51
|
Sharma S, Banjare MK, Singh N, Korábečný J, Fišar Z, Kuča K, Ghosh KK. Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer's drugs within the hydrophobic pockets of β-cycloamylose. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
52
|
Analyzing microglial-associated Aβ in Alzheimer's disease transgenic mice with a novel mid-domain Aβ-antibody. Sci Rep 2020; 10:10590. [PMID: 32601313 PMCID: PMC7324359 DOI: 10.1038/s41598-020-67419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/05/2020] [Indexed: 11/08/2022] Open
Abstract
The mechanisms of amyloid-β (Aβ)-degradation and clearance in Alzheimer's disease (AD) pathogenesis have been relatively little studied. Short Aβ-fragments form by enzymatic cleavage and alternate amyloid-beta precursor protein (APP)-processing. Here we characterized a novel polyclonal Aβ-antibody raised against an Aβ mid-domain and used it to investigate microglial Aβ-uptake in situ by microscopy at the light- and ultrastructural levels. The rabbit Aβ-mid-domain antibody (ab338), raised against the mid-domain amino acids 21-34 (Aβ21-34), was characterized with biochemical and histological techniques. To identify the epitope in Aβ recognized by ab338, solid phase and solution binding data were compared with peptide folding scores as calculated with the Tango software. The ab338 antibody displayed high average affinity (KD: 6.2 × 10-10 M) and showed preference for C-terminal truncated Aβ-peptides ending at amino acid 34 and Aβ-mid domain peptides with high scores of β-turn structure. In transgenic APP-mouse brain, ab338 labelled amyloid plaques and detected Aβ-fragments in microglia at the ultra- and light microscopic levels. This reinforces a role of microglia/macrophages in Aβ-clearance in vivo. The ab338 antibody might be a valuable tool to study Aβ-clearance by microglial uptake and Aβ-mid-domain peptides generated by enzymatic degradation and alternate production.
Collapse
|
53
|
Ratni H, Alker A, Bartels B, Bissantz C, Chen W, Gerlach I, Limberg A, Lu M, Neidhart W, Pichereau S, Reutlinger M, Rodriguez-Sarmiento RM, Jakob-Roetne R, Schmitt G, Zhang E, Baumann K. Discovery of RO7185876, a Highly Potent γ-Secretase Modulator (GSM) as a Potential Treatment for Alzheimer's Disease. ACS Med Chem Lett 2020; 11:1257-1268. [PMID: 32551009 DOI: 10.1021/acsmedchemlett.0c00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
γ-Secretase (GS) is a key target for the potential treatment of Alzheimer's disease. While inhibiting GS led to serious side effects, its modulation holds a lot of potential to deliver a safe treatment. Herein, we report the discovery of a potent and selective gamma secretase modulator (GSM) (S)-3 (RO7185876), belonging to a novel chemical class, the triazolo-azepines. This compound demonstrates an excellent in vitro and in vivo DMPK profile. Furthermore, based on its in vivo efficacy in a pharmacodynamic mouse model and the outcome of the dose range finding (DRF) toxicological studies in two species, this compound was selected to undergo entry in human enabling studies (e.g., GLP toxicology and scale up activities).
Collapse
Affiliation(s)
- Hasane Ratni
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andre Alker
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Bjoern Bartels
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Caterina Bissantz
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Weichun Chen
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Shanghai, Cai Lun Road 720, 201203 Shanghai, China
| | - Irene Gerlach
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anja Limberg
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mingqiu Lu
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Shanghai, Cai Lun Road 720, 201203 Shanghai, China
| | - Werner Neidhart
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Solen Pichereau
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Reutlinger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rosa-Maria Rodriguez-Sarmiento
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roland Jakob-Roetne
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Georg Schmitt
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Eric Zhang
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Shanghai, Cai Lun Road 720, 201203 Shanghai, China
| | - Karlheinz Baumann
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
54
|
Youssef MA, Panda SS, El-Shiekh RA, Shalaby EM, Aboshouk DR, Fayad W, Fawzy NG, Girgis AS. Synthesis and molecular modeling studies of cholinesterase inhibitor dispiro[indoline-3,2'-pyrrolidine-3',3''-pyrrolidines]. RSC Adv 2020; 10:21830-21838. [PMID: 35516607 PMCID: PMC9054546 DOI: 10.1039/d0ra03064c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023] Open
Abstract
A set of dispiro[indoline-3,2′-pyrrolidine-3′,3′′-pyrrolidines] 8a–l was regioselectively synthesized utilizing multi-component azomethine cycloaddition reaction of 3-(arylmethylidene)pyrrolidine-2,5-diones 5a–e, isatins 6a–c and sarcosine 7. Single crystal X-ray studies of 8c add conclusive support for the structure. Compounds 8e and 8g reveal cholinesterase inhibitory properties with promising efficacy against both AChE and BChE and were found to be more selective towards AChE than BChE as indicted by the selectivity index like Donepezil (a clinically used cholinesterase inhibitory drug). Molecular modeling studies assist in understanding the bio-observations and identifying the responsible parameters behind biological properties. Dispiro[indoline-3,2′-pyrrolidine-3′,3′′-pyrrolidines] were regioselectively synthesized revealing cholinesterase (AChE, BChE) inhibitory properties.![]()
Collapse
Affiliation(s)
- M Adel Youssef
- Department of Chemistry, Faculty of Science, Helwan University Helwan Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University Augusta GA 30912 USA
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - ElSayed M Shalaby
- X-Ray Crystallography Lab., Physics Division, National Research Centre Dokki Giza 12622 Egypt
| | - Dalia R Aboshouk
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre Dokki Giza 12622 Egypt
| | - Nehmedo G Fawzy
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
55
|
Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Front Mol Neurosci 2020; 13:65. [PMID: 32508589 PMCID: PMC7248309 DOI: 10.3389/fnmol.2020.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) catalyze the hydrolysis of peptide bonds within the transmembrane regions of membrane protein substrates, releasing bioactive fragments that play roles in many physiological and pathological processes. Based on their catalytic mechanism and nucleophile, I-CLiPs are classified into metallo, serine, aspartyl, and glutamyl proteases. Presenilin is the most prominent among I-CLiPs, as the catalytic subunit of γ-secretase (GS) complex responsible for cleaving the amyloid precursor protein (APP) and Notch, as well as many other membrane substrates. Recent cryo-electron microscopy (cryo-EM) structures of GS provide new details on how presenilin recognizes and cleaves APP and Notch. First, presenilin transmembrane helix (TM) 2 and 6 are dynamic. Second, upon binding to GS, the substrate TM helix is unwound from the C-terminus, resulting in an intermolecular β-sheet between the substrate and presenilin. The transition of the substrate C-terminus from α-helix to β-sheet is proposed to expose the scissile peptide bond in an extended conformation, leaving it susceptible to protease cleavage. Despite the astounding new insights in recent years, many crucial questions remain unanswered regarding the inner workings of γ-secretase, however. Key unanswered questions include how the enzyme recognizes and recruits substrates, how substrates are translocated from an initial docking site to the active site, how active site aspartates recruit and coordinate catalytic water, and the nature of the mechanisms of processive trimming of the substrate and product release. Answering these questions will have important implications for drug discovery aimed at selectively reducing the amyloid load in Alzheimer's disease (AD) with minimal side effects.
