51
|
Zhao Q, Liu J, Liu S, Han J, Chen Y, Shen J, Zhu K, Ma X. Multipronged Micelles-Hydrogel for Targeted and Prolonged Drug Delivery in Chronic Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46224-46238. [PMID: 36201628 DOI: 10.1021/acsami.2c12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chronic diabetic wounds are a growing threat globally. Many aspects contribute to its deterioration, including bacterial infection, unbalanced microenvironment, dysfunction of cell repair, etc. In this work, we designed a multipronged micelles-hydrogel platform loaded with curcumin and rifampicin (CRMs-hydrogel) for bacteria-infected chronic wound treatment. The curcumin- and rifampicin-loaded micelles (CRMs) exhibited both MMP9-responsive and epidermal growth factor receptor (EGFR)-targeting abilities. On the one hand, drugs could be released from micelles due to responsive disassembly by MMP9, a matrix metalloproteinase overexpressed in a chronic wound environment; on the other hand, CRMs showed specific targeting to EGFR on epithelial cells and fibroblasts and therefore increased intracellular drug delivery. The thermosensitive CRMs-hydrogel could form strong adhesion with the wound area and served as a suitable matrix for sustained release of CRMs directly at the wound bed, with excellent intracellular and extracellular bacterial elimination efficiency and wound healing promotion capability. We found that a single dose of CRMs-hydrogel achieved 99% antibacterial rate at the MRSA-infected diabetic wound, which effectively reduced inflammatory response and promoted the neovascularization and re-epithelialization process, with nearly half reduction of the skin barrier regeneration period. Collectively, our thermosensitive, MMP9-responsive, and targeted micelles-hydrogel nanoplatform is promising for chronic wound treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Translational Research Center, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing102218, China
| | - Suhan Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Junhua Han
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yingxian Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Kui Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Xiaowei Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
52
|
Fang X, Liu Y, Zhang M, Zhou S, Cui P, Hu H, Jiang P, Wang C, Qiu L, Wang J. Glucose oxidase loaded thermosensitive hydrogel as an antibacterial wound dressing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
53
|
Zhou JQ, Huang LF, Lu YC, Li Q, Ma X, Tang JJ, Niu YW, Lu SL. Prevalence and prognosis of hard-to-heal wounds with comorbidities in China. J Wound Care 2022; 31:S7-S15. [PMID: 36240874 DOI: 10.12968/jowc.2022.31.sup10.s7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Regular retrospective analysis is necessary for potential improvement in clinical practice for the treatment of hard-to-heal wounds. Comorbidities and outcomes have demonstrated spatial and temporal diversity, emphasising the importance of updates in epidemiology. The complexity of healing hard-to-heal wounds has long been known, and so we sought evidence-based improvement on the current principles of treatment. METHOD Demographic and clinical information of patients from the WoundCareLog database was collected. Patients who met the inclusion criteria and completed follow-up after treatment were included. Comorbidities were diagnosed and classified into eight categories based on ICD-10. We compared the demographic and aetiological characteristics between patients with and without comorbidities by t-test and Chi-squared test. The impact of comorbidities on wound healing were evaluated with a multivariate Cox model. RESULTS A total of 2163 patients met the inclusion criteria and were enrolled, of whom 37.0% were aged 61-80 years, 36.0% were aged 41-60 years and 60.8% were male. The lower extremities and buttocks were the most commonly affected areas with hard-to-heal wounds. Non-traumatic wounds accounted for 66.6% of cases, and infection, pressure and diabetes were the most common causes. Paralysis and diabetes were the most important factors which led to a prolonged healing process and inferior clinical outcomes. CONCLUSION Comorbidities of hard-to-heal wounds were treated as separate contributors and their weighted effect on outcome was calculated through correlation analysis. Paralysis and diabetes were the most unfavourable comorbidities affecting the treatment of non-traumatic hard-to-heal wounds. Our study highlighted the priority of comorbidity treatment through data-driven approaches. It provides potential value in developing better public health strategies and preventive medicine.
