51
|
Kushner JS, Liu G, Eisert RJ, Bradshaw GA, Pitt GS, Hinson JT, Kalocsay M, Marx SO. Detecting Cardiovascular Protein-Protein Interactions by Proximity Proteomics. Circ Res 2022; 130:273-287. [PMID: 35050691 PMCID: PMC8852690 DOI: 10.1161/circresaha.121.319810] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rapidly changing and transient protein-protein interactions regulate dynamic cellular processes in the cardiovascular system. Traditional methods, including affinity purification and mass spectrometry, have revealed many macromolecular complexes in cardiomyocytes and the vasculature. Yet these methods often fail to identify in vivo or transient protein-protein interactions. To capture these interactions in living cells and animals with subsequent mass spectrometry identification, enzyme-catalyzed proximity labeling techniques have been developed in the past decade. Although the application of this methodology to cardiovascular research is still in its infancy, the field is developing rapidly, and the promise is substantial. In this review, we outline important concepts and discuss how proximity proteomics has been applied to study physiological and pathophysiological processes relevant to the cardiovascular system.
Collapse
Affiliation(s)
- Jared S. Kushner
- Division of Cardiology, Department of Medicine; Columbia University, Vagelos College of Physicians and Surgeons
| | - Guoxia Liu
- Division of Cardiology, Department of Medicine; Columbia University, Vagelos College of Physicians and Surgeons
| | - Robyn J. Eisert
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College
| | - J. Travis Hinson
- Cardiology Center, UConn Health, Farmington, CT
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine; Columbia University, Vagelos College of Physicians and Surgeons
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons
| |
Collapse
|
52
|
Pfeiffer CT, Paulo JA, Gygi SP, Rockman HA. Proximity labeling for investigating protein-protein interactions. Methods Cell Biol 2022; 169:237-266. [PMID: 35623704 PMCID: PMC10782847 DOI: 10.1016/bs.mcb.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study of protein complexes and protein-protein interactions is of great importance due to their fundamental roles in cellular function. Proximity labeling, often coupled with mass spectrometry, has become a powerful and versatile tool for studying protein-protein interactions by enriching and identifying proteins in the vicinity of a specified protein-of-interest. Here, we describe and compare traditional approaches to investigate protein-protein interactions to current day state-of-the-art proximity labeling methods. We focus on the wide array of proximity labeling strategies and underscore studies using diverse model systems to address numerous biological questions. In addition, we highlight current advances in mass spectrometry-based technology that exhibit promise in improving the depth and breadth of the data acquired in proximity labeling experiments. In all, we show the diversity of proximity labeling strategies and emphasize the broad range of applications and biological inquiries that can be addressed using this technology.
Collapse
Affiliation(s)
- Conrad T Pfeiffer
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
53
|
Agbo L, Blanchet SA, Kougnassoukou Tchara PE, Fradet-Turcotte A, Lambert JP. Comprehensive Interactome Mapping of Nuclear Receptors Using Proximity Biotinylation. Methods Mol Biol 2022; 2456:223-240. [PMID: 35612745 DOI: 10.1007/978-1-0716-2124-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nuclear receptors, including hormone receptors, perform their cellular activities by modulating their protein-protein interactions. They engage with specific ligands and translocate to the nucleus, where they bind the DNA and activate extensive transcriptional programs. Therefore, gaining a comprehensive overview of the protein-protein interactions they establish requires methods that function effectively throughout the cell with fast dynamics and high reproducibility. Focusing on estrogen receptor alpha (ESR1), the founding member of the nuclear receptor family, this chapter describes a new lentiviral system that allows the expression of TurboID-hemagglutinin (HA)-2 × Strep tagged proteins in mammalian cells to perform fast proximity biotinylation assays. Key validation steps for these reagents and their use in interactome mapping experiments in two distinct breast cancer cell lines are described. Our protocol enabled the quantification of ESR1 interactome generated by cellular contexts that were hormone-sensitive or not.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Sophie Anne Blanchet
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Amélie Fradet-Turcotte
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada.
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
| |
Collapse
|
54
|
RAPIDS, a method for sub-compartmental identification of protein interactomes. Methods Enzymol 2022; 675:109-130. [DOI: 10.1016/bs.mie.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
56
|
Lin X, Fonseca MAS, Breunig JJ, Corona RI, Lawrenson K. In vivo discovery of RNA proximal proteins via proximity-dependent biotinylation. RNA Biol 2021; 18:2203-2217. [PMID: 34006179 PMCID: PMC8648264 DOI: 10.1080/15476286.2021.1917215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
RNA molecules function as messenger RNAs (mRNAs) that encode proteins and noncoding transcripts that serve as adaptor molecules, structural components, and regulators of genome organization and gene expression. Their function and regulation are largely mediated by RNA binding proteins (RBPs). Here we present RNA proximity labelling (RPL), an RNA-centric method comprising the endonuclease-deficient Type VI CRISPR-Cas protein dCas13b fused to engineered ascorbate peroxidase APEX2. RPL discovers target RNA proximal proteins in vivo via proximity-based biotinylation. RPL applied to U1 identified proteins involved in both U1 canonical and noncanonical functions. Profiling of poly(A) tail proximal proteins uncovered expected categories of RBPs and provided additional evidence for 5'-3' proximity and unexplored subcellular localizations of poly(A)+ RNA. Our results suggest that RPL allows rapid identification of target RNA binding proteins in native cellular contexts, and is expected to pave the way for discovery of novel RNA-protein interactions important for health and disease.
