51
|
Novel efficient method of chemical upcycling of waste poly(ethylene terephthalate) bottles by acidolysis with adipic acid under microwave irradiation. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
52
|
Zhang W, Douglas JF, Starr FW. How Dispersity from Step-Growth Polymerization Affects Polymer Dynamics from Coarse-Grained Molecular Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut06459, United States
| |
Collapse
|
53
|
Chemical recycling and upcycling of poly(bisphenol A carbonate) via metal acetate catalyzed glycolysis. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Xu Y, Wang J, Luo Z, Li J, Xue B, Chen X, Li X, Yang L, Linghu C, Tao Y. Structures of the co‐branching reactive products of isotactic polypropylene with high‐density polyethylene and the effect on the in situ compatibilization of mixed recycled materials. J Appl Polym Sci 2022. [DOI: 10.1002/app.53170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yinhan Xu
- College of Materials and Metallurgy Guizhou University Guiyang China
| | - Jun Wang
- College of Materials and Metallurgy Guizhou University Guiyang China
| | - Zhu Luo
- College of Materials and Metallurgy Guizhou University Guiyang China
| | - Jianjun Li
- Kingfa Science & Technology Co., Ltd Guangzhou China
| | - Bai Xue
- College of Materials and Metallurgy Guizhou University Guiyang China
| | | | - Xiaolong Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering Huazhong University of Science &Technology Wuhan China
| | - Le Yang
- School of Materials and Energy Engineering Guizhou Institute of Technology Guiyang China
| | - Changkai Linghu
- College of Materials and Metallurgy Guizhou University Guiyang China
| | - Yao Tao
- College of Materials and Metallurgy Guizhou University Guiyang China
| |
Collapse
|
55
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209100. [PMID: 35922379 DOI: 10.1002/anie.202209100] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/07/2023]
Abstract
Chemical recycling of synthetic polymers offers a solution for developing sustainable plastics and materials. Here we show that two types of dynamic covalent chemistry can be orthogonalized in a solvent-free polymer network and thus enable a chemically recyclable crosslinked material. Using a simple acylhydrazine-based 1,2-dithiolane as the starting material, the disulfide-mediated reversible polymerization and acylhydrazone-based dynamic covalent crosslinking can be combined in a one-pot solvent-free reaction, resulting in mechanically robust, tough, and processable crosslinked materials. The dynamic covalent bonds in both backbones and crosslinkers endow the network with depolymerization capability under mild conditions and, importantly, virgin-quality monomers can be recovered and separated. This proof-of-concept study show opportunities to design chemically recyclable materials based on the dynamic chemistry toolbox.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Qi Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
56
|
Organocatalyzed chemo-selective one-pot upcycling of polyester-block-polycarbonate. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Jing Y, Shakouri M, Liu X, Hu Y, Guo Y, Wang Y. Breaking C─C Bonds and Preserving C─O Bonds in Aromatic Plastics and Lignin via a Reversing Bond Energy Cleavage Strategy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaxuan Jing
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewanas S7N 2V3, Canada
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongfeng Hu
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewanas S7N 2V3, Canada
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
58
|
Li J, Liu F, Liu Y, Shen Y, Li Z. Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone. Angew Chem Int Ed Engl 2022; 61:e202207105. [PMID: 35674460 DOI: 10.1002/anie.202207105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/13/2023]
Abstract
It is a highly attractive strategy to develop chemically recyclable polymers to establish a circular plastic economy. Despite the recent advancements, chemically recyclable polymers still face challenges including high energy cost for polymer preparation or recycling, poor monomer recovery selectivity and efficiency as well as undesired material performance. In this contribution, we present the chemoselective controlled ring-opening polymerization of bio-renewable bifunctional α-methylene-δ-valerolactone (MVL) to produce exclusive functionalizable polyester using strong base/urea binary catalysts. The obtained polyester with high molar mass exhibits good tensile strength comparable to that of some commodity plastics. Remarkably, the obtained polyester can be depolymerized to recover pristine monomer with a 96 % yield by thermolysis, thus successfully establishing a closed-loop life cycle.
Collapse
Affiliation(s)
- Jiandong Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yalei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
59
|
Wang J, Wang T, Luo Z, Zhou Y. Analytical and Numerical Simulations of Depolymerization Based on Discrete Model: A Chain‐end Scission Scenario. AIChE J 2022. [DOI: 10.1002/aic.17854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiang Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Tian‐Tian Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| |
Collapse
|
60
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanxin Deng
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Qi Zhang
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Da-Hui Qu
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
61
|
Westlie AH, Chen EYX, Holland CM, Stahl SS, Doyle M, Trenor SR, Knauer KM. Polyolefin Innovations toward Circularity and Sustainable Alternatives. Macromol Rapid Commun 2022; 43:e2200492. [PMID: 35908163 DOI: 10.1002/marc.202200492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Indexed: 11/10/2022]
Abstract
The unprecedented growth and socioeconomic impacts of polyolefins clearly outline a major success story in the world of polymer science. Polyolefins revolutionizes industries such as health care, construction, and food packaging. Despite the benefits of polyolefins, there is a rising concern for the environment due to high production volume (i.e., fossil fuel consumption), often short usage time, and problems related to waste management and accumulation in the natural environment. Creating a circular economy for polyolefins through effective recycling technologies has the potential to decrease the environmental impact of these materials. This perspective discusses polyolefins and their impact, existing and emerging recycling/upcycling solutions, and recycle-by-design alternatives that are challenging the status quo.