Collapse
Affiliation(s)
- Jing-Qi Zhou
- Department of Burns, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Wound Healing, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Fang Huang
- Department of Burns, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Wound Healing, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye-Chen Lu
- Department of Burns, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Wound Healing, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- Siemens Healthcare Corporation, Shanghai, China
| | - Xian Ma
- Department of Burns, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Wound Healing, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Jun Tang
- Department of Burns, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Wound Healing, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Wen Niu
- Department of Burns, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Wound Healing, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Liang Lu
- Department of Burns, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Wound Healing, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
54
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
55
|
Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management. Polymers (Basel) 2022; 14:polym14193994. [PMID: 36235942 PMCID: PMC9571512 DOI: 10.3390/polym14193994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Infections are the primary cause of death from burns and diabetic wounds. The clinical difficulty of treating wound infections with conventional antibiotics has progressively increased and reached a critical level, necessitating a paradigm change for enhanced chronic wound care. The most prevalent bacterium linked with these infections is Staphylococcus aureus, and the advent of community-associated methicillin-resistant Staphylococcus aureus has posed a substantial therapeutic challenge. Most existing wound dressings are ineffective and suffer from constraints such as insufficient antibacterial activity, toxicity, failure to supply enough moisture to the wound, and poor mechanical performance. Using ineffective wound dressings might prolong the healing process of a wound. To meet this requirement, nanoscale scaffolds with their desirable qualities, which include the potential to distribute bioactive agents, a large surface area, enhanced mechanical capabilities, the ability to imitate the extracellular matrix (ECM), and high porosity, have attracted considerable interest. The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel approach to “nanoparticle dressing” that has acquired significant popularity for wound healing. Due to their remarkable antibacterial capabilities, silver nanoparticles are attractive materials for wound healing. This review focuses on the therapeutic applications of nanofiber wound dressings containing Ag-NPs and their potential to revolutionize wound healing.
Collapse
|
56
|
Joorabloo A, Liu T. Recent advances in nanomedicines for regulation of macrophages in wound healing. J Nanobiotechnology 2022; 20:407. [PMID: 36085212 PMCID: PMC9463766 DOI: 10.1186/s12951-022-01616-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Macrophages are essential immune cells and play a major role in the immune response as pro-inflammatory or anti-inflammatory agents depending on their plasticity and functions. Infiltration and activation of macrophages are usually involved in wound healing. Herein, we first described macrophage polarization and their critical functions in wound healing process. It is addressed how macrophages collaborate with other immune cells in the wound microenvironment. Targeting macrophages by manipulating or re-educating macrophages in inflammation using nanomedicines is a novel and feasible strategy for wound management. We discussed the design and physicochemical properties of nanomaterials and their functions for macrophages activation and anti-inflammatory signaling during wound therapy. The mechanism of action of the strategies and appropriate examples are also summarized to highlight the pros and cons of those approaches. Finally, the potential of nanomedicines to modulate macrophage polarization for skin regeneration is discussed.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| |
Collapse
|
57
|
Maity B, Alam S, Samanta S, Prakash RG, Govindaraju T. Antioxidant Silk Fibroin Composite Hydrogel for Rapid Healing of Diabetic Wound. Macromol Biosci 2022; 22:e2200097. [PMID: 35920099 DOI: 10.1002/mabi.202200097] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Wound healing is a complex process requiring multiple biological pathways and chemical responses to be activated and synchronized to recover tissue integrity. In normal physiological circumstances, the epidermal barrier restoration process through new tissue formation is highly efficient. However, increased production of reactive oxygen species, attack of pathogenic microorganisms, and high glucose level delay the normal healing process in diabetic patients. The successful treatment of diabetic wounds requires efficient strategies to control oxidative stress, promoting angiogenesis, re-epithelialization, and collagen deposition. In this study, we developed a composite hydrogel for rapid wound healing in diabetic condition by the amalgamation of hypolipidemic property of silk fibroin (SF), antioxidant property of melanin and therapeutic effect of berberine. Studies have revealed that cross-linked mesoporous morphology of hydrogel matrix facilitates slow release of berberine to impart long-term therapeutic effects at wound site. The composite hydrogel formulation is biocompatible, stimulates effective migration of fibroblast cells, and control oxidative stress under in vitro conditions. The hydrogel served as scaffold for tissue re-epithelialization and promotes wound repair in diabetic type I Wistar rat model. This study demonstrates the ability of berberine- loaded SF-melanin composite hydrogel (SFCH) as a potential dressing formulation for wound healing in diabetic conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Shadab Alam
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Relekar G Prakash
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka, 560064, India
| |
Collapse
|
58
|
Zhu Y, Liu L, Chen S, Han D, Wang C. Silver Ion Loaded Agarose-Hyaluronic Acid Hydrogel as a Potential Antibacterial Wound Dressing. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wound infection, especially chronic ones, not only increases the opportunity to generate superbacteria but also imposes significant burden, both physically and mentally, on the patients. Therefore, the development of suitable wound addressing is an important way to deal with this matter.