Collapse
Affiliation(s)
- Xianzhi Lin
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcos A. S. Fonseca
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J. Breunig
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rosario I. Corona
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| |
Collapse
|
57
|
Shkel O, Kharkivska Y, Kim YK, Lee JS. Proximity Labeling Techniques: A Multi-Omics Toolbox. Chem Asian J 2021; 17:e202101240. [PMID: 34850572 DOI: 10.1002/asia.202101240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Indexed: 01/17/2023]
Abstract
Proximity labeling techniques are emerging high-throughput methods for studying protein-protein, protein-RNA, and protein-DNA interactions with temporal and spatial precision. Proximity labeling methods take advantage of enzymes that can covalently label biomolecules with reactive substrates. These labeled biomolecules can be identified using mass spectrometry or next-generation sequencing. The main advantage of these methods is their ability to capture weak or transient interactions between biomolecules. Proximity labeling is indispensable for studying organelle interactomes. Additionally, it can be used to resolve spatial composition of macromolecular complexes. Many of these methods have only recently been introduced; nonetheless, they have already provided new and deep insights into the biological processes at the cellular, organ, and organism levels. In this paper, we review a broad range of proximity labeling techniques, their development, drawbacks and advantages, and implementations in recent studies.
Collapse
Affiliation(s)
- Olha Shkel
- Convergence Research Center for Diagnosis Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yevheniia Kharkivska
- Convergence Research Center for Diagnosis Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Diagnosis Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
58
|
Emerging technologies and infection models in cellular microbiology. Nat Commun 2021; 12:6764. [PMID: 34799563 PMCID: PMC8604907 DOI: 10.1038/s41467-021-26641-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
The field of cellular microbiology, rooted in the co-evolution of microbes and their hosts, studies intracellular pathogens and their manipulation of host cell machinery. In this review, we highlight emerging technologies and infection models that recently promoted opportunities in cellular microbiology. We overview the explosion of microscopy techniques and how they reveal unprecedented detail at the host-pathogen interface. We discuss the incorporation of robotics and artificial intelligence to image-based screening modalities, biochemical mapping approaches, as well as dual RNA-sequencing techniques. Finally, we describe chips, organoids and animal models used to dissect biophysical and in vivo aspects of the infection process. As our knowledge of the infected cell improves, cellular microbiology holds great promise for development of anti-infective strategies with translational applications in human health.
Collapse
|
59
|
Siva Sankar D, Dengjel J. Protein complexes and neighborhoods driving autophagy. Autophagy 2021; 17:2689-2705. [PMID: 33183148 PMCID: PMC8526019 DOI: 10.1080/15548627.2020.1847461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy summarizes evolutionarily conserved, intracellular degradation processes targeting cytoplasmic material for lysosomal degradation. These encompass constitutive processes as well as stress responses, which are often found dysregulated in diseases. Autophagy pathways help in the clearance of damaged organelles, protein aggregates and macromolecules, mediating their recycling and maintaining cellular homeostasis. Protein-protein interaction networks contribute to autophagosome biogenesis, substrate loading, vesicular trafficking and fusion, protein translocations across membranes and degradation in lysosomes. Hypothesis-free proteomic approaches tremendously helped in the functional characterization of protein-protein interactions to uncover molecular mechanisms regulating autophagy. In this review, we elaborate on the importance of understanding protein-protein-interactions of varying affinities and on the strengths of mass spectrometry-based proteomic approaches to study these, generating new mechanistic insights into autophagy regulation. We discuss in detail affinity purification approaches and recent developments in proximity labeling coupled to mass spectrometry, which uncovered molecular principles of autophagy mechanisms.Abbreviations: AMPK: AMP-activated protein kinase; AP-MS: affinity purification-mass spectrometry; APEX2: ascorbate peroxidase-2; ATG: autophagy related; BioID: proximity-dependent biotin identification; ER: endoplasmic reticulum; GFP: green fluorescent protein; iTRAQ: isobaric tag for relative and absolute quantification; MS: mass spectrometry; PCA: protein-fragment complementation assay; PL-MS: proximity labeling-mass spectrometry; PtdIns3P: phosphatidylinositol-3-phosphate; PTM: posttranslational modification; PUP-IT: pupylation-based interaction tagging; RFP: red fluorescent protein; SILAC: stable isotope labeling by amino acids in cell culture; TAP: tandem affinity purification; TMT: tandem mass tag.
Collapse
Affiliation(s)
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
60
|
Kimmel J, Kehrer J, Frischknecht F, Spielmann T. Proximity-dependent biotinylation approaches to study apicomplexan biology. Mol Microbiol 2021; 117:553-568. [PMID: 34587292 DOI: 10.1111/mmi.14815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
In the last 10 years, proximity-dependent biotinylation (PDB) techniques greatly expanded the ability to study protein environments in the living cell that range from specific protein complexes to entire compartments. This is achieved by using enzymes such as BirA* and APEX that are fused to proteins of interest and biotinylate proteins in their proximity. PDB techniques are now also increasingly used in apicomplexan parasites. In this review, we first give an overview of the main PDB approaches and how they compare with other techniques that address similar questions. PDB is particularly valuable to detect weak or transient protein associations under physiological conditions and to study cellular structures that are difficult to purify or have a poorly understood protein composition. We also highlight new developments such as novel smaller or faster-acting enzyme variants and conditional PDB approaches, providing improvements in both temporal and spatial resolution which may offer broader application possibilities useful in apicomplexan research. In the second part, we review work using PDB techniques in apicomplexan parasites and how this expanded our knowledge about these medically important parasites.
