51
|
Shen Y, Wang H, Fang J, Liu K, Xu X. Novel insights into the mechanisms of hard exudate in diabetic retinopathy: Findings of serum lipidomic and metabolomics profiling. Heliyon 2023; 9:e15123. [PMID: 37089301 PMCID: PMC10119565 DOI: 10.1016/j.heliyon.2023.e15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Objective Retinal hard exudates (HEs) result from lipoproteins leaking from capillaries into extracellular retinal space, and are related to decreased visual acuity in diabetic retinopathy (DR). This study aims to identify differential serum lipids and metabolites associated with HEs. Materials and methods A cross-sectional study was conducted Jul 2017 ∼ Mar 2021. We assessed the amount of HEs using standard ETDRS photographs for comparison. HEs severity was rated as "no or questionable", "moderate" or "severe". Serum samples were processed via high coverage pseudotargeted lipidomics analysis, and untargeted liquid chromatography coupled with time-of-flight mass spectrometry for metabolomics study, respectively. Weighted gene co-expression network analyses, partial least squares-discriminant analysis, and multi-receiver operating characteristic analysis were applied. Results A total of 167 patients were included. Discovery group: 116 eyes (116 patients). Validation group: 51 eyes (51 patients). 888 lipids were detected and divided into 18 modules (MEs), ME1 ∼ ME18. Lipids in ME1 significantly increased in patients with HEs in DR (NPDR and PDR combined), NPDR, and PDR, respectively. ME1 enriched to triglycerides (29%), ceramides (17%), and N-acylethanolamines (15%). A combined model of 20 lipids was the best to discriminate HEs, area under curve = 0.804, 95% confidence interval = 0.674-0.916. For metabolomics analysis, 19 metabolites and 13 pathways associated with HEs were identified. Taurine and hypotaurine metabolism, cysteine and methionine metabolism were closely related to HEs (P < 0.01). Conclusions The lipids and metabolites identified may serve as prediction biomarkers in the early stage of HEs in DR.
Collapse
|
52
|
Stepwise solid phase extraction integrated with chemical derivatization for all-in-one injection LC-MS/MS analysis of metabolome and lipidome. Anal Chim Acta 2023; 1241:340807. [PMID: 36657877 DOI: 10.1016/j.aca.2023.340807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The metabolome and lipidome are critical components in illustrating biological processes and pathological mechanisms. Generally, two or more independent methods are required to analyze the two compound panels due to their distinct chemical properties and polarity differences. Here, a novel strategy integrating stepwise solid-phase extraction (SPE) and dansyl chemical derivatization was proposed for all-in-one injection LC-MS/MS analysis of serum metabolome and lipidome. In this workflow, a stepwise elution procedure was firstly optimized to separate the metabolome and lipidome fractions using an Ostro plate. Dansyl chemical derivatization was then applied to label amine/phenol, carboxyl, and carbonyl-containing sub-metabolomes. Our results demonstrated that the dansyl labeling could significantly improve chromatographic separation, enhance the MS response, and overcome the matrix effect of co-eluting lipids. Ultimately, an all-in-one injection LC-MS/MS method measuring 256 lipids (covering 20 subclasses) and 212 metabolites (including amino acids, bile acids, fatty acids, acylcarnitines, indole derivatives, ketones and aldehydes, nucleic acid metabolism, polyamines, etc.) was established. This method was applied to investigate the metabolic changes in cisplatin-induced nephrotoxicity in rats and the results were compared with previous untargeted metabolomics. The presented strategy could predominantly improve the analytical coverage and throughput and can be of great use in discovering reliable potential biomarkers in various applications.
Collapse
|
53
|
Embracing lipidomics at single-cell resolution: Promises and pitfalls. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
54
|
Wang D, He Z, Liu M, Jin Y, Zhao J, Zhou R, Wu C, Qin J. Exogenous fatty acid renders the improved salt tolerance in Zygosaccharomyces rouxii by altering lipid metabolism. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
55
|
Wang X, Jiang M, Lou J, Zou Y, Liu M, Li Z, Guo D, Yang W. Pseudotargeted Metabolomics Approach Enabling the Classification-Induced Ginsenoside Characterization and Differentiation of Ginseng and Its Compound Formulation Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1735-1747. [PMID: 36632992 DOI: 10.1021/acs.jafc.2c07664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The use of diversified ginseng extracts in health-promoting foods is difficult to differentiate, as they share bioactive ginsenosides among different Panax species (e.g., P. ginseng, P. quinquefolius, P. notoginseng, and P. japonicus) and different parts (e.g., root, leaf, and flower). This work was designed to develop a pseudo-targeted metabolomics approach to discover ginsenoside markers facilitating the precise authentication of ginseng and its use in compound formulation products (CFPs). Versatile mass spectrometry experiments on the QTrap mass spectrometer achieved classified characterization of the neutral, malonyl, and oleanolic acid-type ginsenosides, with 567 components characterized. A pseudo-targeted metabolomics approach by multiple reaction monitoring (MRM) of 262 ion pairs could assist to establish key identification points for 12 ginseng species. The simultaneous detection of 14 markers enabled the identification of ginseng from 15 ginseng-containing CFPs. The pseudo-targeted metabolomics strategy enabled better performance in differentiating among multiple ginseng, compared with the full-scan high-resolution mass spectrometry approach.
Collapse
Affiliation(s)
- Xiaoyan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Jia Lou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Yadan Zou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Meiyu Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Zheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Dean Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai201203, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| |
Collapse
|
56
|
Zandl-Lang M, Plecko B, Köfeler H. Lipidomics-Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021709. [PMID: 36675224 PMCID: PMC9866746 DOI: 10.3390/ijms24021709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Even though the application of Next-Generation Sequencing (NGS) has significantly facilitated the identification of disease-associated mutations, the diagnostic rate of rare diseases is still below 50%. This causes a diagnostic odyssey and prevents specific treatment, as well as genetic counseling for further family planning. Increasing the diagnostic rate and reducing the time to diagnosis in children with unclear disease are crucial for a better patient outcome and improvement of quality of life. In many cases, NGS reveals variants of unknown significance (VUS) that need further investigations. The delineation of novel (lipid) biomarkers is not only crucial to prove the pathogenicity of VUS, but provides surrogate parameters for the monitoring of disease progression and therapeutic interventions. Lipids are essential organic compounds in living organisms, serving as building blocks for cellular membranes, energy storage and signaling molecules. Among other disorders, an imbalance in lipid homeostasis can lead to chronic inflammation, vascular dysfunction and neurodegenerative diseases. Therefore, analyzing lipids in biological samples provides great insight into the underlying functional role of lipids in healthy and disease statuses. The method of choice for lipid analysis and/or huge assemblies of lipids (=lipidome) is mass spectrometry due to its high sensitivity and specificity. Due to the inherent chemical complexity of the lipidome and the consequent challenges associated with analyzing it, progress in the field of lipidomics has lagged behind other omics disciplines. However, compared to the previous decade, the output of publications on lipidomics has increased more than 17-fold within the last decade and has, therefore, become one of the fastest-growing research fields. Combining multiple omics approaches will provide a unique and efficient tool for determining pathogenicity of VUS at the functional level, and thereby identifying rare, as well as novel, genetic disorders by molecular techniques and biochemical analyses.
Collapse
Affiliation(s)
- Martina Zandl-Lang
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Harald Köfeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
57
|
Nutritional lipidomics for the characterization of lipids in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516469 DOI: 10.1016/bs.afnr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.
Collapse
|
58
|
Bi J, Li Y, Yang Z, Li B, Gao Y, Ping C, Chen Z. Analysis of the effect of steaming times on lipid composition of pork belly based on lipidomics technology. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
59
|
Sun Y, Yao Z, Ye Y, Fang J, Chen H, Lyu Y, Broad W, Fournier M, Chen G, Hu Y, Mohammed S, Ling Q, Jarvis RP. Ubiquitin-based pathway acts inside chloroplasts to regulate photosynthesis. SCIENCE ADVANCES 2022; 8:eabq7352. [PMID: 36383657 PMCID: PMC9668298 DOI: 10.1126/sciadv.abq7352] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Photosynthesis is the energetic basis for most life on Earth, and in plants it operates inside double membrane-bound organelles called chloroplasts. The photosynthetic apparatus comprises numerous proteins encoded by the nuclear and organellar genomes. Maintenance of this apparatus requires the action of internal chloroplast proteases, but a role for the nucleocytosolic ubiquitin-proteasome system (UPS) was not expected, owing to the barrier presented by the double-membrane envelope. Here, we show that photosynthesis proteins (including those encoded internally by chloroplast genes) are ubiquitinated and processed via the CHLORAD pathway: They are degraded by the 26S proteasome following CDC48-dependent retrotranslocation to the cytosol. This demonstrates that the reach of the UPS extends to the interior of endosymbiotically derived chloroplasts, where it acts to regulate photosynthesis, arguably the most fundamental process of life.
Collapse
Affiliation(s)
- Yi Sun
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Zujie Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Fang
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Yuping Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - William Broad
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Marjorie Fournier
- Advanced Proteomics Facility, University of Oxford, Oxford OX1 3QU, UK
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Hu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Corresponding author. (Q.L.); (R.P.J.)
| | - R. Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Corresponding author. (Q.L.); (R.P.J.)
