collapse
Affiliation(s)
- Ling Yun Qin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | |
Collapse
|
61
|
Zhu L, Shen D, Wu C, Gu S. State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04760] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingli Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT7 1NN, U.K
| | - Sai Gu
- Faculty of Engineering and Physical Sciences, University of Surrey, Guilford GU2 7XH, U.K
| |
Collapse
|
62
|
Yao M, Huang J, Deng Z, Jin W, Yuan Y, Nie J, Wang H, Du F, Zhang Y. Transforming glucose into fluorescent graphene quantum dots via microwave radiation for sensitive detection of Al 3+ ions based on aggregation-induced enhanced emission. Analyst 2020; 145:6981-6986. [PMID: 32857828 DOI: 10.1039/d0an01639j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper initially describes a nanosensor for fluorescence detection of Al3+ ions by using graphene quantum dots (GQDs) that are synthesized via microwave-assisted single-step ring-closure condensation of glucose molecules. The one-pot synthesis strategy based on the microwave radiation could be finished in several minutes and no post-modification of the GQDs was required. In particular, the GQD nanoprobes showed a sensitive and specific fluorescence enhancement response to Al3+. The involved mechanism might be the Al3+-mediated aggregation of the GQDs leading to aggregation-induced enhanced emission (AIEE). Under optimal conditions, this new fluorescent nanosensor was able to quantitatively detect Al3+ in a linear concentration range of 0.4-500 μM. The limit of detection was estimated to be ∼59.8 nM according to the 3σ rule, which made it be among the most sensitive systems currently available for sensing the target ion. Moreover, satisfactory recovery results (ranging from 96.8 to 109.7%) of analyzing a set of real water examples additionally validated its accuracy for practical applications. Considering its simplicity, high sensitivity and specificity, low cost, and good reliability, the developed fluorescent nanosensing system for Al3+ holds great promise for broad uses in water safety, environmental monitoring, and waste management.
Collapse
Affiliation(s)
- Maomao Yao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Li L, Li Y, Qin W, Qian Y. Potentiometric detection of glucose based on oligomerization with a diboronic acid using polycation as an indicator. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4422-4428. [PMID: 32924037 DOI: 10.1039/d0ay01399d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel potentiometric sensor for d-glucose (Glu) using 4,4'-biphenyldiboronic acid as a receptor and polyion (poly-N-(3-aminopropyl)methacrylamide, PAPMA) as an indicator is described. The diboronic acid condenses with Glu via its two cis-diol units to form cyclic or linear oligomeric polyanions which can interact electrostatically with PAPMA, thus efficiently decreasing its potentiometric response on a polycation-sensitive membrane electrode. Although d-fructose (Fru), d-galactose (Gal) and d-mannose (Man) show even higher binding affinities to the diboronic acid as compared to Glu, these monosaccharides with only one cis-diol unit cannot oligomerize with the receptor, which efficiently excludes the interferences from the Glu's stereoisomers. The results obtained from blood sample analysis indicate that the proposed sensor is promising for detection of Glu in real-world applications.
