51
|
Ren J, Point AD, Baygi SF, Fernando S, Hopke PK, Holsen TM, Crimmins BS. Bioaccumulation of polyfluoroalkyl substances in the Lake Huron aquatic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152974. [PMID: 35007599 DOI: 10.1016/j.scitotenv.2022.152974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Polyfluoroalkyl substances (PFAS) are a group of fluorinated organic chemicals that have been produced for industrial and commercial application since the 1950s. PFAS are highly persistent and ubiquitous in water, sediment, and biota. Toxic effects of PFAS on humans and the ecosystem have increased scientific and public concern. To better understand the distribution of PFAS in the Laurentian Great Lakes, carbon (12C and 13C) and nitrogen (14N and 15N) stable isotope enrichment, fatty acid profiles, and PFAS were measured in the Lake Huron (LH) aquatic food web. The trophic level of the organisms was estimated using δ15N and found to be a determinant of PFAS biomagnification. The δ13C and fatty acid profiles were used to assess the carbon/energy flow pathway and predator-prey relationships, respectively. The δ13C, δ15N, and fatty acids were used to elucidate the trophodynamics and understand the PFAS trophic transfer in the LH aquatic food web. Perfluorooctanesulfonic acid (PFOS) was the dominant PFAS observed, followed by C9 - C11 perfluorinated carboxylic acids (PFCA). The highest PFOS concentrations (45 ± 11 ng/g, wet weight (wwt)) were detected in lake trout (Salvelinus namaycush), while the highest total PFCA concentrations (sum of C4 - C16 PFCAs) were detected in deepwater sculpin (Myoxocephalus thompsonii). With the exception of perfluorooctanoic acid (PFOA), C8-C14 PFAS biomagnification factors (BMFs) were found to be generally greater than 1, suggesting PFAS biomagnification from prey to predator. Trophic magnification factors (TMFs) of C8-C14 PFCA were found to be independent of compound hydrophobicity.
Collapse
Affiliation(s)
- Junda Ren
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Adam D Point
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Sadjad Fakouri Baygi
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Sujan Fernando
- Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA; Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY 13699, USA; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas M Holsen
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY 13699, USA; Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Bernard S Crimmins
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY 13699, USA; AEACS, LLC, New Kensington, PA, USA.
| |
Collapse
|
52
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
53
|
Naumann A, Alesio J, Poonia M, Bothun GD. PFAS fluidize synthetic and bacterial lipid monolayers based on hydrophobicity and lipid charge. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107351. [PMID: 35463622 PMCID: PMC9029377 DOI: 10.1016/j.jece.2022.107351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Poly- and Perfluoroalkyl substances (PFASs) are pollutants of emerging concern that persist in nature and pose environmental health and safety risks. PFAS disrupt biological membranes resulting in cellular inhibition, but the mechanism of disruption and the role of lipid composition remain unclear. We examine the role of phospholipid saturation and headgroup charge on the interactions between PFASs and phospholipid monolayers comprised of synthetic phosphocholine (PC) and phosphoglycerol (PG) lipids and prepared from bacteria membrane extracts rich in PG lipids from an environmentally relevant marine bacterium Alcanivorax borkumensis. When deposited on a buffered subphase containing PFAS, PFAS mixed within and fluidized zwitterionic and net-anionic monolayers leading to increases in monolayer compressibility that were driven by a combination of PFAS hydrophobicity and monolayer charge density. Differences in the monolayer response using saturated or unsaturated lipids are attributed to the ability of the unsaturated lipids to accommodate PFAS within 'void space' arising from the bent lipid tails. Similar fluidization and compressibility behavior were also observed in A. borkumensis lipid monolayers. This work provides new insight into PFAS partitioning into bacterial membranes and the effect PFAS have on the physicomechanical properties of zwitterionic and charged lipid monolayers.
Collapse
Affiliation(s)
- Aleksandra Naumann
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881
| | - Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881
| | - Monika Poonia
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881
| | - Geoffrey D. Bothun
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881
| |
Collapse
|
54
|
Cao H, Zhou Z, Hu Z, Wei C, Li J, Wang L, Liu G, Zhang J, Wang Y, Wang T, Liang Y. Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3214-3224. [PMID: 35138827 DOI: 10.1021/acs.est.1c07176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The pharmacokinetic characteristics of per- and polyfluoroalkyl substances (PFAS) affect their distribution and bioaccumulation in biological systems. The enterohepatic circulation leads to reabsorption of certain chemicals from bile back into blood and the liver and thus influences their elimination, yet its influence on PFAS bioaccumulation remains unclear. We explored the role of enterohepatic circulation in PFAS bioaccumulation by examining tissue distribution of various PFAS in wild fish and a rat model. Computational models were used to determine the reabsorbed fractions of PFAS by calculating binding affinities of PFAS for key transporter proteins of enterohepatic circulation. The results indicated that higher concentrations were observed in blood, the liver, and bile compared to other tissues for some PFAS in fish. Furthermore, exposure to a PFAS mixture on the rat model showed that the reabsorption phenomenon appeared during 8-12 h for most long-chain PFAS. Molecular docking calculations suggest that PFAS can bind to key transporter proteins via electrostatic and hydrophobic interactions. Further regression analysis adds support to the hypothesis that binding affinity of the apical sodium-dependent bile acid transporter is the most important variable to predict the human half-lives of PFAS. This study demonstrated the critical role of enterohepatic circulation in reabsorption, distribution, and accumulation of PFAS.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Zhe Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
55
|
Evaluation and validation of methodologies for the extraction of per- and polyfluoroalkyl substances (PFASs) in serum of birds and mammals. Anal Bioanal Chem 2022; 414:3017-3032. [PMID: 35182167 PMCID: PMC8934760 DOI: 10.1007/s00216-022-03962-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Advances in analytical techniques have allowed greater detection of environmental contaminants from small volumes of sample. Four methodologies were evaluated for the extraction of 53 per- and polyfluoroalkyl substances (PFASs) from eight classes in 200 µL of avian and mammal serum. Spiked serums at four concentrations (0, 0.5, 5.0 and 25 ng mL−1) were prepared by protein precipitation (PPT), enhanced matrix removal (EMR), weak anion exchange (WAX), and hydrophilic-lipophilic balance (HLB) solid-phase extraction cartridges. The extract from each methodology was analysed by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS), and concentrations were compared with known concentrations in the spiked media. EMR performed the best overall, with 40 of 53 compounds effectively recovered at 5 ng mL−1. Furthermore, EMR was effective overall at concentrations ranging from 0.5 to 25 ng mL−1 for 39 out of 53. Similarly, PPT was effective for 35 of 53 compounds at all spiked serum concentrations. There was a negative correlation between internal standard recovery for compounds with increasing octanol–water coefficients (Kow) for WAX (R = − 0.65, p = 0.0043) and HLB (R = − 0.62, p = 0.0077) extractions, indicating methanol may not be a suitable solvent for long-chain PFAS extraction from protein-rich tissues. EMR and PPT represent fast and effective methodologies for the extraction of PFASs from low volumes of serum which allows greater accuracy and precision that can be applied to future human and wildlife biomonitoring programmes.
