51
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
52
|
Guo X, Hong W, Zhao Y, Zhu T, Liu L, Li H, Wang Z, Wang D, Mai Z, Zhang T, Yang J, Zhang F, Xia Y, Hong Q, Xu Y, Yan F, Wang M, Xing G. Bioinspired Dual-Mode Stretchable Strain Sensor Based on Magnetic Nanocomposites for Strain/Magnetic Discrimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205316. [PMID: 36394201 DOI: 10.1002/smll.202205316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Recently, flexible stretchable sensors have been gaining attention for their excellent adaptability for electronic skin applications. However, the preparation of stretchable strain sensors that achieve dual-mode sensing while still retaining ultra-low detection limit of strain, high sensitivity, and low cost is a pressing task. Herein, a high-performance dual-mode stretchable strain sensor (DMSSS) based on biomimetic scorpion foot slit microstructures and multi-walled carbon nanotubes (MWCNTs)/graphene (GR)/silicone rubber (SR)/Fe3 O4 nanocomposites is proposed, which can accurately sense strain and magnetic stimuli. The DMSSS exhibits a large strain detection range (≈160%), sensitivity up to 100.56 (130-160%), an ultra-low detection limit of strain (0.16% strain), and superior durability (9000 cycles of stretch/release). The sensor can accurately recognize sign language movement, as well as realize object proximity information perception and whole process information monitoring. Furthermore, human joint movements and micro-expressions can be monitored in real-time. Therefore, the DMSSS of this work opens up promising prospects for applications in sign language pose recognition, non-contact sensing, human-computer interaction, and electronic skin.
Collapse
Affiliation(s)
- Xiaohui Guo
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Lu'an, 237010, China
| | - Weiqiang Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tong Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Long Liu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hongjin Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Ziwei Wang
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Dandan Wang
- Hubei JiuFengShan Laboratory, Future Science and Technology City, Wuhan, Hubei, 420000, China
| | - Zhihong Mai
- Hubei JiuFengShan Laboratory, Future Science and Technology City, Wuhan, Hubei, 420000, China
| | - Tianxu Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Jinyang Yang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Fengzhe Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yun Xia
- Bengbu Zhengyuan Electronics Technology Co., Ltd, Bengbu, 233000, China
| | - Qi Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yaohua Xu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Feng Yan
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Ming Wang
- Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Guozhong Xing
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
53
|
Zhang H, Zhang D, Zhang B, Wang D, Tang M. Wearable Pressure Sensor Array with Layer-by-Layer Assembled MXene Nanosheets/Ag Nanoflowers for Motion Monitoring and Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48907-48916. [PMID: 36281989 DOI: 10.1021/acsami.2c14863] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, wearable sensors and electronic skin systems have become prevalent, which can be employed to detect the movement status and physiological signals of wearers. Here, a pressure sensor composed of mesh-like micro-convex structure polydimethylsiloxane (PDMS), MXene nanosheet/Ag nanoflower (AgNF) films, and flexible interdigital electrodes was designed by layer-by-layer (LBL) assembly. The unique microstructure of PDMS effectively increases the contact area and improves sensitivity. Moreover, AgNFs were introduced into the MXene as a "bridge," and the synergistic effect of the two further enhanced the performance of the sensor. The pressure sensor has high sensitivity (191.3 kPa-1), good stability (18,000 cycles), fast response/recovery time (80 ms/90 ms), and low detection limit (8 Pa), so it can be used for all-round monitoring of the human body. Sensing arrays were integrated with a wireless transmitter as an intelligent artificial electronic skin for spatial pressure mapping and human-computer interaction sensing. Moreover, we develop a smart glove by a simple method, combining it with a 3D model for wireless accurate detection of hand poses. This provides ideas for hand somatosensory detection technology, leading to health monitoring, intelligent rehabilitation training, and personalized medicine.