| |
Collapse
|
60
|
Deng J, Feng D, Jia X, Zhai S, Liu Y, Gao N, Zhang X, Li M, Lu M, Liu C, Dang S, Shi J. Efficacy and mechanism of intermittent fasting in metabolic associated fatty liver disease based on ultraperformance liquid chromatography-tandem mass spectrometry. Front Nutr 2022; 9:838091. [PMID: 36451744 PMCID: PMC9704542 DOI: 10.3389/fnut.2022.838091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES Drug treatment of metabolic associated fatty liver disease (MAFLD) remains lacking. This study analyzes the efficacy and mechanism underlying intermittent fasting combined with lipidomics. METHODS Thirty-two male rats were randomly divided into three groups: Normal group, administered a standard diet; MAFLD group, administered a 60% high-fat diet; time-restricted feeding (TRF) group, administered a 60% high-fat diet. Eating was allowed for 6 h per day (16:00-22:00). After 15 weeks, liver lipidomics and other indicators were compared. RESULTS A total of 1,062 metabolites were detected. Compared with the Normal group, the weight, body fat ratio, aspartate aminotransferase, total cholesterol, low-density cholesterol, fasting blood glucose, uric acid, and levels of 317 lipids including triglycerides (TG) (17:0-18:1-20:4) were upregulated, whereas the levels of 265 lipids including phosphatidyl ethanolamine (PE) (17:0-20:5) were downregulated in the MAFLD group (P < 0.05). Compared with the MAFLD group, the weight, body fat ratio, daily food intake, and levels of 253 lipids including TG (17:0-18:1-22:5) were lower in the TRF group. Furthermore, the levels of 82 lipids including phosphatidylcholine (PC) (20:4-22:6) were upregulated in the TRF group (P < 0.05), while serum TG level was increased; however, the increase was not significant (P > 0.05). Enrichment analysis of differential metabolites showed that the pathways associated with the observed changes mainly included metabolic pathways, regulation of lipolysis in adipocytes, and fat digestion and absorption, while reverse-transcription polymerase chain reaction showed that TRF improved the abnormal expression of FAS and PPARα genes in the MAFLD group (P < 0.05). CONCLUSION Our results suggest that 6 h of TRF can improve MAFLD via reducing food intake by 13% and improving the expression of genes in the PPARα/FAS pathway, thereby providing insights into the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Jiang Deng
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dandan Feng
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Jia
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Song Zhai
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Liu
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Gao
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Li
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengnan Lu
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenrui Liu
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuangsuo Dang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juanjuan Shi
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
61
|
Wu C, Dai C, Li X, Sun M, Chu H, Xuan Q, Yin Y, Fang C, Yang F, Jiang Z, Lv Q, He K, Qu Y, Zhao B, Cai K, Zhang S, Sun R, Xu G, Zhang L, Sun S, Liu Y. AKR1C3-dependent lipid droplet formation confers hepatocellular carcinoma cell adaptability to targeted therapy. Am J Cancer Res 2022; 12:7681-7698. [PMID: 36451864 PMCID: PMC9706585 DOI: 10.7150/thno.74974] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: Increased lipid droplet (LD) formation has been linked to tumor metastasis, stemness, and chemoresistance in various types of cancer. Here, we revealed that LD formation is critical for the adaptation to sorafenib in hepatocellular carcinoma (HCC) cells. We aim to investigate the LD function and its regulatory mechanisms in HCC. Methods: The key proteins responsible for LD formation were screened by both metabolomics and proteomics in sorafenib-resistant HCC cells and further validated by immunoblotting and immunofluorescence staining. Biological function of AKR1C3 was evaluated by CRISPR/Cas9-based gene editing. Isotopic tracing analysis with deuterium3-labeled palmitate or carbon13-labeled glucose was conducted to investigate fatty acid (FA) and glucose carbon flux. Seahorse analysis was performed to assess the glycolytic flux and mitochondrial function. Selective AKR1C3 inhibitors were used to evaluate the effect of AKR1C3 inhibition on HCC tumor growth and induction of autophagy. Results: We found that long-term sorafenib treatment impairs fatty acid oxidation (FAO), leading to LD accumulation in HCC cells. Using multi-omics analysis in cultured HCC cells, we identified that aldo-keto reductase AKR1C3 is responsible for LD accumulation in HCC. Genetic loss of AKR1C3 fully depletes LD contents, navigating FA flux to phospholipids, sphingolipids, and mitochondria. Furthermore, we found that AKR1C3-dependent LD accumulation is required for mitigating sorafenib-induced mitochondrial lipotoxicity and dysfunction. Pharmacologic inhibition of AKR1C3 activity instantly induces autophagy-dependent LD catabolism, resulting in mitochondrial fission and apoptosis in sorafenib-resistant HCC clones. Notably, manipulation of AKR1C3 expression is sufficient to drive the metabolic switch between FAO and glycolysis. Conclusions: Our findings revealed that AKR1C3-dependent LD formation is critical for the adaptation to sorafenib in HCC through regulating lipid and energy homeostasis. AKR1C3-dependent LD accumulation protects HCC cells from sorafenib-induced mitochondrial lipotoxicity by regulating lipophagy. Targeting AKR1C3 might be a promising therapeutic strategy for HCC tumors.
Collapse
Affiliation(s)
- Changqing Wu
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chaoliu Dai
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinyu Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China.,Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mingju Sun
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongwei Chu
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiuhui Xuan
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yalei Yin
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chengnan Fang
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhonghao Jiang
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qing Lv
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China.,Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Keqing He
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yiying Qu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China.,Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Baofeng Zhao
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ke Cai
- School of Life Science, Dalian University, Dalian 116023, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ran Sun
- National Engineering Laboratory for Internet Medical System and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guowang Xu
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China.,✉ Corresponding authors: Siyu Sun, M.D. Ph.D. Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China. 36 Sanhao St. Shenyang, 110004, China; Tel: 86-24-23392617; Fax: 86-24-23392617; . Yang Liu, Ph.D. Department of Gastroenterology, Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University. 36 Sanhao St. Shenyang, 110004, China; Tel: 86-24-88483780; Fax: 86-24-88483780;
| | - Yang Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China.,Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China.,(CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,✉ Corresponding authors: Siyu Sun, M.D. Ph.D. Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China. 36 Sanhao St. Shenyang, 110004, China; Tel: 86-24-23392617; Fax: 86-24-23392617; . Yang Liu, Ph.D. Department of Gastroenterology, Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University. 36 Sanhao St. Shenyang, 110004, China; Tel: 86-24-88483780; Fax: 86-24-88483780;
| |
Collapse
|
62
|
Wu Y, Chen K, Li L, Hao Z, Wang T, Liu Y, Xing G, Liu Z, Li H, Yuan H, Lu J, Zhang C, Zhang J, Zhao D, Wang J, Nie J, Ye D, Pan G, Chan WY, Liu X. Plin2-mediated lipid droplet mobilization accelerates exit from pluripotency by lipidomic remodeling and histone acetylation. Cell Death Differ 2022; 29:2316-2331. [PMID: 35614132 PMCID: PMC9613632 DOI: 10.1038/s41418-022-01018-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/29/2022] Open
Abstract
Metabolic switch is critical for cell fate determination through metabolic functions, epigenetic modifications, and gene expression. However, the mechanisms underlying these alterations and their functional roles remain unclear. Here, we show that Plin2-mediated moderate lipid hydrolysis is critical for pluripotency of embryonic stem cells (ESCs). Upon exit from pluripotency, lipid droplet (LD)-associated protein Plin2 is recognized by Hsc70 and degraded via chaperone-mediated autophagy to facilitate LD mobilization. Enhancing lipid hydrolysis by Plin2 knockout promotes pluripotency exit, which is recovered by ATGL inhibition. Mechanistically, excessive lipid hydrolysis induces a dramatic lipidomic remodeling characterized by decreased cardiolipin and phosphatidylethanolamine, which triggers defects in mitochondrial cristae and fatty acid oxidation, resulting in reduced acetyl-CoA and histone acetylation. Our results reveal how LD mobilization is regulated and its critical role in ESC pluripotency, and indicate the mechanism linking LD homeostasis to mitochondrial remodeling and epigenetic regulation, which might shed light on development and diseases.
Collapse
Affiliation(s)
- Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linpeng Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhihong Hao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangsuo Xing
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zichao Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hao Yuan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianghuan Lu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | | - Danyun Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinfu Nie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dan Ye
- Fudan University, Shanghai, 200433, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wai-Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
63
|
Ye X, Zhu B, Chen Y, Wang Y, Wang D, Zhao Z, Li Z. Integrated Metabolomics and Lipidomics Approach for the Study of Metabolic Network and Early Diagnosis in Cerebral Infarction. J Proteome Res 2022; 21:2635-2646. [PMID: 36264770 DOI: 10.1021/acs.jproteome.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebral infarction (CI) remains a major cause of high mortality and long-term disability worldwide. The exploration of biomarkers and pathogenesis is crucial for the early diagnosis of CI. Although the understanding of metabolic perturbations underlying CI has increased in recent years, the relationship between altered metabolites and disease pathogenesis has only been partially elucidated and requires further investigation. In this study, we performed an integrated metabolomics and lipidomics analysis on 59 healthy subjects and 47 CI patients. Ultimately, 49 metabolite and 68 lipid biomarkers were identified and enriched in 24 disturbed pathways. The metabolic network revealed a significant interaction between altered lipids and other metabolites. Using receiver operating characteristic curve (ROC) analysis, a panel of three polar metabolites and seven lipids was optimized in the training set, which included taurine, oleoylcarnitine, creatinine, PE(22:6/P-18:0), Cer 34:2, GlcCer(d18:0/18:0), DG 44:0, LysoPC(16:0), 22:6-OH/LysoPC, and TAG58:7-FA22:4. Subsequently, a support vector machine (SVM) model was constructed and validated, which showed excellent predictive ability in the validation set. Thereby, the integrated metabolomics and lipidomics approach could contribute to a comprehensive understanding of the metabolic dyshomeostasis associated with the pathogenesis of underlying CI. The present research may promote a deeper understanding and early diagnosis of CI in the clinic. All raw data were deposited in PRIDE (PXD036199).
Collapse
Affiliation(s)
- Xinxin Ye
- Department of Chemistry, Capital Normal University, No. 105, West Third Ring Road North, Haidian District, Beijing 100048, P. R. China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing 100070, P. R. China
| | - Yang Chen
- Department of Chemistry, Capital Normal University, No. 105, West Third Ring Road North, Haidian District, Beijing 100048, P. R. China
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal University, No. 105, West Third Ring Road North, Haidian District, Beijing 100048, P. R. China
| | - Dan Wang
- Department of Chemistry, Capital Normal University, No. 105, West Third Ring Road North, Haidian District, Beijing 100048, P. R. China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing 100070, P. R. China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, No. 105, West Third Ring Road North, Haidian District, Beijing 100048, P. R. China
| |
Collapse
|
64
|
Xie L, Yuan Y, Xu S, Lu S, Gu J, Wang Y, Wang Y, Zhang X, Chen S, Li J, Lu J, Sun H, Hu R, Piao H, Wang W, Wang C, Wang J, Li N, White MF, Han L, Jia W, Miao J, Liu J. Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex. Cell Rep 2022; 41:111498. [PMID: 36261001 PMCID: PMC10153649 DOI: 10.1016/j.celrep.2022.111498] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Copper deficiency has emerged to be associated with various lipid metabolism diseases, including non-alcoholic fatty liver disease (NAFLD). However, the mechanisms that dictate the association between copper deficiency and metabolic diseases remain obscure. Here, we reveal that copper restoration caused by hepatic ceruloplasmin (Cp) ablation enhances lipid catabolism by promoting the assembly of copper-load SCO1-LKB1-AMPK complex. Overnutrition-mediated Cp elevation results in hepatic copper loss, whereas Cp ablation restores copper content to the normal level without eliciting detectable hepatotoxicity and ameliorates NAFLD in mice. Mechanistically, SCO1 constitutively interacts with LKB1 even in the absence of copper, and copper-loaded SCO1 directly tethers LKB1 to AMPK, thereby activating AMPK and consequently promoting mitochondrial biogenesis and fatty acid oxidation. Therefore, this study reveals a mechanism by which copper, as a signaling molecule, improves hepatic lipid catabolism, and it indicates that targeting copper-SCO1-AMPK signaling pathway ameliorates NAFLD development by modulating AMPK activity.