Collapse
Affiliation(s)
- Long Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | |
Collapse
|
64
|
Zhang L, Zhang Z, Gao Z, Xie Y, Shu S, Ke Y, Wang Y, Deng B, Yu R, Geng H. Facile synthesis of N,B-co-doped carbon dots with the gram-scale yield for detection of iron (III) and E. coli. NANOTECHNOLOGY 2020; 31:395702. [PMID: 32521516 DOI: 10.1088/1361-6528/ab9b4c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple method was developed to prepare fluorescent nitrogen/boron-doped carbon dots (N,B-CDs) in the gram scale. The results showed that the CDs exhibited blue photoluminescence (PL) under 365 nm ultraviolet radiation and excitation-dependent emission. Heteroatoms entered the CDs to enhance the photochemical properties, and their positive properties can be attributed to the presence of guanidino group and functionalized with boronic acid for realizing their utilization in certain applications. These materials could be applied to monitor Fe3+ via static PL quenching, yielding a limit of detection (LOD) of 0.74 μM. Furthermore, the charged and boronic acid groups on the prepared N,B-CDs enabled their use as recognition elements to bind with the bacteria through electrostatic interaction and allowed covalent interactions to form the corresponding boronate ester with E. coli (E. coli) bacterial membrane. This method could satisfy a linear range of 102-107 with LOD of 165 cfu ml-1 for E. coli. This method was applied for the determination of E. coli in tap water and orange juice samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Lixia Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zishu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhiwen Gao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yan Xie
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuang Shu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuee Ke
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yu Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Bin Deng
- College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou, Hunan 423043, People's Republic of China
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, Chenzhou, Hunan 423043, People's Republic of China
| | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang, Hubei 443002, People's Republic of China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
65
|
Kortel M, Mansuriya BD, Vargas Santana N, Altintas Z. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. MICROMACHINES 2020; 11:E866. [PMID: 32962061 PMCID: PMC7570118 DOI: 10.3390/mi11090866] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Graphene quantum dots (GQDs) are considerably a new member of the carbon family and shine amongst other members, thanks to their superior electrochemical, optical, and structural properties as well as biocompatibility features that enable us to engage them in various bioengineering purposes. Especially, the quantum confinement and edge effects are giving GQDs their tremendous character, while their heteroatom doping attributes enable us to specifically and meritoriously tune their prospective characteristics for innumerable operations. Considering the substantial role offered by GQDs in the area of biomedicine and nanoscience, through this review paper, we primarily focus on their applications in bio-imaging, micro-supercapacitors, as well as in therapy development. The size-dependent aspects, functionalization, and particular utilization of the GQDs are discussed in detail with respect to their distinct nano-bio-technological applications.
Collapse
Affiliation(s)
| | | | | | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.K.); (B.D.M.); (N.V.S.)
| |
Collapse
|
66
|
Dadkhah S, Mehdinia A, Jabbari A, Manbohi A. Rapid and sensitive fluorescence and smartphone dual-mode detection of dopamine based on nitrogen-boron co-doped carbon quantum dots. Mikrochim Acta 2020; 187:569. [DOI: 10.1007/s00604-020-04543-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/02/2020] [Indexed: 12/31/2022]
|
67
|
Li X, Li M, Yang M, Xiao H, Wang L, Chen Z, Liu S, Li J, Li S, James TD. “Irregular” aggregation-induced emission luminogens. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213358] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Zhang X, Xu H, Li Y, Xu Y. Carbon-Dot-Based Thin Film with Responses toward Mechanical Stimulation and Acidic/Basic Vapors. ACS OMEGA 2020; 5:12144-12147. [PMID: 32548394 PMCID: PMC7271401 DOI: 10.1021/acsomega.0c00465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Carbon dots (CDs) as a kind of potential materials have drawn much attention due to their excellent optical properties. However, it is a challenge to fabricate new CDs-based thin films with intelligent responses. Herein, a kind of CDs with mechanical- and basic/acidic vapor-stimulated responsive behaviors was prepared using glutathione as a passivation agent via a one-pot solvothermal reaction. The high solubility of CDs enhanced by glutathione passivation was suitable for the preparation of CDs-based thin film. It is worth noting that the fluorescence of CDs-based poly(methyl methacrylate) (PMMA) thin film can be enhanced under grinding treatment, and it was also sensitive to the presence of ambient acids or bases. These CDs-based films with high stability and excellent mechanical and acid/base responses have great potentials for environmental monitoring.