Here in this study, we employed the good gelling property of agarose (AR) and the wound healing promotion effect of hyaluronic acid (HA) to prepare an agarose-hyaluronic acid hydrogel. The AR-HA gel was loaded with silver ion (Ag+ from AgNO3) upon gelling (AR-HA/Ag) and
finally applied as a potential wound dressing for antibacterial treatment and healing promotion of wounds. Our results suggested that the AR-HA/Ag hydrogel maintained the antibacterial efficacy of Ag+ while significantly promoted the healing of human umbilical vein endothelial cells
(HUVEC) due to the cell proliferation promotion effect of HA. Taken together, AR-HA/Ag might be a potential antibacterial wound dressing for future application in clinic.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Li Liu
- School of Pharmacy, School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Shaoqing Chen
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Cheng Wang
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| |
Collapse
|
59
|
Functional nanomaterials and their potentials in antibacterial treatment of dental caries. Colloids Surf B Biointerfaces 2022; 218:112761. [DOI: 10.1016/j.colsurfb.2022.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
60
|
Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang SY, Asmatulu E. Polymeric biomaterials for wound healing applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1998-2050. [PMID: 35695023 DOI: 10.1080/09205063.2022.2088528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The factors delaying the wound-healing process include obesity, stress, microbial infection, aging, edema, inadequate nutrition, poor oxygenation, diabetes, and implant complications. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including hydrogels, nanofibrous, composite, foam, spongy, bilayered, and trilayered scaffolds. Some recent advances in biomaterials development for healing both chronic and acute wounds are extensively compiled here. In addition, various properties of biomaterials for wound-healing applications and how they affect their performance are reviewed. Based on the recent literature, trilayered constructs appear to be a convincing candidate for the healing of chronic wounds and complete skin regeneration because they mimic the full thickness of skin: epidermis, dermis, and the hypodermis. This type of scaffold provides a dense superficial layer, a bioactive middle layer, and a porous lower layer to aid the wound-healing process. The hydrophilicity of scaffolds aids cell attachment, cell proliferation, and protein adhesion. Other scaffold characteristics such as porosity, biodegradability, mechanical properties, and gas permeability help with cell accommodation, proliferation, migration, differentiation, and the release of bioactive factors.