Collapse
Affiliation(s)
- Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Chris M Holland
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Meredith Doyle
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, 80401, USA
| | - Scott R Trenor
- Plastics Additives, Milliken Chemical, Milliken and Company, Spartanburg, SC, 29303, USA
| | - Katrina M Knauer
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, 80401, USA
| |
Collapse
|
62
|
Tan T, Wang W, Zhang K, Zhan Z, Deng W, Zhang Q, Wang Y. Upcycling Plastic Wastes into Value-Added Products by Heterogeneous Catalysis. CHEMSUSCHEM 2022; 15:e202200522. [PMID: 35438240 DOI: 10.1002/cssc.202200522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Plastics are playing essential roles in the modern society. The majority of them enter environment through landfilling or discarding after turning into wastes, causing severe carbon loss and imposing high risk to ecosystem and human health. Currently, physical recycling serves as the primary method to reuse plastic waste, but this method is limited to thermoplastic recycling. The quality of recycled plastics gradually deteriorates because of the undesirable degradation in the recycling process. Under such background, catalytic upcycling, which can upgrade various plastic wastes into value-added products under mild conditions, has attracted recent attention as a promising strategy to treat plastic wastes. This Review highlights recent advances in the development of efficient heterogeneous catalysts and useful strategies for upcycling plastics into liquid hydrocarbons, arene compounds, carbon materials, hydrogen, and other value-added chemicals. The functions of catalysts and the reaction mechanisms are discussed. The key factors that influence the catalytic performance are also analyzed.
Collapse
Affiliation(s)
- Tian Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Kai Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zixiang Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
63
|
Stellmach KA, Paul MK, Xu M, Su YL, Fu L, Toland AR, Tran H, Chen L, Ramprasad R, Gutekunst WR. Modulating Polymerization Thermodynamics of Thiolactones Through Substituent and Heteroatom Incorporation. ACS Macro Lett 2022; 11:895-901. [PMID: 35786872 DOI: 10.1021/acsmacrolett.2c00319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A central challenge in the development of next-generation sustainable materials is to design polymers that can easily revert back to their monomeric starting material through chemical recycling to monomer (CRM). An emerging monomer class that displays efficient CRM are thiolactones, which exhibit rapid rates of polymerization and depolymerization. This report details the polymerization thermodynamics for a series of thiolactone monomers through systematic changes to substitution patterns and sulfur heteroatom incorporation. Additionally, computational studies highlight the importance of conformation in modulating the enthalpy of polymerization, leading to monomers that display high conversions to polymer at near-ambient temperatures, while maintaining low ceiling temperatures (Tc). Specifically, the combination of a highly negative enthalpy (-19.3 kJ/mol) and entropy (-58.4 J/(mol·K)) of polymerization allows for a monomer whose equilibrium polymerization conversion is very sensitive to temperature.
Collapse
Affiliation(s)
- Kellie A Stellmach
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - McKinley K Paul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Mizhi Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Yong-Liang Su
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Liangbing Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Aubrey R Toland
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Huan Tran
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Lihua Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
64
|
Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring‐Opening Polymerization of Bio‐renewable Bifunctional α‐Methylene‐δ‐valerolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
65
|
Stubbs CJ, Khalfa AL, Chiaradia V, Worch JC, Dove AP. Intrinsically Re-curable Photopolymers Containing Dynamic Thiol-Michael Bonds. J Am Chem Soc 2022; 144:11729-11735. [PMID: 35749449 PMCID: PMC9264357 DOI: 10.1021/jacs.2c03525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The development of
photopolymers that can be depolymerized and
subsequently re-cured using the same light stimulus presents a significant
technical challenge. A bio-sourced terpenoid structure, l-carvone, inspired the creation of a re-curable photopolymer in which
the orthogonal reactivity of an irreversible thioether and a dynamic
thiol-Michael bond enables both photopolymerization and thermally
driven depolymerization of mechanically robust polymer networks. The
di-alkene containing l-carvone was partially reacted with
a multi-arm thiol to generate a non-crosslinked telechelic photopolymer.
Upon further UV exposure, the photopolymer crosslinked into a mechanically
robust network featuring reversible Michael bonds at junction points
that could be activated to revert, or depolymerize, the network into
a viscous telechelic photopolymer. The regenerated photopolymer displayed
intrinsic re-curability over two recycles while maintaining the desirable
thermomechanical properties of a conventional network: insolubility,
resistance to stress relaxation, and structural integrity up to 170
°C. Our findings present an on-demand, re-curable photopolymer
platform based on a sustainable feedstock.
Collapse
Affiliation(s)
- Connor J Stubbs
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Anissa L Khalfa
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
66
|
Cannavacciuolo FD, Yadav R, Esper A, Vittoria A, Antinucci G, Zaccaria F, Cipullo R, Budzelaar PHM, Busico V, Goryunov GP, Uborsky DV, Voskoboynikov AZ, Searles K, Ehm C, Veige AS. A High-Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling. Angew Chem Int Ed Engl 2022; 61:e202202258. [PMID: 35263499 DOI: 10.1002/anie.202202258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Efficient and economical plastic waste upcycling relies on the development of catalysts capable of polymer degradation. A systematic high-throughput screening of twenty-eight polymerization catalyst precursors, belonging to the catalyst families of metallocenes, ansa-metallocenes, and hemi- and post-metallocenes, in cis-1,4-polybutadiene (PB) degradation reveals, for the first time, important structure-activity correlations. The upcycling conditions involve activation of the catalysts (at 0.18 % catalyst loading) with tri-iso-butyl aluminum at 50 °C in toluene. The data indicate the ability to degrade PB is a general reactivity profile of neutral group 4 metal hydrides. A simple quantitative-structure activity relationship (QSAR) model utilizing two descriptors for the distribution of steric bulk in the active pocket and one measuring the metal ion electrophilicity reveals the degradation ability improves with increased but not overbearing steric congestion and lower electrophilicity.
