51
|
Sarkar J, Das S, Aich S, Bhattacharyya P, Acharya K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J Trace Elem Med Biol 2022; 72:126977. [PMID: 35397331 PMCID: PMC8957383 DOI: 10.1016/j.jtemb.2022.126977] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND On 31st December 2019 in Wuhan, China, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was acknowledged. This virus spread quickly throughout the world causing a global pandemic. The World Health Organization declared COVID-19 a pandemic disease on 11th March 2020. Since then, the whole world has come together and have developed several vaccines against this deadly virus. Similarly, several alternative searches for pandemic disease therapeutics are still ongoing. One of them has been identified as nanotechnology. It has demonstrated significant promise for detecting and inhibiting a variety of viruses, including coronaviruses. Several nanoparticles, including gold nanoparticles, silver nanoparticles, quantum dots, carbon dots, graphene oxide nanoparticles, and zinc oxide nanoparticles, have previously demonstrated remarkable antiviral activity against a diverse array of viruses. OBJECTIVE This review aims to provide a basic and comprehensive overview of COVID-19's initial global outbreak and its mechanism of infiltration into human host cells, as well as the detailed mechanism and inhibitory effects of various nanoparticles against this virus. In addition to nanoparticles, this review focuses on the role of several antiviral drugs used against COVID-19 to date. CONCLUSION COVID-19 has severely disrupted the social and economic lives of people all over the world. Due to a lack of adequate medical facilities, countries have struggled to maintain control of the situation. Neither a drug nor a vaccine has a 100% efficacy rate. As a result, nanotechnology may be a better therapeutic alternative for this pandemic disease.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sunandana Das
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sahasrabdi Aich
- Department of Botany, Vivekananda College, Thakurpukur, Kolkata, West Bengal 700063, India
| | - Prithu Bhattacharyya
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India; Center for Research in Nanoscience & Nanotechnology, Technology Campus, University of Calcutta, Kolkata, West Bengal 700098, India.
| |
Collapse
|
52
|
de Oliveira ÉC, da Silva Bruckmann F, Schopf PF, Viana AR, Mortari SR, Sagrillo MR, de Vasconcellos NJS, da Silva Fernandes L, Bohn Rhoden CR. In vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite. JOURNAL OF NANOPARTICLE RESEARCH 2022; 24:150. [DOI: 10.1007/s11051-022-05529-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023]
|
53
|
Du T, Huang B, Cao J, Li C, Jiao J, Xiao Z, Wei L, Ma J, Du X, Wang S. Ni Nanocrystals Supported on Graphene Oxide: Antibacterial Agents for Synergistic Treatment of Bacterial Infections. ACS OMEGA 2022; 7:18339-18349. [PMID: 35694481 PMCID: PMC9178720 DOI: 10.1021/acsomega.2c00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
The effects of antibiotics on bacterial infections are gradually weakened, leading to the wide development of nanoparticle-based antibacterial agents with unique physical and chemical properties and antibacterial mechanisms different from antibiotics. In this study, we fabricated the uniform and stable graphene oxide (GO)/Ni colloidal nanocrystal cluster (NCNC) nanocomposite by electrostatic self-assembly and investigated its synergistic antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. The GO/NCNC nanocomposite was shown to possess higher inhibition efficiency than a pure NCNC or GO suspension, with 99.5 and 100% inhibition against S. aureus and E. coli at a 125 μg/mL concentration, respectively. Antibacterial mechanism analysis revealed that (i) NCNCs decorated on GO can further enhance the antibacterial properties of GO by binding and capturing bacteria, (ii) the leaching of Ni2+ was detected during the interaction of GO/NCNCs and bacteria, resulting in a decrease in the number of bacteria, and (iii) the GO/NCNC nanocomposite can synergistically destroy the bacterial membrane through physical action and induce the reactive oxygen species generation, so as to further damage the cell membrane and affect ATPase, leakage of intercellular contents, and ultimately bacterial growth inhibition. Meanwhile, cell culture experiments demonstrated no adverse effect of GO/NCNCs on cell growth. These preliminary results indicate the high antibacterial efficiency of the GO/NCNC nanocomposite, suggesting the possibility to develop it into an effective antibacterial agent in the future against bacterial infections.
Collapse
Affiliation(s)
- Ting Du
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Baojia Huang
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jiangli Cao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Chunqiao Li
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jingbo Jiao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Zehui Xiao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Lifei Wei
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jing Ma
- College
of Life Science, Yangtze University, Jingzhou, 434023 Hubei, PR China
| | - Xinjun Du
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- Tianjin
Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
54
|
Patial S, Kumar A, Raizada P, Le QV, Nguyen VH, Selvasembian R, Singh P, Thakur S, Hussain CM. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107527. [PMID: 35280853 PMCID: PMC8902865 DOI: 10.1016/j.jece.2022.107527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 05/13/2023]
Abstract
Coronavirus disease-2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been one of the most challenging worldwide epidemics of recent times. Semiconducting materials (photocatalysts) could prove effectual solar-light-driven technology on account of variant reactive oxidative species (ROS), including superoxide (•O2 - ) and hydroxyl (•OH) radicals either by degradation of proteins, DNA, RNA, or preventing cell development by terminating cellular membrane. Graphene-based materials have been exquisitely explored for antiviral applications due to their extraordinary physicochemical features including large specific surface area, robust mechanical strength, tunable structural features, and high electrical conductivity. Considering that, the present study highlights a perspective on the potentials of graphene based materials for photocatalytic antiviral activity. The interaction of virus with the surface of graphene based nanomaterials and the consequent physical, as well as ROS induced inactivation process, has been highlighted and discussed. It is highly anticipated that the present review article emphasizing mechanistic antiviral insights could accelerate further research in this field.
Collapse
Affiliation(s)
- Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
55
|
Nanotechnology Role Development for COVID-19 Pandemic Management. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/1872933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The global outbreak of coronavirus disease has sent an ominous message to the field of innovative and advanced technology research and development (COVID-19). To accomplish this, convectional technology and recent discoveries can be combined, or new research directions can be opened up using nanotechnology. Nanotechnology can be used to prevent, diagnose, and treat SARS-CoV-2 infection. As the pandemic spreads, a thorough examination of nanomaterials' role in pandemic response is highly desirable. According to this comprehensive review article, nanotechnology can be used to prevent, diagnose, and treat COVID-19. This research will be extremely useful during the COVID-19 outbreak in terms of developing rules for designing nanostructure materials to combat the outbreak.
Collapse
|
56
|
Stanisic D, Cruz GCF, Elias LA, Tsukamoto J, Arns CW, Soares da Silva D, Mochkalev S, Savu R, Tasic L. High-Resolution Magic-Angle Spinning NMR Spectroscopy for Evaluation of Cell Shielding by Virucidal Composites Based on Biogenic Silver Nanoparticles, Flexible Cellulose Nanofibers and Graphene Oxide. Front Bioeng Biotechnol 2022; 10:858156. [PMID: 35646854 PMCID: PMC9133937 DOI: 10.3389/fbioe.2022.858156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Antiviral and non-toxic effects of silver nanoparticles onto in vitro cells infected with coronavirus were evaluated in this study using High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) spectroscopy. Silver nanoparticles were designed and synthesized using an orange flavonoid—hesperetin (HST)—for reduction of silver(I) and stabilization of as obtained nanoparticles. The bio-inspired process is a simple, clean, and sustainable way to synthesize biogenic silver nanoparticles (AgNP@HST) with diameters of ∼20 nm and low zeta potential (−40 mV), with great colloidal stability monitored for 2 years. The nanoparticles were used for the fabrication of two types of antiviral materials: colloids (AgNP@HST spray) and 3D flexible nanostructured composites. The composites, decorated with AgNP@HST (0.05 mmol L−1), were made using cellulose nanofibers (CNF) obtained from orange peel and graphene oxide (GO), being denominated CNF@GO@AgNP@HST. Both materials showed high virucidal activity against coronaviruses in cell infection in vitro models and successfully inhibited the viral activity in cells. HR-MAS 1H-NMR technique was used for determining nanomaterials’ effects on living cells and their influences on metabolic pathways, as well as to study viral effects on cells. It was proven that none of the manufactured materials showed toxicity towards the intact cells used. Furthermore, viral infection was reverted when cells, infected with the coronavirus, were treated using the as-fabricated nanomaterials. These significant results open possibilities for antiviral application of 3D flexible nanostructured composite such as packaging papers and filters for facial masks, while the colloidal AgNP@HST spray can be used for disinfecting surfaces, as well as a nasal, mouth, and eye spray.