Collapse
Affiliation(s)
- Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
61
|
Pino L, Schilling B. Proximity labeling and other novel mass spectrometric approaches for spatiotemporal protein dynamics. Expert Rev Proteomics 2021; 18:757-765. [PMID: 34496693 PMCID: PMC8650568 DOI: 10.1080/14789450.2021.1976149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Proteins are highly dynamic and their biological function is controlled by not only temporal abundance changes but also via regulated protein-protein interaction networks, which respond to internal and external perturbations. A wealth of novel analytical reagents and workflows allow studying spatiotemporal protein environments with great granularity while maintaining high throughput and ease of analysis. AREAS COVERED We review technology advances for measuring protein-protein proximity interactions with an emphasis on proximity labeling, and briefly summarize other spatiotemporal approaches including protein localization, and their dynamic changes over time, specifically in human cells and mammalian tissues. We focus especially on novel technologies and workflows emerging within the past 5 years. This includes enrichment-based techniques (proximity labeling and crosslinking), separation-based techniques (organelle fractionation and size exclusion chromatography), and finally sorting-based techniques (laser capture microdissection and mass spectrometry imaging). EXPERT OPINION Spatiotemporal proteomics is a key step in assessing biological complexity, understanding refined regulatory mechanisms, and forming protein complexes and networks. Studying protein dynamics across space and time holds promise for gaining deep insights into how protein networks may be perturbed during disease and aging processes, and offer potential avenues for therapeutic interventions, drug discovery, and biomarker development.
Collapse
Affiliation(s)
- Lindsay Pino
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, CA 94945, USA
| |
Collapse
|
62
|
Özkan N, Koppers M, van Soest I, van Harten A, Jurriens D, Liv N, Klumperman J, Kapitein LC, Hoogenraad CC, Farías GG. ER - lysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nat Commun 2021; 12:4493. [PMID: 34301956 PMCID: PMC8302662 DOI: 10.1038/s41467-021-24713-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Neuronal function relies on careful coordination of organelle organization and transport. Kinesin-1 mediates transport of the endoplasmic reticulum (ER) and lysosomes into the axon and it is increasingly recognized that contacts between the ER and lysosomes influence organelle organization. However, it is unclear how organelle organization, inter-organelle communication and transport are linked and how this contributes to local organelle availability in neurons. Here, we show that somatic ER tubules are required for proper lysosome transport into the axon. Somatic ER tubule disruption causes accumulation of enlarged and less motile lysosomes at the soma. ER tubules regulate lysosome size and axonal translocation by promoting lysosome homo-fission. ER tubule - lysosome contacts often occur at a somatic pre-axonal region, where the kinesin-1-binding ER-protein P180 binds microtubules to promote kinesin-1-powered lysosome fission and subsequent axonal translocation. We propose that ER tubule - lysosome contacts at a pre-axonal region finely orchestrate axonal lysosome availability for proper neuronal function.
Collapse
Affiliation(s)
- Nazmiye Özkan
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Max Koppers
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Inge van Soest
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra van Harten
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
63
|
Kushner J, Papa A, Marx SO. Use of Proximity Labeling in Cardiovascular Research. JACC Basic Transl Sci 2021; 6:598-609. [PMID: 34368510 PMCID: PMC8326230 DOI: 10.1016/j.jacbts.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 10/31/2022]
Abstract
Protein-protein interactions are of paramount importance in regulating normal cardiac physiology. Methodologies to elucidate these interactions in vivo have been limited. Recently, proximity-dependent biotinylation, with the use of BioID, TurboID, and ascorbate peroxidase, has been developed to uncover cellular neighborhoods and novel protein-protein interactions. These cutting-edge techniques have enabled the identification of subcellular localizations of specific proteins and the neighbors or interacting proteins within these subcellular regions. In contrast to classic methods such as affinity purification and subcellular fractionation, these techniques add covalently bound tags in living cells, such that spatial relationships and interaction networks are not disrupted. Recently, these methodologies have been used to identify novel protein-protein interactions relevant to the cardiovascular system. In this review, we discuss the development and current use of proximity biotin-labeling for cardiovascular research.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Arianne Papa
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
64
|
Rae J, Ferguson C, Ariotti N, Webb RI, Cheng HH, Mead JL, Riches JD, Hunter DJ, Martel N, Baltos J, Christopoulos A, Bryce NS, Cagigas ML, Fonseka S, Sayre ME, Hardeman EC, Gunning PW, Gambin Y, Hall TE, Parton RG. A robust method for particulate detection of a genetic tag for 3D electron microscopy. eLife 2021; 10:64630. [PMID: 33904409 PMCID: PMC8104959 DOI: 10.7554/elife.64630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic tags allow rapid localization of tagged proteins in cells and tissues. APEX, an ascorbate peroxidase, has proven to be one of the most versatile and robust genetic tags for ultrastructural localization by electron microscopy (EM). Here, we describe a simple method, APEX-Gold, which converts the diffuse oxidized diaminobenzidine reaction product of APEX into a silver/gold particle akin to that used for immunogold labelling. The method increases the signal-to-noise ratio for EM detection, providing unambiguous detection of the tagged protein, and creates a readily quantifiable particulate signal. We demonstrate the wide applicability of this method for detection of membrane proteins, cytoplasmic proteins, and cytoskeletal proteins. The method can be combined with different EM techniques including fast freezing and freeze substitution, focussed ion beam scanning EM, and electron tomography. Quantitation of expressed APEX-fusion proteins is achievable using membrane vesicles generated by a cell-free expression system. These membrane vesicles possess a defined quantum of signal, which can act as an internal standard for determination of the absolute density of expressed APEX-fusion proteins. Detection of fusion proteins expressed at low levels in cells from CRISPR-edited mice demonstrates the high sensitivity of the APEX-Gold method.