Collapse
Affiliation(s)
- Felicia D Cannavacciuolo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Rinku Yadav
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| | - Alec Esper
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| | - Antonio Vittoria
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Giuseppe Antinucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Francesco Zaccaria
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Roberta Cipullo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Peter H M Budzelaar
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Vincenzo Busico
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Georgy P Goryunov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia
| | - Dmitry V Uborsky
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia
| | - Alexander Z Voskoboynikov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia
| | - Keith Searles
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
67
|
Siragusa F, Demarteau J, Habets T, Olazabal I, Robeyns K, Evano G, Mereau R, Tassaing T, Grignard B, Sardon H, Detrembleur C. Unifying Step-Growth Polymerization and On-Demand Cascade Ring-Closure Depolymerization via Polymer Skeletal Editing. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fabiana Siragusa
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Jeremy Demarteau
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Ion Olazabal
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-La-Neuve B-1348, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Raphael Mereau
- Institut des Sciences Moléculaires (ISM), UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la libération, F-33405 Talence Cedex, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM), UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la libération, F-33405 Talence Cedex, France
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liege, Belgium
| |
Collapse
|
68
|
Liao X, Cui FC, He JH, Ren WM, Lu XB, Zhang YT. A sustainable approach for the synthesis of recyclable cyclic CO 2-based polycarbonates. Chem Sci 2022; 13:6283-6290. [PMID: 35733884 PMCID: PMC9159078 DOI: 10.1039/d2sc01387h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
It is highly desirable to reduce the environmental pollution related to the disposal of end-of-life plastics. Polycarbonates derived from the copolymerization of CO2 and epoxides have attracted much attention since they can enable CO2-fixation and furnish biorenewable and degradable polymeric materials. So far, only linear CO2-based polycarbonates have been reported and typically degraded to cyclic carbonates. Here we synthesize a homogeneous dinuclear methyl zinc catalyst ((BDI-ZnMe)2, 1) to rapidly copolymerize meso-CHO and CO2 into poly(cyclohexene carbonate) (PCHC) with an unprecedentedly cyclic structure. Moreover, in the presence of trace amounts of water, a heterogeneous multi-nuclear zinc catalyst ((BDI-(ZnMe2·xH2O)) n , 2) is prepared and shows up to 99% selectivity towards the degradation of PCHC back to meso-CHO and CO2. This strategy not only achieves the first case of cyclic CO2-based polycarbonate but also realizes the complete chemical recycling of PCHC back to its monomers, representing closed-loop recycling of CO2-based polycarbonates.
Collapse
Affiliation(s)
- Xi Liao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 130012 Changchun P. R. China
| | - Feng-Chao Cui
- Faculty of Chemistry, Northeast Normal University 130024 Changchun P. R. China
| | - Jiang-Hua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 130012 Changchun P. R. China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 116024 Dalian P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 116024 Dalian P. R. China
| | - Yue-Tao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 130012 Changchun P. R. China
| |
Collapse
|
69
|
Saleh HM, Hassan AI. Use of heterogeneous catalysis in sustainable biofuel production. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biofuel is a sustainable energy source that may use to replace fossil-based carbon dioxide and mitigate the adverse effects of exhaust emissions. Nowadays, we need to replace petroleum fuels with alternatives from environmentally sustainable sources of increasing importance. Biofuels derived from biomass have gained considerable attention, and thus most of the traditional methods that harm the environment and humans have retreated. Developing an active and stable heterogeneous catalyst is a step of utmost importance in the renewable liquid fuel technology. Thus, there is a great interest in developing methods for producing liquid fuels from non-edible sources. It may also be from dry plant tissues such as agricultural waste. Lignocellulosic biomass can be a sustainable source for producing renewable fuels and chemicals, as well as the replacement of petroleum products. Hence, the researchers aspired to synthesize new catalysts using a cheap technology developed to hydrolyze cellulose and then produce bioethanol without needing expensive enzymes, which may ultimately lead to a lower fuel price. In this paper, we will focus on the recent technologies used to produce sustainable biofuels through inexpensive incentives and innocuous to the environment.