Collapse
Affiliation(s)
| | - Damilola O Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | | | | | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, KS, USA.,Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Eylem Asmatulu
- Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
| |
Collapse
|
61
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
62
|
Kazeminava F, Javanbakht S, Nouri M, Adibkia K, Ganbarov K, Yousefi M, Ahmadi M, Gholizadeh P, Kafil HS. Electrospun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int J Biol Macromol 2022; 214:111-119. [PMID: 35640851 DOI: 10.1016/j.ijbiomac.2022.05.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/05/2022]
Abstract
In this work, citric acid-based quantum dots (CA-QDs) as a novel and safe crosslinked agent was applied in different feeding ratios (5-15 wt%) to synthesize carboxymethyl cellulose/polyvinyl alcohol (CMC/PVA) nanofibers (NFs) for the first time. Colistin (CL) as an antibacterial agent was also loaded (2 w/w%) during the synthesizing process of CMC/PVA electrospun NFs to trigger antimicrobial properties. The morphological, hydrophilic, and mechanical properties of the prepared NFs were fully investigated with different techniques. The electrospun NFs with crosslinking ratios of 10 wt% CA-QDs revealed appropriate mechanical properties. According to cell culture data, the prepared NFs demonstrated good cytocompatibility against HFF-1 cells (over 80% cell viability). Remarkably, CL-loaded NFs showed desired antibacterial efficacy against S. aureus, E. coli, K. pneumoniae, and P. aeruginosa with 1.0-1.4, 1.3-1.4, 0.8-1.0, and 1.3-1.5 cm inhibition zones, respectively. These outcomes suggested that the fabricated NFs can be useful as wound healing scaffolds.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Mehdi Yousefi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
63
|
Yang X, Zhang Y, Huang C, Lu L, Chen J, Weng Y. Biomimetic Hydrogel Scaffolds with Copper Peptide-Functionalized RADA16 Nanofiber Improve Wound Healing in Diabetes. Macromol Biosci 2022; 22:e2200019. [PMID: 35598070 DOI: 10.1002/mabi.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Wound healing in diabetes is retarded by the dysfunctional local microenvironment. Although there are many studies using hydrogels as substitutes for natural extracellular matrices (ECMs), hydrogels that can mimic both the structure and functions of natural ECM remain a challenge. Self-assembling peptide RADA16 nanofiber has distinct advantageous to provide a biomimetic extracellular matrix nanofiber structure. However, it is still lack of biological cues to promote angiogenesis that is of vital significance for diabetic wounds healing. With a customized copper peptide GHK functionalized RADA16, an integrated approach using functionalized RADA16 nanofiber to chelate copper ion, has been innovatively proposed in this present study. The acquired composite hydrogel held the biomimetic nanofiber architecture, and exhibited promoting angiogenesis by both enhancing adhesion and proliferation of endothelial cells (EC) in vitro and neovascularization in vivo. It showed that the functionalized nanofiber scaffolds significantly accelerated wound closure, collagen deposition, and tissue remodeling both in healthy and diabetic mice. Furthermore, immunohistochemical analysis gave evidence that an upregulated expression of eNOS and CD31 in the copper peptide-functionalized RADA16 treated group. It can be envisioned that this scaffold can serve as a promising dressing for diabetic wound healing. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinlei Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
64
|
Development of Gelatin Methacryloyl Hydrogel loaded ZnS Nanoparticles Patches for In vivo wound healing care, In vitro drug release and free radical scavenging evaluations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
65
|
Gao Y, Qiu Z, Liu L, Li M, Xu B, Yu D, Qi D, Wu J. Multifunctional fibrous wound dressings for refractory wound healing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Zhiye Qiu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Mengmeng Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
66
|
Tan L, Yuan G, Wang P, Feng S, Tong Y, Wang C. pH-responsive Ag-Phy@ZIF-8 nanoparticles modified by hyaluronate for efficient synergistic bacteria disinfection. Int J Biol Macromol 2022; 206:605-613. [PMID: 35202636 DOI: 10.1016/j.ijbiomac.2022.02.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is a type of Metal-organic frameworks (MOFs), which shows promising application in the field of bacterial infection, owing to its excellent biocompatibility. Here, we report the encapsulation of silver nanoparticles (Ag NPs) in ZIF-8, accompanied with embedding of physcion (Phy) to obtain Ag-Phy@ZIF-8 with efficient and intelligent synergistic antimicrobial capabilities. Due to the micro-acidic environment around the bacteria, the release of silver and Phy shows a controlled released. Further, the Ag-Phy@ZIF-8 is modified by hyaluronate (HA), denoted as Ag-Phy@ZIF-8@HA, which has a strong inhibitory effect on the growth of both E. coli (99.1%) and S. aureus (99.5%), with no impacting on cell growth, showing good biocompatibility. Thus, these pH-responsive biocomposites have the potential application on smart wound excipients for bacterial infections.