Collapse
|
69
|
Gizem Güneştekin B, Medetalibeyoglu H, Atar N, Lütfi Yola M. Efficient Direct‐Methanol Fuel Cell Based on Graphene Quantum Dots/Multi‐walled Carbon Nanotubes Composite. ELECTROANAL 2020. [DOI: 10.1002/elan.202060074] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Büşra Gizem Güneştekin
- Iskenderun Technical University Faculty of Engineering and Natural Sciences Department of Petroleum and Natural Gas Hatay Turkey
| | - Hilal Medetalibeyoglu
- Kafkas University Faculty of Science and Letters Department of Chemistry Kars Turkey
| | - Necip Atar
- Pamukkale University Faculty of Engineering Department of Chemical Engineering Denizli Turkey
| | - Mehmet Lütfi Yola
- Iskenderun Technical University Faculty of Engineering and Natural Sciences Department of Biomedical Engineering Hatay Turkey
| |
Collapse
|
70
|
Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 2020; 165:112331. [PMID: 32729477 DOI: 10.1016/j.bios.2020.112331] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
Abstract
Diabetes is a pathological condition that requires the continuous monitoring of glucose level in the blood. Its control has been tremendously improved by the application of point-of-care devices. Conventional enzyme-based sensors with electrochemical and optical transduction systems can successfully measure the glucose concentration in human blood, but they suffer from the low stability of the enzyme. Non-enzymatic wearable electrochemical and optical sensors, with low-cost, high stability, point-of-care testing and online monitoring of glucose levels in biological fluids, have recently been developed and can help to manage and control diabetes worldwide. Advances in nanoscience and nanotechnology have enabled the development of novel nanomaterials that can be implemented for the use in enzyme-free systems to detect glucose. This review summarizes recent developments of enzyme-free electrochemical and optical glucose sensors, as well as their respective wearable and commercially available devices, capable of detecting glucose at physiological pH conditions without the need to pretreat the biological fluids. Additionally, the evolution of electrochemical glucose sensor technology and a couple of widely used optical detection systems along with the glucose detection mechanism is also discussed. Finally, this review addresses limitations and challenges of current non-enzymatic electrochemical, optical, and wearable glucose sensor technologies and highlights opportunities for future research directions.
Collapse
|
71
|
Graphene quantum dots redefine nanobiomedicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110651. [DOI: 10.1016/j.msec.2020.110651] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/08/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
|
72
|
Zhao X, Li J, Liu D, Yang M, Wang W, Zhu S, Yang B. Self-Enhanced Carbonized Polymer Dots for Selective Visualization of Lysosomes and Real-Time Apoptosis Monitoring. iScience 2020; 23:100982. [PMID: 32234664 PMCID: PMC7113624 DOI: 10.1016/j.isci.2020.100982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/23/2020] [Accepted: 03/07/2020] [Indexed: 11/29/2022] Open
Abstract
Protons are highly related to cell viability during physiological and pathological processes. Developing new probes to monitor the pH variation could be extremely helpful to understand the viability of cells and the cell death study. Carbonized polymer dots (CPDs) are superior biocompatible and have been widely applied in bioimaging field. Herein, a new type of extreme-pH suitable CPDs was prepared from citric acid and o-phenylenediamine (CA/oPD-CPDs). Due to the co-existence of hydrophilic and hydrophobic groups, CA/oPD-CPDs tend to aggregate in neutral condition with a dramatic decrease of fluorescence, but disperse well in both acidic and alkaline conditions with brighter emission. This specialty enables them to selectively illuminate lysosomes in cells. Moreover, CA/oPD-CPDs in the cytoplasm could serve as a sustained probe to record intracellular pH variation during apoptosis. Furthermore, CA/oPD-CPDs present a continuous fluorescence increase upon 2-h laser irradiation in living cells, underscoring this imaging system for long-term biological recording.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Jing Li
- The Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P. R. China
| | - Dongning Liu
- Department of Periodontology, Stomatology Hospital, Jilin University, Changchun, Jilin 130021, P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Wenjing Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China; Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China.
| |
Collapse
|
73
|
Huang Y, Zhu L, Ji J, Li Y, Liu T, Lei J. Cleancap-Regulated Aggregation-Induced Emission Strategy for Highly Specific Analysis of Enzyme. Anal Chem 2020; 92:4726-4730. [DOI: 10.1021/acs.analchem.0c00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanyuan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiahao Ji
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
74
|
Cu2+-mediated Fluorescence Switching of Graphene Quantum Dots for Highly Selective Detection of Glutathione. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60003-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
A colorimetric nanoprobe based on dynamic aggregation of SDS-capped silver nanoparticles for tobramycin determination in exhaled breath condensate. Mikrochim Acta 2020; 187:186. [DOI: 10.1007/s00604-020-4162-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
|
76
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
77
|
Ghorai S, Roy I, De S, Dash PS, Basu A, Chattopadhyay D. Exploration of the potential efficacy of natural resource-derived blue-emitting graphene quantum dots in cancer therapeutic applications. NEW J CHEM 2020. [DOI: 10.1039/c9nj06239d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a method involving oxidative functionalization followed by a solvothermal cutting technique for the synthesis of strong-blue-emitting GQD nanomaterial in cancer therapy.