Collapse
Affiliation(s)
- Hosam M. Saleh
- Radioisotope Department , Nuclear Research Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Amal I. Hassan
- Radioisotope Department , Nuclear Research Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
70
|
Zhang ZH, Wang X, Weng B, Zhang Y, Zhang G, Hong M. Zinc-Mediated Allylation-Lactonization One-Pot Reaction to Methylene Butyrolactones: Renewable Monomers for Sustainable Acrylic Polymers with Closed-Loop Recyclability. ACS POLYMERS AU 2022; 2:266-274. [PMID: 36855566 PMCID: PMC9955236 DOI: 10.1021/acspolymersau.2c00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite biomass-derived methylene butyrolactone monomers having great potential in substituting the petroleum-based methacrylates for synthesizing the sustainable acrylic polymers, the possible industrial production of these cyclic monomers is unfortunately not practical due to moderate overall yields and harsh reaction conditions or a time-consuming multistep process. Here we report a convenient and effective synthetic approach to a series of biomass-derived methylene butyrolactone monomers via a zinc-mediated allylation-lactonization one-pot reaction of biorenewable aldehydes with ethyl 2-(bromomethyl)acrylate. Under simple room-temperature sonication conditions, near-quantitative conversions (>90%) can be accomplished within 5-30 min, providing pure products with high isolated yields of 70-80%. Their efficient polymerizations with a high degree of control and complete chemoselectivity were enabled by the judiciously chosen Lewis pair catalyst based on methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) [MeAl(BHT)2] Lewis acid and 3-diisopropyl-4,5-dimethylimidazol-2-ylidene (I i Pr) Lewis base, affording new poly(methylene butyrolactone)s with high thermal stability and thermal properties tuned in a wide range as well as pendant vinyl groups for postfunctionalization. Through the development of an effective depolymerization setup (370-390 °C, ca. 100 mTorr, 1 h, a muffle furnace), thermal depolymerizations of these polymers have been achieved with monomer recovery up to 99.8%, thus successfully constructing sustainable acrylic polymers with closed-loop recyclability.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Wang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biwei Weng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yixin Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guozhu Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Hong
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China,School
of Chemistry and Material Sciences, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China,
| |
Collapse
|
71
|
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022; 61:e202201407. [PMID: 35150037 DOI: 10.1002/anie.202201407] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/29/2022]
Abstract
The development of chemically recyclable polymers presents the most appealing solution to address the plastics' end-of-use problem. Despite the recent advancements, it is highly desirable to develop chemically recyclable polymers from commercially available monomers to avoid the costly and time-consuming commercialization. In this contribution, we achieve the controlled ring-opening polymerization (ROP) of bio-sourced δ-caprolactone (δCL) using strong base/urea binary catalysts. The obtained PδCL is capable of chemical recycling to δCL in an almost quantitative yield by thermolysis. Sequential ROP of δCL and l-lactide (l-LA) affords well-defined PLLA-b-PδCL-b-PLLA triblock copolymers, which behave as thermoplastic elastomers with excellent elastic recovery, tensile strength and ultimate elongation. The upcycling of PLLA-b-PδCL-b-PLLA to recover ethyl lactate and δCL with high yields is achieved by refluxing with ethanol and then distillation under reduced pressure.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liying Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qin Yan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
72
|
Cannavacciuolo FD, Yadav R, Esper A, Vittoria A, Antinucci G, Zaccaria F, Cipullo R, Budzelaar PHM, Busico V, Goryunov GP, Uborsky DV, Voskoboynikov AZ, Searles K, Ehm C, Veige AS. A High‐Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Rinku Yadav
- Department of Chemistry Center for Catalysis University of Florida P.O. Box 117200 Gainesville FL 32611 USA
| | - Alec Esper
- Department of Chemistry Center for Catalysis University of Florida P.O. Box 117200 Gainesville FL 32611 USA
| | - Antonio Vittoria
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 80126 Napoli Italy
| | - Giuseppe Antinucci
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 80126 Napoli Italy
| | - Francesco Zaccaria
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 80126 Napoli Italy
| | - Roberta Cipullo
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 80126 Napoli Italy
| | - Peter H. M. Budzelaar
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 80126 Napoli Italy
| | - Vincenzo Busico
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 80126 Napoli Italy
| | - Georgy P. Goryunov
- Department of Chemistry Lomonosov Moscow State University 1/3 Leninskie Gory 119991 Moscow Russia
| | - Dmitry V. Uborsky
- Department of Chemistry Lomonosov Moscow State University 1/3 Leninskie Gory 119991 Moscow Russia
| | | | - Keith Searles
- Department of Chemistry Center for Catalysis University of Florida P.O. Box 117200 Gainesville FL 32611 USA
| | - Christian Ehm
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 80126 Napoli Italy
| | - Adam S. Veige
- Department of Chemistry Center for Catalysis University of Florida P.O. Box 117200 Gainesville FL 32611 USA
| |
Collapse
|
73
|
Fan HZ, Yang X, Chen JH, Tu YM, Cai Z, Zhu JB. Advancing the Development of Recyclable Aromatic Polyesters by Functionalization and Stereocomplexation. Angew Chem Int Ed Engl 2022; 61:e202117639. [PMID: 35104021 DOI: 10.1002/anie.202117639] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Indexed: 01/09/2023]
Abstract
The development of innovative synthetic polymer systems to overcome the trade-offs between the polymer's depolymerizability and performance properties is in high demand for advanced material applications and sustainable development. In this contribution, we prepared a class of aromatic cyclic esters (M1-M5) from thiosalicylic acid and epoxides by facile one-pot synthesis. Ring-opening polymerization of Ms afforded aromatic polyesters P(M)s with high molecular weights and narrow dispersities. The physical and mechanical properties of P(M)s can be modulated by stereocomplexation and regulation of the side-chain flexibility of the polymers, ultimately achieving high-performance properties such as high thermal stability and crystallinity (Tm up to 209 °C), as well as polyolefin-like high mechanical strength, ductility, and toughness. Furthermore, the functionalizable moieties of P(M)s have driven a wide array of post-polymerization modifications toward access to value-added materials. More importantly, the P(M)s were able to selectively depolymerize into monomers in excellent yields, thus establishing its circular life cycle.
Collapse
Affiliation(s)
- Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jia-Hao Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yi-Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
74
|
Lu X, Xie P, Xiang X, Sun J. Mechanically Robust Supramolecular Plastics with Energy-Saving and Highly Efficient Closed-Loop Recyclability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
75
|
Cywar RM, Rorrer NA, Mayes HB, Maurya AK, Tassone CJ, Beckham GT, Chen EYX. Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability. J Am Chem Soc 2022; 144:5366-5376. [PMID: 35290039 DOI: 10.1021/jacs.1c12611] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aliphatic polyamides, or nylons, are typically highly crystalline and thermally robust polymers used in high-performance applications. Nylon 6, a high-ceiling-temperature (HCT) polyamide from ε-caprolactam, lacks expedient chemical recyclability, while low-ceiling temperature (LCT) nylon 4 from pyrrolidone exhibits complete chemical recyclability, but it is thermally unstable and not melt-processable. Here, we introduce a hybrid nylon, nylon 4/6, based on a bicyclic lactam composed of both HCT ε-caprolactam and LCT pyrrolidone motifs in a hybridized offspring structure. Hybrid nylon 4/6 overcomes trade-offs in (de)polymerizability and performance properties of the parent nylons, exhibiting both excellent polymerization and facile depolymerization characteristics. This stereoregular polyamide forms nanocrystalline domains, allowing optical clarity and high thermal stability, however, without displaying a melting transition before decomposition. Of a series of statistical copolymers comprising nylon 4/6 and nylon 4, a 50/50 copolymer achieves the greatest synergy in both reactivity and polymer properties of each homopolymer, offering an amorphous nylon with favorable properties, including optical clarity, a high glass transition temperature, melt processability, and full chemical recyclability.