Collapse
Affiliation(s)
- Liping Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Simiao Xu
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02215, USA; Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, Hubei 430030, China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200042, China
| | - Yanping Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sports, Shanghai 200438, China
| | - Xianjing Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Li
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Honglin Sun
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ruixiang Hu
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Morris F White
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Liu Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
65
|
Chen H, Li Y, Yi P, Cao H, Wang Q, Zhao X. Dietary Interventions of Salmon and Silver Carp Phospholipids on Mice with Metabolic Syndrome Based on Lipidomics. Cells 2022; 11:3199. [PMID: 36291067 PMCID: PMC9601277 DOI: 10.3390/cells11203199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 04/26/2024] Open
Abstract
The number of metabolic syndromes (MetS) is increasing, and a fish phospholipid diet can reduce the risk of MetS. In this study, the changes in lipid metabolism of colon contents were analyzed by extensive lipidomics in mice with metabolic syndrome by fish phospholipid diet, and mice were randomly divided into experimental groups with different diet types by establishing a MetS model. After 14 weeks, the mice were sacrificed and the serum and colon contents were collected. Ultra-high liquid phase tandem mass spectrometry was used for broadly targeted lipidomic analysis, and the qualitative and quantitative detection of lipid metabolism changes in the colonic contents of mice. Under the intervention of fish phospholipids, MetS mice were significantly inhibited, serum total cholesterol (TC) and triglycerides (TG) decreased, serum high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) levels were improved, fasting blood glucose and insulin levels decreased, and inflammatory factors decreased. Through screening, it was found that thirty-three lipid metabolites may be key metabolites and five have significantly changed metabolic pathways. Modularizing lipid metabolites, it is possible to understand the extent to which different types and concentrations of fish phospholipids affect metabolic syndrome. Therefore, our study may provide new therapeutic clues for improving MetS.
Collapse
Affiliation(s)
- Hongbiao Chen
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yun Li
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Kindstar Global Precision Medicine Institute, Wuhan 430223, China
| | - Ping Yi
- Kindstar Global Precision Medicine Institute, Wuhan 430223, China
| | - Hui Cao
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Wang
- School of Food Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuju Zhao
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
66
|
Improved Extraction and Detection Method for Bisphenols Using Stable Isotope Labeling Technique. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
67
|
Chen B, Sun L, Zeng G, Shen Z, Wang K, Yin L, Xu F, Wang P, Ding Y, Nie Q, Wu Q, Zhang Z, Xia J, Lin J, Luo Y, Cai J, Krausz KW, Zheng R, Xue Y, Zheng MH, Li Y, Yu C, Gonzalez FJ, Jiang C. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature 2022; 610:562-568. [PMID: 36261549 PMCID: PMC9589931 DOI: 10.1038/s41586-022-05299-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2022] [Indexed: 01/04/2023]
Abstract
Tobacco smoking is positively correlated with non-alcoholic fatty liver disease (NAFLD)1-5, but the underlying mechanism for this association is unclear. Here we report that nicotine accumulates in the intestine during tobacco smoking and activates intestinal AMPKα. We identify the gut bacterium Bacteroides xylanisolvens as an effective nicotine degrader. Colonization of B. xylanisolvens reduces intestinal nicotine concentrations in nicotine-exposed mice, and it improves nicotine-exacerbated NAFLD progression. Mechanistically, AMPKα promotes the phosphorylation of sphingomyelin phosphodiesterase 3 (SMPD3), stabilizing the latter and therefore increasing intestinal ceramide formation, which contributes to NAFLD progression to non-alcoholic steatohepatitis (NASH). Our results establish a role for intestinal nicotine accumulation in NAFLD progression and reveal an endogenous bacterium in the human intestine with the ability to metabolize nicotine. These findings suggest a possible route to reduce tobacco smoking-exacerbated NAFLD progression.
Collapse
Affiliation(s)
- Bo Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Limin Yin
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Pengcheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Qing Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Yang Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. .,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China. .,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China. .,The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China.
| |
Collapse
|
68
|
Liu Z, Shao J, Lai S, Wang J, Zhao K, Tang T, Wang M. The Use of Metabolomics as a Tool to Compare the Regulatory Mechanisms in the Cecum, Ileum, and Jejunum in Healthy Rabbits and with Diarrhea. Animals (Basel) 2022; 12:ani12182438. [PMID: 36139297 PMCID: PMC9495174 DOI: 10.3390/ani12182438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The problems caused by antibiotic abuse have swept the world, and the Chinese government has responded to calls for a comprehensive ban on antibiotics. However, not using antibiotics also challenges China’s existing livestock industry. Based on this, we carried out a nontargeted metabolomics analysis of the jejunum, ileum, and cecum of diarrhea rabbits and normal rabbits fed with antibiotic-free diets, respectively, to find out the mechanism of action of each intestinal segment group and between different intestinal segments. The screened differential metabolites were mostly related to intestinal barrier, intestinal inflammation, and autophagy after a KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. In this paper, we analyzed the metabolic pathways that were significantly different between different intestinal segments and illustrated the mechanism and potential connections of the screened differential metabolites in different intestinal segments in the form of charts. Abstract For many years, antibiotics in feed have been an effective and economical means to promote growth and disease resistance in livestock production. However, the rampant abuse of antibiotics has also brought very serious harm to human health and the environment. Therefore, the Chinese government promulgated laws and regulations on 1 July 2020, to prohibit the use of antibiotics in feed. To improve the effect of antibiotic-free feeding on China’s existing rabbit industry, we used the nontargeted metabolomics method to detect the differences between diarrhea rabbits (Dia) and normal rabbits (Con) on an antibiotic-free diet. A total of 1902 different metabolites were identified. A KEGG analysis showed that in the cecum, metabolites were mainly concentrated in bile secretion, antifolate resistance, aldosterone synthesis, and secretion pathways. The ileal metabolites were mainly concentrated in tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, steroid hormone biosynthesis, alanine, aspartate, and glutamate metabolism. The metabolites in the jejunum were mainly rich in panquinone and other terpenoid compound quinone biosynthesis, AMPK (adenosine 5′-monophosphate (AMP)-activated protein kinase) signal, inositol phosphate metabolism, and pentose phosphate pathway. After a deep excavation of the discovered differential metabolites and metabolic pathways with large differences between groups, it was found that these metabolic pathways mainly involved intestinal inflammation, intestinal barrier, and autophagy. The results showed that panquinone and other terpenoids could increase AMPK activity to promote cell metabolism and autophagy, thus trying to prevent inflammation and alleviate intestinal disease symptoms. In addition, we discussed the possible reasons for the changes in the levels of seven intestinal endogenous metabolites in rabbits in the diarrhea group. The possibility of improving diarrhea by adding amino acids to feed was discussed. In addition, the intermediate products produced by the pentose phosphate pathway and coenzyme Q had a positive effect on steroid hormone biosynthesis to combat intestinal inflammation.
Collapse
Affiliation(s)
- Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
69
|
The Pseudotargeted Metabolomics Study on the Toxicity of Fuzi Using Ultraperformance Liquid Chromatography Tandem Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6539675. [PMID: 36147648 PMCID: PMC9489361 DOI: 10.1155/2022/6539675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/17/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Fuzi is commonly used in traditional Chinese medicine. Clinical Fuzi poisoning cases have frequently been reported. Glycyrrhizae Radix is often used to alleviate Fuzi’s toxicity. However, the poisoning mechanism of Fuzi and the detoxication mechanism of Glycyrrhizae Radix are still not clear. We identified the chemical components of Fuzi at different decoction times (0.5, 1, 2, 4, and 6 h) using ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 35 compounds were detected in the Fuzi decoction, including diester alkaloids, monoester alkaloids, amino acids, phenolic acids, organic acids, glycosides, and sugars among others. The content of diester alkaloids (i.e., subaconitine, neoaconitine, and aconitine) in the Fuzi decoction decreased after 2 h of decoction time, while the content of monoester alkaloids (i.e., benzoyl aconitine and benzoyl subaconitine) reached a peak at 2 h. A total of 32 rats were randomly divided into four groups, including 8 cases in the low-dosage Fuzi decoction group A, 8 cases in the high-dosage Fuzi decoction group B, 8 cases in the Fuzi and glycyrrhizae decoction group C, and 8 cases in the control group D. The decoction was administered orally for 7 days. Then, a serum was obtained. The metabolites’ changes were analyzed in serum metabolomics using liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Statistical analysis and pathway analysis were used to assess the effects of glycyrrhizae on the metabolic changes induced by Fuzi. The behavioral and biochemical characteristics indicated that Fuzi exhibited toxic effects on rats and their metabolic profiles changed. However, the metabolic profiles of the glycyrrhizae group became similar to those of the control group. These profiles showed that glycyrrhizae can effectively improve Fuzi poisoning rats. Our study demonstrated that the established pseudotargeted metabolomics is a powerful approach for investigating the mechanisms of herbal toxicity.
Collapse
|
70
|
Wu F, Wu X, Chi C, Ding CF. Simultaneous Differentiation of C═C Position Isomerism in Fatty Acids through Ion Mobility and Theoretical Calculations. Anal Chem 2022; 94:12213-12220. [PMID: 36008361 DOI: 10.1021/acs.analchem.2c02706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acids play a pivotal role in biological processes and have many isomers, particularly at the C═C position, that influence their biological function. Distinguishing between isomers is crucial to investigating their role in health and disease. However, separating the isomers poses a significant analytical challenge. In this study, we developed a simple and rapid strategy combining ion mobility spectrometry and theoretical chemical calculations to differentiate and quantify the C═C positional isomers in 2-/3-butenoic acid (BA), 2-/3-/4-pentenoic acid (PA), and 2-/3-/5-hexenoic acid (HA). C═C positional isomerism was mobility-differentiated by simple complexation with crown ethers (12C4, 15C5, and 18C6) and divalent metal ions (Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Sr2+, and Ba2+), that is, converting C═C positional isomers with small structural differences into complexes with large structural differences through the interaction with metal ions and crown ethers. Metallized isomers were formed but could not be differentiated due to their complex and overlapping extracted ion mobiliograms (EIMs). Binary crown ether-isomer complexes were not observed, indicating that C═C positional isomers could not be separated by simple mixing with crown ethers. However, significant EIM differences were obtained for the formed ternary complexes, allowing baseline separation for the isomers. Notably, all crown ethers and metal ions have a separation effect with the isomers, with a calculated separation resolution (Rp-p) of 0.07-2.44. Theoretical chemical calculations were performed to provide in-depth structural information for the complexes and explain the separation principle. Theoretical conformational space showed that the divalent metal ions act as a bridge connecting the crown ether and the isomer. Additionally, the ternary complex becomes more compact as the distance between C═C and -COOH increases. Theoretical results can reflect the features of mobility experiments, with relative errors between the experiment collision cross-section (CCS) and theoretical CCS of no more than ±8.06%. This method was also evaluated in terms of quantification, accuracy, and precision repeatability. Overall, this study establishes that the crown ether-metal ion pair can function as a robust unit for differentiating C═C positional isomerism.