Collapse
Affiliation(s)
- Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyue Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingcong Tang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
54
|
Chiu CW, Huang CY, Li JW, Li CL. Flexible Hybrid Electronics Nanofiber Electrodes with Excellent Stretchability and Highly Stable Electrical Conductivity for Smart Clothing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42441-42453. [PMID: 36082754 DOI: 10.1021/acsami.2c11724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper, a side-by-side, dual-nozzle electrospinning process was used to prepare a flexible hybrid electronics (FHE) material with excellent stretchable properties. A highly stable electrical conductivity was also imparted to the resulting membrane electrodes using silver nanoparticles (AgNPs) and carbon-based nanomaterials of different structures. The AgNP/carbon-based nanomaterials were coated onto bicomponent polymer nanofibers (composed of polyurethane (PU) and polyvinylidene difluoride (PVDF)) on the nanofiber membrane. The FHE nanofiber electrodes were finally integrated into clothing designed to accurately measure human body sensing signals (e.g., electrocardiography (ECG) and electromyography (EMG) signals). To effectively increase the high electrical conductivity, a polymer-type dispersant (polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene, a triblock copolymer) was used to effectively and stably disperse AgNPs with different particle sizes and carbon-based nanomaterials with different geometric dimensions (e.g., zero-dimensional carbon black, one-dimensional carbon nanotubes, and two-dimensional graphene) through non-covalent adsorption. Moreover, the bicomponent PVDF-PU nanofibers were immersed in a mixed dispersant of AgNPs and carbon-based nanomaterials at low concentrations, and thermal post-treatment was conducted to improve the electrical conductivity. The AgNP/graphene oxide (GO) nanofiber electrode exhibited a continuous phase with a stable material microstructure after 5000 repetitions of 50% tension-tension fatigue testing. The waveform pattern obtained from the proposed AgNP/GO nanofiber electrode was compared with those of traditional ECG and EMG electrodes. The nanofiber web electrode treated with organic/inorganic mixed dispersants and verified via tests of its electrical and fatigue properties was found to be suitable for long-term ECG and EMG monitoring, and it has excellent potential in wearable smart sensors.
Collapse
Affiliation(s)
- Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chen-Yang Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Wun Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Lin Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
55
|
Research Progresses in Microstructure Designs of Flexible Pressure Sensors. Polymers (Basel) 2022; 14:polym14173670. [PMID: 36080744 PMCID: PMC9460742 DOI: 10.3390/polym14173670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Flexible electronic technology is one of the research hotspots, and numerous wearable devices have been widely used in our daily life. As an important part of wearable devices, flexible sensors can effectively detect various stimuli related to specific environments or biological species, having a very bright development prospect. Therefore, there has been lots of studies devoted to developing high-performance flexible pressure sensors. In addition to developing a variety of materials with excellent performances, the microstructure designs of materials can also effectively improve the performances of sensors, which has brought new ideas to scientists and attracted their attention increasingly. This paper will summarize the flexible pressure sensors based on material microstructure designs in recent years. The paper will mainly discuss the processing methods and characteristics of various sensors with different microstructures, and compare the advantages, disadvantages, and application scenarios of them. At the same time, the main application fields of flexible pressure sensors based on microstructure designs will be listed, and their future development and challenges will be discussed.
Collapse
|
56
|
Feng H, Liu Y, Feng L, Zhan L, Meng S, Ji H, Zhang J, Li M, He P, Zhao W, Wei J. Additively Manufactured Flexible Electronics with Ultrabroad Range and High Sensitivity for Multiple Physiological Signals' Detection. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9871489. [PMID: 36061822 PMCID: PMC9394051 DOI: 10.34133/2022/9871489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Flexible electronics can be seamlessly attached to human skin and used for various purposes, such as pulse monitoring, pressure measurement, tensile sensing, and motion detection. Despite their broad applications, most flexible electronics do not possess both high sensitivity and wide detection range simultaneously; their sensitivity drops rapidly when they are subjected to even just medium pressure. In this study, ultrabroad-range, high-sensitivity flexible electronics are fabricated through additive manufacturing to address this issue. The key to possess high sensitivity and a wide detection range simultaneously is to fabricate flexible electronics with large depth-width ratio circuit channels using the additive manufacturing inner-rinsing template method. These electronics exhibit an unprecedented high sensitivity of 320 kPa-1 over the whole detection range, which ranges from 0.3 to 30,000 Pa (five orders of magnitude). Their minimum detectable weight is 0.02 g (the weight of a fly), which is comparable with human skin. They can stretch to over 500% strain without breaking and show no tensile fatigue after 1000 repetitions of stretching to 100% strain. A highly sensitive and flexible electronic epidermal pulse monitor is fabricated to detect multiple physiological signals, such as pulse signal, breathing rhythm, and real-time beat-to-beat cuffless blood pressure. All of these signals can be obtained simultaneously for detailed health detection and monitoring. The fabrication method does not involve complex expensive equipment or complicated operational processes, so it is especially suitable for the fabrication of large-area, complex flexible electronics. We believe this approach will pave the way for the application of flexible electronics in biomedical detection and health monitoring.