Collapse
Affiliation(s)
- Danijela Stanisic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Guilherme C. F. Cruz
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), São Paulo, Brazil
- Centre for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (UNICAMP), São Paulo, Brazil
- Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Leonardo Abdala Elias
- Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Junko Tsukamoto
- Laboratory of Animal Virology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Clarice W. Arns
- Laboratory of Animal Virology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | - Stanislav Mochkalev
- Centre for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Raluca Savu
- Centre for Semiconductor Components and Nanotechnology (CCSNano), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), São Paulo, Brazil
- *Correspondence: Ljubica Tasic,
| |
Collapse
|
57
|
Shahabi M, Raissi H. A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Adv 2022; 12:14167-14174. [PMID: 35558858 PMCID: PMC9092566 DOI: 10.1039/d2ra01420c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Currently, a preventive and curative treatment for COVID-19 is an urgent global issue. According to the fact that nanomaterial-based drug delivery systems as risk-free approaches for successful therapeutic strategies may led to immunization against COVID-19 pandemic, the delivery of Carmofur as a potential drug for the SARS-CoV-2 treatment via graphene oxide quantum dots (GOQDs) was investigated in silico using molecular dynamics (MD) simulation. MD simulation showed that π-π stacking together with hydrogen bonding played vital roles in the stability of the Carmofur-GOQD complex. Spontaneous attraction of GOQDs loaded with Carmofur toward the binding pocket of the main protease (Mpro) resulted in the penetration of Carmofur into the active catalytic region. It was found that the presence of GOQD as an effective carrier in the loading and delivery of Carmofur inhibitor affected the structural conformation of Mpro. Higher RMSF values of the key residues of the active site indicated their greater displacement to adopt Carmofur. These results suggested that the binding pocket of Mpro is not stable during the interaction with the Carmofur-GOQD complex. This study provided insights into the potential application of graphene oxide quantum dots as an effective Carmofur drug delivery system for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand Birjand Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran
| |
Collapse
|
58
|
Kumar A, Soni V, Singh P, Parwaz Khan AA, Nazim M, Mohapatra S, Saini V, Raizada P, Hussain CM, Shaban M, Marwani HM, Asiri AM. Green aspects of photocatalysts during corona pandemic: a promising role for the deactivation of COVID-19 virus. RSC Adv 2022; 12:13609-13627. [PMID: 35530385 PMCID: PMC9073611 DOI: 10.1039/d1ra08981a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
The selection of a facile, eco-friendly, and effective methodology is the need of the hour for efficient curing of the COVID-19 virus in air, water, and many food products. Recently, semiconductor-based photocatalytic methodologies have provided promising, green, and sustainable approaches to battle against viral activation via the oxidative capabilities of various photocatalysts with excellent performance under moderate conditions and negligible by-products generation as well. Considering this, recent advances in photocatalysis for combating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are inclusively highlighted. Starting from the origin to the introduction of the coronavirus, the significant potential of photocatalysis against viral prevention and -disinfection is discussed thoroughly. Various photocatalytic material-based systems including metal-oxides, metal-free and advanced 2D materials (MXenes, MOFs and COFs) are systematically examined to understand the mechanistic insights of virus-disinfection in the human body to fight against COVID-19 disease. Also, a roadmap toward sustainable solutions for ongoing COVID-19 contagion is also presented. Finally, the challenges in this field and future perspectives are comprehensively discussed involving the bottlenecks of current photocatalytic systems along with potential recommendations to deal with upcoming pandemic situations in the future.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohammed Nazim
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro Gumi-si Gyeongbuk-do 39177 Republic of Korea
| | - Satyabrata Mohapatra
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University Dwarka New Delhi 110078 India
| | - Vipin Saini
- Maharishi Markandeshwar Medical College Kumarhatti Solan Himachal Pradesh 173229 India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | | | - Mohamed Shaban
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
59
|
Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298:101957. [PMID: 35452675 PMCID: PMC9123278 DOI: 10.1016/j.jbc.2022.101957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.
Collapse
|
60
|
Muthiah G, Sarkar A, Roy S, Singh P, Kumar P, Bhardwaj K, Jaiswal A. Nanotechnology Toolkit for Combating COVID-19 and Beyond. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2022; 8:e202100505. [PMID: 35542043 PMCID: PMC9074423 DOI: 10.1002/cnma.202100505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The outbreak of SARS-CoV-2 is unlikely to be contained anytime soon with conventional medical technology. This beckons an urgent demand for novel and innovative interventions in clinical protocols, diagnostics, and therapeutics; to manage the current "disease X" and to be poised to counter its successor of like nature if one were to ever arise. To meet such a demand requires more attention to research on the viral-host interactions and on developing expeditious solutions, the kinds of which seem to spring from promising domains such as nanotechnology. Inducing activity at scales comparable to the viruses themselves, nanotechnology-based preventive measures, diagnostic tools and therapeutics for COVID-19 have been rapidly growing during the pandemic. This review covers the recent and promising nanomedicine-based solutions relating to COVID-19 and how some of these are possibly applicable to a wider range of viruses and pathogens. We also discuss the type, composition, and utility of nanostructures which play various roles specifically under prevention, diagnosis, and therapy. Further, we have highlighted the adoption and commercialization of some the solutions by large and small corporations alike, as well as providing herewith an exhaustive list on nanovaccines.
Collapse
Affiliation(s)
- Giredhar Muthiah
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Ankita Sarkar
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Shounak Roy
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Prem Singh
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Praveen Kumar
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Keshav Bhardwaj
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Amit Jaiswal
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| |
Collapse
|
61
|
Design strategies for antiviral coatings and surfaces: A review ☆. APPLIED SURFACE SCIENCE ADVANCES 2022; 8:100224. [PMCID: PMC8865753 DOI: 10.1016/j.apsadv.2022.100224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 05/31/2023]
Abstract
The routine disinfection and sanitization of surfaces, objects, and textiles has become a time-consuming but necessary task for managing the COVID-19 pandemic. Nonetheless, the excessive use of sanitizers and disinfectants promotes the development of antibiotic-resistant microbes. Moreover, that improper disinfection could lead to more virus transfer, which leads to more viral mutations. Recently developed antiviral surface coatings can reduce the reliance on traditional disinfectants. These surfaces remain actively antimicrobial between periods of active cleaning of the surfaces, allowing a much more limited and optimized use of disinfectants. The novel nature of these surfaces has led, however, to many inconsistencies within the rapidly growing literature. Here we provide tools to guide the design and development of antimicrobial and antiviral surfaces and coatings. We describe how engineers can best choose testing options and propose new avenues for antiviral testing. After defining testing protocols, we summarize potential inorganic and organic materials able to serve as antiviral surfaces and present their antiviral mechanisms. We discuss the main limitations to their application, including issues related to toxicity, antimicrobial resistance, and environmental concerns. We propose solutions to counter these limitations and highlight how the context of specific use of an antiviral surface must guide material selection. Finally, we discuss how the use of coatings that combine multiple antimicrobial mechanisms can avoid the development of antibiotic resistance and improve the antiviral properties of these surfaces.