Collapse
Affiliation(s)
- Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Scott Forth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
56
|
Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7039138. [PMID: 32411333 PMCID: PMC7206886 DOI: 10.1155/2020/7039138] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among older people, and the prevalence of this disease is estimated to rise quickly in the upcoming years. Unfortunately, almost all of the drug candidates tested for AD until now have failed to exhibit any efficacy. Henceforth, there is an increased necessity to avert and/or slow down the advancement of AD. It is known that one of the major pathological characteristics of AD is the presence of senile plaques (SPs) in the brain. These SPs are composed of aggregated amyloid beta (Aβ), derived from the amyloid precursor protein (APP). Pharmaceutical companies have conducted a number of studies in order to identify safe and effective anti-Aβ drugs to combat AD. It is known that α-, β-, and γ-secretases are the three proteases that are involved in APP processing. Furthermore, there is a growing interest in these proteases, as they have a contribution to the modulation and production of Aβ. It has been observed that small compounds can be used to target these important proteases. Indeed, these compounds must satisfy the common strict requirements of a drug candidate targeted for brain penetration and selectivity toward different proteases. In this article, we have focused on the auspicious molecules which are under development for targeting APP-processing enzymes. We have also presented several anti-AD molecules targeting Aβ accumulation and phosphorylation signaling in APP processing. This review highlights the structure-activity relationship and other physicochemical features of several pharmacological candidates in order to successfully develop new anti-AD drugs.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
57
|
Trambauer J, Fukumori A, Steiner H. Pathogenic Aβ generation in familial Alzheimer’s disease: novel mechanistic insights and therapeutic implications. Curr Opin Neurobiol 2020; 61:73-81. [DOI: 10.1016/j.conb.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/06/2023]
|
58
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
59
|
Trambauer J, Rodríguez Sarmiento RM, Fukumori A, Feederle R, Baumann K, Steiner H. Aβ43-producing PS1 FAD mutants cause altered substrate interactions and respond to γ-secretase modulation. EMBO Rep 2020; 21:e47996. [PMID: 31762188 PMCID: PMC6945062 DOI: 10.15252/embr.201947996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Abnormal generation of neurotoxic amyloid-β peptide (Aβ) 42/43 species due to mutations in the catalytic presenilin 1 (PS1) subunit of γ-secretase is the major cause of familial Alzheimer's disease (FAD). Deeper mechanistic insight on the generation of Aβ43 is still lacking, and it is unclear whether γ-secretase modulators (GSMs) can reduce the levels of this Aβ species. By comparing several types of Aβ43-generating FAD mutants, we observe that very high levels of Aβ43 are often produced when presenilin function is severely impaired. Altered interactions of C99, the precursor of Aβ, are found for all mutants and are independent of their particular effect on Aβ production. Furthermore, unlike previously described GSMs, the novel compound RO7019009 can effectively lower Aβ43 production of all mutants. Finally, substrate-binding competition experiments suggest that RO7019009 acts mechanistically after initial C99 binding. We conclude that altered C99 interactions are a common feature of diverse types of PS1 FAD mutants and that also patients with Aβ43-generating FAD mutations could in principle be treated by GSMs.
Collapse
Affiliation(s)
- Johannes Trambauer
- Biomedical Center (BMC), Metabolic BiochemistryLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Akio Fukumori
- Department of Aging NeurobiologyNational Center for Geriatrics and GerontologyObuJapan
- Department of Mental Health PromotionOsaka University Graduate School of MedicineToyonakaJapan
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center MunichGerman Research Center for Environmental HealthNeuherbergGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Karlheinz Baumann
- Roche Pharma Research and Early DevelopmentRoche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic BiochemistryLudwig‐Maximilians‐UniversityMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| |
Collapse
|
60
|
Lei J, Xu J, Tang DY, Shao JW, Li HY, Chen ZZ, Xu ZG. A concise and unexpected one-pot methodology for the synthesis of pyrazinone-fused pyridones. Org Chem Front 2020. [DOI: 10.1039/d0qo00590h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A post-Ugi/Michael/Retro-Michael reaction, aromatization and 5-exo-dig cyclization cascade reaction was developed and utilized for the synthesis of pyrazinone-fused pyridone derivatives under mild reaction conditions in one-pot.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine
- Chongqing University of Arts and Sciences
- Chongqing 402160
| | - Jia Xu
- College of Pharmacy
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine
- Chongqing University of Arts and Sciences
- Chongqing 402160
| | - Dian-Yong Tang
- College of Pharmacy
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine
- Chongqing University of Arts and Sciences
- Chongqing 402160
| | - Jing-Wei Shao
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Arkansas for Medical Sciences
- Little Rock
- USA
| | - Hong-yu Li
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Arkansas for Medical Sciences
- Little Rock
- USA
| | - Zhong-Zhu Chen
- College of Pharmacy
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine
- Chongqing University of Arts and Sciences
- Chongqing 402160
| | - Zhi-Gang Xu
- College of Pharmacy
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine
- Chongqing University of Arts and Sciences
- Chongqing 402160
| |
Collapse
|
61
|
Ciccocioppo F, Bologna G, Ercolino E, Pierdomenico L, Simeone P, Lanuti P, Pieragostino D, Del Boccio P, Marchisio M, Miscia S. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural Regen Res 2020; 15:850-856. [PMID: 31719246 PMCID: PMC6990794 DOI: 10.4103/1673-5374.268971] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the pathophysiology of neurodegenerative disorders, the role of misfolded protein deposition leading to neurodegeneration has been primarily discussed. In the last decade, however, it has been proposed a parallel involvement of innate immune activation, chronic inflammation and adaptive immunity in the neurodegeneration mechanisms triggered by proteinopathies. New insights in the neurodegenerative field strongly suggest a role for the immune system in the pathophysiology of neurodegenerative disorders. Therefore, the hypothesis underlining the modulation of the innate and the adaptive immune system in the events linked to brain deposition of misfolded proteins could open new perspectives in the setting of specific immunotherapeutic strategies for the treatment of neurodegenerative diseases. Therefore, we have reviewed the pathogenic hypothesis in neurodegenerative pathologies, underling the links between the deposition of misfolded protein mechanisms and the immune activation.