Collapse
|
56
|
Modaresi SMS, Wei W, Emily M, DaSilva NA, Slitt AL. Per- and polyfluoroalkyl substances (PFAS) augment adipogenesis and shift the proteome in murine 3T3-L1 adipocytes. Toxicology 2022; 465:153044. [PMID: 34800597 PMCID: PMC8756374 DOI: 10.1016/j.tox.2021.153044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023]
Abstract
The Per- and polyfluoroalkyl substances (PFAS) are a wide group of fluorinated compounds, which the health effects of many of them have not been investigated. Perfluorinated sulfonates, such as perfluorooctane sulfonate (PFOS) and perfluorinated carboxylates, such as perfluorooctanoic acid (PFOA) are members of this broad group of PFAS, and previous studies have shown a correlation between the body accumulation of PFOS and PFOA and increased adipogenesis. PFOA and PFOS have been withdrawn from the market and use is limited because of their persistence, toxicity, and bioaccumulative properties. Instead, short chain PFAS have been created to replace PFOA and PFOS, but the health effects of other short chain PFAS are largely unknown. Therefore, herein we aimed to comprehensively determined the potential adipogenesis of ten different PFAS (PFBS, PFHxS, PFOS, PFBA, PFHxA, PFHA, PFOA, PFNA, PFDA, and HFPO-DA) and investigated the differences in protein expression of 3T3-L1 cells upon exposure to each PFAS. 3T3-L1 cells were differentiated with or without each PFAS for 4-days, and cellular lipid was quantified using Nile Red staining. Analysis of the adipocyte proteome was performed to identify the pathways related to adipogenesis and quantify proteins significantly affected by each PFAS. The results showed that in general, every PFAS investigated in our study has the potential to induce the 3T3-L1 differentiation to adipocytes in the presence of rosiglitazone, with the concentrations that range between 0.25 and 25 μM. Proteomics analysis revealed specific markers regarding to adipogenesis upregulated upon exposure to each of the ten PFAS.
Collapse
Affiliation(s)
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Marques Emily
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Nicholas A DaSilva
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
57
|
Bangma J, Guillette TC, Bommarito PA, Ng C, Reiner JL, Lindstrom AB, Strynar MJ. Understanding the dynamics of physiological changes, protein expression, and PFAS in wildlife. ENVIRONMENT INTERNATIONAL 2022; 159:107037. [PMID: 34896671 PMCID: PMC8802192 DOI: 10.1016/j.envint.2021.107037] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) accumulation and elimination in both wildlife and humans is largely attributed to PFAS interactions with proteins, including but not limited to organic anion transporters (OATs), fatty acid binding proteins (FABPs), and serum proteins such as albumin. In wildlife, changes in the biotic and abiotic environment (e.g. salinity, temperature, reproductive stage, and health status) often lead to dynamic and responsive physiological changes that alter the prevalence and location of many proteins, including PFAS-related proteins. Therefore, we hypothesize that if key PFAS-related proteins are impacted as a result of environmentally induced as well as biologically programmed physiological changes (e.g. reproduction), then PFAS that associate with those proteins will also be impacted. Changes in tissue distribution across tissues of PFAS due to these dynamics may have implications for wildlife studies where these chemicals are measured in biological matrices (e.g., serum, feathers, eggs). For example, failure to account for factors contributing to PFAS variability in a tissue may result in exposure misclassification as measured concentrations may not reflect average exposure levels. The goal of this review is to share general information with the PFAS research community on what biotic and abiotic changes might be important to consider when designing and interpreting a biomonitoring or an ecotoxicity based wildlife study. This review will also draw on parallels from the epidemiological discipline to improve study design in wildlife research. Overall, understanding these connections between biotic and abiotic environments, dynamic protein levels, PFAS levels measured in wildlife, and epidemiology serves to strengthen study design and study interpretation and thus strengthen conclusions derived from wildlife studies for years to come.
Collapse
Affiliation(s)
| | - T C Guillette
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Paige A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Reiner
- Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Rd, Charleston, SC, USA
| | - Andrew B Lindstrom
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA
| | - Mark J Strynar
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA
| |
Collapse
|
58
|
Droge STJ, Scherpenisse P, Arnot JA, Armitage JM, McLachlan MS, Ohe PCVD, Hodges G. Screening the baseline fish bioconcentration factor of various types of surfactants using phospholipid binding data. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1930-1948. [PMID: 34787154 DOI: 10.1039/d1em00327e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fish bioconcentration factors (BCFs) are commonly used in chemical hazard and risk assessment. For neutral organic chemicals BCFs are positively correlated with the octanol-water partition ratio (KOW), but KOW is not a reliable parameter for surfactants. Membrane lipid-water distribution ratios (DMLW) can be accurately measured for all kinds of surfactants, using phospholipid-based sorbents. This study first demonstrates that DMLW values for ionic surfactants are more than 100 000 times higher than the partition ratio to fish-oil, representing neutral storage lipid. A non-ionic alcohol ethoxylate surfactant showed almost equal affinity for both lipid types. Accordingly, a baseline screening BCF value for surfactants (BCFbaseline) can be approximated for ionic surfactants by multiplying DMLW by the phospholipid fraction in tissue, and for non-ionic surfactants by multiplying DMLW by the total lipid fraction. We measured DMLW values for surfactant structures, including linear and branched alkylbenzenesulfonates, an alkylsulfoacetate and an alkylethersulfate, bis(2-ethylhexyl)-surfactants (e.g., docusate), zwitterionic alkylbetaines and alkylamine-oxides, and a polyprotic diamine. Together with sixty previously published DMLW values for surfactants, structure-activity relationships were derived to elucidate the influence of surfactant specific molecular features on DMLW. For 23 surfactant types, we established the alkyl chain length at which BCFbaseline would exceed the EU REACH bioaccumulation (B) threshold of 2000 L kg-1, and would therefore require higher tier assessments to further refine the BCF estimate. Finally, the derived BCFbaseline are compared with measured literature in vivo BCF data where available, suggesting that refinements, most notably reliable estimates of biotransformation rates, are needed for most surfactant types.