Collapse
Affiliation(s)
- James Rae
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Charles Ferguson
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Nicholas Ariotti
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Richard I Webb
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - Han-Hao Cheng
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - James L Mead
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia.,Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg, Oldenburg, Germany
| | - James D Riches
- Queensland University of Technology, Queensland, Australia
| | - Dominic Jb Hunter
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia.,EMBL Australia Node for Single Molecule Sciences, University of New South Wales, Sydney, Australia
| | - Nick Martel
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Joanne Baltos
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Nicole S Bryce
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Sachini Fonseka
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Marcel E Sayre
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences, University of New South Wales, Sydney, Australia
| | - Thomas E Hall
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia.,The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| |
Collapse
|
65
|
Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021; 109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular compartmentalization of proteins and protein complex formation allow cells to tightly control biological processes. Therefore, understanding the subcellular localization and interactions of a specific protein is crucial to uncover its biological function. The advent of proximity labeling (PL) has reshaped cellular proteomics in infection biology. PL utilizes a genetically modified enzyme that generates a "labeling cloud" by covalently labeling proteins in close proximity to the enzyme. Fusion of a PL enzyme to a specific antibody or a "bait" protein of interest in combination with affinity enrichment mass spectrometry (AE-MS) enables the isolation and identification of the cellular proximity proteome, or proxisome. This powerful methodology has been paramount for the mapping of membrane or membraneless organelles as well as for the understanding of hard-to-purify protein complexes, such as those of transmembrane proteins. Unsurprisingly, more and more infection biology research groups have recognized the potential of PL for the identification of host-pathogen interactions. In this chapter, we introduce the enzymes commonly used for PL labeling as well as recent promising advancements and summarize the major achievements in organelle mapping and nucleic acid PL. Moreover, we comprehensively describe the research on host-pathogen interactions using PL, giving special attention to studies in the field of virology.
Collapse
Affiliation(s)
- Francisco José Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
66
|
Weissinger R, Heinold L, Akram S, Jansen RP, Hermesh O. RNA Proximity Labeling: A New Detection Tool for RNA-Protein Interactions. Molecules 2021; 26:2270. [PMID: 33919831 PMCID: PMC8070807 DOI: 10.3390/molecules26082270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple cellular functions are controlled by the interaction of RNAs and proteins. Together with the RNAs they control, RNA interacting proteins form RNA protein complexes, which are considered to serve as the true regulatory units for post-transcriptional gene expression. To understand how RNAs are modified, transported, and regulated therefore requires specific knowledge of their interaction partners. To this end, multiple techniques have been developed to characterize the interaction between RNAs and proteins. In this review, we briefly summarize the common methods to study RNA-protein interaction including crosslinking and immunoprecipitation (CLIP), and aptamer- or antisense oligonucleotide-based RNA affinity purification. Following this, we focus on in vivo proximity labeling to study RNA-protein interactions. In proximity labeling, a labeling enzyme like ascorbate peroxidase or biotin ligase is targeted to specific RNAs, RNA-binding proteins, or even cellular compartments and uses biotin to label the proteins and RNAs in its vicinity. The tagged molecules are then enriched and analyzed by mass spectrometry or RNA-Seq. We highlight the latest studies that exemplify the strength of this approach for the characterization of RNA protein complexes and distribution of RNAs in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Orit Hermesh
- Interfaculty Institute for Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany; (R.W.); (L.H.); (S.A.); (R.-P.J.)
| |
Collapse
|
67
|
Li J, Jiang L, Cao X, Wu Y, Lu F, Liu F, Li Y, Liu Y. Improving the activity and stability of Bacillus clausii alkaline protease using directed evolution and molecular dynamics simulation. Enzyme Microb Technol 2021; 147:109787. [PMID: 33992409 DOI: 10.1016/j.enzmictec.2021.109787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xue Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yifan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
68
|
Yang X, Wen Z, Zhang D, Li Z, Li D, Nagalakshmi U, Dinesh-Kumar SP, Zhang Y. Proximity labeling: an emerging tool for probing in planta molecular interactions. PLANT COMMUNICATIONS 2021; 2:100137. [PMID: 33898976 PMCID: PMC8060727 DOI: 10.1016/j.xplc.2020.100137] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 05/13/2023]
Abstract
Protein-protein interaction (PPI) networks are key to nearly all aspects of cellular activity. Therefore, the identification of PPIs is important for understanding a specific biological process in an organism. Compared with conventional methods for probing PPIs, the recently described proximity labeling (PL) approach combined with mass spectrometry (MS)-based quantitative proteomics has emerged as a powerful approach for characterizing PPIs. However, the application of PL in planta remains in its infancy. Here, we summarize recent progress in PL and its potential utilization in plant biology. We specifically summarize advances in PL, including the development and comparison of different PL enzymes and the application of PL for deciphering various molecular interactions in different organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Xinxin Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
69
|
Hafner M, Katsantoni M, Köster T, Marks J, Mukherjee J, Staiger D, Ule J, Zavolan M. CLIP and complementary methods. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00018-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
70
|
Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. J Proteome Res 2021; 20:1133-1152. [PMID: 33464917 PMCID: PMC7839417 DOI: 10.1021/acs.jproteome.0c00764] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was declared a pandemic infection in March 2020. As of December 2020, two COVID-19 vaccines have been authorized for emergency use by the U.S. Food and Drug Administration, but there are no effective drugs to treat COVID-19, and pandemic mitigation efforts like physical distancing have had acute social and economic consequences. In this perspective, we discuss how the proteomic research community can leverage technologies and expertise to address the pandemic by investigating four key areas of study in SARS-CoV-2 biology. Specifically, we discuss how (1) mass spectrometry-based structural techniques can overcome limitations and complement traditional structural approaches to inform the dynamic structure of SARS-CoV-2 proteins, complexes, and virions; (2) virus-host protein-protein interaction mapping can identify the cellular machinery required for SARS-CoV-2 replication; (3) global protein abundance and post-translational modification profiling can characterize signaling pathways that are rewired during infection; and (4) proteomic technologies can aid in biomarker identification, diagnostics, and drug development in order to monitor COVID-19 pathology and investigate treatment strategies. Systems-level high-throughput capabilities of proteomic technologies can yield important insights into SARS-CoV-2 biology that are urgently needed during the pandemic, and more broadly, can inform coronavirus virology and host biology.