Collapse
Affiliation(s)
- Lichuan Tan
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Guangsong Yuan
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Peng Wang
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Siwen Feng
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yan Tong
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Cuijuan Wang
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
67
|
Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:618. [PMID: 35214947 PMCID: PMC8878029 DOI: 10.3390/nano12040618] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Poor wound healing affects millions of people globally, resulting in increased mortality rates and associated expenses. The three major complications associated with wounds are: (i) the lack of an appropriate environment to enable the cell migration, proliferation, and angiogenesis; (ii) the microbial infection; (iii) unstable and protracted inflammation. Unfortunately, existing therapeutic methods have not solved these primary problems completely, and, thus, they have an inadequate medical accomplishment. Over the years, the integration of the remarkable properties of nanomaterials into wound healing has produced significant results. Nanomaterials can stimulate numerous cellular and molecular processes that aid in the wound microenvironment via antimicrobial, anti-inflammatory, and angiogenic effects, possibly changing the milieu from nonhealing to healing. The present article highlights the mechanism and pathophysiology of wound healing. Further, it discusses the current findings concerning the prospects and challenges of nanomaterial usage in the management of chronic wounds.
Collapse
Affiliation(s)
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Korea; (A.K.); (L.G.)
| |
Collapse
|
68
|
Aavani F, Biazar E, Kheilnezhad B, Amjad F. 3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Curr Stem Cell Res Ther 2022; 17:415-439. [DOI: 10.2174/1574888x17666220204144544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective bio-mimicking of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges for skin tissue engineering.
Collapse
Affiliation(s)
- Farzaneh. Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Kheilnezhad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fatemeh Amjad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
69
|
Long LY, Liu W, Li L, Hu C, He S, Lu L, Wang J, Yang L, Wang YB. Dissolving microneedle-encapsulated drug-loaded nanoparticles and recombinant humanized collagen type III for the treatment of chronic wound via anti-inflammation and enhanced cell proliferation and angiogenesis. NANOSCALE 2022; 14:1285-1295. [PMID: 35006234 DOI: 10.1039/d1nr07708b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, diabetic chronic wounds impose a heavy burden on patients and the medical system. Persistent inflammation and poor tissue remodeling severely limit the healing of chronic wounds. For these issues, the first recombinant humanized collagen type III (rhCol III) and naproxen (Nap) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticle incorporated hyaluronic acid (HA) microneedle (MN) was fabricated for diabetic chronic wound therapy. As the tailored rhCol III was synthesized based on the Gly483-Pro512 segment, which contained the highly adhesive fragments (GER, GEK) in the human collagen type III sequence, it possessed strong cell adhesion. The mechanical strength of the prepared MN was enough to overcome the tissue barrier of necrosis/hyperkeratosis in a minimally invasive way after being applied in wounds. Subsequently, rhCol III and Nap@PLGA nanoparticles were rapidly released to the wound site within a few minutes. The prepared MN possessed favourable biocompatibility and could effectively facilitate the proliferation and migration of fibroblasts and endothelial cells. Furthermore, the regenerative efficacy of the MN was evaluated in vivo using the diabetic rat full-thickness skin wound model. These results illustrated that the prepared MN could accelerate wound closure by reducing the inflammatory response and enhancing angiogenesis or collagen deposition, indicating their significant application value in wound dressings for chronic wound repair.
Collapse
Affiliation(s)
- Lin-Yu Long
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Wenqi Liu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Shuyi He
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China
| | - Jian Wang
- Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Yun-Bing Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
70
|
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022; 17:5947-5990. [PMID: 36510620 PMCID: PMC9739148 DOI: 10.2147/ijn.s382796] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial-infected wounds are a serious threat to public health. Bacterial invasion can easily delay the wound healing process and even cause more serious damage. Therefore, effective new methods or drugs are needed to treat wounds. Nanozyme is an artificial enzyme that mimics the activity of a natural enzyme, and a substitute for natural enzymes by mimicking the coordination environment of the catalytic site. Due to the numerous excellent properties of nanozymes, the generation of drug-resistant bacteria can be avoided while treating bacterial infection wounds by catalyzing the sterilization mechanism of generating reactive oxygen species (ROS). Notably, there are still some defects in the nanozyme antibacterial agents, and the design direction is to realize the multifunctionalization and intelligence of a single system. In this review, we first discuss the pathophysiology of bacteria infected wound healing, the formation of bacterial infection wounds, and the strategies for treating bacterially infected wounds. In addition, the antibacterial advantages and mechanism of nanozymes for bacteria-infected wounds are also described. Importantly, a series of nanomaterials based on nanozyme synthesis for the treatment of infected wounds are emphasized. Finally, the challenges and prospects of nanozymes for treating bacterial infection wounds are proposed for future research in this field.