Collapse
Affiliation(s)
- Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xishi Wu
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningo, Zhejiang 315201, China
| | - Chaoxian Chi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
71
|
Xu Y, Wang X, Han D, Wang J, Luo Z, Jin T, Shi C, Zhou X, Lin L, Shan J. Revealing the mechanism of Jiegeng decoction attenuates bleomycin-induced pulmonary fibrosis via PI3K/Akt signaling pathway based on lipidomics and transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154207. [PMID: 35660351 DOI: 10.1016/j.phymed.2022.154207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a serious lung disease with unknown etiology and irreversible course. Jiegeng decoction (JGD), a traditional prescription, is widely used to treat lung diseases due to its anti-inflammatory and expectorant effects. PURPOSE To explore the effect of JGD on mice with PF and its underlying mechanism. For this purpose, we established a mouse model with PF by bleomycin (BLM) and then administered JGD and pirfenidone at different concentrations. RESULTS In vivo, JGD was found to reduce lung inflammation, improve lung function and decrease collagen deposition to alleviate bleomycin-induced PF in mice. The mouse lung tissue was analyzed using lipidomics and transcriptomics. We found phosphatidylinositol was decreased after JGD treatment in lipidomics results, while transcriptomics results showed the critical roles of PI3K/Akt signaling pathway in JGD treatment group. Then, Western Blot and Immunohistochemistry were used to validate that JGD may regulate the expression of Bax, Caspase3, Caspase8, Caspase9 and Bcl-2 apoptosis-related proteins via PI3K/Akt signaling pathway. TUNEL staining revealed that apoptosis mainly occurs on AEC IIs. CONCLUSION Our results showed that JGD inhibits apoptosis through the PI3K/Akt signaling pathway, thereby protecting against BLM-induced PF. Hence, JGD is expected to be a potential drug candidate for the treatment of PF.
Collapse
Affiliation(s)
- Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Junyi Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianzi Jin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Shi
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
72
|
Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab 2022; 4:932-943. [PMID: 35817856 DOI: 10.1038/s42255-022-00601-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Methanol is an ideal feedstock for biomanufacturing that can be beneficial for global carbon neutrality; however, the toxicity of methanol limits the efficiency of methanol metabolism toward biochemical production. We here show that engineering production of free fatty acids from sole methanol results in cell death with decreased cellular levels of phospholipids in the methylotrophic yeast Ogataea polymorpha, and cell growth is restored by adaptive laboratory evolution. Whole-genome sequencing of the adapted strains reveals that inactivation of LPL1 (encoding a putative lipase) and IZH3 (encoding a membrane protein related to zinc metabolism) preserve cell survival by restoring phospholipid metabolism. Engineering the pentose phosphate pathway and gluconeogenesis enables high-level production of free fatty acid (15.9 g l-1) from sole methanol. Preventing methanol-associated toxicity underscores the link between lipid metabolism and methanol tolerance, which should contribute to enhancing methanol-based biomanufacturing.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
| |
Collapse
|
73
|
Lou J, Lu H, Wang W, He S, Zhu L. Quantitative identification of halo-methyl-benzoquinones as disinfection byproducts in drinking water using a pseudo-targeted LC-MS/MS method. WATER RESEARCH 2022; 218:118466. [PMID: 35483207 DOI: 10.1016/j.watres.2022.118466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Halobenzoquinones (HBQs) as disinfection byproducts (DBPs) in drinking water is prioritized for research due to their prevalent occurrence and high toxicity. However, only fifteen HBQs can be identified among a high diversity using targeted LC-MS/MS analysis in previous studies due to the lack of chemical standards. In this study, we developed a pseudo-targeted LC-MS/MS method for detecting and quantifying diverse HBQs. Distinct fragment characteristics of HBQs was observed according to the halogen substituent effects, and extended to the development of a multiple-reaction-monitoring (MRM) method for the quantification of the 46 HBQs that were observed in simulated drinking water using non-targeted analysis. The fragmentation mechanism was supported by the changes of Gibbs free energy (ΔG), and a linear relationship between the ΔG and the ionization efficiency of analytes was developed accordingly for quantification of these 46 HBQs, 30 of which were lack of chemical standards. It is noted that 29 of the 30 newly-identified HBQs were halo-methyl-benzoquinones (HMBQs), which were predicted to be carcinogens related with drinking-water bladder cancer risk and be more toxic than non-methyl HBQs. Using the new method, twelve HMBQs were detected in actual drinking water samples with concentrations up to 100.4 ng/L, 3 times higher than that reported previously. The cytotoxicity in CHO cells of HMBQs was over 1-fold higher than that of non-methyl-HBQs. Therefore, HMBQs are an essential, highly toxic group of HBQs in drinking water, which deserve particular monitoring and control.
Collapse
Affiliation(s)
- Jinxiu Lou
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Shichong He
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Lizhong Zhu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
74
|
Cao H, Chen SF, Wang ZC, Dong XJ, Wang RR, Lin H, Wang Q, Zhao XJ. Intervention of 4% salmon phospholipid on metabolic syndrome in mice based on colonic lipidomics analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3088-3098. [PMID: 34775620 DOI: 10.1002/jsfa.11649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The incidence of metabolic syndrome (MetS) is increasing, and n-3 polyunsaturated fatty acids (PUFAs) in salmon (Oncorhynchus) phospholipids can effectively reduce the risk of MetS. RESULTS Under the intervention of 4% salmon phospholipid, the levels of fasting blood glucose (FBG), insulin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly reduced in the plasma of MetS mice, whereas adiponectin was significantly increased. By screening, we found that the 18 differential metabolites, consisting of seven triglycerides (TGs), six diglycerides (DGs), one phosphatidylethanolamine (PE), three sphingomyelins (SMs) and one eicosanoid, could be the key differential metabolites, and two metabolic pathways were significantly affected: glycerolipid metabolism and glycerophospholipid metabolism. CONCLUSION 4% salmon phospholipids could affect MetS by inhibiting insulin resistance, reducing inflammatory factors and promoting the synthesis of PE, yet the mechanism required further study. Our results could help in the treatment of MetS. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Cao
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Shu-Fen Chen
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | | | - Xin-Jie Dong
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Ran-Ran Wang
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Hong Lin
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Qi Wang
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiu-Ju Zhao
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| |
Collapse
|
75
|
Wang T, Ye Y, Ji J, Zhang S, Yang X, Xu J, Wang JS, Chen Z, Xia B, Shen H, Xia R, Shi W, Sun X. Astilbin from Smilax glabra Roxb. alleviates high-fat diet-induced metabolic dysfunction. Food Funct 2022; 13:5023-5036. [PMID: 35388843 DOI: 10.1039/d2fo00060a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Overweight, obesity, and related diseases are currently the major public health problems worldwide. Astilbin, extracted from the rhizome of Smilax glabra Roxb., is known to have significant anti-inflammatory activity and hepatoprotective effect. Studies have shown that it can inhibit adipogenesis in adipocytes in vitro; however, the intervention benefits of astilbin against obesity and related diseases along with its associated mechanisms remain unknown. This study aimed to demonstrate the impact of astilbin consumption on the overall biochemical pattern of high-fat diet (HFD) mice by using a combined multi-omics approach. Our data indicated that astilbin reduced body weight, insulin resistance, and inflammation in mice fed an HFD. Astilbin improved HFD-induced gut microbial dysbiosis by decreasing the Firmicutes-to-Bacteroidetes ratio, by increasing beneficial bacteria such as Alistipes and Muribaculum and decreasing harmful bacteria including Lachnospiraceae FCS020 group, Coriobacteriaceae UCG-002, and Lachnospiraceae UCG-008, resulting in enhanced intestinal carbohydrate and lipid metabolism. Meanwhile, astilbin protected the integrity of the intestinal barrier in HFD mice, increased short-chain fatty acid levels, and reduced metabolic endotoxemia. We further showed that astilbin attenuated hepatic lipid droplet aggregation and triglyceride accumulation in HFD mice, affected glutamate metabolism-related pathways, and enhanced hepatic ATP transduction pathways and attenuated xanthine metabolism pathways in mice, which were positively correlated with the abundance of Alistipes and negatively correlated with Ruminococcaceae UCG-003. The results highlighted that astilbin could be used as a prebiotic for the prevention of "gut-liver axis" damage and metabolic disruption in obese individuals.