Collapse
Affiliation(s)
- Soumitra Ghorai
- Research & Development Division
- Tata Steel
- Jamshedpur 831007
- India
| | - Indranil Roy
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Sriparna De
- Department of Allied Health Sciences
- Brainware University
- Kolkata 700125
- India
| | | | - Arijita Basu
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | | |
Collapse
|
78
|
Kaushal S, Kaur M, Kaur N, Kumari V, Singh PP. Heteroatom-doped graphene as sensing materials: a mini review. RSC Adv 2020; 10:28608-28629. [PMID: 35520086 PMCID: PMC9055927 DOI: 10.1039/d0ra04432f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
Graphene is one of the astounding recent advancements in current science and one of the most encouraging materials for application in cutting-edge electronic gadgets. Graphene and its derivatives like graphene oxide and reduced graphene oxide have emerged as significant nanomaterials in the area of sensors. Furthermore, doping of graphene and its derivatives with heteroatoms (B, N, P, S, I, Br, Cl and F) alters their electronic and chemical properties which are best suited for the construction of economical sensors of practical utility. This review recapitulates the developments in graphene materials as emerging electrochemical, ultrasensitive explosive, gas, glucose and biological sensors for various molecules with greater sensitivity, selectivity and a low limit of detection. Apart from the most important turn of events, the properties and incipient utilization of the ever evolving family of heteroatom-doped graphene are also discussed. This review article encompasses a wide range of heteroatom-doped graphene materials as sensors for the detection of NH3, NO2, H2O2, heavy metal ions, dopamine, bleomycinsulphate, acetaminophen, caffeic acid, chloramphenicol and trinitrotoluene. In addition, heteroatom-doped graphene materials were also explored for sensitivity and selectivity with respect to interfering analytes present in the system. Finally, the review article concludes with future perspectives for the advancement of heteroatom-doped graphene materials. Graphene is one of the astounding recent advancements in current science and one of the most encouraging materials for application in cutting-edge electronic gadgets.![]()
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Manpreet Kaur
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Navdeep Kaur
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Vanita Kumari
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Prit Pal Singh
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| |
Collapse
|
79
|
Saikia A, Karak N. Cellulose nanofiber-polyaniline nanofiber-carbon dot nanohybrid and its nanocomposite with sorbitol based hyperbranched epoxy: Physical, thermal, biological and sensing properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
80
|
Nazer EAA, Muthukrishnan A. Synergistic effect on BCN nanomaterials for the oxygen reduction reaction – a kinetic and mechanistic analysis to explore the active sites. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00911c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rGO doped with boron and nitrogen reduce the oxygen via the dissociative four-electron pathway whereas the two-electron oxygen reduction reaction is more predominant on the rGO doped with either of the two individual heteroatoms.
Collapse
Affiliation(s)
- E. A. Anook Nazer
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- India
| | | |
Collapse
|
81
|
Kumar A, Kumari A, Asu S, Laha D, Kumar Sahu S. Synthesis of CDs from β‐Cyclodextrin for Smart Utilization in Visual Detection of Cholesterol and Cellular Imaging. ChemistrySelect 2019. [DOI: 10.1002/slct.201903680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Amit Kumar
- Department of ChemistryIndian Institute of Technology (ISM), Dhanbad - 826004 Jharkhand India
| | | | - Shwetank Asu
- Department of ChemistryIndian Institute of Technology (ISM), Dhanbad - 826004 Jharkhand India
| | - Dipranjan Laha
- Department of Life Science and BiotechnologyJadavpur University, 188, Raja S C Mallick Road Kolkata 700032 India
| | - Sumanta Kumar Sahu
- Department of ChemistryIndian Institute of Technology (ISM), Dhanbad - 826004 Jharkhand India
| |
Collapse
|
82
|
Gao B, Sun Y, Miao Y, Xu L, Wang Z. Fluorometric detection of pH and quercetin based on nitrogen and phosphorus co-doped highly luminescent graphene-analogous flakes. Analyst 2019; 145:115-121. [PMID: 31746826 DOI: 10.1039/c9an02077b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly luminescent nitrogen and phosphorus co-doped graphene-analogous flakes (NPCGFs) were synthesized by a one-pot simple hydrothermal reaction using β-cyclodextrin (β-CD), vinylphosphoric acid (VPA), and o-phenylenediamine (oPD) as the precursors. VPA, as an important organic P-containing monomer, was selected as the phosphorus source to generate additional conjugated and effective binding sites on the surface of the NPCGFs. This synthetic strategy not only allows enhancement of structural rigidity, but also effectively eliminates surface traps of the NPCGFs, resulting in an improved fluorescence quantum yield (FL QY) of the NPCGFs. Additionally, oPD simultaneously acts as a nitrogen source and enables amino functionalisation of the NPCGF surface in the synthesis process. The NPCGFs (QY, 32.49%) are irregularly shaped with a typical diameter of approximately 54 nm and display strong fluorescence, with excitation/emission maxima of 360/445 nm. It was found that the NPCGFs can serve as a multifunctional FL probe for pH measurement and quercetin (Qc) detection. A linear relationship exists between the decrease in FL intensity and the concentration of Qc in the range from 0.35 to 30 μg mL-1 as well as the pH variation between 4.0 and 7.0. The probe was further applied to the determination of Qc in living cells.