Collapse
Affiliation(s)
- Fayin Mo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Duanping Sun; Tianhui You, Email ;
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
71
|
Guimarães ML, da Silva FAG, de Souza AM, da Costa MM, de Oliveira HP. All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Fallah N, Rasouli M, Amini MR. The current and advanced therapeutic modalities for wound healing management. J Diabetes Metab Disord 2021; 20:1883-1899. [PMID: 34900831 PMCID: PMC8630293 DOI: 10.1007/s40200-021-00868-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Ever-increasing demands on improving efficiencies of wound healing procedures are a strong driving force for the development of replacement approaches. This review focuses on wound healing management from the point of formation to the point of healing procedures. The most important usual healing modality with key characteristic is explained and their limitations are discussed. Novel interesting approaches are presented with a concentration of the unique features and action mechanisms. Special attention is paid to gas plasma and nanotechnology impact on wound healing management from fundamental processes to beneficial outcomes. Challenges and opportunities for the future trend that combined common protocols and emerging technologies are discussed.
Collapse
Affiliation(s)
- Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Plasma Research and Department of Physics, Kharazmi University, Tehran, Iran
| | - Mohammad Reza Amini
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021; 9:7705-7747. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic wounds often indicate chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often cause unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that are safe or have minimal side effects and risks. Nanotechnology-based platforms, including nanotherapeutics, nanoparticles (NPs), nanofibers, nanohydrogels, and nanoscaffolds, have garnered attention for their groundbreaking potential to decipher the biological environment and offer personalized treatment methods for wound healing. These nanotechnology-based platforms can successfully overcome the impediments posed by drug toxicity, existing treatment modalities, and the physiology and complexity of the wound sites. Furthermore, studies have shown that they play an essential role in influencing angiogenesis, collagen production, and extracellular matrix (ECM) synthesis, which are integral in skin repair mechanisms. In this review, we emphasized the importance of various nanotechnology-based platforms for healing diabetic wounds and report on the innovative preclinical and clinical outcomes of different nanotechnology-based platforms. This review also outlined the limitations of existing conventional treatment modalities and summarized the physiology of acute and chronic diabetic wounds.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neugdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Md Enamul Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Nirupam Biswas
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN-46202, USA.,Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY-12208, USA.
| |
Collapse
|
74
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
75
|
Abdouss M, Radgoudarzi N, Mohebali A, Kowsari E, Koosha M, Li T. Fabrication of Bio-Nanocomposite Based on HNT-Methionine for Controlled Release of Phenytoin. Polymers (Basel) 2021; 13:polym13152576. [PMID: 34372180 PMCID: PMC8347966 DOI: 10.3390/polym13152576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, a novel promising approach for the fabrication of Halloysite nanotube (HNT) nanocomposites, based on the amino acid named Methionine (Met), was investigated. For this purpose, Met layered on the outer silane functionalized surface of HNT for controlled release of Phenytoin sodium (PHT). The resulting nanocomposite (MNT-g-Met) was characterized by FTIR, XRD, Zeta potential, TGA, TEM and FE-SEM. The FT-IR results showed APTES and Met peaks, which proved the modification of the HNTs. The zeta-potential results showed the interaction between APTES (+53.30) and Met (+38.80) on the HNTs (-30.92). The FE-SEM micrographs have displayed the grafting of Met on the modified HNTs due to the nanotube conversion to a rough and indistinguishable form. The amount of encapsulation efficiency (EE) and loading efficiency (LE) of MNT-g-Met was 74.48% and 37.24%, while pure HNT was 57.5%, and 28.75%, respectively. In-vitro studies showed that HNT had a burst release (70% in 6 h) in phosphate buffer while MNT-g-Met has more controlled release profile (30.05 in 6 h) and it was found to be fitted with the Korsmeyer-Peppas model. Due to the loading efficiency and controlled release profile, the nanocomposite promote a good potential for drug delivery of PHT.