Collapse
|
62
|
Du J, Yang C, Ma X, Li Q. Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene. APPLIED SURFACE SCIENCE 2022; 578:151934. [PMID: 34866721 PMCID: PMC8627288 DOI: 10.1016/j.apsusc.2021.151934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 05/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread in the world, causing more than two million deaths and seriously threatening human life. Effective protection measures are important to prevent the infection and spreading of the virus. To explore the effects of graphene on the virus adsorption and its biological properties, the adsorption process of the receptor binding domain (RBD) of SARS-CoV-2 on graphene has been investigated by molecular dynamics simulations in this paper. The results show that RBD can be quickly adsorbed onto the surface of graphene due to π - π stacking and hydrophobic interactions. Residue PHE486 with benzene ring has stronger adsorption force and the maximum contact area with graphene. Graphene significantly affects the secondary structure of RBD area, especially on the three key sites of binding with human ACE2, GLY476, PHE486 and ASN487. The binding free energy of RBD and graphene shows that the adsorption is irreversible. Undoubtedly, these changes will inevitably affect the pathogenicity of the virus. Therefore, this study provides a theoretical basis for the application of graphene in the protection of SARS-CoV-2, and also provides a reference for the potential application of graphene in the biomedical field.
Collapse
Affiliation(s)
- Jianbin Du
- College of Science, Langfang Normal University, Langfang 065000, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chunmei Yang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangyun Ma
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Qifeng Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
63
|
On the Efficacy of ZnO Nanostructures against SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23063040. [PMID: 35328455 PMCID: PMC8950216 DOI: 10.3390/ijms23063040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
In 2019, the new coronavirus disease (COVID-19), related to the severe acute respiratory syndrome coronavirus (SARS-CoV-2), started spreading around the word, giving rise to the world pandemic we are still facing. Since then, many strategies for the prevention and control of COVID-19 have been studied and implemented. In addition to pharmacological treatments and vaccines, it is mandatory to ensure the cleaning and disinfection of the skin and inanimate surfaces, especially in those contexts where the contagion could spread quickly, such as hospitals and clinical laboratories, schools, transport, and public places in general. Here, we report the efficacy of ZnO nanoparticles (ZnONPs) against SARS-CoV-2. NPs were produced using an ecofriendly method and fully characterized; their antiviral activity was tested in vitro against SARS-CoV-2, showing a decrease in viral load between 70% and 90%, as a function of the material’s composition. Application of these nano-antimicrobials as coatings for commonly touched surfaces is envisaged.
Collapse
|
64
|
Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022; 49:4943-4957. [PMID: 35235159 PMCID: PMC8890022 DOI: 10.1007/s11033-022-07132-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
The world is grappling with an unprecedented public health crisis COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2. Due to the high transmission/mortality rates and socioeconomic impacts of the COVID-19, its control is crucial. In the absence of specific treatment, vaccines represent the most efficient way to control and stop the pandemic. Many companies around the world are currently making efforts to develop the vaccine to combat COVID-19. This review outlines key strategies for generating SARS-CoV-2 vaccine candidates, along with the mechanism of action, advantages, and potential limitations of each vaccine. The use of nanomaterials and nanotechnology for COVID-19 vaccines development will also be discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meghdad Abdollahpour-Alitappeh
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.,Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
65
|
Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm (Beijing) 2022; 3:e118. [PMID: 35281783 PMCID: PMC8906468 DOI: 10.1002/mco2.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Graphene-based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potentials have rendered graphene- (G-) and graphene oxide (GO)-based (nano)structures promising candidates for cancer therapy applications. Various techniques namely liquid-phase exfoliation, Hummer's method, chemical vapor deposition, chemically reduced GO, mechanical cleavage of graphite, arc discharge of graphite, and thermal fusion have been deployed for the production of G-based materials. Additionally, important criteria such as biocompatibility, bio-toxicity, dispersibility, immunological compatibility, and inflammatory reactions of G-based structures need to be systematically assessed for additional clinical and biomedical appliances. Furthermore, surface properties (e.g., lateral dimension, charge, corona influence, surface structure, and oxygen content), concentration, detection strategies, and cell types are vital for anticancer activities of these structures. Notably, the efficient accumulation of anticancer drugs in tumor targets/tissues, controlled cellular uptake properties, tumor-targeted drug release behavior, and selective toxicity toward the cells are crucial criteria that need to be met for developing future anticancer G-based nanosystems. Herein, important challenges and future perspectives of cancer therapy using G- and GO-based nanosystems have been highlighted, and the recent advancements are deliberated.
Collapse
Affiliation(s)
- Ali Shafiee
- Department of ChemistryCape Breton UniversitySydneyCanada
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research InstitutePalacky University in OlomoucOlomoucCzech Republic
| |
Collapse
|
66
|
Hashmi A, Nayak V, Singh KR, Jain B, Baid M, Alexis F, Singh AK. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. MATERIALS TODAY. ADVANCES 2022; 13:100208. [PMID: 35039802 PMCID: PMC8755454 DOI: 10.1016/j.mtadv.2022.100208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 05/06/2023]
Abstract
Graphene is a two-dimensional material with sp2 hybridization that has found its broad-spectrum potentialities in various domains like electronics, robotics, aeronautics, etc.; it has recently gained its utilities in the biomedical domain. The unique properties of graphene and its derivatives of graphene have helped them find their utilities in the biomedical domain. Additionally, the sudden outbreak of SARS-CoV-2 has immensely expanded the research field, which has also benefitted graphene and its derivatives. Currently, the world is facing a global pandemic due to the sudden outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as COVID-19, from its major onset in Wuhan city, China, in December 2019. Presently, many new variants and mutants appear, which is more harmful than previous strains. However, researchers and scientists are focused on understanding the target structure of coronavirus, mechanism, causes and transmission mode, treatment, and alternatives to cure these diseases in this critical pandemic situation; many findings are achieved, but much more is unknown and pending to be explored. This review paper is dedicated to exploring the utilities of graphene and its derivatives in combating the SARS-CoV-2 by highlighting their mechanism and applications in the fabrication of biosensors, personal protection equipment (PPE) kits, 3-D printing, and antiviral coatings. Further, the paper also covers the cytotoxicity caused by graphene and its derivatives and highlights the graphene-based derivatives market aspects in biomedical domains. Thus, graphene and graphene-derived materials are our new hope in this pandemic time, and this review helps acquire broad knowledge about them.
Collapse
Affiliation(s)
- Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Vanya Nayak
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Kshitij Rb Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Mitisha Baid
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Frank Alexis
- Department of Chemical Engineering, Universidad de San Francisco de Quito, Quito, 107910, Ecuador
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| |
Collapse
|
67
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
68
|
Xu M, Zhang S, Wang T, Yu B, Yang Z, Wang X, Zhou R, Hua D. De Novo Design of a Pt Nanocatalyst on a Conjugated Microporous Polymer-Coated Honeycomb Carrier for Oxidation of Hydrogen Isotopes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7826-7835. [PMID: 35107248 DOI: 10.1021/acsami.1c19844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A booming demand for energy highlights the importance of an emergency cleanup system in the nuclear industry or hydrogen-energy sector to reduce the risk of hydrogen explosion and decrease tritium emission. The properties of the catalyst determine the efficiency of hydrogen isotope enrichment and removal in the emergency cleanup system. However, the aggregation behavior of Pt, deactivation effect of water vapor, and isotope effect induce a continuous decrease in the catalytic activity of the Pt catalyst. Herein, a de novo design of a Pt nanocatalyst is proposed for catalytic oxidation of the hydrogen isotope via modification of a conjugated microporous polymer onto honeycomb cordierite as a Pt support. The conjugated microporous polymer creates a microporous and hydrophobic environment to attenuate the deactivation effect of water vapor and shape Pt nanoparticles with a diameter of around 2.4 nm. Thus, the as-prepared catalysts exhibit excellent catalytic performance in the range of 25-65 °C and high space velocity (≤30 000 h-1) and a stable and high catalytic activity during 487 h of continuous and intermittent operation. Importantly, the charge of the Pt nanoparticles is redistributed by the conjugated skeletons, leading to a decreased energy barrier in the rate-limiting step of hydrogen isotope oxidation and a reduced isotope effect.