Collapse
Affiliation(s)
- Fausta Ciccocioppo
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Eva Ercolino
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Damiana Pieragostino
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT); Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Del Boccio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT); Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sebastiano Miscia
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
62
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid β in the form of extracellular plaques and by intracellular neurofibrillary tangles, with eventual neurodegeneration and dementia. There is currently no disease-modifying treatment though several symptomatic medications exist with modest benefit on cognition. Acetylcholinesterase inhibitors have a consistent benefit across all stages of dementia; their benefit in mild cognitive impairment and prodromal AD is unproven. Memantine has a smaller benefit on cognition overall which is limited to the moderate to severe stages, and the combination of a cholinesterase inhibitor and memantine may have additional efficacy. Evidence for the efficacy of vitamin E supplementation and medical foods is weak but might be considered in the context of cost, availability, and safety in individual patients. Apparently promising disease-modifying interventions, mostly addressing the amyloid cascade hypothesis of AD, have recently failed to demonstrate efficacy so novel approaches must be considered.
Collapse
Affiliation(s)
- Elizabeth Joe
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| | - John M Ringman
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| |
Collapse
|
63
|
Kounnas MZ, Durakoglugil MS, Herz J, Comer WT. NGP 555, a γ-secretase modulator, shows a beneficial shift in the ratio of amyloid biomarkers in human cerebrospinal fluid at safe doses. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:458-467. [PMID: 31921961 PMCID: PMC6944734 DOI: 10.1016/j.trci.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Currently, there is no cure for Alzheimer's disease (AD), and it is widely accepted that AD is a complex disease with multiple approaches necessary to prevent and treat the disease. METHODS Using amyloid biomarkers in human cerebrospinal fluid, pharmacokinetic, safety, and metabolism studies, we investigate the properties of NGP 555, γ-secretase modulator, for the first time in human clinical trials. RESULTS Our preclinical and clinical studies combined show beneficial effects with NGP 555 on synaptic response and amyloid cerebrospinal fluid biomarkers while avoiding negative side effects. Importantly, pharmacokinetic and pharmacodynamic parameters combined with safety outcomes indicate that NGP 555 penetrates the blood-brain barrier and increases the ratio of amyloid-β peptide Aβ37 and Aβ38 compared with that of Aβ42, establishing a proof of target engagement in humans in a 14 day, once-daily oral dosing trial. DISCUSSION In humans, NGP 555 has demonstrated a beneficial shift in the production of Aβ37 and Aβ38 versus Aβ42 biomarker levels in the cerebrospinal fluid while maintaining an adequate safety profile. The overall clinical goal is to achieve an optimal balance of efficacy for altering amyloid-β peptide (Aβ) biomarkers while maintaining a safe profile so that NGP 555 can be given early in AD to prevent production of Aβ42 and accumulation of amyloid plaques, in an effort to prevent aggregation of tau and destruction of neurons and synapses resulting in cognitive decline.
Collapse
Affiliation(s)
- Maria Z. Kounnas
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Murat S. Durakoglugil
- Department of Molecular Genetics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joachim Herz
- Department of Molecular Genetics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
64
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
65
|
Vanda D, Zajdel P, Soural M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur J Med Chem 2019; 181:111569. [DOI: 10.1016/j.ejmech.2019.111569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/26/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022]
|
66
|
de Sena M. Pinheiro P, Rodrigues DA, do Couto Maia R, Thota S, Fraga CA. The Use of Conformational Restriction in Medicinal Chemistry. Curr Top Med Chem 2019; 19:1712-1733. [DOI: 10.2174/1568026619666190712205025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
During the early preclinical phase, from hit identification and optimization to a lead compound,
several medicinal chemistry strategies can be used to improve potency and/or selectivity. The
conformational restriction is one of these approaches. It consists of introducing some specific structural
constraints in a lead candidate to reduce the overall number of possible conformations in order to favor
the adoption of a bioactive conformation and, as a consequence, molecular recognition by the target receptor.
In this work, we focused on the application of the conformational restriction strategy in the last
five years for the optimization of hits and/or leads of several important classes of therapeutic targets in
the drug discovery field. Thus, we recognize the importance of several kinase inhibitors to the current
landscape of drug development for cancer therapy and the use of G-protein Coupled Receptor (GPCR)
modulators. Several other targets are also highlighted, such as the class of epigenetic drugs. Therefore,
the possibility of exploiting conformational restriction as a tool to increase the potency and selectivity
and promote changes in the intrinsic activity of some ligands intended to act on many different targets
makes this strategy of structural modification valuable for the discovery of novel drug candidates.