Collapse
Affiliation(s)
- Steven T J Droge
- Institute for Biodiversity and Ecosystem Dynamics, Department Freshwater and Marine Ecology, University of Amsterdam, The Netherlands.
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands
| | - Jon A Arnot
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | | | | | | | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
59
|
Cao Y, Ng C. Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1623-1640. [PMID: 34533150 DOI: 10.1039/d1em00228g] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals colloquially known as "forever chemicals" because of their high persistence. PFAS have been detected in the blood, liver, kidney, heart, muscle and brain of various species. Although brain is not a dominant tissue for PFAS accumulation compared to blood and liver, adverse effects of PFAS on brain functions have been identified. Here, we review studies related to the absorption, accumulation, distribution and toxicity of PFAS in the brain. We summarize evidence on two potential mechanisms of PFAS entering the brain: initiating blood-brain barrier (BBB) disassembly through disrupting tight junctions and relying on transporters located at the BBB. PFAS with diverse structures and properties enter and accumulate in the brain with varying efficiencies. Compared to long-chain PFAS, short-chain PFAS may not cross cerebral barriers effectively. According to biomonitoring studies and PFAS exposure experiments, PFAS can accumulate in the brain of humans and wildlife species. With respect to the distribution of PFAS in specific brain regions, the brain stem, hippocampus, hypothalamus, pons/medulla and thalamus are dominant for PFAS accumulation. The accumulation and distribution of PFAS in the brain may lead to toxic effects in the central nervous system (CNS), including PFAS-induced behavioral and cognitive disorders. The specific mechanisms underlying such PFAS-induced neurotoxicity remain to be explored, but two major potential mechanisms based on current understanding are PFAS effects on calcium homeostasis and neurotransmitter alterations in neurons. Based on the information available about PFAS uptake, accumulation, distribution and impacts on the brain, PFAS have the potential to enter and accumulate in the brain at varying levels. The balance of existing studies shows there is some indication of risk in animals, while the human evidence is mixed and warrants further scrutiny.
Collapse
Affiliation(s)
- Yuexin Cao
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
60
|
Lv G, Sun X. The molecular-level understanding of the uptake of PFOS and its alternatives (6:2 Cl-PFESA and OBS) into phospholipid bilayers. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125991. [PMID: 33975169 DOI: 10.1016/j.jhazmat.2021.125991] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Bioaccumulation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) is an important indicator of their hazard. Partitioning to membrane phospholipids is one of the pathways for their bioaccumulation. However, the molecular mechanism on PFASs uptake into membrane phospholipids is not yet to be fully understood. In this work, we used molecular dynamics (MD) simulations to study the uptake processes of PFOS and its alternatives (6:2 Cl-PFESA and OBS) into DPPC bilayers, and to evaluate their interaction with DPPC bilayers and their effect on properties of DPPC bilayers. The result of free energy changes shows that a barrier of 2-3 kcal mol-1 exists when these adsorbed PFASs on the surface are absorbed into DPPC bilayers. After incorporating into DPPC bilayers, three DPPC molecules interact with and thus stabilize a PFOS (or 6:2 Cl-PFESA or OBS) molecule. And another role of the three DPPC molecules is to shield these PFASs from exposure to water environment. These PFASs have the similar condensing effect on the model membrane. The molecular-level study is beneficial for understanding the bioaccumulation and toxicity of PFOS and its alternatives.
Collapse
Affiliation(s)
- Guochun Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
61
|
Pfohl M, Marques E, Auclair A, Barlock B, Jamwal R, Goedken M, Akhlaghi F, Slitt AL. An 'Omics Approach to Unraveling the Paradoxical Effect of Diet on Perfluorooctanesulfonic Acid (PFOS) and Perfluorononanoic Acid (PFNA)-Induced Hepatic Steatosis. Toxicol Sci 2021; 180:277-294. [PMID: 33483757 DOI: 10.1093/toxsci/kfaa172] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perfluoroalkyl substances (PFAS) are a family of toxicants universally detected in human serum and known to cause dyslipidemia in animals and humans. Hepatic steatosis, which is defined as lipid deposition in the liver, is known to be a consequence of poor diet. Similarly, PFAS are known to induce hepatic steatosis in animals on a low-fat chow. This study explored diet-PFAS interactions in the liver and their potential to modulate hepatic steatosis. Male C57BL/6J mice were fed with either a low-fat diet (10% kcal from fat, LFD) or a moderately high-fat diet (45% kcal from fat, HFD) with or without perfluorooctanesulfonic acid (3 ppm, PFOS) or perfluorononanoic acid (3 ppm, PFNA) in feed for 12 weeks. Livers were excised for histology and quantification of PFAS and lipids. The PFOS and PFNA coadministration with HFD reduced the hepatic accumulation of lipid and PFAS relative to the LFD treatment groups. Furthermore, transcriptomic analysis revealed that PFAS administration in the presence of an HFD significantly reduces expression of known hepatic PFAS uptake transporters, organic anion transporter proteins. Transcriptomics and proteomics further revealed several pathways related to lipid metabolism, synthesis, transport, and storage that were modulated by PFAS exposure and further impacted by the presence of dietary fat. Both dietary fat content and the chemical functional head group exerted significant influence on hepatic PFAS accumulation and the resulting biochemical signature, suggesting that diet and structure should be considered in the design and interpretation of research on PFAS induced hepatic steatosis.