Collapse
Affiliation(s)
- Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robyn M. Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
71
|
van Mierlo G, Vermeulen M. Chromatin Proteomics to Study Epigenetics - Challenges and Opportunities. Mol Cell Proteomics 2021; 20:100056. [PMID: 33556626 PMCID: PMC7973309 DOI: 10.1074/mcp.r120.002208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. MS-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analyzed using MS or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analyzed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made toward identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared with conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease. An overview of proteomics methods to study chromatin and gene regulation. Strength and limitations of the different approaches are highlighted. An outlook on the outstanding challenges for chromatin proteomics. Future directions for chromatin proteomics are discussed.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
72
|
Basu A, Ash PEA, Wolozin B, Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics 2021; 21:e1900311. [PMID: 33314619 PMCID: PMC7900949 DOI: 10.1002/pmic.201900311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Indexed: 01/04/2023]
Abstract
Mapping the intricate networks of cellular proteins in the human brain has the potential to address unsolved questions in molecular neuroscience, including the molecular basis of cognition, synaptic plasticity, long-term potentiation, learning, and memory. Perturbations to the protein-protein interaction networks (PPIN) present in neurons, glia, and other cell-types have been linked to multifactorial neurological disorders. Yet while knowledge of brain PPINs is steadily improving, the complexity and dynamic nature of the heterogeneous central nervous system in normal and disease contexts poses a formidable experimental challenge. In this review, the recent applications of functional proteomics and systems biology approaches to study PPINs central to normal neuronal function, during neurodevelopment, and in neurodegenerative disorders are summarized. How systematic PPIN analysis offers a unique mechanistic framework to explore intra- and inter-cellular functional modules governing neuronal activity and brain function is also discussed. Finally, future technological advancements needed to address outstanding questions facing neuroscience are outlined.
Collapse
Affiliation(s)
- Avik Basu
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
| | - Peter EA Ash
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Andrew Emili
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
- Department of BiologyBoston UniversityBostonMA02215USA
| |
Collapse
|
73
|
Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods 2021; 18:133-143. [PMID: 33432242 PMCID: PMC10548357 DOI: 10.1038/s41592-020-01010-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.
Collapse
Affiliation(s)
- Wei Qin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
74
|
Dolberg TB, Meger AT, Boucher JD, Corcoran WK, Schauer EE, Prybutok AN, Raman S, Leonard JN. Computation-guided optimization of split protein systems. Nat Chem Biol 2021; 17:531-539. [PMID: 33526893 PMCID: PMC8084939 DOI: 10.1038/s41589-020-00729-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
Splitting bioactive proteins into conditionally reconstituting fragments is a powerful strategy for building tools to study and control biological systems. However, split proteins often exhibit a high propensity to reconstitute even without the conditional trigger, limiting their utility. Current approaches for tuning reconstitution propensity are laborious, context-specific, or often ineffective. Here, we report a computational design strategy grounded in fundamental protein biophysics to guide experimental evaluation of a sparse set of mutants to identify an optimal functional window. We hypothesized that testing a limited set of mutants would direct subsequent mutagenesis efforts by predicting desirable mutant combinations from a vast mutational landscape. This strategy varies the degree of interfacial destabilization while preserving stability and catalytic activity. We validate our method by solving two distinct split protein design challenges, generating both design and mechanistic insights. This new technology will streamline the generation and use of split protein systems for diverse applications.
Collapse
Affiliation(s)
- Taylor B Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Anthony T Meger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan D Boucher
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - William K Corcoran
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Elizabeth E Schauer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Alexis N Prybutok
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA. .,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
75
|
Xu Y, Fan X, Hu Y. In vivo interactome profiling by enzyme-catalyzed proximity labeling. Cell Biosci 2021; 11:27. [PMID: 33514425 PMCID: PMC7847152 DOI: 10.1186/s13578-021-00542-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Enzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
76
|
Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol 2021; 8:614472. [PMID: 33692993 PMCID: PMC7939723 DOI: 10.3389/fcell.2020.614472] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Caveolae are 70–100 nm diameter plasma membrane invaginations found in abundance in adipocytes, endothelial cells, myocytes, and fibroblasts. Their bulb-shaped membrane domain is characterized and formed by specific lipid binding proteins including Caveolins, Cavins, Pacsin2, and EHD2. Likewise, an enrichment of cholesterol and other lipids makes caveolae a distinct membrane environment that supports proteins involved in cell-type specific signaling pathways. Their ability to detach from the plasma membrane and move through the cytosol has been shown to be important for lipid trafficking and metabolism. Here, we review recent concepts in caveolae trafficking and dynamics. Second, we discuss how ATP and GTP-regulated proteins including dynamin and EHD2 control caveolae behavior. Throughout, we summarize the potential physiological and cell biological roles of caveolae internalization and trafficking and highlight open questions in the field and future directions for study.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
77
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
78
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
79
|
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17:e8792. [PMID: 33434350 PMCID: PMC7803364 DOI: 10.15252/msb.20188792] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein-protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)-based approaches have allowed unbiased mapping of these disease-mediated changes in protein-protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein-protein interactions at a system-level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS-based protein-protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.