Collapse
Affiliation(s)
- Pedro de Sena M. Pinheiro
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Daniel A. Rodrigues
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Rodolfo do Couto Maia
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Sreekanth Thota
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Carlos A.M. Fraga
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
67
|
Blass BE. Triazolo Pyridines Useful as Inhibitors of γ-Secretase and Their Methods of Use. ACS Med Chem Lett 2019; 10:1249-1250. [PMID: 31531191 DOI: 10.1021/acsmedchemlett.9b00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 11/30/2022] Open
Affiliation(s)
- Benjamin E. Blass
- Temple University School of Pharmacy, Moulder Center for Drug Discovery Research, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
68
|
Blass BE. Triazolo-azepine Inhibitors of γ-Secretase and Their Methods of Use. ACS Med Chem Lett 2019; 10:1243-1244. [PMID: 31531188 DOI: 10.1021/acsmedchemlett.9b00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Benjamin E. Blass
- Temple University School of Pharmacy, Moulder Center for Drug Discovery Research, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
69
|
Ahn JE, Carrieri C, Dela Cruz F, Fullerton T, Hajos-Korcsok E, He P, Kantaridis C, Leurent C, Liu R, Mancuso J, Mendes da Costa L, Qiu R. Pharmacokinetic and Pharmacodynamic Effects of a γ-Secretase Modulator, PF-06648671, on CSF Amyloid-β Peptides in Randomized Phase I Studies. Clin Pharmacol Ther 2019; 107:211-220. [PMID: 31314925 PMCID: PMC6977340 DOI: 10.1002/cpt.1570] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/08/2019] [Indexed: 01/04/2023]
Abstract
γ‐Secretase modulators (GSMs) represent a promising therapy for Alzheimer's disease by reducing pathogenic amyloid‐β (Aβ) peptide production. Three phase I studies (NCT02316756, NCT02407353, and NCT02440100) investigated the safety/tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of the oral GSM, PF‐06648671. A PK/PD indirect‐response model was developed (using biomarker data) to simultaneously characterize differential effects of PF‐06648671 on multiple Aβ species in cerebrospinal fluid (CSF). Healthy subjects (n = 120) received single doses or multiple‐ascending doses of PF‐06648671/placebo for 14 days. No serious adverse events occurred; severe adverse eventswere deemed not drug related. PF‐06648671 decreased Aβ42 and Aβ40 concentrations in CSF, with greater effects on Aβ42, and increased Aβ37 and Aβ38 levels, particularly Aβ37. No significant change in total Aβ was observed. The PK/PD model well described the tendency of observed CSF Aβ data and the steady‐state effects of PF‐06648671, supporting its use for predicting central Aβ effects and optimal dose selection for GSMs in future trials.
Collapse
Affiliation(s)
| | | | | | | | - Eva Hajos-Korcsok
- Pfizer Inc, Cambridge, Massachusetts, USA.,Sunovion Pharmaceuticals, Marlborough, Massachusetts, USA
| | - Ping He
- Pfizer Inc, Cambridge, Massachusetts, USA.,Biogen Inc, Cambridge, Massachusetts, USA
| | | | - Claire Leurent
- Pfizer Inc, Cambridge, Massachusetts, USA.,Samsung Ventures America, Boston, Massachusetts, USA
| | - Richann Liu
- Pfizer Inc, Cambridge, Massachusetts, USA.,ICON, Boston, Massachusetts, USA
| | | | | | - Ruolun Qiu
- Pfizer Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
70
|
Reynolds DS. A short perspective on the long road to effective treatments for Alzheimer's disease. Br J Pharmacol 2019; 176:3636-3648. [PMID: 30657599 PMCID: PMC6715596 DOI: 10.1111/bph.14581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Globally, there are approximately 47 million people living with dementia, and about two thirds of those have Alzheimer's disease (AD). Age is the single biggest risk factor for the vast majority of sporadic AD cases, and because the world's population is aging, the number of people living with AD is set to rise dramatically over the coming decades. There are currently no disease-modifying treatments for AD, and the few symptomatic agents available have limited impact on the disease. Perhaps surprisingly, there is relatively little activity in the AD research and development field compared with other diseases with a high mortality burden, such as cancer. There is enormous economic incentive to discover and develop the first disease-modifying treatment, but previous failure has significantly reduced further industrial investment in this field. The short review looks at the historical path trodden to develop treatments and reflects on the journey down the road to truly effective treatments for people living with AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
|
71
|
Cusulin C, Wells I, Badillo S, Duran-Pacheco GC, Baumann K, Patsch C. Gamma secretase modulators and BACE inhibitors reduce Aβ production without altering gene expression in Alzheimer's disease iPSC-derived neurons and mice. Mol Cell Neurosci 2019; 100:103392. [PMID: 31381983 DOI: 10.1016/j.mcn.2019.103392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
In drug discovery, as well as in the study of disease biology, it is fundamental to develop models that recapitulate aspects of a disorder, in order to understand the pathology and test therapeutic approaches. Patient-derived induced pluripotent stem cells (iPSCs) offer the potential of obtaining tissue-specific cells with a given human genotype. Here we derived neural cultures from Alzheimer's disease patient iPSCs and characterized their response to three classes of compounds that reduce the production of Aβ42, a major driving force of this pathology. We characterized their effect on the cells, looking at Tau proteostasis and gene expression changes by RNAseq. β-secretase inhibitor and γ-secretase modulators left the transcriptional balance of the cells virtually unaffected, while γ-secretase inhibitors caused drastic gene expression changes due to Notch inhibition. We observed similar effects in vivo, treating mice with the same compound classes. Our results show that β-secretase inhibitors and γ-secretase modulators are attractive candidates for modulating Aβ production in Alzheimer's disease. Moreover, we demonstrate that the response to compounds obtained with iPSC-derived neurons is similar to the one observable in vivo.
Collapse
Affiliation(s)
- Carlo Cusulin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse, 4070 Basel, Switzerland
| | - Isabelle Wells
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse, 4070 Basel, Switzerland
| | - Solveig Badillo
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse, 4070 Basel, Switzerland
| | | | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse, 4070 Basel, Switzerland
| | - Christoph Patsch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse, 4070 Basel, Switzerland.
| |
Collapse
|
72
|
Silva GM, Barcelos MP, Poiani JGC, Hage-Melim LIDS, da Silva CHTDP. Allosteric Modulators of Potential Targets Related to Alzheimer's Disease: a Review. ChemMedChem 2019; 14:1467-1483. [PMID: 31310701 DOI: 10.1002/cmdc.201900299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/05/2019] [Indexed: 12/15/2022]
Abstract
Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common type of dementia, and there is an urgent need to discover new and efficacious forms of treatment for it. Pathological patterns of AD include cholinergic dysfunction, increased β-amyloid (Aβ) peptide concentration, the appearance of neurofibrillary tangles, among others, all of which are strongly associated with specific biological targets. Interactions observed between these targets and potential drug candidates in AD most often occur by competitive mechanisms driven by orthosteric ligands that sometimes result in the production of side effects. In this context, the allosteric mechanism represents a key strategy; this can be regarded as the selective modulation of such targets by allosteric modulators in an advantageous manner, as this may decrease the likelihood of side effects. The purpose of this review is to present an overview of compounds that act as allosteric modulators of the main biological targets related to AD.