Collapse
Affiliation(s)
- Robin M Cywar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Heather B Mayes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Anjani K Maurya
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Christopher J Tassone
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Gregg T Beckham
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
76
|
Mangold H, von Vacano B. The Frontier of Plastics Recycling: Rethinking Waste as a Resource for High‐Value Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
77
|
Kratish Y, Marks TJ. Efficient Polyester Hydrogenolytic Deconstruction via Tandem Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yosi Kratish
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP) Northwestern University 2145 Sheridan Road Evanston IL 60208 3113 USA
| | - Tobin J. Marks
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP) Northwestern University 2145 Sheridan Road Evanston IL 60208 3113 USA
| |
Collapse
|
78
|
Fan H, Yang X, Chen J, Tu Y, Cai Z, Zhu J. Advancing the Development of Recyclable Aromatic Polyesters by Functionalization and Stereocomplexation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hua‐Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Jia‐Hao Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Yi‐Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| | - Jian‐Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University 29 Wangjiang Rd Chengdu 610064 P. R. China
| |
Collapse
|
79
|
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Rapid and Controlled Polymerization of Bio‐sourced δ‐Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changjian Li
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Liying Wang
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Qin Yan
- Qingdao University of Science and Technology College of Polymer Science and Engineering CHINA
| | - Fusheng Liu
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Yong Shen
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Zhibo Li
- Qingdao University of Science and Technology College of Polymer Science and Engineering #53 Zhengzhou RoadCCE Building 1101 266042 Qingdao CHINA
| |
Collapse
|
80
|
Yang R, Xu G, Dong B, Hou H, Wang Q. A “Polymer to Polymer” Chemical Recycling of PLA Plastics by the “DE–RE Polymerization” Strategy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rulin Yang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingzhe Dong
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Hou
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
81
|
Stubbs C, Worch JC, Prydderch H, Wang Z, Mathers RT, Dobrynin AV, Becker ML, Dove AP. Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. J Am Chem Soc 2022; 144:1243-1250. [PMID: 35029980 PMCID: PMC8796236 DOI: 10.1021/jacs.1c10278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 12/22/2022]
Abstract
Stereochemistry in polymers can be used as an effective tool to control the mechanical and physical properties of the resulting materials. Typically, though, in synthetic polymers, differences among polymer stereoisomers leads to incremental property variation, i.e., no changes to the baseline plastic or elastic behavior. Here we show that stereochemical differences in sugar-based monomers yield a family of nonsegmented, alternating polyurethanes that can be either strong amorphous thermoplastic elastomers with properties that exceed most cross-linked rubbers or robust, semicrystalline thermoplastics with properties comparable to commercial plastics. The stereochemical differences in the monomers direct distinct intra- and interchain supramolecular hydrogen-bonding interactions in the bulk materials to define their behavior. The chemical similarity among these isohexide-based polymers enables both statistical copolymerization and blending, which each afford independent control over degradability and mechanical properties. The modular molecular design of the polymers provides an opportunity to create a family of materials with divergent properties that possess inherently built degradability and outstanding mechanical performance.
Collapse
Affiliation(s)
- Connor
J. Stubbs
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Joshua C. Worch
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Hannah Prydderch
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Zilu Wang
- Department
of Chemistry, University of North Carolina−Chapel
Hill, Chapel
Hill, North Carolina 27599, United States
| | - Robert T. Mathers
- Department
of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Andrey V. Dobrynin
- Department
of Chemistry, University of North Carolina−Chapel
Hill, Chapel
Hill, North Carolina 27599, United States
| | - Matthew L. Becker
- Department
of Chemistry, Mechanical Engineering and Materials Science, Biomedical
Engineering and Orthopedic Surgery, Duke
University, Durham, North Carolina 20899, United States
| | - Andrew P. Dove
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| |
Collapse
|
82
|
Epps TH, Korley LTJ, Yan T, Beers KL, Burt TM. Sustainability of Synthetic Plastics: Considerations in Materials Life-Cycle Management. JACS AU 2022; 2:3-11. [PMID: 35098218 PMCID: PMC8790729 DOI: 10.1021/jacsau.1c00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 06/01/2023]
Abstract
The sustainability of current and future plastic materials is a major focus of basic research, industry, government, and society at large. There is a general recognition of the positive impacts of plastics, especially packaging; however, the negative consequences around end-of-life outcomes and overall materials circularity are issues that must be addressed. In this perspective, we highlight some of the challenges associated with the many uses of plastic components and the diversity of materials needed to satisfy consumer demand, with several examples focused on plastics packaging. We also discuss the opportunities provided by conventional and advanced recycling/upgrading routes to petrochemical and bio-based materials and feedstocks, along with overviews of chemistry-related (experimental, computational, data science, and materials traceability) approaches to the valorization of polymers toward a closed-loop environment.