Collapse
Affiliation(s)
- Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Adam Auclair
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Benjamin Barlock
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Rohitash Jamwal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey 08901
| | - Fatemeh Akhlaghi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| |
Collapse
|
62
|
Pfohl M, Ingram L, Marques E, Auclair A, Barlock B, Jamwal R, Anderson D, Cummings BS, Slitt AL. Perfluorooctanesulfonic Acid and Perfluorohexanesulfonic Acid Alter the Blood Lipidome and the Hepatic Proteome in a Murine Model of Diet-Induced Obesity. Toxicol Sci 2021; 178:311-324. [PMID: 32991729 DOI: 10.1093/toxsci/kfaa148] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.5% kcal from fat) or a high fat (58% kcal from fat) high carbohydrate (42 g/l) diet with or without PFOS or PFHxS in feed (0.0003% wt/wt) for 29 weeks. Lipidomic, proteomic, and gene expression profiles were determined to explore lipid outcomes and hepatic mechanistic pathways. With administration of a high-fat high-carbohydrate diet, PFOS and PFHxS increased hepatic expression of targets involved in lipid metabolism and oxidative stress. In the blood, PFOS and PFHxS altered serum phosphatidylcholines, phosphatidylethanolamines, plasmogens, sphingomyelins, and triglycerides. Furthermore, oxidized lipid species were enriched in the blood lipidome of PFOS and PFHxS treated mice. These data support the hypothesis that PFOS and PFHxS increase the risk of metabolic and inflammatory disease induced by diet, possibly by inducing dysregulated lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Lishann Ingram
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602.,Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Adam Auclair
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Benjamin Barlock
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Rohitash Jamwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Dwight Anderson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602.,Interdisciplinary Toxicology Program, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| |
Collapse
|
63
|
Grønnestad R, Johanson SM, Müller MHB, Schlenk D, Tanabe P, Krøkje Å, Jaspers VLB, Jenssen BM, Ræder EM, Lyche JL, Shi Q, Arukwe A. Effects of an environmentally relevant PFAS mixture on dopamine and steroid hormone levels in exposed mice. Toxicol Appl Pharmacol 2021; 428:115670. [PMID: 34371090 DOI: 10.1016/j.taap.2021.115670] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
In the present study, we investigated the dopaminergic and steroid hormone systems of A/J mice fed environmentally relevant concentrations of a perfluoroalkyl substance (PFAS) mixture over a period of 10 weeks. The PFAS mixture was chosen based on measured PFAS concentrations in earthworms at a Norwegian skiing area (Trondheim) and consisted of eight different PFAS. Dietary exposure to PFAS led to lower total brain dopamine (DA) concentrations in male mice, as compared to control. On the transcript level, brain tyrosine hydroxylase (th) of PFAS exposed males was reduced, compared to the control group. No significant differences were observed on the transcript levels of enzymes responsible for DA metabolism, namely - monoamine oxidase (maoa and maob) and catechol-O methyltransferase (comt). We detected increased transcript level for DA receptor 2 (dr2) in PFAS exposed females, while expression of DA receptor 1 (dr1), DA transporter (dat) and vesicular monoamine transporter (vmat) were not affected by PFAS exposure. Regarding the steroid hormones, plasma and muscle testosterone (T), 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels, as well as transcripts for estrogen receptors (esr1 and esr2), gonadotropin releasing hormone (gnrh) and aromatase (cyp19) were unaltered by the PFAS treatment. These results indicate that exposure to PFAS doses, comparable to previous observation in earthworms at a Norwegian skiing area, may alter the dopaminergic system of mice with overt consequences for health, general physiology, cognitive behavior, reproduction and metabolism.
Collapse
Affiliation(s)
- Randi Grønnestad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Silje Modahl Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Mette H B Müller
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway; Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biosciences, Aarhus University, Roskilde, Denmark
| | - Erik M Ræder
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jan L Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
64
|
Alharthy SA, Hardej D. The role of transcription factor Nrf2 in the toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in C57BL/6 mouse astrocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103652. [PMID: 33812015 DOI: 10.1016/j.etap.2021.103652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of perfluoroalkyl substances (PFAS). This study aimed to determine the protective role of Nrf2 against the toxicity of these agents. Nrf2-/- and wild-type astrocytes were exposed to PFOS (75-600 μM) and PFOA (400-1000 μM) for 24 h. Lactate dehydrogenase (LDH) release was significantly higher in nrf2-/- than in the wild-type astrocytes. Exposure to 600 μM PFOS and 800 μM PFOA showed significant increases in reactive oxygen species, lipid peroxidation, and apoptosis in nrf2-/- astrocytes as compared to wild-type astrocytes. The GSH/GSSG ratio was significantly decreased in nrf2-/- astrocytes when compared to wild-type astrocytes. Additionally, PFOS and PFOS caused dramatic ultrastructural alterations to the mitochondria. BHT pretreatment in wild-type cells decreased ROS production with exposure to both agents. Results of the present study conclude that PFOS and PFOA are cytotoxic to astrocytes and that nrf2 -/- cells are more sensitive to toxicity by these agents.
Collapse
Affiliation(s)
- Saif A Alharthy
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diane Hardej
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
65
|
Kierkegaard A, Sundbom M, Yuan B, Armitage JM, Arnot JA, Droge STJ, McLachlan MS. Bioconcentration of Several Series of Cationic Surfactants in Rainbow Trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8888-8897. [PMID: 34133133 PMCID: PMC8277129 DOI: 10.1021/acs.est.1c02063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 05/03/2023]
Abstract
Cationic surfactants have a strong affinity to sorb to phospholipid membranes and thus possess an inherent potential to bioaccumulate, but there are few measurements of bioconcentration in fish. We measured the bioconcentration of 10 alkylamines plus two quaternary ammonium compounds in juvenile rainbow trout at pH 7.6, and repeated the measurements at pH 6.2 for 6 of these surfactants. The BCF of the amines with chain lengths ≤ C14 was positively correlated with chain length, increasing ∼0.5 log units per carbon. Their BCF was also pH dependent and approximately proportional to the neutral fraction of the amine in the water. The BCFs of the quaternary ammonium compounds showed no pH dependence and were >2 orders of magnitude less than for amines of the same chain length at pH 7.6. This indicates that systemic uptake of permanently charged cationic surfactants is limited. The behavior of the quaternary ammonium compounds and the two C16 amines studied was consistent with previous observations that these surfactants accumulate primarily to the gills and external surfaces of the fish. At pH 7.6 the BCF exceeded 2000 L kg-1 for 4 amines with chains ≥ C13, showing that bioconcentration can be considerable for some longer chained cationic surfactants.