Collapse
Affiliation(s)
- Tingwei Wang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yongli Ye
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Shuang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 999078, China
| | - Xingxing Yang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jiayuan Xu
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Zhiyuan Chen
- College of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Bangen Xia
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, 315000, China
| | - Hongfang Shen
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, 315000, China
| | - Ruowei Xia
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, 315000, China
| | - Wenqin Shi
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, 315000, China
| | - Xiulan Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
76
|
Yang XH, Wang FF, Chi XS, Wang XM, Cong JP, Hu Y, Zhang YZ. Disturbance of serum lipid metabolites and potential biomarkers in the Bleomycin model of pulmonary fibrosis in young mice. BMC Pulm Med 2022; 22:176. [PMID: 35509094 PMCID: PMC9066762 DOI: 10.1186/s12890-022-01972-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background Altered metabolic pathways have recently been considered as potential drivers of idiopathic pulmonary fibrosis (IPF) for the study of drug therapeutic targets. However, our understanding of the metabolite profile during IPF formation is lacking. Methods To comprehensively characterize the metabolic disorders of IPF, a mouse IPF model was constructed by intratracheal injection of bleomycin into C57BL/6J male mice, and lung tissues from IPF mice at 7 days, 14 days, and controls were analyzed by pathology, immunohistochemistry, and Western Blots. Meanwhile, serum metabolite detections were conducted in IPF mice using LC–ESI–MS/MS, KEGG metabolic pathway analysis was applied to the differential metabolites, and biomarkers were screened using machine learning algorithms. Results We analyzed the levels of 1465 metabolites and found that more than one-third of the metabolites were altered during IPF formation. There were 504 and 565 metabolites that differed between M7 and M14 and controls, respectively, while 201 differential metabolites were found between M7 and M14. In IPF mouse sera, about 80% of differential metabolite expression was downregulated. Lipids accounted for more than 80% of the differential metabolite species with down-regulated expression. The KEGG pathway enrichment analysis of differential metabolites was mainly enriched to pathways such as the metabolism of glycerolipids and glycerophospholipids. Eight metabolites were screened by a machine learning random forest model, and receiver operating characteristic curves (ROC) assessed them as ideal diagnostic tools. Conclusions In conclusion, we have identified disturbances in serum lipid metabolism associated with the formation of pulmonary fibrosis, contributing to the understanding of the pathogenesis of pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01972-6.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fang-Fang Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiao-Sa Chi
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiao-Meng Wang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Jin-Peng Cong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yi Hu
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yu-Zhu Zhang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
77
|
Lv W, Zeng Z, Zhang Y, Wang Q, Wang L, Zhang Z, Shi X, Zhao X, Xu G. Comprehensive metabolite quantitative assay based on alternate metabolomics and lipidomics analyses. Anal Chim Acta 2022; 1215:339979. [DOI: 10.1016/j.aca.2022.339979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
|
78
|
Liu X, Zhang H, Si Y, Du Y, Wu J, Li J. High-coverage lipidomics analysis reveals biomarkers for diagnosis of acute exacerbation of chronic obstructive pulmonary disease. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1201-1202:123278. [DOI: 10.1016/j.jchromb.2022.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
|
79
|
Wang T, Ye Y, Ji J, Yang X, Xu J, Wang JS, Han X, Zhang T, Sun X. Diet composition affects long-term zearalenone exposure on the gut-blood-liver axis metabolic dysfunction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113466. [PMID: 35390688 DOI: 10.1016/j.ecoenv.2022.113466] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Zearalenone (ZEN), one of the most contaminated Fusarium toxins worldwide, is very common in contaminating wheat, corn oil and other foods. People are more vulnerable to ZEN exposure with more daily caloric intake, yet little is known about the combined effect of different dietary patterns with mycotoxins. This study aimed to compare the effects of long-term ZEN exposure on the overall biochemical landscape of the "gut-blood-liver axis" under normal diet and high-fat diet (HFD) using a combined multi-omics approach. The results indicated that ZEN exposure, possibly via the phenylalanine metabolic pathway, led to dysbiosis of mouse flora, suppression of short-chain fatty acids (SCFAS) metabolism, systemic inflammatory responses, and disturbances in serum and liver metabolism, which were exacerbated in synergy with HFD and ultimately led to a more severe state of lipid metabolism in the liver. We further found that ZEN exposure attenuated the indole-3-propionic acid (IPA) metabolic pathway, enhanced 2-hydroxybutyric acid metabolism in serum, and attenuated β-alanine metabolism in liver which was positively correlated with the abundance of Prevotellaceae UCG-004, Prevotellaceae UCG-001, and Prevotellaceae NK3B31 groups. The results highlighted the damaging effects of ZEN on the gut-blood-liver axis under different dietary patterns, which might serve as a reference for future studies exploring the combined effects of fungal toxins and multiple dietary patterns.
Collapse
Affiliation(s)
- Tingwei Wang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingxing Yang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiayuan Xu
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xiaomin Han
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Ting Zhang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xiulan Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
80
|
Ning Z, Guo X, Liu X, Lu C, Wang A, Wang X, Wang W, Chen H, Qin W, Liu X, Zhou L, Ma C, Du J, Lin Z, Luo H, Otkur W, Qi H, Chen D, Xia T, Liu J, Tan G, Xu G, Piao HL. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat Commun 2022; 13:2187. [PMID: 35449157 PMCID: PMC9023467 DOI: 10.1038/s41467-022-29846-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Elevated de novo lipogenesis is considered to be a crucial factor in hepatocellular carcinoma (HCC) development. Herein, we identify ubiquitin-specific protease 22 (USP22) as a key regulator for de novo fatty acid synthesis, which directly interacts with deubiquitinates and stabilizes peroxisome proliferator-activated receptor gamma (PPARγ) through K48-linked deubiquitination, and in turn, this stabilization increases acetyl-CoA carboxylase (ACC) and ATP citrate lyase (ACLY) expressions. In addition, we find that USP22 promotes de novo fatty acid synthesis and contributes to HCC tumorigenesis, however, this tumorigenicity is suppressed by inhibiting the expression of PPARγ, ACLY, or ACC in in vivo tumorigenesis experiments. In HCC, high expression of USP22 positively correlates with PPARγ, ACLY or ACC expression, and associates with a poor prognosis. Taken together, we identify a USP22-regulated lipogenesis mechanism that involves the PPARγ-ACLY/ACC axis in HCC tumorigenesis and provide a rationale for therapeutic targeting of lipogenesis via USP22 inhibition. Different deubiquitinases are associated to cancer development. Here, the authors show that PPARgamma is stabilized by USP22-mediated deubiquitination leading to lipid accumulation and promoting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhen Ning
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China.,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China
| | - Xin Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chang Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China
| | - Aman Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China.,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chi Ma
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China.,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China
| | - Jian Du
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China.,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China
| | - Zhikun Lin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China.,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China
| | - Haifeng Luo
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China.,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiwei Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China.,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China
| | - Guang Tan
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116000, China. .,Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, 116000, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
81
|
Lu Q, Wang S, Yin Z, Chen Q, He X, Wang Q, Hu Q, Gu Y, Tang H, Xie H. Identification of Veratrum Species in Pimacao Based on ITS2 Sequences and Steroidal Alkaloids by a Pseudo-Targeted Metabolomics Method. FRONTIERS IN PLANT SCIENCE 2022; 13:831562. [PMID: 35481147 PMCID: PMC9037537 DOI: 10.3389/fpls.2022.831562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pimacao is a traditional Chinese folk medicine and is the main component of the famous Chinese herbal remedy "Yunnan Baiyao" for its significant analgesic activity in the treatment of wounds. Due to increases in consumption, its wild population is now difficult to find, and adulterant from the same genus has occurred. However, this is challenging to distinguish the species of Veratrum in Pimacao using dried roots and rhizomes or medicinal powder. ITS2 sequences and steroidal alkaloids by the non-targeted and pseudo-targeted metabolomics methods were taken advantage of establishing an effective identification method. Based on the ITS2 sequence, metabolite profiling of steroidal alkaloids and morphological characteristics, the classification of two distinct subspecies in V. mengzeanum has been reinforced. In addition, the new subspecies V. mengzeanum subsp. phuwae was collected in China for the first time. The ITS2 sequence could be used in the identification of V. taliense, V. mengtzeanum, V. stenophyllum, and V. nigrum, but is insufficient for intraspecific identification. Simultaneously, 147 variables were labeled by non-targeted analysis accomplished utilizing an ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry (UPLC-ESI-QE-Orbitrap-MS) system consisting of an Orbitrap QE HF-X. Followed by a pseudo-targeted analysis method developed for the Qtrap 6500-plus mass spectrometry system coupled with an ESI source, 29 labeled steroidal alkaloids detected by the MRM mode could distinguish between four species. Notably, 25 labeled steroidal alkaloids could distinguish between three closely related species. These have the potential to be used as markers for identification. Furthermore, there were several variables with statistical differences between two subspecies of V. mengtzeanum and populations of V. taliense, V. mengtzeanum, and V. stenophyllum.
Collapse
Affiliation(s)
- Qinwei Lu
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuaiyao Wang
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zili Yin
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
| | - Qinsheng Chen
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xingchao He
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Baiyao Group Co., Ltd., Kunming, China
| | - Qi Wang
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qingyu Hu
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Gu
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huiru Tang
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hui Xie
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
82
|
Sun X, Shi J, Li R, Chen X, Zhang S, Xu YJ, Liu Y. SWATH-MS2&1: Development and Validation of a Pseudotargeted Lipidomics Method for the Analysis of Glycerol Esters in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3331-3343. [PMID: 35230101 DOI: 10.1021/acs.jafc.1c06446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycerol ester (GE) is a kind of important lipid in milk, which varies greatly depending on many factors. In this study, a novel pseudotargeted lipidomics strategy, named SWATH-MS2&1, was developed for the detection of GEs in milk and the Folch method was selected for the sample preparation. The developed method exhibited a competitive alternative to the acknowledged pseudotargeted strategy, including wider coverage (12 more GEs detected), higher repeatability (12 more GEs, whose coefficient of variation < 0.3), better linearity (5 more GEs, whose R2 > 0.8), and similar sensitivity (only 2 GEs less than P-MRM after dilution). SWATH-MS2&1 was applied in the investigation of GEs from different milk samples. The orthogonal partial least-squares difference analysis of 219 GEs identified from SWATH-MS2&1 showed satisfying differentiation of different milk samples, and 76 GEs were screened out as potential markers. Our findings demonstrated that SWATH-MS2&1 could offer an accurate method to measure a wide spectrum of GEs in milk.
Collapse
Affiliation(s)
- Xian Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xiaoying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shuang Zhang
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
83
|
Xu L, Xu X, Wu X, Kuang H, Xu C. Sex-Dependent Environmental Health Risk Analysis of Flupyradifurone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1841-1853. [PMID: 35041393 DOI: 10.1021/acs.est.1c07726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pesticides are used in agricultural production worldwide, resulting in widespread environmental pollution. Many diseases are closely related to exposure to pesticide residues. In this study, the association between exposure to the pesticide flupyradifurone (FPF), a substitute for neonicotinoids, and sex-dependent thyroid dysfunction was explored for the first time. Exposure using rat models revealed that the FPF metabolism is sex-dependent, with males preferring N-dealkylation and hydrolytic metabolism and females preferring hydroxylation. In particular, novel chloropyridine-site hydroxylation I and II metabolic pathways of FPF were discovered. More importantly, differential metabolic pathways of FPF induced sex-based dysregulation of the hypothalamic-pituitary-thyroid axis, in which females exhibited subclinical hyperthyroidism, while males displayed abnormal hypothyroidism. This may be attributed to the potential agonistic or antagonistic effect of FPF sex-dependent metabolites on liver thyroid hormone receptors. Furthermore, FPF exposure further mediated sex-specific dysregulation of cellular lipid homeostasis, with abnormal fatty acid β-oxidation and excessive energy expenditure in females and the risk of excessive accumulation of triglycerides in males. These results illustrate the potential risk of sex-related thyroid metabolic diseases caused by FPF and provide an important basis and support for further studies of FPF on human health and as an environmental pollutant.