Collapse
Affiliation(s)
- Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shitong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Tao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Bin Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaolin Wang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
69
|
Dixit N, Singh SP. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS OMEGA 2022; 7:5112-5130. [PMID: 35187327 PMCID: PMC8851616 DOI: 10.1021/acsomega.1c06093] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
A healthy environment is necessary for a human being to survive. The contagious COVID-19 virus has disastrously contaminated the environment, leading to direct or indirect transmission. Therefore, the environment demands adequate prevention and control strategies at the beginning of the viral spread. Laser-induced graphene (LIG) is a three-dimensional carbon-based nanomaterial fabricated in a single step on a wide variety of low-cost to high-quality carbonaceous materials without using any additional chemicals potentially used for antiviral, antibacterial, and sensing applications. LIG has extraordinary properties, including high surface area, electrical and thermal conductivity, environmental-friendliness, easy fabrication, and patterning, making it a sustainable material for controlling SARS-CoV-2 or similar pandemic transmission through different sources. LIG's antiviral, antibacterial, and antibiofouling properties were mainly due to the thermal and electrical properties and texture derived from nanofibers and micropores. This perspective will highlight the conducted research and the future possibilities on LIG for its antimicrobial, antiviral, antibiofouling, and sensing applications. It will also manifest the idea of incorporating this sustainable material into different technologies like air purifiers, antiviral surfaces, wearable sensors, water filters, sludge treatment, and biosensing. It will pave a roadmap to explore this single-step fabrication technique of graphene to deal with pandemics and endemics in the coming future.
Collapse
Affiliation(s)
- Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
70
|
Interlayered modified hydroxides for removal of graphene oxide from water: Mechanism and secondary applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Wang J, Yu Y, Leng T, Li Y, Lee ST. The Inhibition of SARS-CoV-2 3CL M pro by Graphene and Its Derivatives from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:191-200. [PMID: 34933561 PMCID: PMC8713398 DOI: 10.1021/acsami.1c18104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL Mpro and graphene-related materials (GRMs): IG, DG, and GO. The results show that Mpro can be absorbed onto the surfaces of investigated materials. DG and GO interacted with Mpro more intensely, causing the decisive part of Mpro to become more flexible. Further analysis shows that compared to IG and GO, DG can inactivate Mpro and inhibit its expression effectively by destroying the active pocket of Mpro. Our work not only provides detailed and reliable theoretical guidance for the application of GRMs in treating with SARS-CoV-2 but also helps in developing new graphene-based anti-COVID-19 materials.
Collapse
Affiliation(s)
- Jiawen Wang
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Yi Yu
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Tianle Leng
- Dougherty Valley High School,
10550 Albion Rd, San Ramon, California 94582, United States
| | - Youyong Li
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| |
Collapse
|
72
|
Wang M, Yang T, Bao Q, Yang M, Mao C. Binding Peptide-Promoted Biofunctionalization of Graphene Paper with Hydroxyapatite for Stimulating Osteogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:350-360. [PMID: 34962367 DOI: 10.1021/acsami.1c20740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene paper (GP), a macroscopic self-supporting material, has exceptional flexibility and preserves the excellent physical and chemical properties of graphene nanomaterials. But its applications in regenerative medicine remain to be further explored. Here, we biologically functionalized GP with hydroxyapatite (HA) nanorods by the use of GP-binding peptides as an affinity linker. This strategy solved two daunting challenges for regenerative medicine applications of GP: the lack of good hydrophilicity for supporting cell growth and the difficulty in forming composites by binding with nanobiomaterials. Briefly, we first screened a high-affinity GP-binding peptide (TWWNPRLVYFDY) by the phage display technique. Then we chemically conjugated the GP-binding peptide to the synthetic HA nanorods. The GP-binding peptide on the resultant HA nanorods enabled them to be bound and assembled onto the GP substrate with high affinity, forming a GP-peptide-HA composite with significantly improved hydrophilicity of GP. The composite promoted the attachment and proliferation of mesenchymal stem cells (MSCs), demonstrating its outstanding biocompatibility. Due to the unique compositions of the composite, it was also found to induce osteogenic differentiation of MSCs in vitro in the absence of other inducers in the medium, by verifying the expression of the osteogenic markers including collagen-1, bone morphogenetic proteins 2, runx-related transcription factor 2, osteocalcin, and alkaline phosphatase. Our work suggests that the GP-binding peptide can be used to link inorganic nanoparticles onto GP to facilitate the biomedical applications of GP.
Collapse
Affiliation(s)
- Mengjia Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
73
|
Gokce C, Gurcan C, Besbinar O, Unal MA, Yilmazer A. Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era. NANOSCALE 2022; 14:239-249. [PMID: 34935015 DOI: 10.1039/d1nr06476b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Infectious diseases caused by viral or bacterial pathogens are one of the most serious threats to humanity. Moreover, they may lead to pandemics, as we have witnessed severely with the coronavirus disease 2019 (COVID-19). Nanotechnology, including technological developments of nano-sized materials, has brought great opportunities to control the spreading of such diseases. In the family of nano-sized materials, two-dimensional (2D) materials with intrinsic physicochemical properties can efficiently favor antimicrobial activity and maintain a safer environment to protect people against pathogens. For this purpose, they can be used alone or combined for the disinfection process of microbes, antiviral or antibacterial surface coatings, air filtering of medical equipment like face masks, or antimicrobial drug delivery systems. At the same time, they are promising candidates to deal with the issues of conventional antimicrobial approaches such as low efficacy and high cost. This review covers the antiviral or antibacterial activities of 2D materials and highlights their current and possible future applications. Considering their intrinsic properties, 2D materials will become part of the leading antimicrobial technologies for combating future pandemics anytime soon.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| | - Omur Besbinar
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey.
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| |
Collapse
|
74
|
Tiwari AK, Mishra A, Pandey G, Gupta MK, Pandey PC. Nanotechnology: A Potential Weapon to Fight against COVID-19. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100159. [PMID: 35440846 PMCID: PMC9011707 DOI: 10.1002/ppsc.202100159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Indexed: 05/13/2023]
Abstract
The COVID-19 infections have posed an unprecedented global health emergency, with nearly three million deaths to date, and have caused substantial economic loss globally. Hence, an urgent exploration of effective and safe diagnostic/therapeutic approaches for minimizing the threat of this highly pathogenic coronavirus infection is needed. As an alternative to conventional diagnosis and antiviral agents, nanomaterials have a great potential to cope with the current or even future health emergency situation with a wide range of applications. Fundamentally, nanomaterials are physically and chemically tunable and can be employed for the next generation nanomaterial-based detection of viral antigens and host antibodies in body fluids as antiviral agents, nanovaccine, suppressant of cytokine storm, nanocarrier for efficient delivery of antiviral drugs at infection site or inside the host cells, and can also be a significant tool for better understanding of the gut microbiome and SARS-CoV-2 interaction. The applicability of nanomaterial-based therapeutic options to cope with the current and possible future pandemic is discussed here.
Collapse
Affiliation(s)
- Atul K. Tiwari
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| | - Anupa Mishra
- Department of MicrobiologyDr. R.M.L. Awadh UniversityAyodhyaUttar Pradesh224001India
- Department of MicrobiologySri Raghukul Mahila Vidya PeethCivil Line GondaUttar Pradesh271001India
| | - Govind Pandey
- Department of PaediatricsKing George Medical UniversityLucknowUttar Pradesh226003India
| | - Munesh K. Gupta
- Department of MicrobiologyInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUttar Pradesh221005India
| | - Prem C. Pandey
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| |
Collapse
|
75
|
Development of corona sensor. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9335065 DOI: 10.1016/b978-0-323-90280-9.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The outbreak of corona virus (COVID-19) has imposed serious concern all over the world as many part of the globe have been severely affected by this. It has become essential to develop efficient methods for the treatment and detection of this virus. Among the new approaches, the nanosensor has played a vital role in tracing and detecting the virus. Sensors are tools to assist detect events or changes in the environment while also sending data to other electronics, most commonly a computer processor. This chapter contains the approach followed and development in several biosensors, wearable sensor, and colorimetric sensors toward the identification of corona virus.