Collapse
Affiliation(s)
- Buhong Gao
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | |
Collapse
|
83
|
Abstract
AbstractConventional inorganic semiconductor quantum dots (QDs) have numerous applications ranging from energy harvesting to optoelectronic and bio-sensing devices primarily due to their unique size and shape tunable band-gap and also surface functionalization capability and consequently, have received significant interest in the last few decades. However, the high market cost of these QDs, on the order of thousands of USD/g and toxicity limit their practical utility in many industrial applications. In this context, graphene quantum dot (GQD), a nanocarbon material and a new entrant in the quantum-confined semiconductors could be a promising alternative to the conventional toxic QDs due to its potential tunability in optical and electronic properties and film processing capability for realizing many of the applications. Variation in optical as well as electronic properties as a function of size, shape, doping and functionalization would be discussed with relevant theoretical backgrounds along with available experimental results and limitations. The review deals with various methods available so far towards the synthesis of GQDs along with special emphasis on characterization techniques starting from spectroscopic, optical and microscopic techniques along with their the working principles, and advantages and limitations. Finally, we will comment on the environmental impact and toxicity limitations of these GQDs and their hybrid nanomaterials to facilitate their future prospects.Graphical Abstract:Structure of doped, functionalized and hybrid GQDs
Collapse
Affiliation(s)
- Sumana Kundu
- ECPS, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Vijayamohanan K. Pillai
- ECPS, CSIR-Central Electrochemical Research Institute, Karaikudi, India
- Indian Institute of Science Education and Research (IISER), Chemistry, Transit campus:Sree Rama Eng. CollegeTirupati, India
| |
Collapse
|
84
|
Mishra P, Bhat BR. Aggregative ways of graphene quantum dots with nitrogen-rich edges for direct emission spectrophotometric estimation of glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117325. [PMID: 31280127 DOI: 10.1016/j.saa.2019.117325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
We report a facile one step in-situ synthesis of amino-functionalized graphene dots. These quantum dots were employed for the detection of glucose in both standard aqueous solutions and commercially available fruit juice to assess its practicability. The characterization of the quantum dots revealed that they were decorated with amine functionality. Additionally, the interaction between glucose and amine functionalized graphene quantum dots gave enhancement in the UV-vis absorption and photoluminescence (PL) due to aggregation of quantum dots via glucose link. Therefore, the quantum dots were able to detect the concentration of glucose in solution exhibiting linearity from 0.1 to 10 mM and 50-500 mM with a sensitivity transition from 10 mM to 50 mM. The limit of detection for the determination of glucose was found to be 10 μM. This determination was agreed from both UV-Vis absorption and PL spectroscopy. However, the PL emission method of determination was most suited with its very high accuracy of 98.04 ± 1.96% and 97.33 ± 2.67% for the linear range of glucose concentration within 0.1-10 mM and 50-500 mM, respectively. The PL enhancement was highly selective towards glucose in mixture of other form of sugars making it suitable for determining glucose in food samples.