Collapse
Affiliation(s)
- Amelie Kierkegaard
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Marcus Sundbom
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Bo Yuan
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - James M. Armitage
- AES
Armitage Environmental Sciences, Incorporated, Ottawa, Ontario K1L 8C3, Canada
| | - Jon A. Arnot
- ARC
Arnot Research and Consulting, Incorporated, Toronto, Ontario M4M 1W4, Canada
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario MM1C 1A4, Canada
| | - Steven T. J. Droge
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GE, The Netherlands
- Dutch
Board
for the Authorisation of Plant Protection Products and Biocides (Ctgb), Ede 6717 LL, The Netherlands
| | - Michael S. McLachlan
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
66
|
Bernardini I, Matozzo V, Valsecchi S, Peruzza L, Rovere GD, Polesello S, Iori S, Marin MG, Fabrello J, Ciscato M, Masiero L, Bonato M, Santovito G, Boffo L, Bargelloni L, Milan M, Patarnello T. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. ENVIRONMENT INTERNATIONAL 2021; 152:106484. [PMID: 33740673 DOI: 10.1016/j.envint.2021.106484] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
There is growing concern for the wide use ofperfluorooctanoic acid (PFOA) because of its toxic effects on the environment and on human health. A new compound - the so called C6O4 (perfluoro ([5-methoxy-1,3-dioxolan-4-yl]oxy) acetic acid) - was recently introduced as one of the alternative to traditional PFOA, however this was done without any scientific evidence of the effects of C6O4 when dispersed into the environment. Recently, the Regional Agency for the Protection of the Environment of Veneto (Italy) detected high levels of C6O4 in groundwater and in the Po river, increasing the alarm for the potential effects of this chemical into the natural environment. The present study investigates for the first time the effects of C6O4 on the Manila clam Ruditapes philippinarum exposed to environmental realistic concentrations of C6O4 (0.1 µg/L and 1 µg/L) for 7 and 21 days. Furthermore, in order to better understand if C6O4 is a valid and less hazardous alternative to its substitute, microbial and transcriptomic alterations were also investigated in clams exposed to 1 µg/L ofPFOA. Results indicate that C6O4 may cause significant perturbations to the digestive gland microbiota, likely determining the impairment of host physiological homeostasis. Despite chemical analyses suggest a 5 times lower accumulation potential of C604 as compared to PFOA in clam soft tissues, transcriptional analyses reveal several alterations of gene expression profile. A large part of the altered pathways, including immune response, apoptosis regulation, nervous system development, lipid metabolism and cell membrane is the same in C6O4 and PFOA exposed clams. In addition, clams exposed to C6O4 showed dose-dependent responses as well as possible narcotic or neurotoxic effects and reduced activation of genes involved in xenobiotic metabolism. Overall, the present study suggests that the potential risks for marine organism following environmental contamination are not reduced by replacing PFOA with C6O4. In addition, the detection of both C6O4 and PFOA into tissues of clams inhabiting the Lagoon of Venice - where there are no point sources of either compounds - recommends a similar capacity to spread throughout the environment. These results prompt the urgent need to re-evaluate the use of C6O4 as it may represent not only an environmental hazard but also a potential risk for human health.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Sara Valsecchi
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Stefano Polesello
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Marco Bonato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Gianfranco Santovito
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
67
|
Robuck AR, McCord JP, Strynar MJ, Cantwell MG, Wiley DN, Lohmann R. Tissue-specific distribution of legacy and novel per- and polyfluoroalkyl substances in juvenile seabirds. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:457-462. [PMID: 34527758 PMCID: PMC8437152 DOI: 10.1021/acs.estlett.1c00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Of the thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, few have been investigated in detail. In this study, we analyzed 36 legacy and emerging PFAS in multiple seabird tissues collected from individuals from Massachusetts Bay, Narragansett Bay and the Cape Fear River Estuary. PFOS was the dominant compound across multiple tissues, while long-chain perfluorinated carboxylic acids (PFCAs) dominated in brain (mean = 44% of total concentrations). Emerging perfluoroalkyl ether acids (PFEAs)-Nafion byproduct-2 and PFO5DoDA - were detected in greater than 90% of tissues in birds obtained from a nesting region downstream from a major fluorochemical production site. Compound ratios, relative body burden calculations, and electrostatic surface potential calculations were used to describe partitioning behavior of PFEAs in different tissues. Novel PFEAs preferentially partition into blood compared to liver, and were documented in brain for the first time. PFO5DoDA showed a reduced preference for brain compared to PFCAs and Nafion BP2. These results suggest future monitoring efforts and toxicological studies should focus on novel PFAS and long-chain PFCAs in multiple tissues beyond liver and blood, while exploring the unique binding mechanisms driving uptake of multi-ether PFEAs.
Collapse
Affiliation(s)
- Anna R. Robuck
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| | - James P. McCord
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Durham, NC 27709
| | - Mark J. Strynar
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Durham, NC 27709
| | - Mark G. Cantwell
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - David N. Wiley
- National Oceanic and Atmospheric Administration Stellwagen Bank National Marine Sanctuary, Scituate, MA 02066
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| |
Collapse
|
68
|
De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:631-657. [PMID: 33201517 PMCID: PMC7906948 DOI: 10.1002/etc.4935] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 05/20/2023]
Abstract
We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carla Ng
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Robuck
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI USA
| | - Mei Sun
- University of North Carolina at Charlotte, Charlotte, NC USA
| | | | | |
Collapse
|
69
|
Grønnestad R, Schlenk D, Krøkje Å, Jaspers VLB, Jenssen BM, Coffin S, Bertotto LB, Giroux M, Lyche JL, Arukwe A. Alteration of neuro-dopamine and steroid hormone homeostasis in wild Bank voles in relation to tissue concentrations of PFAS at a Nordic skiing area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143745. [PMID: 33250251 DOI: 10.1016/j.scitotenv.2020.143745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/09/2023]
Abstract
Perfluoroalkyl substances (PFAS) are contaminants that are applied in a wide range of consumer products, including ski products. The present study investigated the neuro-dopamine (DA) and cellular steroid hormone homeostasis of wild Bank voles (Myodes glareolus) from a skiing area in Norway (Trondheim), in relation to tissue concentrations of PFAS. We found a positive association between brain DA concentrations and the concentration of several PFAS, while there was a negative association between PFAS and dopamine receptor 1 (dr1) mRNA. The ratio between DA and its metabolites (3,4-dihydroxyphenylacetic acid: DOPAC and homovanillic acid: HVA) showed a negative association between DOPAC/DA and several PFAS, suggesting that PFAS altered the metabolism of DA via monoamine oxidase (Mao). This assumption is supported by an observed negative association between mao mRNA and PFAS. Previous studies have shown that DA homeostasis can indirectly regulate cellular estrogen (E2) and testosterone (T) biosynthesis. We found no association between DA and steroid hormone levels, while there was a negative association between some PFAS and T concentrations, suggesting that PFAS might affect T through other mechanisms. The results from the current study indicate that PFAS may alter neuro-DA and steroid hormone homeostasis in Bank voles, with potential consequences on reproduction and general health.