Collapse
Affiliation(s)
- Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Yaming Liu
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China
| | - Liang Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Limeng Zhan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Shuaishuai Meng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Peng He
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Jun Wei
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| |
Collapse
|
57
|
Koh LM, Khor SM. Current state and future prospects of sensors for evaluating polymer biodegradability and sensors made from biodegradable polymers: A review. Anal Chim Acta 2022; 1217:339989. [PMID: 35690422 DOI: 10.1016/j.aca.2022.339989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Since the invention of fully synthetic plastic in the 1900s, plastics have been extensively applied in various fields and represent a significant market due to their satisfactory properties. However, the non-biodegradable nature of most plastics has contributed to the accumulation of plastic waste, which poses a threat to both the environment and living beings. Given this, biodegradable polymers have emerged as eco-friendly substitutes for non-biodegradable polymers, and standard test methods have been established to evaluate polymer biodegradability. Technological advancement and the weaknesses of conventional test methods drive the invention of sensors that enable real-time monitoring of biodegradability. Besides, biodegradable polymers have been utilized to make sensors with different functionalities. Given this, the current paper is the first to compare and contrast sensors capable of identifying biodegradable polymers. The detection using sensors represents an innovative perspective for real-time monitoring of biodegradability. Besides, sensors made from biodegradable polymers are included, and these sensors are of different types and show various applications. Finally, the challenges associated with developing these sensors are described to advance future research.
Collapse
Affiliation(s)
- Lai Mun Koh
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
58
|
Lee P, Kim H, Kim Y, Choi W, Zitouni MS, Khandoker A, Jelinek HF, Hadjileontiadis L, Lee U, Jeong Y. Beyond Pathogen Filtration: Possibility of Smart Masks as Wearable Devices for Personal and Group Health and Safety Management. JMIR Mhealth Uhealth 2022; 10:e38614. [PMID: 35679029 PMCID: PMC9217147 DOI: 10.2196/38614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Face masks are an important way to combat the COVID-19 pandemic. However, the prolonged pandemic has revealed confounding problems with the current face masks, including not only the spread of the disease but also concurrent psychological, social, and economic complications. As face masks have been worn for a long time, people have been interested in expanding the purpose of masks from protection to comfort and health, leading to the release of various "smart" mask products around the world. To envision how the smart masks will be extended, this paper reviewed 25 smart masks (12 from commercial products and 13 from academic prototypes) that emerged after the pandemic. While most smart masks presented in the market focus on resolving problems with user breathing discomfort, which arise from prolonged use, academic prototypes were designed for not only sensing COVID-19 but also general health monitoring aspects. Further, we investigated several specific sensors that can be incorporated into the mask for expanding biophysical features. On a larger scale, we discussed the architecture and possible applications with the help of connected smart masks. Namely, beyond a personal sensing application, a group or community sensing application may share an aggregate version of information with the broader population. In addition, this kind of collaborative sensing will also address the challenges of individual sensing, such as reliability and coverage. Lastly, we identified possible service application fields and further considerations for actual use. Along with daily-life health monitoring, smart masks may function as a general respiratory health tool for sports training, in an emergency room or ambulatory setting, as protection for industry workers and firefighters, and for soldier safety and survivability. For further considerations, we investigated design aspects in terms of sensor reliability and reproducibility, ergonomic design for user acceptance, and privacy-aware data-handling. Overall, we aim to explore new possibilities by examining the latest research, sensor technologies, and application platform perspectives for smart masks as one of the promising wearable devices. By integrating biomarkers of respiration symptoms, a smart mask can be a truly cutting-edge device that expands further knowledge on health monitoring to reach the next level of wearables.