Collapse
Affiliation(s)
- Guilherme Martins Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - João Gabriel Curtolo Poiani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil
| | - Lorane Izabel da Silva Hage-Melim
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Ciências Biológicas e da Saúde, Curso de Farmácia, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, KM-02, 68903-419, Macapá, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| |
Collapse
|
73
|
Castro MA, Hadziselimovic A, Sanders CR. The vexing complexity of the amyloidogenic pathway. Protein Sci 2019; 28:1177-1193. [PMID: 30897251 PMCID: PMC6566549 DOI: 10.1002/pro.3606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of the amyloidogenic pathway in the etiology of Alzheimer's disease (AD), particularly the common sporadic late onset forms of the disease, is controversial. To some degree, this is a consequence of the failure of drug and therapeutic antibody trials based either on targeting the proteases in this pathway or its amyloid end products. Here, we explore the formidable complexity of the biochemistry and cell biology associated with this pathway. For example, we review evidence that the immediate precursor of amyloid-β, the C99 domain of the amyloid precursor protein (APP), may itself be toxic. We also review important new results that appear to finally establish a direct genetic link between mutations in APP and the sporadic forms of AD. Based on the complexity of amyloidogenesis, it seems possible that a major contributor to the failure of related drug trials is that we have an incomplete understanding of this pathway and how it is linked to Alzheimer's pathogenesis. If so, this highlights a need for further characterization of this pathway, not its abandonment.
Collapse
Affiliation(s)
- Manuel A. Castro
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Arina Hadziselimovic
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Charles R. Sanders
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| |
Collapse
|
74
|
Abstract
γ-Secretase is a membrane-embedded protease complex, with presenilin as the catalytic component containing two transmembrane aspartates in the active site. With more than 90 known substrates, the γ-secretase complex is considered "the proteasome of the membrane", with central roles in biology and medicine. The protease carries out hydrolysis within the lipid bilayer to cleave the transmembrane domain of the substrate multiple times before releasing secreted products. For many years, elucidation of γ-secretase structure and function largely relied on small-molecule probes and mutagenesis. Recently, however, advances in cryo-electron microscopy have led to the first detailed structures of the protease complex. Two new reports of structures of γ-secretase bound to membrane protein substrates provide great insight into the nature of substrate recognition and how Alzheimer's disease-causing mutations in presenilin might alter substrate binding and processing. These new structures offer a powerful platform for elucidating enzyme mechanisms, deciphering effects of disease-causing mutations, and advancing Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
75
|
Maia MA, Sousa E. BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer's Disease. Pharmaceuticals (Basel) 2019; 12:ph12010041. [PMID: 30893882 PMCID: PMC6469197 DOI: 10.3390/ph12010041] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing global health concern with a massive impact on affected individuals and society. Despite the considerable advances achieved in the understanding of AD pathogenesis, researchers have not been successful in fully identifying the mechanisms involved in disease progression. The amyloid hypothesis, currently the prevalent theory for AD, defends the deposition of β-amyloid protein (Aβ) aggregates as the trigger of a series of events leading to neuronal dysfunction and dementia. Hence, several research and development (R&D) programs have been led by the pharmaceutical industry in an effort to discover effective and safety anti-amyloid agents as disease modifying agents for AD. Among 19 drug candidates identified in the AD pipeline, nine have their mechanism of action centered in the activity of β or γ-secretase proteases, covering almost 50% of the identified agents. These drug candidates must fulfill the general rigid prerequisites for a drug aimed for central nervous system (CNS) penetration and selectivity toward different aspartyl proteases. This review presents the classes of γ-secretase and beta-site APP cleaving enzyme 1 (BACE-1) inhibitors under development, highlighting their structure-activity relationship, among other physical-chemistry aspects important for the successful development of new anti-AD pharmacological agents.
Collapse
Affiliation(s)
- Miguel A Maia
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
76
|
Boy KM, Guernon JM, Zuev DS, Xu L, Zhang Y, Shi J, Marcin LR, Higgins MA, Wu YJ, Krishnananthan S, Li J, Trehan A, Smith D, Toyn JH, Meredith JE, Burton CR, Kimura SR, Zvyaga T, Zhuo X, Lentz KA, Grace JE, Denton R, Morrison JS, Mathur A, Albright CF, Ahlijanian MK, Olson RE, Thompson LA, Macor JE. Identification and Preclinical Evaluation of the Bicyclic Pyrimidine γ-Secretase Modulator BMS-932481. ACS Med Chem Lett 2019; 10:312-317. [PMID: 30891132 PMCID: PMC6421538 DOI: 10.1021/acsmedchemlett.8b00541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
A triazine hit identified from a screen of the BMS compound collection was optimized for potency, in vivo activity, and off-target profile to produce the bicyclic pyrimidine γ-secretase modulator BMS-932481. The compound showed robust reductions of Aβ1-42 and Aβ1-40 in the plasma, brain, and cerebrospinal fluid of mice and rats. Consistent with the γ-secretase modulator mechanism, increases in Aβ1-37 and Aβ1-38 were observed, with no change in the total amount of Aβ1-x produced. No Notch-based toxicity was observed, and the overall preclinical profile of BMS-932481 supported its further evaluation in human clinical trials.