Collapse
|
76
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|
77
|
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang J, Chen J, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102189. [PMID: 34825783 PMCID: PMC8787406 DOI: 10.1002/advs.202102189] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Indexed: 05/08/2023]
Abstract
Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.
Collapse
Affiliation(s)
- Wei Deng
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Yajun Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Xiaoxue Yao
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Karpagam Subramanian
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Chen Ling
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Hongbo Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Shauhrat S. Chopra
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Jie‐Xin Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Honeyfer Amancio
- Department of Chemical Engineering and BiotechnologyCambridge UniversityCambridgeCB2 1TNUK
| | - Stevin Pramana
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Steven Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| |
Collapse
|
78
|
Pattnaik S, Chaudhury B, Mohapatra M. Exploration of Inorganic Materials with Antiviral Properties. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:53-74. [DOI: 10.1007/978-981-16-4372-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
79
|
Ebrahimi M, Asadi M, Akhavan O. Graphene-based Nanomaterials in Fighting the Most Challenging Viruses and Immunogenic Disorders. ACS Biomater Sci Eng 2021; 8:54-81. [PMID: 34967216 DOI: 10.1021/acsbiomaterials.1c01184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently earned much attention thanks to its special and inspiring physicochemical properties, such as its large surface area, efficient thermal/electrical properties, carbon-based chemical purity with controllable biocompatibility, easy functionalization, capability of single-molecule detection, anticancer characteristics, 3D template feature in tissue engineering, and, in particular, antibacterial/antiviral activities. In this Review, the most important and challenging viruses of our era, such as human immunodeficiency virus, Ebola, SARS-CoV-2, norovirus, and hepatitis virus, and immunogenic disorders, such as asthma, Alzheimer's disease, and Parkinson's disease, in which graphene-based nanomaterials can effectively take part in the prevention, detection, treatment, medication, and health effect issues, have been covered and discussed.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| | - Mohamad Asadi
- Department of Electrical Engineering, Sharif University of Technology, 11155-4363 Tehran, Islamic Republic of Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| |
Collapse
|
80
|
Jiang L, Xu S, Yu H, Cui Q, Cao R. Preparation and disinfection properties of graphene oxide/trichloroisocyanuric acid disinfectant. NANOTECHNOLOGY 2021; 33:115704. [PMID: 34798630 DOI: 10.1088/1361-6528/ac3b82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Due to the impact of the new crown epidemic in recent years, disinfectants have played an increasingly important role, so the research and development of new high-efficiency nano-disinfectants are urgent issues. In this study, graphene oxide (GO) was first prepared by the modified Hummer method. Then, the GO/trichloroisocyanuric acid (TCCA) composite was prepared by loading TCCA into GO with the blending method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and atomic force microscopy were used to characterize the composite. The results showed that TCCA was successfully loaded on the surface of GO or intercalated among GO layers. Next, the antibacterial performance of the composite againstEscherichia coliandStaphylococcus aureuswas tested by the 96-well plate assay. A bactericidal kinetic curve, bacterial inhibition tests, and the mechanism of bacterial inhibition were discussed. The results showed that the minimum inhibitory concentration (MIC) of the GO/TCCA composite (GO:TCCA ratio = 1:50) was 327.5μg ml-1againstE. coliand 655μg ml-1againstS. aureus. At the MIC, the inhibition rate of the GO/TCCA composite exceeded 99.46% againstE. coliand 99.17% againstS. aureus. The bactericidal kinetic curves indicate that the GO/TCCA composite has an excellent bactericidal effect againstE. coliandS. aureus.
Collapse
Affiliation(s)
- Lili Jiang
- School of Materials Science and Engineering, Lanzhou University of Technology, Langongping Road, Lanzhou 730050, Gansu Province, People's Republic of China
| | - Su Xu
- School of Materials Science and Engineering, Lanzhou University of Technology, Langongping Road, Lanzhou 730050, Gansu Province, People's Republic of China
| | - Haitao Yu
- Department of Medical Laboratory, The First Hospital of Lanzhou University, No. 1, Donggang Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Qi Cui
- School of Materials Science and Engineering, Lanzhou University of Technology, Langongping Road, Lanzhou 730050, Gansu Province, People's Republic of China
| | - Rui Cao
- School of Materials Science and Engineering, Lanzhou University of Technology, Langongping Road, Lanzhou 730050, Gansu Province, People's Republic of China
| |
Collapse
|
81
|
Cui WY, Yoo HJ, Li YG, Baek C, Min J. Facile and foldable point-of-care biochip for nucleic acid based-colorimetric detection of murine norovirus in fecal samples using G-quadruplex and graphene oxide coated microbeads. Biosens Bioelectron 2021; 199:113878. [PMID: 34915211 DOI: 10.1016/j.bios.2021.113878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
Norovirus is one of the most common causes of gastroenteritis, a disease characterized by diarrhea, vomiting, and stomach pain. A rapid on-site identification of the virus from fecal samples of patients is a prerequisite for accurate medical management. Here, we demonstrate a rapid nucleic acid-based detection platform as an on-site biosensing tool that can concentrate viruses from fecal samples. Moreover, it can perform RNA extraction and identification, and signal amplification using G-quadruplex and hemin containing DNA probes (G-DNA probes) and graphene oxide (GO)-coated microbeads. Briefly, murine noroviruses are lysed without chemicals on the surface of the GO microbeads. Subsequently, the target RNA is hybridized with G-DNA probes, and the resultant RNA/G-DNA probe complex is separated from unbound G-DNA probes using GO beads and is mixed with the detection buffer (ABTS/H2O2). Presence of murine noroviruses causes a colorimetric change of the buffer from colorless to green. Thus, we integrated all processes required to detect murine noroviruses in stool samples in a simple foldable microfluidic chip. Moreover, it can detect 101 pfu of the virus in 30 min in a fecal sample.
Collapse
Affiliation(s)
- Wen Ying Cui
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Yun Guang Li
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
82
|
Tuñón-Molina A, Takayama K, Redwan EM, Uversky VN, Andrés J, Serrano-Aroca Á. Protective Face Masks: Current Status and Future Trends. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56725-56751. [PMID: 34797624 DOI: 10.1021/acsami.1c12227] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Management of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has relied in part on the use of personal protective equipment (PPE). Face masks, as a representative example of PPE, have made a particularly significant contribution. However, most commonly used face masks are made of materials lacking inactivation properties against either SARS-CoV-2 or multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals wearing masks can still infect others due to viable microbial loads escaping from the masks. Moreover, microbial contact transmission can occur by touching the mask, and the discarded masks are an increasing source of contaminated biological waste and a serious environmental threat. For this reason, during the current pandemic, many researchers have worked to develop face masks made of advanced materials with intrinsic antimicrobial, self-cleaning, reusable, and/or biodegradable properties, thereby providing extra protection against pathogens in a sustainable manner. To overview this segment of the remarkable efforts against COVID-19, this review describes the different types of commercialized face masks, their main fabrication methods and treatments, and the progress achieved in face mask development.