Collapse
Affiliation(s)
- Alicia L Richards
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
80
|
David Y, Castro IG, Schuldiner M. The Fast and the Furious: Golgi Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:1-15. [PMID: 35071979 PMCID: PMC7612241 DOI: 10.1177/25152564211034424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contact sites are areas of close apposition between two membranes that coordinate nonvesicular communication between organelles. Such interactions serve a wide range of cellular functions from regulating metabolic pathways to executing stress responses and coordinating organelle inheritance. The past decade has seen a dramatic increase in information on certain contact sites, mostly those involving the endoplasmic reticulum. However, despite its central role in the secretory pathway, the Golgi apparatus and its contact sites remain largely unexplored. In this review, we discuss the current knowledge of Golgi contact sites and share our thoughts as to why Golgi contact sites are understudied. We also highlight what exciting future directions may exist in this emerging field.
Collapse
Affiliation(s)
- Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Inês G Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
81
|
RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends Biotechnol 2020; 39:890-900. [PMID: 33353763 DOI: 10.1016/j.tibtech.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
RNA-protein interactions play an important role in numerous cellular processes in health and disease. In recent years, the global RNA-bound proteome has been extensively studied, uncovering many previously unknown RNA-binding proteins. However, little is known about which particular proteins bind to which specific RNA transcript. In this review, we provide an overview of methods to identify RNA-protein interactions, with a particular focus on strategies that provide insights into the interactome of specific RNA transcripts. Finally, we discuss challenges and future directions, including the potential of CRISPR-RNA targeting systems to investigate endogenous RNA-protein interactions.
Collapse
|
82
|
Transcriptional readout of neuronal activity via an engineered Ca 2+-activated protease. Proc Natl Acad Sci U S A 2020; 117:33186-33196. [PMID: 33323488 DOI: 10.1073/pnas.2006521117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular integrators, in contrast to real-time indicators, convert transient cellular events into stable signals that can be exploited for imaging, selection, molecular characterization, or cellular manipulation. Many integrators, however, are designed as complex multicomponent circuits that have limited robustness, especially at high, low, or nonstoichiometric protein expression levels. Here, we report a simplified design of the calcium and light dual integrator FLARE. Single-chain FLARE (scFLARE) is a single polypeptide chain that incorporates a transcription factor, a LOV domain-caged protease cleavage site, and a calcium-activated TEV protease that we designed through structure-guided mutagenesis and screening. We show that scFLARE has greater dynamic range and robustness than first-generation FLARE and can be used in culture as well as in vivo to record patterns of neuronal activation with 10-min temporal resolution.
Collapse
|
83
|
Kougnassoukou Tchara PE, Filippakopoulos P, Lambert JP. Emerging tools to investigate bromodomain functions. Methods 2020; 184:40-52. [DOI: 10.1016/j.ymeth.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
|
84
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
85
|
Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat Protoc 2020; 15:3971-3999. [PMID: 33139955 DOI: 10.1038/s41596-020-0399-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
This protocol describes the use of TurboID and split-TurboID in proximity labeling applications for mapping protein-protein interactions and subcellular proteomes in live mammalian cells. TurboID is an engineered biotin ligase that uses ATP to convert biotin into biotin-AMP, a reactive intermediate that covalently labels proximal proteins. Optimized using directed evolution, TurboID has substantially higher activity than previously described biotin ligase-related proximity labeling methods, such as BioID, enabling higher temporal resolution and broader application in vivo. Split-TurboID consists of two inactive fragments of TurboID that can be reconstituted through protein-protein interactions or organelle-organelle interactions, which can facilitate greater targeting specificity than full-length enzymes alone. Proteins biotinylated by TurboID or split-TurboID are then enriched with streptavidin beads and identified by mass spectrometry. Here, we describe fusion construct design and characterization (variable timing), proteomic sample preparation (5-7 d), mass spectrometric data acquisition (2 d), and proteomic data analysis (1 week).
Collapse
|
86
|
ER-Mitochondria Contact Sites Reporters: Strengths and Weaknesses of the Available Approaches. Int J Mol Sci 2020; 21:ijms21218157. [PMID: 33142798 PMCID: PMC7663704 DOI: 10.3390/ijms21218157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Organelle intercommunication represents a wide area of interest. Over the last few decades, increasing evidence has highlighted the importance of organelle contact sites in many biological processes including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy but also their involvement in pathological conditions. ER–mitochondria tethering is one of the most investigated inter-organelle communications and it is differently modulated in response to several cellular conditions including, but not limited to, starvation, Endoplasmic Reticulum (ER) stress, and mitochondrial shape modifications. Despite many studies aiming to understand their functions and how they are perturbed under different conditions, approaches to assess organelle proximity are still limited. Indeed, better visualization and characterization of contact sites remain a fascinating challenge. The aim of this review is to summarize strengths and weaknesses of the available methods to detect and quantify contact sites, with a main focus on ER–mitochondria tethering.
Collapse
|
87
|
Bosch JA, Chen CL, Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e392. [PMID: 32909689 DOI: 10.1002/wdev.392] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiao-Lin Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
88
|
Zhou Y, Zou P. The evolving capabilities of enzyme-mediated proximity labeling. Curr Opin Chem Biol 2020; 60:30-38. [PMID: 32801087 DOI: 10.1016/j.cbpa.2020.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The subcellular organization of proteins and RNA molecules is crucial for their proper functions. Over the past decade, both ligase-mediated and peroxidase-mediated proximity labeling (PL) techniques have been developed to map biomolecules at near-nanometer spatial resolution and subminute temporal resolution. These methods are shedding light on the spatial arrangement of proteome and transcriptome in their native context. Here, we review the recent evolution and applications of PL techniques, compare and contrast the two classes of methods, and highlight emerging trends and future opportunities.