Collapse
Affiliation(s)
- Randi Grønnestad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biosciences, Aarhus University, Roskilde, Denmark
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | | | - Marissa Giroux
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jan L Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
70
|
Xie Y, Chen G, May AL, Yan J, Brown LP, Powers JB, Campagna SR, Löffler FE. Pseudomonas sp. Strain 273 Degrades Fluorinated Alkanes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14994-15003. [PMID: 33190477 DOI: 10.1021/acs.est.0c04029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated organic compounds have emerged as environmental constituents of concern. We demonstrate that the alkane degrader Pseudomonas sp. strain 273 utilizes terminally monofluorinated C7-C10 alkanes and 1,10-difluorodecane (DFD) as the sole carbon and energy sources in the presence of oxygen. Strain 273 degraded 1-fluorodecane (FD) (5.97 ± 0.22 mM, nominal) and DFD (5.62 ± 0.13 mM, nominal) within 7 days of incubation, and 92.7 ± 3.8 and 90.1 ± 1.9% of the theoretical maximum amounts of fluorine were recovered as inorganic fluoride, respectively. With n-decane, strain 273 attained (3.24 ± 0.14) × 107 cells per μmol of carbon consumed, while lower biomass yields of (2.48 ± 0.15) × 107 and (1.62 ± 0.23) × 107 cells were measured with FD or DFD as electron donors, respectively. The organism coupled decanol and decanoate oxidation to denitrification, but the utilization of (fluoro)alkanes was strictly oxygen-dependent, presumably because the initial attack on the terminal carbon requires oxygen. Fluorohexanoate was detected as an intermediate in cultures grown with FD or DFD, suggesting that the initial attack on the fluoroalkanes can occur on the terminal methyl or fluoromethyl groups. The findings indicate that specialized bacteria such as Pseudomonas sp. strain 273 can break carbon-fluorine bonds most likely with oxygenolytic enzyme systems and that terminally monofluorinated alkanes are susceptible to microbial degradation. The findings have implications for the fate of components associated with aqueous film-forming foam (AFFF) mixtures.
Collapse
Affiliation(s)
- Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gao Chen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Amanda L May
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Lindsay P Brown
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Joshua B Powers
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
71
|
Robuck AR, Cantwell MG, McCord J, Addison LM, Pfohl M, Strynar MJ, McKinney R, Katz DR, Wiley DN, Lohmann R. Legacy and Novel Per- and Polyfluoroalkyl Substances in Juvenile Seabirds from the U.S. Atlantic Coast. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12938-12948. [PMID: 32894676 PMCID: PMC7700771 DOI: 10.1021/acs.est.0c01951] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic, globally distributed chemicals. Legacy PFAS, including perfluorooctane sulfonate (PFOS), have been regularly detected in marine fauna but little is known about their current levels or the presence of novel PFAS in seabirds. We measured 36 emerging and legacy PFAS in livers from 31 juvenile seabirds from Massachusetts Bay, Narragansett Bay, and the Cape Fear River Estuary (CFRE), United States. PFOS was the major legacy perfluoroalkyl acid present, making up 58% of concentrations observed across all habitats (range: 11-280 ng/g). Novel PFAS were confirmed in chicks hatched downstream of a fluoropolymer production site in the CFRE: a perfluorinated ether sulfonic acid (Nafion byproduct 2; range: 1-110 ng/g) and two perfluorinated ether carboxylic acids (PFO4DA and PFO5DoDA; PFO5DoDA range: 5-30 ng/g). PFOS was inversely associated with phospholipid content in livers from CFRE and Massachusetts Bay individuals, while δ 13C, an indicator of marine versus terrestrial foraging, was positively correlated with some long-chain PFAS in CFRE chick livers. There is also an indication that seabird phospholipid dynamics are negatively impacted by PFAS, which should be further explored given the importance of lipids for seabirds.
Collapse
Affiliation(s)
- Anna R. Robuck
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| | - Mark G. Cantwell
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - James McCord
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Durham, NC 27709
| | | | - Marisa Pfohl
- University of Rhode Island, Biomedical and Pharmaceutical Sciences, Kingston, RI 02881
| | - Mark J. Strynar
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Durham, NC 27709
| | - Richard McKinney
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - David R. Katz
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - David N. Wiley
- National Oceanic and Atmospheric Administration Stellwagen Bank National Marine Sanctuary, Scituate, MA 02066 0
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| |
Collapse
|
72
|
Munschy C, Vigneau E, Bely N, Héas-Moisan K, Olivier N, Pollono C, Hollanda S, Bodin N. Legacy and emerging organic contaminants: Levels and profiles in top predator fish from the western Indian Ocean in relation to their trophic ecology. ENVIRONMENTAL RESEARCH 2020; 188:109761. [PMID: 32562947 DOI: 10.1016/j.envres.2020.109761] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 05/24/2023]
Abstract
Tuna and billfish are large pelagic fish of ecological importance in open oceans. As top predators with a long lifespan, they are prone to exposure to various contaminants such as persistent organic pollutants (POPs) and contaminants of emerging concern. In this study, three pollutant families were investigated, including polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and perfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and perfluorocarboxylic acids (PFCAs). Contamination was investigated in individuals from three tropical tuna species, namely bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis) and yellowfin (Thunnusalbacares) tunas and the billfish swordfish (Xiphias gladius), collected from various areas of the western Indian Ocean (WIO) in 2013-2014. Contamination levels and profiles were examined in fish muscle, together with biological parameters (fish length / age, sex, lipid content) and ecological tracers (carbon and nitrogen stable isotopes). POP levels were low in all species in comparison to other locations worldwide, revealing a low impact of anthropogenic organic contaminants in the WIO. A predominance of OCPs (especially DDTs) versus PCBs was highlighted in all species; PFASs were predominant over chlorinated POPs in tunas. Among the studied PFASs, long-chain PFCAs were found to prevail over PFOS in all species. Organic contaminant profiles differed across species according to their foraging habitat; swordfish and bigeye tuna, which both feed in deep oceanic layers, showed similarities in their contaminant profiles. Geographically, the distinct DDT profiles of fish from the Mozambique Channel suggested an exposure to different DDT sources, in line with regional use of this insecticide and coupled with an extended residence time of fish in the Channel. To our knowledge, the data presented here are among the first obtained for legacy and emerging organic contaminants in various species of large pelagic predators from the WIO.