Collapse
Affiliation(s)
- Liwei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
84
|
Xuan Q, Hu C, Zhang Y, Wang Q, Zhao X, Liu X, Wang C, Jia W, Xu G. Serum lipidomics profiles reveal potential lipid markers for prediabetes and type 2 diabetes in patients from multiple communities. Front Endocrinol (Lausanne) 2022; 13:966823. [PMID: 36060983 PMCID: PMC9434798 DOI: 10.3389/fendo.2022.966823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Dyslipidemia is a hallmark of diabetes mellitus (DM). However, specific lipid molecules closely associated with the initiation and progression of diabetes remain unclear. We used a pseudotargeted lipidomics approach to evaluate the complex lipid changes that occurred long before the diagnosis of type 2 diabetes mellitus (T2DM) and to identify novel lipid markers for screening prediabetes mellitus (PreDM) and T2DM in patients from multiple communities. METHODS Four hundred and eighty-one subjects consisting of T2DM, three subtypes of PreDM, and normal controls (NC) were enrolled as discovery cohort. Serum lipidomic profiles of 481 subjects were analyzed using an ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-QqQ-MS)-based pseudotargeted lipidomics method. The differential lipid molecules were further validated in an independent case-control study consisting of 150 PreDM, 234 T2DM and 94 NC. RESULTS Multivariate discriminative analyses show that lipidomics data have considerable potential for identifying lipidome differences among T2DM, subtypes of PreDM and NC. Statistical associations of lipid (sub)species display significant variations in 11 lipid (sub)species levels for T2DM and distinctive differences in 8 lipid (sub)species levels between prediabetic and normoglycemic individuals, with further differences in 8 lipid (sub)species levels among subtypes of PreDM. Adjusted for sex, age and BMI, only two lipid (sub)species of fatty acid (FA) and phosphatidylcholine (PC) were associated at p< 0.05 for PreDM (all) and subtypes of PreDM. The defined lipid markers not only significantly improve the diagnostic accuracy of PreDM and T2DM but also effectively evaluating the risk of developing into each subtype of PreDM and T2DM when addition of age, sex, BMI, and FPG, respectively. CONCLUSIONS Our findings improve insights into the lipid metabolic complexity and interindividual variations among subtypes of PreDM and T2DM, beyond the well-known differences in dyslipidemia in clinic.
Collapse
Affiliation(s)
- Qiuhui Xuan
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinan Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Metabolic Diseases Biobank, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qingqing Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinjie Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Guowang Xu, ; Weiping Jia, ; Congrong Wang,
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Metabolic Diseases Biobank, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Guowang Xu, ; Weiping Jia, ; Congrong Wang,
| | - Guowang Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Guowang Xu, ; Weiping Jia, ; Congrong Wang,
| |
Collapse
|
85
|
Plumb RS, Isaac G, Rainville PD, Hill J, Gethings LA, Johnson KA, Lauterbach J, Wilson ID. High Throughput UHPLC-MS-Based Lipidomics Using Vacuum Jacketed Columns. J Proteome Res 2021; 21:691-701. [PMID: 34968064 DOI: 10.1021/acs.jproteome.1c00836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversed-phase UHPLC-MS is extensively employed for both the profiling of biological fluids and tissues to characterize lipid dysregulation in disease and toxicological studies. With conventional LC-MS systems the chromatographic performance and throughput are limited due to dispersion from the fluidic connections as well as radial and longitudinal thermal gradients in the LC column. In this study vacuum jacketed columns (VJC), positioned at the source of the mass spectrometer, were applied to the lipidomic analysis of plasma extracts. Compared to conventional UHPLC, the VJC-based methods offered greater resolution, faster analysis, and improved peak intensity. For a 5 min VJC analysis, the peak capacity increased by 66%, peak tailing reduced by up to 34%, and the number of lipids detected increased by 30% compared to conventional UHPLC. The narrower peaks, and thus increased resolution, compared to the conventional system resulted in a 2-fold increase in peak intensity as well a significant improvement in MS and MS/MS spectral quality resulting in a 22% increase in the number of lipids identified. When applied to mouse plasma samples, reproducibility of the lipid intensities in the pooled QC ranged from 1.8-12%, with no related drift in tR observed.
Collapse
Affiliation(s)
- Robert S Plumb
- Scientific Operations, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Giorgis Isaac
- Scientific Operations, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Paul D Rainville
- Scientific Operations, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Jason Hill
- Global Research, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Lee A Gethings
- Scientific Operations, Waters Corporation, Stamford Avenue, Wilmslow, SK9 4AX, U.K
| | - Kelly A Johnson
- Global Research, Waters Corporation, IMMERSE, Cambridge, Massachusetts 02142, United States
| | - Joshua Lauterbach
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ian D Wilson
- Computational & Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Exhibition Road, London, SW7 2AZ, U.K
| |
Collapse
|
86
|
Cerrato A, Aita SE, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Laganà A. Fully Automatized Detection of Phosphocholine-Containing Lipids through an Isotopically Labeled Buffer Modification Workflow. Anal Chem 2021; 93:15042-15048. [PMID: 34726396 DOI: 10.1021/acs.analchem.1c02944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-resolution mass spectrometry is the foremost technique for qualitative and quantitative lipidomics analyses. Glycerophospholipids and sphingolipids, collectively termed polar lipids, are commonly investigated by hyphenated liquid chromatography-mass spectrometry (LC-MS) techniques that reduce aggregation effects and provide a greater dynamic range of detection sensitivity compared to shotgun lipidomics. However, automatic polar lipid identification is hindered by several isobaric and isomer mass overlaps, which cause software programs to often fail to correctly annotate the lipid species. In the present paper, a buffer modification workflow based on the use of labeled and unlabeled acetate ions in the chromatographic buffers was optimized by Box-Behnken design of the experiments and applied to the characterization of phosphocholine-containing lipids in human plasma samples. The contemporary generation of [M + CH3COO]-, [M + CD3COO]-, and [M - CH3]- coupled with a dedicated data processing workflow, which was specifically set up on Compound Discoverer software, allowed us to correctly determine adduct composition, molecular formulas, and grouping, as well as granting a lower false-positive rate and streamlining the manual validation step compared to commonly employed lipidomics platforms. The proposed workflow represents a robust yet easier alternative to the existing approaches for improving lipid annotation, as it does not require extensive sample pretreatment or prior isotopic enrichment or derivatization.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
87
|
Chen Z, Wang C, Lin C, Zhang L, Zheng H, Zhou Y, Li X, Li C, Zhang X, Yang X, Guan M, Xi Y. Lipidomic Alterations and PPAR α Activation Induced by Resveratrol Lead to Reduction in Lesion Size in Endometriosis Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9979953. [PMID: 34552688 PMCID: PMC8452402 DOI: 10.1155/2021/9979953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
Endometriosis is an estrogen-dependent chronic inflammatory disease that affects approximately 10% of women of reproductive age and up to 50% of women with infertility. The heterogeneity of the disease makes accurate diagnosis and treatment a clinical challenge. In this study, we generated two models of endometriosis: the first in rats and the second using human ectopic endometrial stromal cells (HEcESCs) derived from the lesion tissues of endometriosis patients. We then applied resveratrol to assess its therapeutic potential. Resveratrol intervention had significant efficacy to attenuate lesion size and to rectify aberrant lipid profiles of model rats. Lipidomic analysis revealed significant lipidomic alterations, including notable increases of sphingolipids and decreases of both glycerolipids and most phospholipids. Upon resveratrol application, both proliferation capacity and invasiveness parameters decreased, and the early apoptosis proportion increased for HEcESCs. The activation of PPARα was also noted as a factor potentially contributing to recovery from endometriosis in both models. Our study provides valuable insight into the mechanisms of resveratrol in endometriosis and therefore strengthens the potential for optimizing resveratrol treatment for this disease.
Collapse
Affiliation(s)
- Zhengyun Chen
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Chunyan Wang
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Cuicui Lin
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Lifeng Zhang
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Huimei Zheng
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Yong Zhou
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaoyong Li
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Chen Li
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Xinmei Zhang
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaohang Yang
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Minxin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yongmei Xi
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
88
|
Xu S, Lv X, Wu B, Xie Y, Wu Z, Tu X, Chen H, Wei F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9012-9024. [PMID: 33683118 DOI: 10.1021/acs.jafc.0c07268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Echium oil has great nutritional value as a result of its high content of α-linolenic acid (ALA, 18:3ω-3) and stearidonic acid (SDA, 18:4ω-3). However, the comprehensive lipid profiling and exact structural characterization of bioactive polyunsaturated lipids in echium oil have not yet been obtained. In this study, we developed a novel pseudotargeted lipidomics strategy for comprehensive profiling and lipid structural elucidation of polyunsaturated lipid-rich echium oil. Our approach integrated untargeted lipidomics analysis with a targeted lipidomics strategy based on Paternò-Büchi (PB)-tandem mass spectrometry (MS/MS) using 2-acetylpyridine (2-AP) as the reaction reagent, allowing for high-coverage lipid profiling and simultaneous determination of C═C locations in triacylglycerols (TGs), diacylglycerols (DGs), free fatty acids (FFAs), and sterol esters (SEs) in echium oil. A total of 209 lipid species were profiled, among which 162 unsaturated lipids were identified with C═C location assignment and 42 groups of ω-3 and ω-6 C═C location isomers were discovered. In addition, relative isomer ratios of certain groups of lipid C═C location isomers were revealed. This pseudotargeted lipidomics strategy described in this study is expected to provide new insight into structural characterization of distinctive bioactive lipids in food.
Collapse
Affiliation(s)
- Shuling Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xinghao Tu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
89
|
Schwaiger-Haber M, Stancliffe E, Arends V, Thyagarajan B, Sindelar M, Patti GJ. A Workflow to Perform Targeted Metabolomics at the Untargeted Scale on a Triple Quadrupole Mass Spectrometer. ACS MEASUREMENT SCIENCE AU 2021; 1:35-45. [PMID: 34476422 PMCID: PMC8377714 DOI: 10.1021/acsmeasuresciau.1c00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 05/25/2023]
Abstract
The thousands of features commonly observed when performing untargeted metabolomics with quadrupole time-of-flight (QTOF) and Orbitrap mass spectrometers often correspond to only a few hundred unique metabolites of biological origin, which is in the range of what can be assayed in a single targeted metabolomics experiment by using a triple quadrupole (QqQ) mass spectrometer. A major benefit of performing targeted metabolomics with QqQ mass spectrometry is the affordability of the instruments relative to high-resolution QTOF and Orbitrap platforms. Optimizing targeted methods to profile hundreds of metabolites on a QqQ mass spectrometer, however, has historically been limited by the availability of authentic standards, particularly for "unknowns" that have yet to be structurally identified. Here, we report a strategy to develop multiple reaction monitoring (MRM) methods for QqQ instruments on the basis of high-resolution spectra, thereby enabling us to use data from untargeted metabolomics to design targeted experiments without the need for authentic standards. We demonstrate that using high-resolution fragmentation data alone to design MRM methods results in the same quantitative performance as when methods are optimized by measuring authentic standards on QqQ instruments, as is conventionally done. The approach was validated by showing that Orbitrap ID-X data can be used to establish MRM methods on a Thermo TSQ Altis and two Agilent QqQs for hundreds of metabolites, including unknowns, without a dependence on standards. Finally, we highlight an application where metabolite profiling was performed on an ID-X and a QqQ by using the strategy introduced here, with both data sets yielding the same result. The described approach therefore allows us to use QqQ instruments, which are often associated with targeted metabolomics, to profile knowns and unknowns at a comprehensive scale that is typical of untargeted metabolomics.