Collapse
Affiliation(s)
- Praveen Mishra
- Catalysis and Materials Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, Karnataka, India
| | - Badekai Ramachandra Bhat
- Catalysis and Materials Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, Karnataka, India.
| |
Collapse
|
85
|
Ripoll C, Orte A, Paniza L, Ruedas-Rama MJ. A Quantum Dot-Based FLIM Glucose Nanosensor. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4992. [PMID: 31744089 PMCID: PMC6891378 DOI: 10.3390/s19224992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023]
Abstract
In the last few years, quantum dot (QD) nanoparticles have been employed for bioimaging and sensing due to their excellent optical features. Most studies have used photoluminescence (PL) intensity-based techniques, which have some drawbacks, especially when working with nanoparticles in intracellular media, such as fluctuations in the excitation power, fluorophore concentration dependence, or interference from cell autofluorescence. Some of those limitations can be overcome with the use of time-resolved spectroscopy and fluorescence lifetime imaging microscopy (FLIM) techniques. In this work, CdSe/ZnS QDs with long decay times were modified with aminophenylboronic acid (APBA) to achieve QD-APBA conjugates, which can act as glucose nanosensors. The attachment of the boronic acid moiety on the surface of the nanoparticle quenched the PL average lifetime of the QDs. When glucose bonded to the boronic acid, the PL was recovered and its lifetime was enhanced. The nanosensors were satisfactorily applied to the detection of glucose into MDA-MB-231 cells with FLIM. The long PL lifetimes of the QD nanoparticles made them easily discernible from cell autofluorescence, thereby improving selectivity in their sensing applications. Since the intracellular levels of glucose are related to the metabolic status of cancer cells, the proposed nanosensors could potentially be used in cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | - Maria Jose Ruedas-Rama
- Department Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia de Química Aplicada a la Biomedicinay Medioambiente (UEQABM), University of Granada, Campus Cartuja, 18071 Granada, Spain
| |
Collapse
|
86
|
Kadian S, Manik G, Ashish K, Singh M, Chauhan RP. Effect of sulfur doping on fluorescence and quantum yield of graphene quantum dots: an experimental and theoretical investigation. NANOTECHNOLOGY 2019; 30:435704. [PMID: 31342919 DOI: 10.1088/1361-6528/ab3566] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Graphene quantum dots (GQDs) are one of the most promising luminescent carbon derived nanomaterials decorated with multiple useful functional groups and remarkable optoelectronic properties. Heteroatom doping of hexagonal carbon sheet of GQDs is an effective strategy to tailor their properties to meet desired application. In this work, sulfur doped GQDs (S-GQDs) were synthesized by simply pyrolyzing citric acid (CA) as a source of carbon and 3-Mercaptopropionic acid as a source of sulfur dopant. The optimal reaction conditions (ratio of the carbon to dopant source, temperature and time of reaction) were obtained while investigating their effect on the quantum yield and fluorescence properties of GQDs and, are hereby, reported for the first time. The as-synthesized S-GQDs were extensively characterized by different analytical techniques such as transmission electron microscopy (TEM), UV-vis Spectroscopy (UV), Fourier transform infrared spectroscopy, photoluminescence (PL) and x-ray Photoelectron Spectroscopy. S-GQDs were found uniform in size (∼4 nm) and spherical in shape with strong blue fluorescence. Further, for in-depth analysis of experimental results and underlying phenomena, theoretical studies based on density functional theory were performed for chemical structure optimization, possible sites of doping and density of states calculation. The synthesized S-GQDs exhibited excellent solubility in water, a stronger fluorescence and desirably higher quantum yield (57.44%) as compared to that of previously reported undoped GQDs. These successfully demonstrated unique and improved properties of S-GQDs present them as a potential candidate for biomedical, optical, electrical and chemical applications.