Collapse
Affiliation(s)
- Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Valencia, Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Elrashdy M Redwan
- Faculty of Science, Department of Biological Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Valencia, Spain
| |
Collapse
|
83
|
Solorzano-Ojeda ED, Sánchez-Valdes S, Ramos-deValle LF, Betancourt-Galindo R, da Silva L, Fernández-Tavizón S, Hernández-Gámez JF, Pérez-Camacho O, Ramírez-Vargas E, Morales-Acosta D, Rodríguez-González JA, Borjas-Ramos JJ. Effect of ionic liquid on graphene decorated with copper nanostructure dispersion towards silicon/graphene/copper composites with enhanced thermal, electrical and antimicrobial properties. IRANIAN POLYMER JOURNAL 2021. [PMCID: PMC8454297 DOI: 10.1007/s13726-021-00980-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Saúl Sánchez-Valdes
- Centro de Investigación en Química Aplicada, 25294 Saltillo, Coahuila Mexico
| | | | | | - Luciano da Silva
- Centro de Investigación en Química Aplicada, 25294 Saltillo, Coahuila Mexico
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Ayub M, Othman MHD, Khan IU, Yusop MZM, Kurniawan TA. Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. SURFACES AND INTERFACES 2021; 27:101460. [PMID: 34957347 PMCID: PMC8442307 DOI: 10.1016/j.surfin.2021.101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a significant and topmost global health challenge of today. SARS-CoV-2 can propagate through several direct or indirect means resulting in its exponential spread in short times. Consequently, finding new research based real-world and feasible solutions to interrupt the spread of pathogenic microorganisms is indispensable. It has been established that this virus can survive on a variety of available surfaces ranging from a few hours to a few days, which has increased the risk of COVID-19 spread to large populations. Currently, available surface disinfectant chemicals provide only a temporary solution and are not recommended to be used in the long run due to their toxicity and irritation. Apart from the urgent development of vaccine and antiviral drugs, there is also a need to design and develop surface disinfectant antiviral coatings for long-term applications even for new variants. The unique physicochemical properties of graphene-based nanomaterials (GBNs) have been widely investigated for antimicrobial applications. However, the research work for their use in antimicrobial surface coatings is minimal. This perspective enlightens the scope of using GBNs as antimicrobial/antiviral surface coatings to reduce the spread of transmittable microorganisms, precisely, SARS-CoV-2. This study attempts to demonstrate the synergistic effect of GBNs and metallic nanoparticles (MNPs), for their potential antiviral applications in the development of surface disinfectant coatings. Some proposed mechanisms for the antiviral activity of the graphene family against SARS-CoV-2 has also been explained. It is anticipated that this study will potentially lead to new insights and future trends to develop a framework for further investigation on this research area of pivotal importance to minimize the transmission of current and any future viral outbreaks.
Collapse
Affiliation(s)
- Muhammad Ayub
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology (PAF:IAST), Khanpur Road, Mang, Haripur 22650, Pakistan
| | - Mohd Zamri Mohd Yusop
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Coastal and Wetland Ecosystems, College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
85
|
El-Naggar ME, Abu Ali OA, Saleh DI, Abu-Saied MA, Ahmed MK, Abdel-Fattah E, Mansour SF. Microstructure, morphology and physicochemical properties of nanocomposites containing hydroxyapatite/vivianite/graphene oxide for biomedical applications. LUMINESCENCE 2021; 37:290-301. [PMID: 34837471 DOI: 10.1002/bio.4171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
Abstract
Designing a nanocomposite that accumulates biocompatibility and antimicrobial behaviour is an essential requirement for biomedical applications. Hydroxyapatite (HAP), graphene oxide, and vivianite in one ternary nanocomposite with three phases and shapes led to an increase in cell viability to 97.6% ± 4 for the osteoblast cells in vitro. The obtained nanocomposites were investigated for their structural features using X-ray diffraction, while the microstructure features were analyzed using a scanning electron microscope (SEM) and a transmission electron microscope. The analysis showed a decrease in the crystal size to 13 nm, while the HAP grains reached 30 nm. The elongated shape of vivianite reached 200 nm on SEM micrographs. The monoclinic and hexagonal crystal systems of HAP and vivianite were presented in the ternary nanocomposite. The maximum roughness peak height reached 236.1 nm for the ternary nanocomposite from 203.3 nm, while the maximum height of the roughness parameter reached 440.7 nm for the di-nanocomposite of HAP/graphene oxide from 419.7 nm. The corrosion current density reached 0.004 μA/cm2 . The ferrous (Fe2+ ) and calcium (Ca2+ ) ions released were measured and confirmed. Therefore, the morphology of the nanocomposites affected bacterial activity. This was estimated as an inhibition zone and reached 14.5 ± 0.9 and 13.4 ± 1.1 mm for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h. The increase in viability and the antibacterial activity refer to the compatibility of the nanocomposite in different medical applications.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, Dokki, Cairo, Egypt
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| | - Dalia I Saleh
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| | - M A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Alexandria, Egypt
| | - M K Ahmed
- Faculty of nanotechnology for postgraduate studies, Cairo University, El-Sheikh Zayed, Egypt
| | - E Abdel-Fattah
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. 173, Al-Kharj, Saudi Arabia.,Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - S F Mansour
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
86
|
Fukuda M, Islam MS, Shimizu R, Nassar H, Rabin NN, Takahashi Y, Sekine Y, Lindoy LF, Fukuda T, Ikeda T, Hayami S. Lethal Interactions of SARS-CoV-2 with Graphene Oxide: Implications for COVID-19 Treatment. ACS APPLIED NANO MATERIALS 2021; 4:11881-11887. [PMID: 37556290 PMCID: PMC8525341 DOI: 10.1021/acsanm.1c02446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 05/03/2023]
Abstract
The rapid transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven infection signifies an ultimate challenge to global health, and the development of effective strategies for preventing and/or mitigating its effects are of the utmost importance. In the current study, an in-depth investigation for the understanding of the SARS-CoV-2 inactivation route using graphene oxide (GO) is presented. We focus on the antiviral effect of GO nanosheets on three SARS-CoV-2 strains: Wuhan, B.1.1.7 (U.K. variant), and P.1 (Brazilian variant). Plaque assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that 50 and 98% of the virus in a supernatant could be cleared following incubation with GO (100 μg/mL) for 1 and 60 min, respectively. Transmission electron microscopy (TEM) analysis and protein (spike (S) and nucleocapsid (N) proteins) decomposition evaluation confirm a two-step virus inactivation mechanism that includes (i) adsorption of the positively charged spike of SARS-CoV-2 on the negatively charged GO surface and (ii) neutralization/inactivation of the SARS-CoV-2 on the surface of GO through decomposition of the viral protein. As the interaction of S protein with human angiotensin-converting enzyme 2 (ACE2) is required for SARS-CoV-2 to enter into human cells, the damage to the S protein using GO makes it a potential candidate for use in contributing to the inhibition of the worldwide spread of SARS-CoV-2. Specifically, our findings provide the potential for the construction of an effective anti-SARS-CoV-2 face mask using a GO nanosheet, which could contribute greatly to preventing the spread of the virus. In addition, as the effect of surface contamination can be severe in the spreading of SARS-CoV-2, the development of efficient anti-SARS-CoV-2 protective surfaces/coatings based on GO nanosheets could play a significant role in controlling the spread of the virus through the utilization of GO-based nonwoven cloths, filters, and so on.