Collapse
Affiliation(s)
- Michaela Schwaiger-Haber
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Ethan Stancliffe
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Valerie Arends
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bharat Thyagarajan
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Miriam Sindelar
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Gary J. Patti
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
90
|
Cebo M, Calderón Castro C, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Untargeted UHPLC-ESI-QTOF-MS/MS analysis with targeted feature extraction at precursor and fragment level for profiling of the platelet lipidome with ex vivo thrombin-activation. J Pharm Biomed Anal 2021; 205:114301. [PMID: 34391135 DOI: 10.1016/j.jpba.2021.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/17/2023]
Abstract
Lipids play a major role in platelet signaling and activation. In this study, we analyzed the platelet lipidome in an untargeted manner by reversed-phase UHPLC for lipid species separation coupled to high-resolution QTOF-MS/MS in data-independent acquisition (DIA) mode with sequential window acquisition of all theoretical fragment ion mass spectra (SWATH) for compound detection. Lipid identification and peak picking was supported by the characteristic regular elution pattern of lipids differing in carbon and double bond numbers. It was primarily based on post-acquisition targeted feature extraction from the SWATH data. Multiple extracted ion chromatograms (EICs) from SWATH data of diagnostic ions on MS1 and MS2 level from both positive and negative ion mode allowed to distinguish between poorly resolved isomeric lipids based on their distinct fragment ions, which were used for relative quantification at a molecular lipid species level. It supports assay specificity for relative lipid quantitation via multiple quantifiably ions unlike to data-dependent acquisition methods which rely on precursor ions only. This approach was used to analyze human platelet samples. 457 lipids were annotated. Concentrations of lipids were estimated by stable isotope-labelled lipid class-specific internal standards as surrogate calibrants. Heatmaps of lipid concentrations in dependence on carbon and double bond numbers for the distinct lipid classes revealed a snapshot of the platelet lipidome in the resting state with lipid species distributions within classes supporting some functional interpretations. As expected, activation of the platelets by thrombin has led to significant alterations in the platelet lipidome as proven by univariate (volcano plot) and multivariate (PLS-DA) statistics. Several lipids were significantly up-regulated (lysophosphatidylinositols, oxylipins such as thromboxane B2 (TXB2), hydroxyheptadecatrienoic acid (HHT), hydroxyeicosatetraenoic acid (HETE), hydroxyoctadecadienoic acid (HODE), sphingoid-bases, (very) long chain saturated fatty acids) or down-regulated (lysophosphatidylethanolamines, polyunsaturated fatty acids, phosphatidylinositols). Several of them are well known as biomarkers of platelet activation while others may provide some further insights into pathways of platelet activation and platelet metabolism.
Collapse
Affiliation(s)
- Malgorzata Cebo
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | | | - Jörg Schlotterbeck
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
91
|
Kvasnička A, Friedecký D, Tichá A, Hyšpler R, Janečková H, Brumarová R, Najdekr L, Zadák Z. SLIDE-Novel Approach to Apocrine Sweat Sampling for Lipid Profiling in Healthy Individuals. Int J Mol Sci 2021; 22:ijms22158054. [PMID: 34360820 PMCID: PMC8348598 DOI: 10.3390/ijms22158054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
We designed a concept of 3D-printed attachment with porous glass filter disks—SLIDE (Sweat sampLIng DevicE) for easy sampling of apocrine sweat. By applying advanced mass spectrometry coupled with the liquid chromatography technique, the complex lipid profiles were measured to evaluate the reproducibility and robustness of this novel approach. Moreover, our in-depth statistical evaluation of the data provided an insight into the potential use of apocrine sweat as a novel and diagnostically relevant biofluid for clinical analyses. Data transformation using probabilistic quotient normalization (PQN) significantly improved the analytical characteristics and overcame the ‘sample dilution issue’ of the sampling. The lipidomic content of apocrine sweat from healthy subjects was described in terms of identification and quantitation. A total of 240 lipids across 15 classes were identified. The lipid concentrations varied from 10−10 to 10−4 mol/L. The most numerous class of lipids were ceramides (n = 61), while the free fatty acids were the most abundant ones (average concentrations of 10−5 mol/L). The main advantages of apocrine sweat microsampling include: (a) the non-invasiveness of the procedure and (b) the unique feature of apocrine sweat, reflecting metabolome and lipidome of the intracellular space and plasmatic membranes. The SLIDE application as a sampling technique of apocrine sweat brings a promising alternative, including various possibilities in modern clinical practice.
Collapse
Affiliation(s)
- Aleš Kvasnička
- Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (A.K.); (R.B.); (L.N.)
| | - David Friedecký
- Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (A.K.); (R.B.); (L.N.)
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Chemistry, University Hospital Olomouc, 779 00 Olomouc, Czech Republic;
- Correspondence: ; Tel.: +420-58844-2619
| | - Alena Tichá
- Department of Clinical Biochemistry and Diagnostics and Osteocenter, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (A.T.); (R.H.)
| | - Radomír Hyšpler
- Department of Clinical Biochemistry and Diagnostics and Osteocenter, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (A.T.); (R.H.)
| | - Hana Janečková
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Chemistry, University Hospital Olomouc, 779 00 Olomouc, Czech Republic;
| | - Radana Brumarová
- Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (A.K.); (R.B.); (L.N.)
| | - Lukáš Najdekr
- Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (A.K.); (R.B.); (L.N.)
| | - Zdeněk Zadák
- Department of Research and Development, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| |
Collapse
|
92
|
Xu T, Li H, Feng D, Dou P, Shi X, Hu C, Xu G. Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry. Anal Chem 2021; 93:10031-10038. [PMID: 34270220 DOI: 10.1021/acs.analchem.1c00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies of cellular metabolism can provide profound insights into the underlying molecular mechanisms and metabolic function. To date, the majority of cellular metabolism studies based on chromatography-mass spectrometry (MS) require population cells to obtain informative metabolome. These methods are not only time-consuming but also not suitable for amount-limited cell samples such as circulating tumor cells, stem cells, and neurons. Therefore, it is extremely essential to develop analytical methods enabling to detect metabolome from tens of cells in a high-throughput and high-sensitivity way. In this work, a novel platform for rapid and sensitive detection of lipidome in 20 mammalian cells was proposed using capillary microsampling combined with high-resolution spectral stitching nanoelectrospray ionization direct-infusion MS. It can be used to collect cells rapidly and accurately via the capillary microprobe, extract lipids directly in a 96-well plate using a spray solvent, and detect more than 500 lipids covering 19 lipid subclasses within 3 min. This novel platform was successfully applied to study the lipid features of different cancer cell types and subtypes as well as target cells from tissue samples. This study provides a strategy for determining the lipid species with rich information in tens of cells and demonstrates great potential for clinical applications.
Collapse
Affiliation(s)
- Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Disheng Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Dou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
93
|
Zhang X, Zhang J, Wu Y, Nan B, Huang Q, Du X, Tian M, Liu L, Xin Y, Li Y, Duan J, Chen R, Sun Z, Shen H. Dynamic recovery after acute single fine particulate matter exposure in male mice: Effect on lipid deregulation and cardiovascular alterations. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125504. [PMID: 33652219 DOI: 10.1016/j.jhazmat.2021.125504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Many studies have linked airborne fine particulate matter (PM2.5) exposure to cardiovascular diseases. We performed a time-series analysis to investigate whether the disruption of lipid metabolism recovered or lasted after acute PM2.5 exposure in mice. Targeted lipidomic analysis showed that four major plasma membrane phospholipids along with cholesterol esters (CE) were significantly altered on 7th post-exposure day (PED7), and the alteration reached a peak on PED14. On PED21, the phosphatidylcholine (PC) decrease was more marked than on PED14, and its resurgence was indirectly linked to triglyceride (TG) increase. Homocysteine (HCY), lactate dehydrogenase (LDH), and α-hydroxybutyrate dehydrogenase (α-HBDH) levels increased but glucose levels decreased markedly in a dose- and time-dependent manner throughout the experimental period. Network analysis showed that the lasting lipid deregulation on PED21 correlated to myocardial markers and glucose interruption, during which high-density lipoprotein cholesterol (HDL-C) decreased. The present data implied that the constructional membrane lipids were initially interrupted by PM2.5, and the subsequent rehabilitation resulted in the deregulation of storage lipids; the parallel myocardial and glucose effects may be enhanced by the lasting HDL-C lipid deregulation on PED21. These myocardial and lipidomic events were early indicators of cardiovascular risk, resulting from subsequent exposure to and accumulation of PM2.5.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Yan Wu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xiaoyan Du
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yuntian Xin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
94
|
Li L, Wang D, Sun C, Li Y, Lu H, Wang X. Comprehensive Lipidome and Metabolome Profiling Investigations of Panax quinquefolius and Application in Different Growing Regions Using Liquid Chromatography Coupled with Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6710-6719. [PMID: 34080852 DOI: 10.1021/acs.jafc.1c02241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Panax quinquefolius is one of the most recognized ginseng species. In this study, lipidome and metabolome extraction methods for P. quinquefolius were optimized with methanol/methyl-tert-butyl ether/water (0.3 mg/1 μL/6 μL/8 μL). A total of 497 metabolites were identified, including 365 lipids and 76 ginsenosides. Comprehensive lipidome profiling was first performed for P. quinquefolius, in which 32.6% glycerophospholipids, 39.5% glycerolipids, 9.3% sphingolipids, 3.3% sterol lipids, and 15.3% fatty acyls were identified. Orthogonal partial least squares discrimination analysis (OPLS-DA) showed obvious metabolomic differences in two growing regions of China. In the northern growing region, the ratio of bilayer- to nonbilayer-forming membrane lipids (PCs/PEs, DGDGs/MGDGs), the degree of unsaturation of acyl chains in galactolipids, and the content of membrane glycerophospholipids were increased. In the eastern growing region, the synthesis of storage lipids, ceramides, and fatty acyls was increased, and secondary metabolism was enhanced with 24 differential ginsenosides found. The investigation deepens the understanding of metabolic regulation mechanisms of P. quinquefolius.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Daijie Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yue Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Heng Lu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
95
|
Qi Z, Wang Q, Wang H, Tan M. Metallothionein Attenuated Arsenic-Induced Cytotoxicity: The Underlying Mechanism Reflected by Metabolomics and Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5372-5380. [PMID: 33939412 DOI: 10.1021/acs.jafc.1c00724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic ions (As3+) have been recognized as a hazard that threatens the health of humans. Metallothionein (MT) rich in cysteine may provide favorable binding sites for chelation of As3+. However, the influence of MT on As3+-induced toxicity and the underlying mechanism are poorly understood, especially at the metabolic level. Herein, the effects of MT on As3+-induced toxicity were evaluated. Cell viability analysis suggested that MT alleviated As3+-induced cytotoxicity. The metabolic response of PC12 cells to As3+ investigated by lipidomics and metabolomics indicated that the presence of As3+ disrupted phospholipids metabolism and induced cell membrane damage. Moreover, energy and amino acid metabolism were perturbed by As3+. The perturbation of As3+ on metabolism was further illustrated by the decrease of the mitochondrial membrane potential and the rise of cellular reactive oxygen species (ROS). On the contrary, MT rescued As3+-induced metabolic disorder and suppressed ROS accumulation. In addition, the binding process between As3+ and MT was characterized. The results proved that the As3+-MT complex was formed and chelated As3+-scavenged ROS, thus alleviating the toxic effects of As3+. These results revealed that MT would be a potential agent to reduce As3+-induced cytotoxicity.