Collapse
Affiliation(s)
- Ying Zhou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
89
|
Kwak C, Shin S, Park JS, Jung M, Nhung TTM, Kang MG, Lee C, Kwon TH, Park SK, Mun JY, Kim JS, Rhee HW. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc Natl Acad Sci U S A 2020; 117:12109-12120. [PMID: 32414919 PMCID: PMC7275737 DOI: 10.1073/pnas.1916584117] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondria-associated membrane (MAM) has emerged as a cellular signaling hub regulating various cellular processes. However, its molecular components remain unclear owing to lack of reliable methods to purify the intact MAM proteome in a physiological context. Here, we introduce Contact-ID, a split-pair system of BioID with strong activity, for identification of the MAM proteome in live cells. Contact-ID specifically labeled proteins proximal to the contact sites of the endoplasmic reticulum (ER) and mitochondria, and thereby identified 115 MAM-specific proteins. The identified MAM proteins were largely annotated with the outer mitochondrial membrane (OMM) and ER membrane proteins with MAM-related functions: e.g., FKBP8, an OMM protein, facilitated MAM formation and local calcium transport at the MAM. Furthermore, the definitive identification of biotinylation sites revealed membrane topologies of 85 integral membrane proteins. Contact-ID revealed regulatory proteins for MAM formation and could be reliably utilized to profile the proteome at any organelle-membrane contact sites in live cells.
Collapse
Affiliation(s)
- Chulhwan Kwak
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| | - Jong-Seok Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, 41062 Daegu, Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Chaiheon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, 41062 Daegu, Korea;
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea;
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea;
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
90
|
Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND, Thoudam T, Kwak C, Rhee HW, Lee IK, Carr SA, Ting AY. Split-TurboID enables contact-dependent proximity labeling in cells. Proc Natl Acad Sci U S A 2020; 117:12143-12154. [PMID: 32424107 PMCID: PMC7275672 DOI: 10.1073/pnas.1919528117] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition. At endoplasmic reticulum-mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum-mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.
Collapse
Affiliation(s)
- Kelvin F Cho
- Cancer Biology Program, Stanford University, Stanford, CA 94305
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sanjana Rajeev
- Department of Genetics, Stanford University, Stanford, CA 94305
| | | | | | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, 37224 Daegu, South Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, 08826 Seoul, South Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, South Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, 08826 Seoul, South Korea
- School of Biological Sciences, Seoul National University, 08826 Seoul, South Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, 37224 Daegu, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 41944 Daegu, South Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, 41944 Daegu, South Korea
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA 94305;
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
91
|
Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H, Schaffer M, Fruhstorfer P, Plitzko J, Villa E. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat Protoc 2020; 15:2041-2070. [PMID: 32405053 PMCID: PMC8053421 DOI: 10.1038/s41596-020-0320-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Recent advances have made cryogenic (cryo) electron microscopy a key technique to achieve near-atomic-resolution structures of biochemically isolated macromolecular complexes. Cryo-electron tomography (cryo-ET) can give unprecedented insight into these complexes in the context of their natural environment. However, the application of cryo-ET is limited to samples that are thinner than most cells, thereby considerably reducing its applicability. Cryo-focused-ion-beam (cryo-FIB) milling has been used to carve (micromachining) out 100-250-nm-thin regions (called lamella) in the intact frozen cells. This procedure opens a window into the cells for high-resolution cryo-ET and structure determination of biomolecules in their native environment. Further combination with fluorescence microscopy allows users to determine cells or regions of interest for the targeted fabrication of lamellae and cryo-ET imaging. Here, we describe how to prepare lamellae using a microscope equipped with both FIB and scanning electron microscopy modalities. Such microscopes (Aquilos Cryo-FIB/Scios/Helios or CrossBeam) are routinely referred to as dual-beam microscopes, and they are equipped with a cryo-stage for all operations in cryogenic conditions. The basic principle of the described methodologies is also applicable for other types of dual-beam microscopes equipped with a cryo-stage. We also briefly describe how to integrate fluorescence microscopy data for targeted milling and critical considerations for cryo-ET data acquisition of the lamellae. Users familiar with cryo-electron microscopy who get basic training in dual-beam microscopy can complete the protocol within 2-3 d, allowing for several pause points during the procedure.
Collapse
Affiliation(s)
- Felix R Wagner
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reika Watanabe
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hans Persoon
- Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter Fruhstorfer
- Thermo Fisher Scientific, Eindhoven, the Netherlands
- Eppendorf AG, Hamburg, Germany
| | - Jürgen Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
92
|
Ummethum H, Hamperl S. Proximity Labeling Techniques to Study Chromatin. Front Genet 2020; 11:450. [PMID: 32477404 PMCID: PMC7235407 DOI: 10.3389/fgene.2020.00450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Mammals contain over 200 different cell types, yet nearly all have the same genomic DNA sequence. It is a key question in biology how the genetic instructions in DNA are selectively interpreted by cells to specify various transcriptional programs and therefore cellular identity. The structural and functional organization of chromatin governs the transcriptional state of individual genes. To understand how genomic loci adopt different levels of gene expression, it is critical to characterize all local chromatin factors as well as long-range interactions in the 3D nuclear compartment. Much of our current knowledge regarding protein interactions in a chromatin context is based on affinity purification of chromatin components coupled to mass spectrometry (AP-MS). AP-MS has been invaluable to map strong protein-protein interactions in the nucleus. However, the interaction is detected after cell lysis and biochemical enrichment, allowing for loss or gain of false positive or negative interaction partners. Recently, proximity-dependent labeling methods have emerged as powerful tools for studying chromatin in its native context. These methods take advantage of engineered enzymes that are fused to a chromatin factor of interest and can directly label all factors in proximity. Subsequent pull-down assays followed by mass spectrometry or sequencing approaches provide a comprehensive snapshot of the proximal chromatin interactome. By combining this method with dCas9, this approach can also be extended to study chromatin at specific genomic loci. Here, we review and compare current proximity-labeling approaches available for studying chromatin, with a particular focus on new emerging technologies that can provide important insights into the transcriptional and chromatin interaction networks essential for cellular identity.