Collapse
Affiliation(s)
- Majid Abdouss
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Pharmaceutical Sciences Research Center, Department of Chemistry, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 1591634311, Iran; (N.R.); (A.M.); (E.K.)
- Correspondence: (M.A.); (T.L.); Tel./Fax: +98-21-64545780 (M.A.); +86-15589956777 (T.L.)
| | - Nastaran Radgoudarzi
- Pharmaceutical Sciences Research Center, Department of Chemistry, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 1591634311, Iran; (N.R.); (A.M.); (E.K.)
| | - Alireza Mohebali
- Pharmaceutical Sciences Research Center, Department of Chemistry, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 1591634311, Iran; (N.R.); (A.M.); (E.K.)
| | - Elaheh Kowsari
- Pharmaceutical Sciences Research Center, Department of Chemistry, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran 1591634311, Iran; (N.R.); (A.M.); (E.K.)
| | - Mojtaba Koosha
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Correspondence: (M.A.); (T.L.); Tel./Fax: +98-21-64545780 (M.A.); +86-15589956777 (T.L.)
| |
Collapse
|
76
|
Atashgah RB, Ghasemi A, Raoufi M, Abdollahifar MA, Zanganeh S, Nejadnik H, Abdollahi A, Sharifi S, Lea B, Cuerva M, Akbarzadeh M, Alvarez-Lorenzo C, Ostad SN, Theus AS, LaRock DL, LaRock CN, Serpooshan V, Sarrafi R, Lee KB, Vali H, Schönherr H, Gould L, Taboada P, Mahmoudi M. Restoring Endogenous Repair Mechanisms to Heal Chronic Wounds with a Multifunctional Wound Dressing. Mol Pharm 2021; 18:3171-3180. [PMID: 34279974 DOI: 10.1021/acs.molpharmaceut.1c00400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.
Collapse
Affiliation(s)
- Rahimeh B Atashgah
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Amir Ghasemi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran.,Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen 57076, Germany
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
| | - Hossein Nejadnik
- Department of Radiology, University of Pennsylvania, Philladelphia, Pennsylvania 19104, United States
| | - Alieh Abdollahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Shahriar Sharifi
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baltazar Lea
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Cuerva
- NANOMAG Group, Technological Research Institute (IIT), Physical Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Mehdi Akbarzadeh
- Sadra Wound, Ostomy and Osteomyelitis Specialist Center, Tehran, Iran
| | - Carmen Alvarez-Lorenzo
- R+D Pharma Group, Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Seyed Nasser Ostad
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30309, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | | | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen 57076, Germany
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02903, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Anesthesiology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States.,Mary Horrigan Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
77
|
Phua QH, Han HA, Soh BS. Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J Transl Med 2021; 19:83. [PMID: 33602284 PMCID: PMC7891016 DOI: 10.1186/s12967-021-02752-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.