Collapse
Affiliation(s)
- Thomas H. Epps
- Department
of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United
States of America
- Center
for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States of America
| | - LaShanda T. J. Korley
- Department
of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United
States of America
- Center
for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States of America
| | - Tianwei Yan
- Department
of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States of America
- Center
for Plastics Innovation (CPI), University
of Delaware, Newark, Delaware 19716, United
States of America
| | - Kathryn L. Beers
- Materials
Measurement Laboratory, National Institute
of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States of America
| | - Tiffani M. Burt
- Innovation
& Sustainability, Sealed Air Corporation, Charlotte, North Carolina 28208, United States of America
| |
Collapse
|
83
|
Zhou J, Sathe D, Wang J. Understanding the Structure-Polymerization Thermodynamics Relationships of Fused-Ring Cyclooctenes for Developing Chemically Recyclable Polymers. J Am Chem Soc 2022; 144:928-934. [PMID: 34985870 DOI: 10.1021/jacs.1c11197] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymers that can be chemically recycled to their constituent monomers offer a promising solution to address the challenges in plastics sustainability through a circular use of materials. The design and development of monomers for next-generation chemically recyclable polymers require an understanding of the relationships between the structure of the monomers/polymers and the thermodynamics of polymerization/depolymerization. Here we investigate the structure-polymerization thermodynamics relationships of a series of cyclooctene monomers that contain an additional ring fused at the 5,6-positions, including trans-cyclobutane, trans-cyclopentane, and trans-five-membered cyclic acetals. The four- and five-membered rings trans-fused to cyclooctene reduce the ring strain energies of the monomer, and the enthalpy changes of polymerizations are found to be in the range of -2.1 to -3.3 kcal mol-1. Despite the narrow range of enthalpy changes, the ceiling temperatures at 1.0 M span from 330 to 680 °C, due to the low entropy changes, ranging from -2.7 to -5.0 cal mol-1 K-1. Importantly, geminal substituents on the trans-five-membered cyclic acetal fused cyclooctenes are found to reduce the ceiling temperature by ∼300 °C, although they are not directly attached to the cyclooctene. The remote gem-disubstituent effect demonstrated here can be leveraged to promote depolymerization of the corresponding polymers and to tune their thermomechanical properties.
Collapse
Affiliation(s)
- Junfeng Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
84
|
Huang J, Olsén P, Svensson Grape E, Inge AK, Odelius K. Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jin Huang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Peter Olsén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
85
|
Boeck P, Archer N, Tanaka J, You W. Reversible Addition-Fragmentation Chain Transfer Step-Growth Polymerization with Commercially Available Inexpensive Bis-Maleimides. Polym Chem 2022. [DOI: 10.1039/d2py00236a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, commercially available N-aromatic substituted bismaleimides were used in RAFT step-growth polymerization for the first time. In our initial report (J. Am. Chem. Soc. 2021, 143 (39), 15918-15923), maleimide precursors...
Collapse
|
86
|
Kimura T, Kuroda K, Kubota H, Ouchi M. Metal-Catalyzed Switching Degradation of Vinyl Polymers via Introduction of an "In-Chain" Carbon-Halogen Bond as the Trigger. ACS Macro Lett 2021; 10:1535-1539. [PMID: 35549134 DOI: 10.1021/acsmacrolett.1c00601] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we achieved switching degradation of vinyl polymers made of a carbon-carbon bonded backbone. Crucial in this strategy was a small feed of methyl α-chloroacrylate (MCA) as the comonomer in radical polymerization of methyl methacrylate (MMA) so that the carbon-halogen bonds were introduced as the triggers for degradation. The "in-chain" trigger was activated by a one-electron redox metal catalyst as the chemical stimulus to generate the carbon-centered radical species, and subsequently, the neighboring carbon-carbon bond was cleaved via an electron transfer of the radical species giving the terminal olefin. Particularly, an iron complex (FeCl2) in conjunction with tributylamine (n-Bu3N) was effective as the chemical stimulus to allow the switching degradation, where the molecular weight was gradually decreased over time. The switching feature was confirmed by some control experiments.
Collapse
Affiliation(s)
- Taichi Kimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keita Kuroda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Kubota
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
87
|
Tu YM, Wang XM, Yang X, Fan HZ, Gong FL, Cai Z, Zhu JB. Biobased High-Performance Aromatic-Aliphatic Polyesters with Complete Recyclability. J Am Chem Soc 2021; 143:20591-20597. [PMID: 34842423 DOI: 10.1021/jacs.1c10162] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of high-performance recyclable polymers represents a circular plastics economy to address the urgent issues of plastic sustainability. Herein, we design a series of biobased seven-membered-ring esters containing aromatic and aliphatic moieties. Ring-opening polymerization studies showed that they readily polymerize with excellent activity (TOF up to 2.1 × 105 h-1) at room temperature and produce polymers with high molecular weight (Mn up to 438 kg/mol). The variety of functionalities allows us to investigate the substitution effect on polymerizability/recyclability of monomers and properties of polymers (such as Tgs from -1 to 79 °C). Remarkably, a stereocomplexed P(M2) exhibited significantly increased Tm and crystallization rate. More importantly, product P(M)s were capable of depolymerizing into their monomers in solution or bulk with high efficiency, thus establishing their circular life cycle.
Collapse
Affiliation(s)
- Yi-Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Xue-Mei Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Fu-Long Gong
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
88
|
Kratish Y, Marks TJ. Efficient Polyester Hydrogenolytic Deconstruction via Tandem Catalysis. Angew Chem Int Ed Engl 2021; 61:e202112576. [PMID: 34845815 DOI: 10.1002/anie.202112576] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 12/11/2022]
Abstract
Using a mechanism-based solvent-free tandem catalytic approach, commodity polyester plastics such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are rapidly and selectively deconstructed by combining the two air- and moisture-stable catalysts, Hf(OTf)4 and Pd/C, under 1 atm H2 , affording terephthalic acid (or naphthalene dicarboxylic acid for PEN) and ethane (or butane for PBT) in essentially quantitative yield. This process is effective for both laboratory grade and waste plastics, and comingled polypropylene remains unchanged. Combined experimental and DFT mechanistic analyses indicate that Hf(OTf)4 catalyzes a mildly exergonic retro-hydroalkoxylation reaction in which an alkoxy C-O bond is first cleaved, yielding a carboxylic acid and alkene, and this process is closely coupled to an exergonic olefin hydrogenation step, driving the overall reaction forward.