Collapse
Affiliation(s)
- Kenneth M. Boy
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Jason M. Guernon
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Dmitry S. Zuev
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Li Xu
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Yunhui Zhang
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Jianliang Shi
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | | | - Mendi A. Higgins
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Yong-Jin Wu
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | | | - Jianqing Li
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Ashok Trehan
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Daniel Smith
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Jeremy H. Toyn
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Jere E. Meredith
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | | | - S. Roy Kimura
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Tatyana Zvyaga
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Xiaoliang Zhuo
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | | | - James E. Grace
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Rex Denton
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - John S. Morrison
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | - Arvind Mathur
- Bristol-Myers Squibb, Princeton, New Jersey 08543, United States
| | | | | | - Richard E. Olson
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| | | | - John E. Macor
- Bristol-Myers Squibb, Wallingford, Connecticut 06492, United States
| |
Collapse
|
77
|
Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev 2019; 98:234-255. [DOI: 10.1016/j.neubiorev.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
78
|
Schaduangrat N, Prachayasittikul V, Choomwattana S, Wongchitrat P, Phopin K, Suwanjang W, Malik AA, Vincent B, Nantasenamat C. Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Med Res Rev 2019; 39:1730-1778. [PMID: 30628099 DOI: 10.1002/med.21563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the β-amyloid precursor protein (βAPP) and β-amyloid (Aβ) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Veda Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Saowapak Choomwattana
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
79
|
Lipid bilayer position and orientation of novel carprofens, modulators of γ-secretase in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2224-2233. [PMID: 30409518 DOI: 10.1016/j.bbamem.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
Abstract
γ-Secretase is an integral membrane protein complex and is involved in the cleavage of the amyloid precursor protein APP to produce amyloid-β peptides. Amyloid-β peptides are considered causative agents for Alzheimer's disease and drugs targeted at γ-secretase are investigated as therapeutic treatments. We synthesized new carprofen derivatives, which showed γ-secretase modulating activity and determined their precise position, orientation, and dynamics in lipid membranes by combining neutron diffraction, solid-state NMR spectroscopy, and molecular dynamics simulations. Our data indicate that the carprofen derivatives are inserted into the membrane interface, where the exact position and orientation depends on the lipid phase. This knowledge will help to understand the docking of carprofen derivatives to γ-secretase and in the design of new potent drugs. The approach presented here promises to serve as a general guideline how drug/target interactions in membranes can be analyzed in a comprehensive manner.
Collapse
|
80
|
Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress 2018; 2:292-310. [PMID: 31225454 PMCID: PMC6551803 DOI: 10.15698/cst2018.11.162] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer´s disease (AD) is a devastating neurodegenerative disease of the elderly population. Genetic evidence strongly suggests that aberrant generation and/or clearance of the neurotoxic amyloid-β peptide (Aβ) is triggering the disease. Aβ is generated from the amyloid precursor protein (APP) by the sequential cleavages of β- and γ-secretase. The latter cleavage by γ-secretase, a unique and fascinating four-component protease complex, occurs in the APP transmembrane domain thereby releasing Aβ species of 37-43 amino acids in length including the longer, highly pathogenic peptides Aβ42 and Aβ43. The lack of a precise understanding of Aβ generation as well as of the functions of other γ-secretase substrates has been one factor underlying the disappointing failure of γ-secretase inhibitors in clinical trials, but on the other side also been a major driving force for structural and in depth mechanistic studies on this key AD drug target in the past few years. Here we review recent breakthroughs in our understanding of how the γ-secretase complex recognizes substrates, of how it binds and processes β-secretase cleaved APP into different Aβ species, as well as the progress made on a question of outstanding interest, namely how clinical AD mutations in the catalytic subunit presenilin and the γ-secretase cleavage region of APP lead to relative increases of Aβ42/43. Finally, we discuss how the knowledge emerging from these studies could be used to therapeutically target this enzyme in a safe way.
Collapse
Affiliation(s)
- Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Akio Fukumori
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu & Department of Mental Health Promotion, Osaka University Graduate School of Medicine, Toyonaka, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
81
|
Discovery of tetrahydroindazoles as a novel class of potent and in vivo efficacious gamma secretase modulators. Bioorg Med Chem 2018; 26:3227-3241. [DOI: 10.1016/j.bmc.2018.04.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/14/2023]
|
82
|
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, which is considered as one of the most intractable medical problems with heavy social and economic costs. The current drugs for AD, including acetylcholinesterase inhibitors (AChEIs) and memantine, a NMDA receptor antagonist, only temporarily ameliorate cognitive decline, but are unable to stop or reverse the progression of dementia. This paper reviewed the recent advance in AD drug development. The drug discovery programs under clinical trials targeting cholinergic system, α7 nicotinic acetylcholine receptors (nAChRs), N-methyl-d-aspartate receptor (NMDAR), β-secretase, γ-secretase modulators, tau, inflammatory mediators and glucagon-like peptide-1 (GLP-1) were discussed. Though several drug discovery programs are ongoing, the high failure rate is an outstanding issue. Novel techniques and strategies are desperately needed to significantly accelerate this process.
Collapse
Affiliation(s)
- Kejing Lao
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Naichun Ji
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Xiaohua Zhang
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Wenwei Qiao
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Zhishu Tang
- b Institute of Holistic Integrated Medicine, Shaanxi University of Chinese Medicine , Shaanxi , Xianyang , China
| | - Xingchun Gou
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China.,b Institute of Holistic Integrated Medicine, Shaanxi University of Chinese Medicine , Shaanxi , Xianyang , China
| |
Collapse
|
83
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
84
|
Mañucat-Tan NB, Saadipour K, Wang YJ, Bobrovskaya L, Zhou XF. Cellular Trafficking of Amyloid Precursor Protein in Amyloidogenesis Physiological and Pathological Significance. Mol Neurobiol 2018; 56:812-830. [PMID: 29797184 DOI: 10.1007/s12035-018-1106-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 12/26/2022]
Abstract
The accumulation of excess intracellular or extracellular amyloid beta (Aβ) is one of the key pathological events in Alzheimer's disease (AD). Aβ is generated from the cleavage of amyloid precursor protein (APP) by beta secretase-1 (BACE1) and gamma secretase (γ-secretase) within the cells. The endocytic trafficking of APP facilitates amyloidogenesis while at the cell surface, APP is predominantly processed in a non-amyloidogenic manner. Several adaptor proteins bind to both APP and BACE1, regulating their trafficking and recycling along the secretory and endocytic pathways. The phosphorylation of APP at Thr668 and BACE1 at Ser498, also influence their trafficking. Neurotrophins and proneurotrophins also influence APP trafficking through their receptors. In this review, we describe the molecular trafficking pathways of APP and BACE1 that lead to Aβ generation, the involvement of different signaling molecules or adaptor proteins regulating APP and BACE1 subcellular localization. We have also discussed how neurotrophins could modulate amyloidogenesis through their receptors.