Collapse
Affiliation(s)
- Masahiro Fukuda
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
| | - M. Saidul Islam
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
- Institute of Industrial Nanomaterials,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint
Research Center for Human Retrovirus Infection, Kumamoto
University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences,
Kumamoto University, Kumamoto 860-0811,
Japan
| | - Hesham Nassar
- Division of Molecular Virology and Genetics, Joint
Research Center for Human Retrovirus Infection, Kumamoto
University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
- Department of Clinical Pathology, Faculty of Medicine,
Suez Canal University, Ismailia 41511,
Egypt
| | - Nurun Nahar Rabin
- Institute of Industrial Nanomaterials,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| | - Yukie Takahashi
- International Research Center for Medical Sciences, Faculty
of Life Sciences, Kumamoto University, Kumamoto 860-8556,
Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
- Priority Organization for Innovation and Excellence,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| | - Leonard F. Lindoy
- School of Chemistry F11, The University
of Sydney, Sydney, New South Wales 2006,
Australia
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate
School of Medical Sciences, Kumamoto University, 2-2-1 Honjo,
Kumamoto 860-8556, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint
Research Center for Human Retrovirus Infection, Kumamoto
University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Shinya Hayami
- Department of Chemistry, Faculty of Advanced Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan
- Institute of Industrial Nanomaterials,
Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto
860-8555, Japan
| |
Collapse
|
87
|
El-Atab N, Mishra RB, Hussain MM. Toward nanotechnology-enabled face masks against SARS-CoV-2 and pandemic respiratory diseases. NANOTECHNOLOGY 2021; 33:062006. [PMID: 34727530 DOI: 10.1088/1361-6528/ac3578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Wearing a face mask has become a necessity following the outbreak of the coronavirus (COVID-19) disease, where its effectiveness in containing the pandemic has been confirmed. Nevertheless, the pandemic has revealed major deficiencies in the ability to manufacture and ramp up worldwide production of efficient surgical-grade face masks. As a result, many researchers have focused their efforts on the development of low cost, smart and effective face covers. In this article, following a short introduction concerning face mask requirements, the different nanotechnology-enabled techniques for achieving better protection against the SARS-CoV-2 virus are reviewed, including the development of nanoporous and nanofibrous membranes in addition to triboelectric nanogenerators based masks, which can filter the virus using various mechanisms such as straining, electrostatic attraction and electrocution. The development of nanomaterials-based mask coatings to achieve virus repellent and sterilizing capabilities, including antiviral, hydrophobic and photothermal features are also discussed. Finally, the usability of nanotechnology-enabled face masks is discussed and compared with that of current commercial-grade N95 masks. To conclude, we highlight the challenges associated with the quick transfer of nanomaterials-enabled face masks and provide an overall outlook of the importance of nanotechnology in counteracting the COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Nazek El-Atab
- Smart, Advanced Memory devices and Applications (SAMA) Lab, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rishabh B Mishra
- Smart, Advanced Memory devices and Applications (SAMA) Lab, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- MMH Labs, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad M Hussain
- MMH Labs, Electrical & Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Electrical Engineering and Computer Sciences (EECS), University of California, Berkeley, CA 94720-1170, United States of America
| |
Collapse
|
88
|
Chue-Gonçalves M, Pereira GN, Faccin-Galhardi LC, Kobayashi RKT, Nakazato G. Metal Nanoparticles against Viruses: Possibilities to Fight SARS-CoV-2. NANOMATERIALS 2021; 11:nano11113118. [PMID: 34835882 PMCID: PMC8618109 DOI: 10.3390/nano11113118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
In view of the current Coronavirus Disease 2019 (COVID-19) pandemic outbreak, the research community is focusing on development of diagnostics, treatment, and vaccines to halt or reverse this scenario. Although there are already various vaccines available, adaptive mutations in the SARS-CoV-2 genome can alter its pathogenic potential and, at the same time, increase the difficulty of developing drugs or immunization by vaccines. Nanotechnology carries a potential to act in all stages in fighting this viral disease, with several possibilities of strategies such as applying nanoparticles directly as antivirals in delivery systems against these viruses or incorporating them in materials, with power of achievement in therapeutics, vaccines and prevention. In this paper, we review and bring insights of recent studies using metal nanocomposites as antivirals against coronavirus and structurally similar viruses.
Collapse
Affiliation(s)
- Marcelly Chue-Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Giovana N. Pereira
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Lígia C. Faccin-Galhardi
- Laboratory of Virology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil;
| | - Renata K. T. Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
- Correspondence:
| |
Collapse
|
89
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
90
|
Muzata T, Gebrekrstos A, Ray SS. Recent Progress in Modified Polymer-Based PPE in Fight Against COVID-19 and Beyond. ACS OMEGA 2021; 6:28463-28470. [PMID: 34723042 PMCID: PMC8547166 DOI: 10.1021/acsomega.1c04754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The increasing concerns about human-health-related microbial infections and the need for the development of personal protective equipment (PPE) is becoming a major challenge. Because of their light weight and ease of processing, polymeric materials are widely used in designing and fabricating PPE that are being used by healthcare workers and the general population. Among the available PPEs, face masks have been widely developed from polymeric materials such as polypropylene, polycarbonate, and poly(ethylene terephthalate). However, currently, many of the face masks are not antimicrobial, which can pose a great risk for cross-infection as discarded masks can be a dangerous source of microbes. To prevent the spread of microbes, researchers have prompted the development of self-sterilizing masks that are capable of inactivating microbes via different mechanisms. Hence, this review provides a brief overview of the currently available antimicrobial-modified polymer-based PPE, and it mainly focuses on the different types of nanoparticles and other materials that have been embedded in different polymeric materials. The possibility of inhaling microplastics from wearing a face mask is also outlined, and the effects of various modifications on the health of face mask users are also explored. Furthermore, the effects of the disposed masks on the environment are underlined.
Collapse
Affiliation(s)
- Tanyaradzwa
S. Muzata
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Amanuel Gebrekrstos
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
91
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
92
|
Shinde DB, Pawar R, Vitore J, Kulkarni D, Musale S, Giram P. Natural and synthetic functional materials for broad spectrum applications in antimicrobials, antivirals and cosmetics. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dasharath B. Shinde
- Symbiosis School of Biological Sciences (SSBS) Symbiosis International (Deemed University) Lavale Pune India
| | - Ranjitsinh Pawar
- Department of Pharmaceutics, Poona College of Pharmacy Bharati Vidyapeeth (Deemed to be University) Pune Maharashtra India
| | - Jyotsna Vitore
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) – Ahmedabad (An Institute of National Importance, Government of India) Gujarat India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gujarat, India
| | - Deepak Kulkarni
- Department of Pharmaceutics Srinath College of Pharmacy Aurangabad Maharashtra India
| | - Shubham Musale
- Department of Pharmaceutics Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pune India
| | - Prabhanjan Giram
- Department of Pharmaceutics Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pune India
| |
Collapse
|
93
|
Chung H, Nguyen VG, Kim CU, Do H, Park BK, Park YH, Song D, Kong A, Ryu J, Kang K. Application of nano-graphene oxide as nontoxic disinfectant against alpha and betacoronaviruses. Vet Med Sci 2021; 7:2434-2439. [PMID: 34313392 PMCID: PMC8604132 DOI: 10.1002/vms3.584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
New viruses are continuously emerging and recently there have been many great concerns on severe acute respiratory syndrome coronavirus (SARS-CoV-2). Nanographene oxide (nanoGO) has received much attention and is widely investigated to be utilised in therapy for infectious diseases by viruses. Thus, antiviral activity of nanoGO was evaluated using the porcine epidemic diarrhoea virus (PEDV), bovine coronavirus (BCoV), and SARS-CoV-2, which are all Alpha- and Beta-coronavirus. In a virus inhibition assay, the three viruses were inhibited by nanoGO in a dose-dependent manner, including attempts in the presence of high serum solution which partially mimicked biological fluid.
Collapse
Affiliation(s)
- Hee‐Chun Chung
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversityGwanAk‐GuSeoulKorea
| | - Van Giap Nguyen
- Faculty of Veterinary MedicineDepartment of Veterinary Microbiology and Infectious DiseasesVietnam National University of AgricultureHanoiVietnam
| | - Cheong Ung Kim
- Department of Veterinary MicrobiologyCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
| | - Hai‐Quynh Do
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversityGwanAk‐GuSeoulKorea
- Institute of Genome ResearchVietnam Academy of Science and TechnologyHanoiVietnam
| | - Bong Kyun Park
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversityGwanAk‐GuSeoulKorea
| | - Yong Ho Park
- Department of Veterinary MicrobiologyCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
| | - Dae‐Sub Song
- Department of PharmacyCollege of PharmacyKorea UniversitySejongRepublic of Korea
| | - Aeri Kong
- Department of Medical ScienceUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jae‐Chul Ryu
- Adult StemCell Research Center and Research Institute for Veterinary ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Kyung‐Sun Kang
- Adult StemCell Research Center and Research Institute for Veterinary ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
94
|
Guo C, Lu R, Wang X, Chen S. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:135. [PMID: 34704134 PMCID: PMC8550550 DOI: 10.1007/s10856-021-06614-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/03/2021] [Indexed: 05/05/2023]
Abstract
Poly-ether-ether-ketone (PEEK) has attracted increasing attention as a promising orthopaedic implant material owing to its excellent mechanical properties and biocompatibility. However, its antibacterial properties must be improved as an implant material. In this study, PEEK was sulfonated to obtain a porous surface, and graphene oxide (GO) was deposited to form a coating with antibacterial activity and biocompatibility. After PEEK was sulfonated for different durations, GO was deposited on the surface to prepare the coating (SPEEK-GO), which was then characterised using scanning electron microscopy (SEM), Raman spectroscopy, and contact angle measurements. The in vitro study included antimicrobial and cellular tests. The results showed that the PEEK sulfonated using a 10-min treatment exhibited a uniform porous structure and provided a better basal surface for the deposition of GO. The SPEEK-GO coating displayed strong antibacterial activity against two common dental pathogens. It exhibited good adhesion and proliferation of MC3T3-E1. Moreover, it showed osteogenic differentiation as bone implant material.