Collapse
Affiliation(s)
- Yosi Kratish
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 3113, USA
| | - Tobin J Marks
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 3113, USA
| |
Collapse
|
89
|
Wang M, Wen J, Huang Y, Hu P. Selective Degradation of Styrene-Related Plastics Catalyzed by Iron under Visible Light*. CHEMSUSCHEM 2021; 14:5049-5056. [PMID: 34510789 DOI: 10.1002/cssc.202101762] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene-related plastics under gentle conditions through multiple oxidation of sp3 C-H bonds and sp3 C-C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics.
Collapse
Affiliation(s)
- Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jinglan Wen
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
90
|
Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites. ENERGIES 2021. [DOI: 10.3390/en14217306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plastics are versatile materials used in a variety of sectors that have seen a rapid increase in their global production. Millions of tonnes of plastic wastes are generated each year, which puts pressure on plastic waste management methods to prevent their accumulation within the environment. Recycling is an attractive disposal method and aids the initiative of a circular plastic economy, but recycling still has challenges to overcome. This review starts with an overview of the current European recycling strategies for solid plastic waste and the challenges faced. Emphasis lies on the recycling of polyolefins (POs) and polyethylene terephthalate (PET) which are found in plastic packaging, as packaging contributes a signification proportion to solid plastic wastes. Both sections, the recycling of POs and PET, discuss the sources of wastes, chemical and mechanical recycling, effects of recycling on the material properties, strategies to improve the performance of recycled POs and PET, and finally the applications of recycled POs and PET. The review concludes with a discussion of the future potential and opportunities of recycled POs and PET.
Collapse
|
91
|
|
92
|
Tanaka J, Archer NE, Grant MJ, You W. Reversible-Addition Fragmentation Chain Transfer Step-Growth Polymerization. J Am Chem Soc 2021; 143:15918-15923. [PMID: 34581557 DOI: 10.1021/jacs.1c07553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reversible-addition fragmentation chain transfer (RAFT) polymerization has been widely explored since its discovery due to its structural precision, versatility, and efficiency. However, the lack of tunability of the polymer backbone limits some applications. Herein, we synergistically combine RAFT and step-growth polymerization mechanisms, by employing a highly selective insertion process of a single monomer with a RAFT agent, to achieve RAFT step-growth polymerization. A unique feature of the RAFT step-growth polymers is that each backbone repeat unit bears a pendant RAFT agent, which can subsequently graft side chains in a second polymerization step and afford molecular brush polymers. Enabled by cleavable backbone functionality, we demonstrate transformation of the resulting brushlike polymers into linear chains of uniform size upon a stimulus.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Noel Edward Archer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Michael Jeffery Grant
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
93
|
Roy PS, Garnier G, Allais F, Saito K. Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. CHEMSUSCHEM 2021; 14:4007-4027. [PMID: 34132056 DOI: 10.1002/cssc.202100904] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Plastic waste, which is one of the major sources of pollution in the landfills and oceans, has raised global concern, primarily due to the huge production rate, high durability, and the lack of utilization of the available waste management techniques. Recycling methods are preferable to reduce the impact of plastic pollution to some extent. However, most of the recycling techniques are associated with different drawbacks, high cost and downgrading of product quality being among the notable ones. The sustainable option here is to upcycle the plastic waste to create high-value materials to compensate for the cost of production. Several upcycling techniques are constantly being investigated and explored, which is currently the only economical option to resolve the plastic waste issue. This Review provides a comprehensive insight on the promising chemical routes available for upcycling of the most widely used plastic and mixed plastic wastes. The challenges inherent to these processes, the recent advances, and the significant role of the science and research community in resolving these issues are further emphasized.
Collapse
Affiliation(s)
- Pallabi Sinha Roy
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
| | - Gil Garnier
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Florent Allais
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Kei Saito
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Higashi-Ichijo-Kan, Yoshida-nakaadachicho 1, Sakyo-ku, Kyoto, 606-8306, Japan
| |
Collapse
|
94
|
Payne J, Jones MD. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. CHEMSUSCHEM 2021; 14:4041-4070. [PMID: 33826253 PMCID: PMC8518041 DOI: 10.1002/cssc.202100400] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Whilst plastics have played an instrumental role in human development, growing environmental concerns have led to increasing public scrutiny and demands for outright bans. This has stimulated considerable research into renewable alternatives, and more recently, the development of alternative waste management strategies. Herein, the aim was to highlight recent developments in the catalytic chemical recycling of two commercial polyesters, namely poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET). The concept of chemical recycling is first introduced, and associated opportunities/challenges are discussed within the context of the governing depolymerisation thermodynamics. Chemical recycling methods for PLA and PET are then discussed, with a particular focus on upcycling and the use of metal-based catalysts. Finally, the attention shifts to the emergence of new materials with the potential to modernise the plastics economy. Emerging opportunities and challenges are discussed within the context of industrial feasibility.