Collapse
Affiliation(s)
- C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France.
| | - E Vigneau
- StatSC, ONIRIS, INRA, 44322, Nantes, France
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - N Olivier
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - S Hollanda
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; Research Institute for Sustainable Development (IRD), UMR MARBEC, Fishing Port, Victoria, Mahé, Seychelles
| |
Collapse
|
73
|
Single and mixture per- and polyfluoroalkyl substances accumulate in developing Northern leopard frog brains and produce complex neurotransmission alterations. Neurotoxicol Teratol 2020; 81:106907. [DOI: 10.1016/j.ntt.2020.106907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
|
74
|
Vidal A, Babut M, Garric J, Beaudouin R. Temperature effect on perfluorooctane sulfonate toxicokinetics in rainbow trout (Oncorhynchus mykiss): Exploration via a physiologically based toxicokinetic model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105545. [PMID: 32569995 DOI: 10.1016/j.aquatox.2020.105545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/14/2020] [Accepted: 06/07/2020] [Indexed: 05/21/2023]
Abstract
Salmonids are poikilotherms, which means that their internal temperature varies with that of water. Water temperature thus controls many of their lifecycle processes and physiological functions, which could influence the mechanisms of absorption, distribution, metabolism and excretion (ADME) of many substances, including perfluorinated alkyl acids (PFAAs). However, the processes governing the fate of PFAAs are still poorly understood in fish. Here we developed a physiologically-based toxicokinetic (PBTK) model for rainbow trout (Oncorhynchus mykiss) to study changes in physiological functions and PFAA ADME at different temperatures. The model was calibrated using experimental data from dietary exposure to perfluorooctane sulfonate at 7 °C and 19 °C. Predictions of PFOS concentrations were globally satisfactory at both temperatures, when accounting for the influence of temperature on growth, ventilation rate, cardiac output, clearances, and absorption rates. Accounting for the influence of temperature on tissue-plasma partition coefficients significantly improved predicted in-organ PFOS concentrations.
Collapse
Affiliation(s)
- Alice Vidal
- INRAE, RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Marc Babut
- INRAE, RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Jeanne Garric
- INRAE, RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Rémy Beaudouin
- UMR-I 02 SEBIO, Models for Ecotoxicology and Toxicology Unit (METO), INERIS, 60550 Verneuil en Halatte, France.
| |
Collapse
|
75
|
Nguyen GTH, Nocentini A, Angeli A, Gratteri P, Supuran CT, Donald WA. Perfluoroalkyl Substances of Significant Environmental Concern Can Strongly Inhibit Human Carbonic Anhydrase Isozymes. Anal Chem 2020; 92:4614-4622. [PMID: 32096628 DOI: 10.1021/acs.analchem.0c00163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl substances (PFASs) persist and are ubiquitous in the environment. The origins of PFAS toxicity and how they specifically affect the functions of proteins remain unclear. Herein, we report that PFASs can strongly inhibit the activity of human carbonic anhydrases (hCAs), which are ubiquitous enzymes that catalyze the hydration of CO2, are abundant in the blood and organs of mammals, and involved in pH regulation, ion homeostasis, and biosynthesis. The interactions between PFASs and hCAs were investigated using stopped-flow kinetic enzyme-inhibition measurements, native mass spectrometry (MS), and ligand-docking simulations. Narrow-bore emitters in native MS with inner diameters of ∼300 nm were used to directly and simultaneously measure the dissociation constants of 11 PFASs to an enzyme, which was not possible using conventional emitters. The data from native MS and stopped-flow measurements were in excellent agreement. Of 15 PFASs investigated, eight can inhibit at least one of four hCA isozymes (I, II, IX, and XII) with submicromolar inhibition constants, including perfluorooctanoic acid, perfluorooctanesulfonamide, and perfluorooctanesulfonic acid. Some PFASs, including those with both short and long perfluoromethylene chains, can effectively inhibit at least one hCA isozyme with low nanomolar inhibition constants.
Collapse
Affiliation(s)
- Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alessio Nocentini
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy.,Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Andrea Angeli
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
76
|
Shi Y, Song X, Jin Q, Li W, He S, Cai Y. Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp. ENVIRONMENT INTERNATIONAL 2020; 135:105418. [PMID: 31881427 DOI: 10.1016/j.envint.2019.105418] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The emergence of novel per- and polyfluoroalkyl substances (PFASs) has enabled researchers to determine their bioaccumulation, which is important for understanding their internal doses and environmental risks. Here, for the first time, we report on the occurrence of a novel PFAS, p-perfluorous nonenoxybenzenesulfonate (OBS) in wild crucian carp and explore its tissue distribution and bioaccumulation. The highest levels of OBS were observed in blood (mean/median: 144/133 ng/ml) with the mean tissue/blood ratios (TBRs) consistently below 1, ranging from 0.090 (muscle) to 0.644 (liver). This followed the pattern of perfluorooctane sulfonate (PFOS), implying that their distributions were similar. The calculated tissue-specific LogBAF values, except for muscle, 3.78 (gill)-4.14 (blood) over the regulatory bioaccumulation criterion (Log value: 3.70) indicated its obvious bioaccumulative potency in crucian carp. Molecular docking with estimated binding energies at -8.5 and -9.0 kcal/mol corroborated the strong interactions of OBS with human serum albumin and liver fatty acid binding protein, even though the binding energies were lower than those of PFOS. This, to some extent, explained the lower bioaccumulation of OBS than PFOS. Considering its bioaccumulative potential, large production volume, and wide use, further investigation into the environmental risk and in vivo toxicology of OBS is required.
Collapse
Affiliation(s)
- Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; Civil and Environment Engineering School, University of Science and Technology Beijing, Beijing 100085, China
| | - Sisi He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical & Environment Engineering, China University of Mining and Technology, Beijing 10083, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
77
|
Song X, Vestergren R, Shi Y, Cai Y. A Matrix-Correction Approach to Estimate the Bioaccumulation Potential of Emerging PFASs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1005-1013. [PMID: 31904951 DOI: 10.1021/acs.est.9b04906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies employing high-resolution mass spectrometry have discovered numerous emerging per- and polyfluoroalkyl substances (PFASs) in the environment, but the lack of authentic standards for these contaminants hampers quantitative evaluation of hazard properties. Here, we tested a matrix-correction methodology for determining the bioaccumulation potential of emerging PFASs based on peak area in crucian carp from Xiaoqing river, China. Fortification experiments of emerging PFASs extracted from surface water and sediment samples demonstrated that the quantification bias in fish tissues was <34% for analytes detected in fish and water. Tissue distribution ratios (TBRs) and whole-body bioaccumulation factors (BAFs) were subsequently calculated by correcting for analyte- and tissue-specific matrix effects. A model evaluation set including seven reference PFASs demonstrated that peak area-based TBRs and BAFs were strongly correlated with those calculated from quantified concentrations (p < 0.05, adjusted r2 > 0.91, slope: 0.99-1.34). Among the detected substances, the trimer acid of hexafluoropropylene oxide and C9 monoether per- and polyfluoroalkyl ether carboxylic acid (PFECA) were identified as bioaccumulative substances. C8 PFECA and C8 monochlorine-substituted perfluoroalkyl carboxylic acid displayed similar BAFs value compared to perfluorooctanoic acid. Overall, the proposed methodology provides a rapid hazard screening tool that could be used to assess emerging contaminants without access to authentic standards.