Collapse
Affiliation(s)
- Zihe Qi
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Qinghong Wang
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| |
Collapse
|
96
|
Yu J, Kang Y, Zhang H, Yang F, Zhen H, Zhu X, Wu T, Du Y. A Polymer-Based Matrix for Effective SALDI Analysis of Lipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1189-1195. [PMID: 33904725 DOI: 10.1021/jasms.1c00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-assisted laser desorption/ionization (SALDI) has become an attractive branch of matrix-assisted laser desorption/ionization (MALDI) and has been successfully applied for the detection of small molecules due to the lack of the interference of matrix. Herein, the low-cost and highly accessible polyvinylidene fluoride (PVDF) was modified using a facile alkali treatment and investigated as a SALDI matrix. The modified PVDF has a strong optical absorption and can be applied as a dual-mode substrate for both SALDI MS and SALDI imaging analysis. Modified PVDF powder showed superior performance in SALDI MS analysis of lipids, with good reproducibility, high sensitivity, and low background interference, especially for triacylglycerols (TAGs) and fatty acids. Additionally, the lipids in raw and extracted serum were both successfully determined with modified PVDF powder. A modified PVDF membrane (m-PVDF-m) showed excellent ability in lipids imaging in tissues due to its flat surface, mass signal enhancement, and elimination of matrix coating. The distribution of several TAGs and cholesteryl esters on mouse kidney section was presented by SALDI imaging directly on m-PVDF-m. These results demonstrated that modified PVDF materials presented exciting opportunities as matrices for the first time in SALDI MS acquisition and SALDI imaging.
Collapse
Affiliation(s)
- Jing Yu
- School of Chemistry and Molecular Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Kang
- School of Chemistry and Molecular Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyang Zhang
- School of Chemistry and Molecular Engineering & Shanghai, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Yang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Huajun Zhen
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xixi Zhu
- School of Chemistry and Molecular Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Wu
- School of Chemistry and Molecular Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Yiping Du
- School of Chemistry and Molecular Engineering & Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
97
|
Liu D, Yang J, Jin W, Zhong Q, Zhou T. A high coverage pseudotargeted lipidomics method based on three-phase liquid extraction and segment data-dependent acquisition using UHPLC-MS/MS with application to a study of depression rats. Anal Bioanal Chem 2021; 413:3975-3986. [PMID: 33934189 DOI: 10.1007/s00216-021-03349-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Pseudotargeted analysis combines the advantages of untargeted and targeted lipidomics methods based on chromatography-mass spectrometry (MS). This study proposed a comprehensive pseudotargeted lipidomics method based on three-phase liquid extraction (3PLE) and segment data-dependent acquisition (SDDA). We used a 3PLE method to extract the lipids with extensive coverage from biological matrixes. 3PLE was composed of one aqueous and two organic phases. The upper and middle organic phases enriched neutral lipids and glycerophospholipids, respectively, combined and detected together. Besides, the SDDA strategy improved the detection of co-elution ions in the lipidomics analysis. A total of 554 potential lipids were detected by the developed approach in both positive and negative modes using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the conventional liquid-liquid extraction (LLE) approaches, including methyl tert-butyl ether (MTBE) and Bligh-Dyer (BD) methods, 3PLE combined with SDDA significantly increased the lipid coverage 87.2% and 89.7%, respectively. Also, the proposed pseudotargeted lipidomics approach exhibited higher sensitivity and better repeatability than the untargeted approach. Finally, we applied the established pseudotargeted method to the plasma lipid profiling from the depressed rats and screened 61 differential variables. The results demonstrated that the pseudotargeted method based on 3PLE and SDDA broadened lipid coverage and improved the detection of co-elution ions with excellent sensitivity and precision, indicating significant potential for the lipidomics analysis.
Collapse
Affiliation(s)
- Danyang Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jina Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wenbin Jin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qisheng Zhong
- Shimadzu (China) Corporation, Guangzhou Branch, Guangzhou, 510010, Guangdong, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
98
|
Wang Y, Wang Y, Chen C, Ren F, Cao R, Wang Y, Han P, Zhang X, Xu C, Liu X, Xu G. Serum lipid profiling analysis and potential marker discovery for ovarian cancer based on liquid chromatography-Mass spectrometry. J Pharm Biomed Anal 2021; 199:114048. [PMID: 33836461 DOI: 10.1016/j.jpba.2021.114048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Low early diagnosis rate and unclear pathogenesis are the primary reasons for the high mortality of epithelial ovarian cancer (EOC). Lipidomics is a powerful tool for marker discovery and mechanism explanation. Hence, a ultra high-performance liquid chromatography-mass spectrometry based non-targeted lipidomics analysis was performed to acquire lipid profiling of 153 serum samples including healthy control (HC, n = 50), benign ovarian tumor (BOT, n = 41), and EOC (n = 62) to reveal lipid disturbance, then differential lipids were verified in another sample set including 187 sera. Significant lipid disturbance occurred in BOT and EOC, fatty acid, lyso-phosphatidylcholine, and lyso-phosphatidylethanolamine were observed to be increased in BOT and EOC subjects, while phosphatidylcoline, ether phosphatidylcoline (PC-O), ether phosphatidylethanolamine (PE-O), and sphingomyelin significantly decreased. Compared with BOT, PC-Os and PE-Os presented a greater reduction in EOC, and serum ceramide increased only in EOC. Moreover, potential markers consisting of 4 lipids were defined and validated for EOC diagnosis. High areas under the curve (0.854∼0.865 and 0.903∼0.923 for distinguishing EOC and early EOC from non-cancer, respectively) as well as good specificity and sensitivity were obtained. This study not only revealed the characteristics of lipid metabolism in EOC, but also provided a potential marker pattern for aiding EOC diagnosis.
Collapse
Affiliation(s)
- Yuting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yisheng Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Gynecology, The Maternity Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Fang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Cao
- Department of Gynecology, The Maternity Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Yuefei Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China
| | - Pin Han
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyan Zhang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China
| | - Congjian Xu
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, 200032, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
99
|
Lu Y, Wang C, Zhang XY, Wang ZW, Song ZM, Du Y, Hu Q, Wu QY, Hu HY. Tracing nitrogenous byproducts during ozonation in the presence of bromide and ammonia using stable isotope labeling and high resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123612. [PMID: 32814238 DOI: 10.1016/j.jhazmat.2020.123612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Ammonia has been widely used to inhibit bromate formation during ozonation. However, our recent study found that during ozonation in the presence of bromide and ammonia, toxicity increased under certain conditions that might be attributed to the formation of nitrogenous byproducts. Herein, a typical structural moiety of natural organic matter (NOM), hydroquinone, was evaluated for its potential to form nitrogenous byproducts. During ozonation of the hydroquinone solution containing bromide and ammonia, toxicity of organic byproducts increased significantly. As organic bromine was hardly detected, organic nitrogen was responsible for the increased toxicity. An effective method combining ultra-performance liquid chromatography in tandem with high resolution mass spectrometry (UPLC-HRMS) with an isotope labeling strategy was used to trace nitrogenous byproducts. Four newly formed nitrogenous byproducts were detected, two of which were also detected in Suwannee River natural organic matter (SRNOM) solution treated under the same ozonation condition. Furthermore, the molecular structures and formation pathways of these nitrogenous byproducts were proposed. This study highlights that, despite the widespread use, adding ammonia to inhibit bromate formation during ozonation might increase the toxicity posed by nitrogenous byproducts. During ozonation in the presence of bromide and ammonia, particular attention should be paid to nitrogenous byproducts.
Collapse
Affiliation(s)
- Yao Lu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xin-Yang Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zhi-Wei Wang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Zhi-Min Song
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
100
|
Song Y, Wang H, Zhang L, Lai B, Liu K, Tan M. Protein corona formation of human serum albumin with carbon quantum dots from roast salmon. Food Funct 2021; 11:2358-2367. [PMID: 32125329 DOI: 10.1039/c9fo02967b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
When food-borne nanoparticles enter biological systems, they can interact with various proteins to form protein coronas, which can affect their physicochemical properties and biological identity. In this study, the protein corona formation of carbon quantum dots (CQDs) from roast salmon with human serum albumin (HSA) was explored. Furthermore, the biological identity of the HSA-CQD coronas, in relation to cell apoptosis, energy, glucose and lipid metabolism and acute toxicity in mice, was also investigated. The HSA-CQD coronas were formed between HSA and CQDs via a static binding mechanism, and the binding site of CQDs on HSA was located at both Sudlow's site I and site II. After entering the cytoplasm, the HSA-CQD coronas became localized in the lysosomes and autolysosomes. Importantly, the HSA coronas reduced the cytotoxicity of the CQDs from 18.65% to 9.26%, and the energy metabolism was rectified by changing from glycolytic to aerobic metabolism. The glucose and lipid metabolite profile of cells exposed to the HSA-CQD coronas differed from that of those treated with CQDs, indicating that the HSA-CQD coronas rectified metabolic disturbances caused by CQDs. Histopathological and blood biochemical analysis revealed no statistically significant differences between the treated and control mice after a single CQDs dose of 2000 mg per kg body weight. Overall, the results confirmed the formation of protein coronas between HSA and food-borne fluorescent CQDs, and could be helpful for evaluating the safety of fluorescent CQDs in cooked food items.
Collapse
Affiliation(s)
- Yukun Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lijuan Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kangjing Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|