Collapse
Affiliation(s)
- Cui Guo
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing, 100050, People's Republic of China
| | - Ran Lu
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing, 100050, People's Republic of China
| | - Xin Wang
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing, 100050, People's Republic of China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
95
|
Abdelhalim AOE, Sharoyko VV, Ageev SV, Farafonov VS, Nerukh DA, Postnov VN, Petrov AV, Semenov KN. Graphene Oxide of Extra High Oxidation: A Wafer for Loading Guest Molecules. J Phys Chem Lett 2021; 12:10015-10024. [PMID: 34618465 DOI: 10.1021/acs.jpclett.1c02766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a new modification of graphene oxide with very high content (85 wt %) of oxygen-containing functional groups (hydroxy, epoxy, lactol, carboxyl, and carbonyl groups) that forms stable aqueous dispersion in up to 9 g·L-1 concentration solutions. A novel faster method of the synthesis is described that produces up to 1 kg of the material and allows controlling the particle size in solution. The synthesized compound was characterized by various physicochemical methods and molecular dynamics modeling, revealing a unique structure in the form of a multilayered wafer of several sheets thick, where each sheet is highly corrugated. The ragged structure of the sheets forms pockets with hindered mobility of water that leads to the possibility of trapping guest molecules.
Collapse
Affiliation(s)
- Abdelsattar O E Abdelhalim
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Environmental Research Department, National Center for Social and Criminological Research (NCSCR), Giza 11561, Egypt
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, 197758, Russia
| | - Sergei V Ageev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Vladimir S Farafonov
- V. N. Karazin Kharkiv National University, 4 Svobody ploshchad', Kharkiv, 61022, Ukraine
| | - Dmitry A Nerukh
- Department of Mathematics, Aston University, Birmingham, B4 7ET, The United Kingdom
| | - Viktor N Postnov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Konstantin N Semenov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, 197758, Russia
| |
Collapse
|
96
|
Hashem AH, Hasanin M, Kamel S, Dacrory S. A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloids Surf B Biointerfaces 2021; 209:112172. [PMID: 34715596 DOI: 10.1016/j.colsurfb.2021.112172] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
In this work, biocompatible, antimicrobial, and antiviral nanocomposites were prepared through two steps. In the first step, periodate oxidation of cellulose was performed to get dialdehyde cellulose (DAC). The second step included the reaction of DAC with sulfur-containing amino acids included Cysteine (Cys) and Methionine (Meth) in the presence of graphene oxide (GO). The prepared nanocomposites were characterized via FT-IR, SEM, TEM, and TGA. Antimicrobial and antiviral activities for all designed nanocomposites besides DAC were carried out. Both DAC/GO/Cys and DAC/GO/Meth exhibited a promising antimicrobial activity against Gram-negative (E. coli and P. aeruginosa), Gram-positive (B. subtilis and S. aureus), and unicellular fungi (C. Albicans and C. neoformans), while the DAC/GO/Cys/Meth nanocomposite was the lowest. Moreover, all designed nanocomposites have a strong antiviral activity against Herpes simplex virus 1(HSV-1) at minimum nontoxic concentration. Additionally, Computational procedures and Molecular docking showed the reactivity and stability of the molecules that have biological activity against Gram-positive, Gram-negative, and HSV-1. As well as DAC incorporation with amino acid enhanced their reactivity and their interaction.
Collapse
Affiliation(s)
- Amr Hosny Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Mohamed Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
97
|
Stagi L, De Forni D, Malfatti L, Caboi F, Salis A, Poddesu B, Cugia G, Lori F, Galleri G, Innocenzi P. Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers. NANOSCALE 2021; 13:16465-16476. [PMID: 34553728 DOI: 10.1039/d1nr03745e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from L-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by L-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Luigi Stagi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| | | | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| | - Francesca Caboi
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, Parco Scientifico e Tecnologico della Sardegna, 09010 Pula, CA, Italy
| | - Andrea Salis
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | | | - Giulia Cugia
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy
| | - Franco Lori
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy
| | - Grazia Galleri
- Dipartimento di Science Mediche, Chirurgiche e Sperimentali, Viale S. Pietro 8, 07100 Sassari, Italy
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| |
Collapse
|
98
|
Rhazouani A, Aziz K, Gamrani H, Gebrati L, Uddin MS, Faissal A. Can the application of graphene oxide contribute to the fight against COVID-19? Antiviral activity, diagnosis and prevention. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100062. [PMID: 34870157 PMCID: PMC8491929 DOI: 10.1016/j.crphar.2021.100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is an infectious disease that affects the respiratory system and is caused by the novel coronavirus SARS-CoV-2. It was first reported in Wuhan, China, on December 31, 2019, and has affected the entire world. This pandemic has caused serious health, economic and social problems. In this situation, the only solution to combat COVID-19 is to accelerate the development of antiviral drugs and vaccines to mitigate the virus and develop better antiviral methods and excellent diagnostic and prevention techniques. With the development of nanotechnology, nanoparticles are being introduced to control COVID-19. Graphene oxide (GO), an oxidized derivative of graphene, is currently used in the medical field to treat certain diseases such as cancer. It is characterized by very important antiviral properties that allow its use in treating certain infectious diseases. The GO antiviral mechanism is discussed by the virus inactivation and/or the host cell receptor or by the physicochemical destruction of viral species. Moreover, the very high surface/volume ratio of GO allows the fixation of biomolecules by simple absorption. This paper summarizes the different studies performed on GO's antiviral activities and discusses GO-based biosensors for virus detection and approaches for prevention.
Collapse
Affiliation(s)
- Asmaa Rhazouani
- Laboratory of Water, Biodiversity & Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- Team of Neurosciences, Pharmacology and Environment (ENPE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
- National Centre for Studies and Research on Water and Energy (CNEREE), Faculty of Technical Sciences, Cadi Ayyad University, B.P 511, 40000, Marrakech, Morocco
| | - Khalid Aziz
- Materials, Catalysis and Valorization of Natural Resources, Faculty of Sciences, University Ibn Zohr, BP 8106, Agadir, Morocco
| | - Halima Gamrani
- Team of Neurosciences, Pharmacology and Environment (ENPE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Lhoucine Gebrati
- Laboratory of Materials, Processes, Environment and Quality, Cadi Ayyad University, BP 63, 46000, Safi, Morocco
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Aziz Faissal
- Laboratory of Water, Biodiversity & Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Centre for Studies and Research on Water and Energy (CNEREE), Faculty of Technical Sciences, Cadi Ayyad University, B.P 511, 40000, Marrakech, Morocco
| |
Collapse
|
99
|
Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021; 13:1570. [PMID: 34683863 PMCID: PMC8540357 DOI: 10.3390/pharmaceutics13101570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| |
Collapse
|
100
|
Basak S, Packirisamy G. Graphene‐Based Nanomaterials for Biomedical, Catalytic, and Energy Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202101975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumyadeep Basak
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory Centre for Nanotechnology Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|