Collapse
Affiliation(s)
- Peter Lee
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Heepyung Kim
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yongshin Kim
- Graduate School of Data Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Woohyeok Choi
- Information & Electronics Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - M Sami Zitouni
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahsan Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Uichin Lee
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Jeong
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
59
|
Tai G, Wei D, Su M, Li P, Xie L, Yang J. Force-Sensitive Interface Engineering in Flexible Pressure Sensors: A Review. SENSORS 2022; 22:s22072652. [PMID: 35408265 PMCID: PMC9002484 DOI: 10.3390/s22072652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Flexible pressure sensors have received extensive attention in recent years due to their great importance in intelligent electronic devices. In order to improve the sensing performance of flexible pressure sensors, researchers are committed to making improvements in device materials, force-sensitive interfaces, and device structures. This paper focuses on the force-sensitive interface engineering of the device, which listing the main preparation methods of various force-sensitive interface microstructures and describing their respective advantages and disadvantages from the working mechanisms and practical applications of the flexible pressure sensor. What is more, the device structures of the flexible pressure sensor are investigated with the regular and irregular force-sensitive interface and accordingly the influences of different device structures on the performance are discussed. Finally, we not only summarize diverse practical applications of the existing flexible pressure sensors controlled by the force-sensitive interface but also briefly discuss some existing problems and future prospects of how to improve the device performance through the adjustment of the force-sensitive interface.
Collapse
Affiliation(s)
- Guojun Tai
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (G.T.); (D.W.); (M.S.); (P.L.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Dapeng Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (G.T.); (D.W.); (M.S.); (P.L.)
| | - Min Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (G.T.); (D.W.); (M.S.); (P.L.)
| | - Pei Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (G.T.); (D.W.); (M.S.); (P.L.)
- Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China;
| | - Lei Xie
- Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China;
| | - Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (G.T.); (D.W.); (M.S.); (P.L.)
- Correspondence:
| |
Collapse
|
60
|
Yang L, Zheng G, Cao Y, Meng C, Li Y, Ji H, Chen X, Niu G, Yan J, Xue Y, Cheng H. Moisture-resistant, stretchable NO x gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. MICROSYSTEMS & NANOENGINEERING 2022; 8:78. [PMID: 35818382 PMCID: PMC9270215 DOI: 10.1038/s41378-022-00414-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 05/16/2023]
Abstract
The accurate, continuous analysis of healthcare-relevant gases such as nitrogen oxides (NOx) in a humid environment remains elusive for low-cost, stretchable gas sensing devices. This study presents the design and demonstration of a moisture-resistant, stretchable NOx gas sensor based on laser-induced graphene (LIG). Sandwiched between a soft elastomeric substrate and a moisture-resistant semipermeable encapsulant, the LIG sensing and electrode layer is first optimized by tuning laser processing parameters such as power, image density, and defocus distance. The gas sensor, using a needlelike LIG prepared with optimal laser processing parameters, exhibits a large response of 4.18‰ ppm-1 to NO and 6.66‰ ppm-1 to NO2, an ultralow detection limit of 8.3 ppb to NO and 4.0 ppb to NO2, fast response/recovery, and excellent selectivity. The design of a stretchable serpentine structure in the LIG electrode and strain isolation from the stiff island allows the gas sensor to be stretched by 30%. Combined with a moisture-resistant property against a relative humidity of 90%, the reported gas sensor has further been demonstrated to monitor the personal local environment during different times of the day and analyze human breath samples to classify patients with respiratory diseases from healthy volunteers. Moisture-resistant, stretchable NOx gas sensors can expand the capability of wearable devices to detect biomarkers from humans and exposed environments for early disease diagnostics.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guanghao Zheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yaoqian Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Chuizhou Meng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing, 100191 China
| | - Huadong Ji
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Xue Chen
- School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guangyu Niu
- School of Architecture and Art Design, Hebei University of Technology, Tianjin, 300130 China
| | - Jiayi Yan
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Ye Xue
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|