Collapse
Affiliation(s)
- Noralyn Basco Mañucat-Tan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Khalil Saadipour
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
85
|
Nakahara K, Fuchino K, Komano K, Asada N, Tadano G, Hasegawa T, Yamamoto T, Sako Y, Ogawa M, Unemura C, Hosono M, Ito H, Sakaguchi G, Ando S, Ohnishi S, Kido Y, Fukushima T, Dhuyvetter D, Borghys H, Gijsen HJM, Yamano Y, Iso Y, Kusakabe KI. Discovery of Potent and Centrally Active 6-Substituted 5-Fluoro-1,3-dihydro-oxazine β-Secretase (BACE1) Inhibitors via Active Conformation Stabilization. J Med Chem 2018; 61:5525-5546. [DOI: 10.1021/acs.jmedchem.8b00011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
86
|
Fuchino K, Mitsuoka Y, Masui M, Kurose N, Yoshida S, Komano K, Yamamoto T, Ogawa M, Unemura C, Hosono M, Ito H, Sakaguchi G, Ando S, Ohnishi S, Kido Y, Fukushima T, Miyajima H, Hiroyama S, Koyabu K, Dhuyvetter D, Borghys H, Gijsen HJM, Yamano Y, Iso Y, Kusakabe KI. Rational Design of Novel 1,3-Oxazine Based β-Secretase (BACE1) Inhibitors: Incorporation of a Double Bond To Reduce P-gp Efflux Leading to Robust Aβ Reduction in the Brain. J Med Chem 2018; 61:5122-5137. [DOI: 10.1021/acs.jmedchem.8b00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
87
|
Blass BE. Azabicyclic Fused Pyrimidine Derivatives Useful for the Treatment of Alzheimer's Disease. ACS Med Chem Lett 2018; 9:290-291. [PMID: 29670685 DOI: 10.1021/acsmedchemlett.8b00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Benjamin E. Blass
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
88
|
Wolfe MS. Dysfunctional γ-Secretase in Familial Alzheimer's Disease. Neurochem Res 2018; 44:5-11. [PMID: 29619615 PMCID: PMC6592691 DOI: 10.1007/s11064-018-2511-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
Abstract
Genetics strongly implicate the amyloid β-peptide (Aβ) in the pathogenesis of Alzheimer's disease. Dominant missense mutation in the presenilins and the amyloid precursor protein (APP) cause early-onset familial Alzheimer's disease (FAD). As presenilin is the catalytic component of the γ-secretase protease complex that produces Aβ from APP, mutation of the enzyme or substrate that produce Aβ leads to FAD. However, the mechanism by which presenilin mutations cause FAD has been controversial, with gain of function and loss of function offered as binary choices. This overview will instead present the case that presenilins are dysfunctional in FAD. γ-Secretase is a multi-functional enzyme that proteolyzes the APP transmembrane domain in a complex and processive manner. Reduction in a specific function-the carboxypeptidase trimming of initially formed long Aβ peptides containing most of the transmembrane domain to shorter secreted forms-is an emerging common feature of FAD-mutant γ-secretase complexes.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
89
|
Blass BE. Azabicyclic Fused Pyrimidine Derivatives Useful for the Treatment of Alzheimer's Disease. ACS Med Chem Lett 2018. [PMID: 29541352 DOI: 10.1021/acsmedchemlett.8b00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Benjamin E. Blass
- Temple University School of Pharmacy, Moulder Center for Drug Discovery Research, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
90
|
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 2018; 129:262-273. [DOI: 10.1016/j.phrs.2017.11.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
|
91
|
Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK. Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead. Eur J Med Chem 2018; 148:436-452. [DOI: 10.1016/j.ejmech.2018.02.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
|
92
|
Activation of γ-Secretase Trimming Activity by Topological Changes of Transmembrane Domain 1 of Presenilin 1. J Neurosci 2017; 37:12272-12280. [PMID: 29118109 DOI: 10.1523/jneurosci.1628-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022] Open
Abstract
γ-Secretase is an intramembrane cleaving protease that is responsible for the generation of amyloid-β peptides, which are linked to the pathogenesis of Alzheimer disease. Recently, γ-secretase modulators (GSMs) have been shown to specifically decrease production of the aggregation-prone and toxic longer Aβ species, and concomitantly increase the levels of shorter Aβ. We previously found that phenylimidazole-type GSMs bind to presenilin 1 (PS1), the catalytic subunit of the γ-secretase, and allosterically modulate γ-secretase activity. However, the precise conformational alterations in PS1 remained unclear. Here we mapped the amino acid residues in PS1 that is crucial for the binding and pharmacological actions of E2012, a phenylimidazole-type GSM, using photoaffinity labeling and the substituted cysteine accessibility method. We also demonstrated that a piston-like vertical motion of transmembrane domain (TMD) 1 occurs during modulation of Aβ production. Taking these results together, we propose a model for the molecular mechanism of phenylimidazole-type GSMs, in which the trimming activity of γ-secretase is modulated by the position of the TMD1 of PS1 in the lipid bilayer.SIGNIFICANCE STATEMENT Reduction of the toxic longer amyloid-β peptide is one of the therapeutic approaches for Alzheimer disease. A subset of small compounds called γ-secretase modulators specifically decreases the longer amyloid-β production, although its mechanistic action remains unclear. Here we found that the modulator compound E2012 targets to the hydrophilic loop 1 of presenilin 1, which is a catalytic subunit of the γ-secretase. Moreover, E2012 triggers the piston movement of the transmembrane domain 1 of presenilin 1, which impacts on the γ-secretase activity. These results illuminate how γ-secretase modulators allosterically affect the proteolytic activity, and highlight the importance of the structural dynamics of presenilin 1 in the complexed process of the intramembrane cleavage.
Collapse
|
93
|
Rankic DA, Stiff CM, am Ende CW, Humphrey JM. Protocol for the Direct Conversion of Lactones to Lactams Mediated by 1,5,7-Triazabicyclo[4.4.0]dec-5-ene: Synthesis of Pyridopyrazine-1,6-diones. J Org Chem 2017; 82:12791-12797. [DOI: 10.1021/acs.joc.7b02079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Danica A. Rankic
- Pfizer Worldwide Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Cory M. Stiff
- Pfizer Worldwide Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - John M. Humphrey
- Pfizer Worldwide Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
94
|
Zhao Z, Pissarnitski DA, Huang X, Palani A, Zhu Z, Greenlee WJ, Hyde LA, Song L, Terracina G, Zhang L, Parker EM. Discovery of a Tetrahydrobenzisoxazole Series of γ-Secretase Modulators. ACS Med Chem Lett 2017; 8:1002-1006. [PMID: 29057041 DOI: 10.1021/acsmedchemlett.7b00178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022] Open
Abstract
The design and synthesis of a new series of tetrahydrobenzisoxazoles as modulators of γ-secretase activity and their structure-activity relationship (SAR) will be detailed. Several compounds are active γ-secretase modulators (GSMs) with good to excellent selectivity for the reduction of Aβ42 in the cellular assay. Compound 14a was tested in vivo in a nontransgenic rat model and was found to significantly reduce Aβ42 in the CNS compartment compared to vehicle-treated animals (up to 58% reduction of cerebrospinal fluid Aβ42 as measured 3 h after an acute oral dosing at 30 mg/kg).