Collapse
Affiliation(s)
- Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | | | | | | | | |
Collapse
|
87
|
Wang W, Xu S, Li N, Huang Z, Su B, Chen X. Sulfur and phosphorus co-doped graphene quantum dots for fluorescent monitoring of nitrite in pickles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117211. [PMID: 31158765 DOI: 10.1016/j.saa.2019.117211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Doping graphene quantum dots (GQDs) with heteroatoms can change their band gap and electronic density, thus enhancing their fluorescence quantum yield (QY). In this work, we for the first time reported a nontoxic, rapid, and one-pot hydrothermal method to synthesize sulfur and phosphorus co-doped GQDs (S, P-GQDs). Citric acid was functioned as a carbon source, whereas sodium phytate and anhydrous sodium sulfate are used as the P and S sources, respectively, in this bottom-up synthesis. The resulting S, P-GQDs exhibit high heteroatomic doping ratios of 9.66 at.% for S and 3.34 at.% for P, and higher QY than those obtained from monoatomic doped GQDs. Additionally, the as-prepared S, P-GQDs exhibit excitation-dependent behavior, pH sensitivity between 8.0 and 13.0, high tolerance of ionic strength. More importantly, the as-synthesized S, P-GQDs show a sensitive and selective behavior for sensing nitrite (NO2-) in the concentration range of 0.7-9 μmol/L, and the detection limit was as low as 0.3 μmol/L. Additionally, the S, P-GQDs was successfully used in detecting NO2- in pickled foods, showing their promise for potential applications in realistic analysis.
Collapse
Affiliation(s)
- Weijie Wang
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China
| | - Shifen Xu
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China
| | - Ning Li
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China
| | - Zhiyong Huang
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China
| | - Bingyuan Su
- Xiamen Center for Disease Control and Prevention, Xiamen 361021, China
| | - Xiaomei Chen
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
88
|
Sahiner N, Suner SS, Sahiner M, Silan C. Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications. J Fluoresc 2019; 29:1191-1200. [PMID: 31502060 DOI: 10.1007/s10895-019-02431-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022]
Abstract
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Canakkale, Turkey. .,Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus, 17100, Canakkale, Turkey. .,Department of Ophthalmology, Morsani School of Medicine, University of South Florida, 12901, Bruce B Downs Blvd., MDC 21, Tampa, FL, 33612, USA.
| | - Selin S Suner
- Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehtap Sahiner
- Fashion Design, Canakkale Applied Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| | - Coskun Silan
- School of Medicine, Department of Pharmacology, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| |
Collapse
|
89
|
Liu H, Ding J, Zhang K, Ding L. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
90
|
Facile synthesis of sulfur and nitrogen codoped graphene quantum dots for optical sensing of Hg and Ag ions. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
91
|
Lu H, Li W, Dong H, Wei M. Graphene Quantum Dots for Optical Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902136. [PMID: 31304647 DOI: 10.1002/smll.201902136] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/20/2019] [Indexed: 05/08/2023]
Abstract
Graphene quantum dots (GQDs) have shown great potential in bioimaging applications due to their excellent biocompatibility, low cytotoxicity, feasibility for surface functionalization, physiological stability, and tunable fluorescence properties. This Review first introduces the intriguing optical properties of GQDs that are suitable for biological imaging, and is followed by the GQDs' synthetic strategies. The emergent and latest development methods for tuning GQDs' optical properties are further described in detail. The recent advanced applications of GQDs in vitro, particularly in cell imaging, targeted imaging, and theranostic nanoplatform fabrication, are included. The applications of GQDs for in vivo bioimaging are also covered. Finally, the Review is concluded with the challenges and prospectives that face this nascent yet exciting field.
Collapse
Affiliation(s)
- Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenjun Li
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Menglian Wei
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, T6G, 2G2, Canada
| |
Collapse
|
92
|
Wu Y, Chen Y, Zhang S, Zhang L, Gong J. Bifunctional S, N-Codoped carbon dots-based novel electrochemiluminescent bioassay for ultrasensitive detection of atrazine using activated mesoporous biocarbon as enzyme nanocarriers. Anal Chim Acta 2019; 1073:45-53. [DOI: 10.1016/j.aca.2019.04.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 01/06/2023]
|
93
|
Mishra P, Bhat BR. A study on the electro-reductive cycle of amino-functionalized graphene quantum dots immobilized on graphene oxide for amperometric determination of oxalic acid. Mikrochim Acta 2019; 186:646. [DOI: 10.1007/s00604-019-3745-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
|
94
|
Wang C, Tan R, Li L, Liu D. Dual-modal Colorimetric and Fluorometric Method for Glucose Detection Using MnO2 Sheets and Carbon Quantum Dots. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9130-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
95
|