Collapse
Affiliation(s)
- Jack Payne
- Centre for Sustainable and Circular TechnologiesUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Matthew D. Jones
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| |
Collapse
|
95
|
Chen X, Wang Y, Zhang L. Recent Progress in the Chemical Upcycling of Plastic Wastes. CHEMSUSCHEM 2021; 14:4137-4151. [PMID: 34003585 DOI: 10.1002/cssc.202100868] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The massive generation of plastic wastes without satisfactory treatment has induced severe environmental problems and gained increasing attentions. In this Minireview, recent progresses in the chemical upcycling of plastic wastes by using various methods (mainly in the past three to five years) is summarized. The chemical upcycling of plastic wastes points out a "plastic-based refinery" concept, which is to use the plastic wastes as platform feedstocks to produce highly valuable monomeric or oligomeric compounds, putting the plastic wastes back into a circular economy. The different chemical methods to upcycle plastic wastes, including hydrogenolysis, photocatalysis, pyrolysis, solvolysis, and others, are introduced in each section to valorize diverse plastic feedstocks into value-added chemicals, materials, or fuels. In addition, other emerging technologies as well as the new generation of plastic thermosets are covered.
Collapse
Affiliation(s)
- Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, Pudong District, Shanghai, 201306, P. R. China
| | - Yudi Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, Pudong District, Shanghai, 201306, P. R. China
| | - Lei Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, Pudong District, Shanghai, 201306, P. R. China
| |
Collapse
|
96
|
Sieredzinska B, Zhang Q, Berg KJVD, Flapper J, Feringa BL. Photo-crosslinking polymers by dynamic covalent disulfide bonds. Chem Commun (Camb) 2021; 57:9838-9841. [PMID: 34498635 PMCID: PMC8477374 DOI: 10.1039/d1cc03648c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023]
Abstract
A simple and general strategy to construct photo-crosslinkable polymers by introducing sidechain 1,2-dithiolanes based on natural thioctic acid is presented. The disulfide five-membered rings act both as light-absorbing and dynamic covalent crosslinking units, enabling efficient photo-crosslinking and reversible chemical decrosslinking of polydimethylsiloxane polymers.
Collapse
Affiliation(s)
- Bianka Sieredzinska
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Qi Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Keimpe J van den Berg
- Akzo Nobel Car Refinishes B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Jitte Flapper
- Akzo Nobel Decorative Coatings B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
97
|
Diment WT, Gregory GL, Kerr RWF, Phanopoulos A, Buchard A, Williams CK. Catalytic Synergy Using Al(III) and Group 1 Metals to Accelerate Epoxide and Anhydride Ring-Opening Copolymerizations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wilfred T. Diment
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Georgina L. Gregory
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Ryan W. F. Kerr
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Andreas Phanopoulos
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Antoine Buchard
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Charlotte K. Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
98
|
Endo T, Yonekawa M, Sudo A. Synthesis of polymers containing vicinal tricarbonyl moiety and construction of reversible crosslinking–decrosslinking polymer system. POLYM INT 2021. [DOI: 10.1002/pi.6222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takeshi Endo
- Molecular Engineering Institute Kyushu Institute of Technology Fukuoka Japan
| | - Morio Yonekawa
- Research Division of Organic Materials Osaka Research Institute of Industrial Science and Technology Osaka Japan
| | - Atsushi Sudo
- Department of Applied Chemistry, Faculty of Science and Engineering Kindai University Osaka Japan
| |
Collapse
|
99
|
Abel BA, Snyder RL, Coates GW. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 2021; 373:783-789. [PMID: 34385394 DOI: 10.1126/science.abh0626] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/10/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
Identifying plastics capable of chemical recycling to monomer (CRM) is the foremost challenge in creating a sustainable circular plastic economy. Polyacetals are promising candidates for CRM but lack useful tensile strengths owing to the low molecular weights produced using current uncontrolled cationic ring-opening polymerization (CROP) methods. Here, we present reversible-deactivation CROP of cyclic acetals using a commercial halomethyl ether initiator and an indium(III) bromide catalyst. Using this method, we synthesize poly(1,3-dioxolane) (PDXL), which demonstrates tensile strength comparable to some commodity polyolefins. Depolymerization of PDXL using strong acid catalysts returns monomer in near-quantitative yield and even proceeds from a commodity plastic waste mixture. Our efficient polymerization method affords a tough thermoplastic that can undergo selective depolymerization to monomer.
Collapse
Affiliation(s)
- Brooks A Abel
- Department of Chemistry and Chemical Biology and Joint Center for Energy Storage Research, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Rachel L Snyder
- Department of Chemistry and Chemical Biology and Joint Center for Energy Storage Research, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology and Joint Center for Energy Storage Research, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
100
|
Yuntawattana N, Gregory GL, Carrodeguas LP, Williams CK. Switchable Polymerization Catalysis Using a Tin(II) Catalyst and Commercial Monomers to Toughen Poly(l-lactide). ACS Macro Lett 2021; 10:774-779. [PMID: 34306820 PMCID: PMC8296665 DOI: 10.1021/acsmacrolett.1c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Sustainable plastics sourced without virgin petrochemicals, that are easily recyclable and with potential for degradation at end of life, are urgently needed. Here, copolymersand blends meeting these criteria are efficiently prepared using a single catalyst and existing commercial monomers l-lactide, propylene oxide, and maleic anhydride. The selective, one-reactor polymerization applies an industry-relevant tin(II) catalyst. Tapered, miscible block polyesters are formed with alkene groups which are postfunctionalized to modulate the polymer glass transition temperature. The polymers are blended at desirable low weight fractions (2 wt %) with commercial poly(l-lactide) (PLLA), increasing toughness, and elongation at break without compromising the elastic modulus, tensile strength, or thermal properties. The selective polymerization catalysis, using commercial monomers and catalyst, provides a straightforward means to improve bioplastics performances.
Collapse
Affiliation(s)
- Nattawut Yuntawattana
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Leticia Peña Carrodeguas
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|