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department
of Medicinal Chemistry and ‡Department of Neurobiology, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Dmitri A. Pissarnitski
- Department
of Medicinal Chemistry and ‡Department of Neurobiology, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xianhai Huang
- Department
of Medicinal Chemistry and ‡Department of Neurobiology, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Anandan Palani
- Department
of Medicinal Chemistry and ‡Department of Neurobiology, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhaoning Zhu
- Department
of Medicinal Chemistry and ‡Department of Neurobiology, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - William J. Greenlee
- Department
of Medicinal Chemistry and ‡Department of Neurobiology, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | | | | | | | | | | |
Collapse
|
95
|
Langosch D, Steiner H. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics. Biol Chem 2017; 398:441-453. [PMID: 27845877 DOI: 10.1515/hsz-2016-0269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Intramembrane proteases comprise a number of different membrane proteins with different types of catalytic sites. Their common denominator is cleavage within the plane of the membrane, which usually results in peptide bond scission within the transmembrane helices of their substrates. Despite recent progress in the determination of high-resolution structures, as illustrated here for the γ-secretase complex and its substrate C99, it is still unknown how these enzymes function and how they distinguish between substrates and non-substrates. In principle, substrate/non-substrate discrimination could occur at the level of substrate binding and/or cleavage. Focusing on the γ-secretase/C99 pair, we will discuss recent observations suggesting that global motions within a substrate transmembrane helix may be much more important for defining a substrate than local unraveling at cleavage sites.
Collapse
|
96
|
Srivastava A, Shukla G, Yadav D, Singh MS. Access to Fully Substituted Thiazoles and 2,3-Dihydrothiazoles via Copper-Catalyzed [4 + 1] Heterocyclization of α-(N-Hydroxy/aryl)imino-β-oxodithioesters with α-Diazocarbonyls. J Org Chem 2017; 82:10846-10854. [PMID: 28945080 DOI: 10.1021/acs.joc.7b01601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient chemoselective practical route to fully substituted thiazoles and 2,3-dihydrothiazoles has been devised by [4 + 1] heterocyclization of α-(N-hydroxy/aryl)imino-β-oxodithioesters with in situ generated Cu-carbenoids of diazocarbonyls. The α-(N-hydroxy/aryl)imino-β-oxodithioesters are readily accessible by the reaction of β-oxodithioesters with nitrous acid/nitrosoarenes. The overall transformation involves sequential N-O/C-N bonds cleavage followed by cascade C-N/C-S bonds formation in one-pot. This new strategy allows full control over the introduction of various sensitive functional groups at different positions of the thiazole ring, broadening the arsenal of synthetic methods to obtain such scaffolds.
Collapse
Affiliation(s)
- Abhijeet Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi 221005, Uttar Pradesh, India
| | - Dhananjay Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi 221005, Uttar Pradesh, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
97
|
Robertson AS, Iben LG, Wei C, Meredith JE, Drexler DM, Banks M, Vite GD, Olson RE, Thompson LA, Albright CF, Ahlijanian MK, Toyn JH. Synergistic inhibition of Aβ production by combinations of γ-secretase modulators. Eur J Pharmacol 2017; 812:104-112. [DOI: 10.1016/j.ejphar.2017.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 01/23/2023]
|
98
|
Thai NQ, Nguyen HL, Linh HQ, Li MS. Protocol for fast screening of multi-target drug candidates: Application to Alzheimer's disease. J Mol Graph Model 2017; 77:121-129. [PMID: 28850894 DOI: 10.1016/j.jmgm.2017.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023]
Abstract
The treatment of many diseases may require drugs that are capable to attack multiple targets simultaneously. Obviously, the virtual screening of multi-target drug candidates is much more time consuming compared to the single-target case. This, in particular, concerns the last step of virtual screening where the binding free energy is computed by conventional molecular dynamics simulation. To overcome this difficulty we propose a simple protocol which is relied on the fast steered molecular dynamics simulation and on available experimental data on binding affinity of reference ligand to a given target. Namely, first we compute non-equilibrium works generated during pulling ligands from the binding site using the steered molecular dynamics method. Then as top leads we choose only those compounds that have the non-equilibrium work larger than that of a reference compound for which the binding free energy has been already known from experiment. Despite many efforts no cures for AD (Alzheimer's disease) have been found. One of possible reasons for this failure is that drug candidates were developed for a single target, while there are exist many possible pathways to AD. Applying our new protocol to five targets including amyloid beta fibril, peroxisome proliferator-activated receptor γ, retinoic X receptor α, β- and γ-secretases, we have found two potential drugs (CID 16040294 and CID 9998128) for AD from the large PubChem database. We have also shown that these two ligands can interfere with the activity of popular Acetylcholinesterase target through strong binding towards it.
Collapse
Affiliation(s)
- Nguyen Quoc Thai
- Institute for Computational Sciences and Technology,SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Dong Thap University,783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Viet Nam; Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Hoang Linh Nguyen
- Institute for Computational Sciences and Technology,SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Mai Suan Li
- Institute for Computational Sciences and Technology,SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
99
|
Khan A, Corbett A, Ballard C. Emerging amyloid and tau targeting treatments for Alzheimer’s disease. Expert Rev Neurother 2017; 17:697-711. [DOI: 10.1080/14737175.2017.1326819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ayesha Khan
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anne Corbett
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - Clive Ballard
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| |
Collapse
|
100
|
Bursavich MG, Harrison BA, Acharya R, Costa DE, Freeman EA, Hodgdon HE, Hrdlicka LA, Jin H, Kapadnis S, Moffit JS, Murphy DA, Nolan S, Patzke H, Tang C, Wen M, Koenig G, Blain JF, Burnett DA. Design, Synthesis, and Evaluation of a Novel Series of Oxadiazine Gamma Secretase Modulators for Familial Alzheimer’s Disease. J Med Chem 2017; 60:2383-2400. [DOI: 10.1021/acs.jmedchem.6b01620] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew G. Bursavich
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|