Collapse
Affiliation(s)
- Henning Ummethum
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
93
|
Baillie AL, Falz AL, Müller-Schüssele SJ, Sparkes I. It Started With a Kiss: Monitoring Organelle Interactions and Identifying Membrane Contact Site Components in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:517. [PMID: 32435254 PMCID: PMC7218140 DOI: 10.3389/fpls.2020.00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/06/2020] [Indexed: 05/10/2023]
Abstract
Organelle movement and interaction are dynamic processes. Interpreting the functional role and mechanistic detail of interactions at membrane contact sites requires careful quantification of parameters such as duration, frequency, proximity, and surface area of contact, and identification of molecular components. We provide an overview of current methods used to quantify organelle interactions in plants and other organisms and propose novel applications of existing technologies to tackle this emerging topic in plant cell biology.
Collapse
Affiliation(s)
- Alice L. Baillie
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Anna-Lena Falz
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Stefanie J. Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
94
|
Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 2020; 19:757-773. [PMID: 32127388 PMCID: PMC7196579 DOI: 10.1074/mcp.r120.001941] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation.
Collapse
Affiliation(s)
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
95
|
Huang X, Jiang C, Yu L, Yang A. Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites. Front Cell Dev Biol 2020; 8:195. [PMID: 32292782 PMCID: PMC7118198 DOI: 10.3389/fcell.2020.00195] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Inter-organelle membrane contact sites (MCSs) are classically defined as areas of close proximity between heterologous membranes and established by specific proteins (termed tethers). The interest on MCSs has rapidly increased in the last years, since MCSs play a crucial role in the transfer of cellular components between different organelles and have been involved in important cellular functions such as apoptosis, organelle division and biogenesis, and cell growth. Recently, an unprecedented depth and breadth in insights into the details of MCSs have been uncovered. On one hand, extensive MCSs (organelles interactome) are revealed by comprehensive analysis of organelle network with high temporal-spatial resolution at the system level. On the other hand, more and more tethers involving in MCSs are identified and further works are focusing on addressing the role of these tethers in regulating the function of MCSs at the molecular level. These enormous progresses largely depend on the powerful approaches, including several different types of microscopies and various biochemical techniques. These approaches have greatly accelerated recent advances in MCSs at the system and molecular level. In this review, we summarize the current and emerging approaches for studying MCSs, such as various microscopies, proximity-driven fluorescent signal generation and proximity-dependent biotinylation. In addition, we highlight the advantages and disadvantages of the techniques to provide a general guidance for the study of MCSs.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
96
|
Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 2020; 49:233-262. [PMID: 31815263 DOI: 10.1039/c8cs00981c] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are versatile catalysts and their synthetic potential has been recognized for a long time. In order to exploit their full potential, enzymes often need to be re-engineered or optimized for a given application. (Semi-) rational design has emerged as a powerful means to engineer proteins, but requires detailed knowledge about structure function relationships. In turn, directed evolution methodologies, which consist of iterative rounds of diversity generation and screening, can improve an enzyme's properties with virtually no structural knowledge. Current diversity generation methods grant us access to a vast sequence space (libraries of >1012 enzyme variants) that may hide yet unexplored catalytic activities and selectivity. However, the time investment for conventional agar plate or microtiter plate-based screening assays represents a major bottleneck in directed evolution and limits the improvements that are obtainable in reasonable time. Ultrahigh-throughput screening (uHTS) methods dramatically increase the number of screening events per time, which is crucial to speed up biocatalyst design, and to widen our knowledge about sequence function relationships. In this review, we summarize recent advances in uHTS for directed enzyme evolution. We shed light on the importance of compartmentalization to preserve the essential link between genotype and phenotype and discuss how cells and biomimetic compartments can be applied to serve this function. Finally, we discuss how uHTS can inspire novel functional metagenomics approaches to identify natural biocatalysts for novel chemical transformations.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
97
|
|
98
|
Exploring functional consequences of GPCR oligomerization requires a different lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:181-211. [DOI: 10.1016/bs.pmbts.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Abstract
The premise of this book is the importance of the tumor microenvironment (TME). Until recently, most research on and clinical attention to cancer biology, diagnosis, and prognosis were focused on the malignant (or premalignant) cellular compartment that could be readily appreciated using standard morphology-based imaging.
Collapse
|
100
|
Directed evolution improves the catalytic efficiency of TEV protease. Nat Methods 2019; 17:167-174. [PMID: 31819267 PMCID: PMC7004888 DOI: 10.1038/s41592-019-0665-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/25/2019] [Indexed: 11/08/2022]
Abstract
Tobacco etch virus protease (TEV) is one of the most widely used proteases in biotechnology because of its exquisite sequence specificity. A limitation, however, is its slow catalytic rate. We developed a generalizable yeast-based platform for directed evolution of protease catalytic properties. Protease activity is read out via proteolytic release of a membrane-anchored transcription factor, and we temporally regulate access to TEV's cleavage substrate using a photosensory LOV domain. By gradually decreasing light exposure time, we enriched faster variants of TEV over multiple rounds of selection. Our TEV-S153N mutant (uTEV1Δ), when incorporated into the calcium integrator FLARE, improved the signal/background ratio by 27-fold, and enabled recording of neuronal activity in culture with 60-s temporal resolution. Given the widespread use of TEV in biotechnology, both our evolved TEV mutants and the directed-evolution platform used to generate them could be beneficial across a wide range of applications.
Collapse
|