Collapse
Affiliation(s)
- Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
78
|
Ding Z, Zhang Y, Guo P, Duan T, Cheng W, Guo Y, Zheng X, Lu G, Lu Q, Kaplan DL. Injectable Desferrioxamine-Laden Silk Nanofiber Hydrogels for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2021; 7:1147-1158. [PMID: 33522800 DOI: 10.1021/acsbiomaterials.0c01502] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dysangiogenesis and chronic inflammation are two critical reasons for diabetic foot ulcers. Desferrioxamine (DFO) was used clinically in the treatment of diabetic foot ulcers by repeated injections because of its capacity to induce vascularization. Biocompatible carriers that release DFO slowly and facilitate healing simultaneously are preferable options to accelerate the healing of diabetic wounds. Here, DFO-laden silk nanofiber hydrogels that provided a sustained release of DFO for more than 40 days were used to treat diabetic wounds. The DFO-laden hydrogels stimulated the healing of diabetic wounds. In vitro cell studies revealed that the DFO-laden hydrogels modulated the migration and gene expression of endothelial cells, and they also tuned the inflammation behavior of macrophages. These results were confirmed in an in vivo diabetic wound model. The DFO-laden hydrogels alleviated dysangiogenesis and chronic inflammation in the diabetic wounds, resulting in a more rapid wound healing and increased collagen deposition. Both in vitro and in vivo studies suggested potential clinical applications of these DFO-laden hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yunhua Zhang
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Peng Guo
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Tianbi Duan
- Center of Technology, Shuanghai Inoherb Cosmetics Co. Ltd., Shanghai 200444, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Yang Guo
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
79
|
Bianchera A, Buttini F, Bettini R. Micro/nanosystems and biomaterials for controlled delivery of antimicrobial and anti-biofilm agents. Expert Opin Ther Pat 2020; 30:983-1000. [PMID: 33078643 DOI: 10.1080/13543776.2020.1839415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Microbial resistance is a severe problem for clinical practice due to misuse of antibiotics that promotes the development of surviving strategies by bacteria and fungi. Microbial cells surrounded by a self-produced polymer matrix, defined as biofilms, are inherently more difficult to eradicate. Biofilms endow bacteria with a unique resistance against antibiotics and other anti-microbial agents and play a crucial role in chronic infection. AREAS COVERED Biofilm-associated antimicrobial resistance in the lung and wounds. Existing inhaled therapies for treatment of biofilm-associated lung infections. Role of pharmaceutical nanotechnologies to fight resistant microbes and biofilms. EXPERT OPINION The effectiveness of antibiotics has gradually decreased due to the onset of resistance phenomena. The formation of biofilms represents one of the most important steps in the development of resistance to antimicrobial treatment. The most obvious solution for overcoming this criticality would be the discovery of new antibiotics. However, the number of new molecules with antimicrobial activity brought into clinical development has considerably decreased. In the last decades the development of innovative drug delivery systems, in particular those based on nanotechnological platforms, has represented the most effective and economically affordable approach to optimize the use of available antibiotics, improving their effectiveness profile. Abbreviations AZT: Aztreonam; BAT: Biofilm antibiotic tolerance; CF: Cystic Fibrosis; CIP: Ciprofloxacin; CRS: Chronic Rhinosinusitis; DPPG: 1,2-dipalmytoyl-sn-glycero-3-phosphoglycerol; DSPC: 1,2-distearoyl-sn-glycero-phosphocholine sodium salt; EPS: extracellular polymeric substance; FEV1: Forced Expiratory Volume in the first second; GSNO: S-nitroso-glutathione; LAE: lauroyl arginate ethyl; MIC: Minimum inhibitory Concentration; NCFB: Non-Cystic Fibrosis Bronchiectasis; NTM: Non-Tuberculous Mycobacteria; NTM-LD: Non-tuberculous mycobacteria Lung Disease PA: Pseudomonas aeruginosa; pDMAEMA: poly(dimethylaminoethyl methacrylate);pDMAEMA-co-PAA-co-BMA: poly(dimethylaminoethyl methacrylate)-co-propylacrylic acid-co-butyl methacrylate; PEG: polyethylene glycol; PEGDMA: polyethylene glycol dimethacrylate;PCL: Poly-ε-caprolactone; PLA: poly-lactic acid; PLGA: poly-lactic-co-glycolic acid; PVA: poli-vinyl alcohol; SA: Staphylococcus aureus; TIP: Tobramycin Inhalation Powder; TIS: Tobramycin Inhalation Solution; TPP: Tripolyphosphate.
Collapse
Affiliation(s)
| | | | - Ruggero Bettini
- Food and Drug Department, University of Parma , Parma, Italy
| |
Collapse
|