Collapse
Affiliation(s)
- Xiaowei Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Robin Vestergren
- IVL Swedish Environmental Research Institute , Stockholm SE-114 27 , Sweden
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085 , China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| |
Collapse
|
78
|
Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, McMurray CT, Lee LS, Cannon JR. Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol Sci 2019; 172:417-434. [PMID: 31428778 PMCID: PMC6876260 DOI: 10.1093/toxsci/kfz191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been widely utilized in numerous industries. Due to long environmental and biological half-lives, PFOS is a major public health concern. Although the literature suggests that PFOS may induce neurotoxicity, neurotoxic mechanisms, and neuropathology are poorly understood. Thus, the primary goal of this study was to determine if PFOS is selectively neurotoxic and potentially relevant to specific neurological diseases. Nematodes (Caenorhabditis elegans) were exposed to PFOS or related per- and polyfluoroalkyl substances (PFAS) for 72 h and tested for evidence of neuropathology through examination of cholinergic, dopaminergic, gamma-amino butyric acid (GABA)ergic, and serotoninergic neuronal morphologies. Dopaminergic and cholinergic functional analyses were assessed through 1-nonanol and Aldicarb assay. Mechanistic studies assessed total reactive oxygen species, superoxide ions, and mitochondrial content. Finally, therapeutic approaches were utilized to further examine pathogenic mechanisms. Dopaminergic neuropathology occurred at lower exposure levels (25 ppm, approximately 50 µM) than required to produce neuropathology in GABAergic, serotonergic, and cholinergic neurons (100 ppm, approximately 200 µM). Further, PFOS exposure led to dopamine-dependent functional deficits, without altering acetylcholine-dependent paralysis. Mitochondrial content was affected by PFOS at far lower exposure level than required to induce pathology (≥1 ppm, approximately 2 µM). Perfluorooctane sulfonate exposure also enhanced oxidative stress. Further, mutation in mitochondrial superoxide dismutase rendered animals more vulnerable. Neuroprotective approaches such as antioxidants, PFAS-protein dissociation, and targeted (mitochondrial) radical and electron scavenging were neuroprotective, suggesting specific mechanisms of action. In general, other tested PFAS were less neurotoxic. The primary impact is to prompt research into potential adverse outcomes related to PFAS-induced dopaminergic neurotoxicity in humans.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | - Rachel M Foguth
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | | | - Chloe De Perre
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Peter Wipf
- Departments of Chemistry, Pharmaceutical Sciences, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Cynthia T McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Jason R Cannon
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| |
Collapse
|
79
|
Zafeiraki E, Gebbink WA, van Leeuwen SPJ, Dassenakis E, Megalofonou P. Occurrence and tissue distribution of perfluoroalkyl substances (PFASs) in sharks and rays from the eastern Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:379-387. [PMID: 31158666 DOI: 10.1016/j.envpol.2019.05.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs), including Perfluoroalkyl substances (PFASs), enter into the marine ecosystem, raising questions on possible adverse effects caused to the health of marine organisms and especially of top predators. Thus, there is an urge to assess the occurrence and the tissue distribution of PFASs in apex predators. To this end, the current study examines concentrations and distribution of 15 PFASs among 85 samples of different tissues from 9 shark and ray species collected in Greece. The results showed a similar PFAS pattern among the different tissues, with long carbon chain PFASs being the most frequently detected compounds. PFTrDA was the most predominant compound in terms of concentration and frequency of detection, followed by PFUnDA and PFOS. PFTrDA concentrations ranged between < LOQ and 27.1 ng/g ww, while PFUnDA and PFOS levels ranged from <LOQ to 16.0 and < LOQ to 21.6 ng/g ww, respectively. Regarding their frequency of detection, PFTrDA and PFUnDA were detected in 98% and 91% of the samples, respectively, while PFOS was detected in 79%. ΣPFAS concentrations in each analysed tissue ranged from 0.3 to 85 ng/g ww, with the latter being detected in the liver of angular roughshark (Oxynotus centrina). On average, PFASs were found to be accumulated in tissues in the following order: gonads > heart > liver ≈ gills > muscle. Relative contribution (%) of individual compounds to ΣPFAS concentration varied among the different shark tissues, and also among the different shark species. No correlation between PFASs levels in tissues and sharks' gender, length and geographical origin was observed.
Collapse
Affiliation(s)
- Effrosyni Zafeiraki
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece; Laboratory of Pesticides Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561, Athens, Greece.
| | | | - Stefan P J van Leeuwen
- RIKILT Wageningen University and Research, Akkermaalsbos 2, 6708, WB, Wageningen, the Netherlands
| | - Emmanouil Dassenakis
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Persefoni Megalofonou
- Department of Biology, Section of Zoology - Marine Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilisia, 15784, Athens, Greece
| |
Collapse
|
80
|
Developmental exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) selectively decreases brain dopamine levels in Northern leopard frogs. Toxicol Appl Pharmacol 2019; 377:114623. [PMID: 31195004 DOI: 10.1016/j.taap.2019.114623] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic compounds that are a major public health concern due to widespread use, long environmental and biological half-lives, detection in most human plasma samples, and links to multiple adverse health outcomes. The literature suggests that some PFAS may be neurotoxic. However, there are major gaps in the literature with respect to how environmentally-relevant doses during development may influence the nervous system. To address this gap, we utilized a sentinel species, Northern leopard frogs (Lithobates pipiens) to determine the effects of developmental exposure to environmentally relevant perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on major neurotransmitter systems. Frog larvae at Gosner stage 25 were exposed to 10, 100, or 1000 ppb PFOS or PFOA for 30 days before neurochemical analysis. High performance liquid chromatography (HPLC) with electrochemical detection or fluorescent detection assays was used to measure neurotransmitter levels, which were normalized to protein levels in each sample. Dopamine (DA) decreased significantly in the brains of frogs treated with PFOA (1000 ppb) and PFOS (100 and 1000 ppb). Significant increases in DA turnover also resulted from PFOA and PFOS treatment. Neither PFOS, nor PFOA produced detectable alterations in serotonin (nor its metabolite), norepinephrine, gamma-amino butyric acid (GABA), glutamate, or acetylcholine. PFAS body burdens showed that PFOS accumulated relative to dose, while PFOA did not. These data suggest that DArgic neurotransmission is selectively affected in developmentally exposed amphibians and that PFAS should be evaluated for a potential role in diseases that target the DA system.
Collapse
|