Ratiometric fluorescence molecularly imprinted sensor based on dual-emission quantum dots hybrid for determination of tetracycline. Anal Bioanal Chem 2019; 411:5809-5816. [DOI: 10.1007/s00216-019-01963-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023]
|
96
|
Tunable excitation-independent emissions from graphene quantum dots through microplasma-assisted electrochemical synthesis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
97
|
Zhao X, Tang Q, Zhu S, Bu W, Yang M, Liu X, Meng Y, Yu W, Sun H, Yang B. Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria. NANOSCALE 2019; 11:9526-9532. [PMID: 31049503 DOI: 10.1039/c9nr01118h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fluorescent materials can be powerful contrast agents in photoelectric devices and for bioimaging. As emerging fluorescent materials, carbonized polymer dots (CPDs) with high quantum yields (QYs), long-wavelength emission and multiple functions are highly desired. Despite great progress in the synthetic methods and QYs of CPDs, multiple emission of CPDs is challenging. Therefore, we developed CPDs with dual-emission fluorescence in terms of inherent blue and red emission. In addition, CPDs with sole blue emission (B-CPDs) and red emission (R-CPDs) were synthesized, respectively, by regulating the reaction conditions to control the quantitative structure and emission centers. The absolute QY of R-CPDs in water was 24.33%. These three types of CPDs with dual/sole emission could be used in optoelectronic and bioimaging applications. With different CPDs coated on a commercially available gallium nitride light-emitting diode chip as a color-conversion layer, LEDs with blue, yellow, and red emission were achieved. Benefiting from the different emission intensities and emission peaks of R/B-CPDs in different pH conditions, they were used (without further modification) to distinguish between Porphyromonas gingivalis, Streptococcus mutans, Escherichia coli and Staphylococcus aureus in dental plaque biofilms (the first time this has been demonstrated). These findings could enable a new development direction of CPDs based on the design of multi-emission centers.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Ding L, Zhao Z, Li D, Wang X, Chen J. An "off-on" fluorescent sensor for copper ion using graphene quantum dots based on oxidation of l-cysteine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:320-325. [PMID: 30798213 DOI: 10.1016/j.saa.2019.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/25/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
A simple and highly efficient "off-on" fluorescent sensor based on grapheme quantum dots (GQDs) for Cu2+ was developed. In this sensing platform, the fluorescence of GQDs was quenched in the presence of 2,4-dinitrophenylcysteine (DNPC), which is the reaction product of 1-chloro-2,4-dinitrobenzene (CDNB) and l-cysteine, owing to the spectral overlap between the absorption of DNPC and the excitation of GQDs. In the presence of Cu2+, l-cysteine was catalytically oxidized to l-cystine by O2, resulting in the reduction of DNPC. Thus, the fluorescence of GQDs was recovery. Based on this, the fluorescent detection of Cu2+ could be achieved. The proposed sensing strategy offered a selective identification of Cu2+ with a detection limit of 4.5 nM. Additionally, the practical application of this assay for Cu2+ determination in real water samples was also demonstrated.
Collapse
Affiliation(s)
- Longhua Ding
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China.
| | - Zhongyao Zhao
- Department of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dongjun Li
- Department of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xue Wang
- Department of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jialin Chen
- Department of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
99
|
Dewangan PK, Khan F, Shrivas K, Sahu V. Determination of uranium in environmental sample by nanosensor graphene quantum dots. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06512-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
100
|
Jiang S, Zhang Y, Yang Y, Huang Y, Ma G, Luo Y, Huang P, Lin J. Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10554-10558. [PMID: 30807088 DOI: 10.1021/acsami.9b00010] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The accurate detection of glucose at cellular level remains a big challenge. In this study, a signal amplification strategy mediated by silver nanocube (AgNC), glucose oxidase (GOx), and silver ion fluorescence probe (denoted as AgNC-GOx/Ag+-FP) is proposed for amplified intracellular glucose detection. The AgNC is oxidized into Ag+ by H2O2 generated from GOx-catalyzed glucose oxidation reaction, and Ag+ remarkably enhances the red fluorescence of Ag+-FP. Our results show that AgNC-GOx/Ag+-FP is highly sensitive and specific to glucose and H2O2. Afterward, the feasibility of using AgNC-GOx/Ag+-FP to detect intracellular glucose is verified in five different cell lines. In summary, a sensitive and specific fluorescence amplification strategy has been developed for intracellular glucose detection.
Collapse
Affiliation(s)
- Shanshan Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Yifan Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Yichen Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Yan Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Gongcheng Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518060 , China
| |
Collapse
|