51
|
Chang H, Liang Z, Wang L, Wang C. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. NANOSCALE 2022; 14:5639-5656. [PMID: 35333268 DOI: 10.1039/d2nr00522k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a clean and renewable energy carrier, hydrogen (H2) has become an attractive alternative to dwindling fossil fuels. The key to realizing hydrogen-based energy systems is to develop efficient and economical hydrogen production methods. The water electrolysis technique has the advantages of cleanliness, sustainability, and high efficiency, which can be applied to large-scale hydrogen production. However, the electrocatalytic oxygen evolution reaction (OER) at the anode plays a decisive role in the efficiency of hydrogen evolution during water splitting. Generally, noble metal catalysts (such as ruthenium and iridium) are considered to exhibit the best OER performance; however, they exhibit disadvantages such as high costs, limited reserves, and poor stability. Therefore, the research on highly efficient non-noble metal catalysts that can replace their noble metal counterparts has always been important. This review presents the recent advances in the preparation of high-performance OER electrocatalysts by regulating the electronic structure of 3d transition metals. First, we introduce the reaction mechanism of water splitting and the OER, which reveals the high requirement of the complex four-electron process of the OER. Second, the electron transfer mode and development progress of highly active transition metal electrocatalysts are used to summarize the research situation of transition metal OER catalysts in water splitting. Finally, the future development direction and challenges of transition metal catalysts are prospected based on the current research progress.
Collapse
Affiliation(s)
- Haiyang Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
52
|
Wei L, Zhang Y, Yang Y, Ye M, Li CC. Manipulating the Electronic Structure of Graphite Intercalation Compounds for Boosting the Bifunctional Oxygen Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107667. [PMID: 35098643 DOI: 10.1002/smll.202107667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient bifunctional catalysts for the oxygen reduction and oxygen evolution reaction (ORR/OER) can open possibilities for future zinc air batteries (ZABs). Herein, cost-effective and highly conductive few-layer ferric and nickel chloride co-intercalated graphite intercalation compounds (FeCl3 -NiCl2 -GIC) are designed as bifunctional oxygen catalysts for ZAB. The optimized few-layer FeCl3 -NiCl2 -GIC catalyst exhibits a small overpotential of 276 mV at 10 mA cm-2 for the OER and achieves a high onset potential of 0.89 V for the ORR. The theoretical analysis demonstrates the electron-rich state on the carbon layers of FeCl3 -NiCl2 -GIC during the catalytic process favors the kinetics of electron transfer and lowers the absorption energy barriers for intermediates. Impressively, the ZAB assembled with few-layer FeCl3 -NiCl2 -GIC catalyst displays a 160 h cycling stability and a high energy efficiency of 72.6%. This work also suggests the possibility of utilizing layer electronic structure regulation on graphite intercalation compounds as effective bifunctional catalysts for ZABs.
Collapse
Affiliation(s)
- Licheng Wei
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Minghui Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
53
|
Chen Z, Wu J, Chen Z, Yang H, Zou K, Zhao X, Liang R, Dong X, Menezes PW, Kang Z. Entropy Enhanced Perovskite Oxide Ceramic for Efficient Electrochemical Reduction of Oxygen to Hydrogen Peroxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Zhengran Chen
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Kai Zou
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Xiangyong Zhao
- Key Laboratory of Optoelectronic Material and Device Department of Physics Shanghai Normal University Shanghai 200234 China
| | - Ruihong Liang
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Xianlin Dong
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
- Material Chemistry Group for Thin Film Catalysis—CatLab Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Str. 15 12489 Berlin Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| |
Collapse
|
54
|
Engineering cobalt nitride nanosheet arrays with rich nitrogen defects as a bifunctional robust oxygen electrocatalyst in rechargeable Zn-air batteries. J Colloid Interface Sci 2022; 608:2066-2074. [PMID: 34752980 DOI: 10.1016/j.jcis.2021.10.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022]
Abstract
Developing high-activity bifunctional oxygen electrocatalysts to overcome the sluggish 4e- kinetics is an urgent challenge for rechargeable metal-air batteries. Here, we prepared a CoN nanosheet catalyst with rich nitrogen defects (CoN-Nd) through solvothermal and low-temperature nitridation. Notably, the study finds for the first time that only Co LDH materials can be mostly converted to CoN-Nd under the same nitriding conditions relative to different Co-based precursors. Experiments indicate that the constructed CoN-Nd catalyst exhibits preeminent electrocatalytic activities for both oxygen evolution reaction (η10 = 243 mV) and oxygen reduction reaction (JL = 5.2 mA cm-2). Moreover, the CoN-Nd-based Zinc-air battery showed a large power density of 120 mW cm-2 and robust stability over 260 cycles, superior to the state-of-art Pt/C + RuO2. The superior performance is attributed to a large number of defects formed by the disordered arrangement of local atoms on the catalyst that facilitate the formation of more active sites, and alternate array-like structures thereof improving electrolyte diffusion and gas emission.
Collapse
|
55
|
Chen MM, Niu HY, Niu CG, Guo H, Liang S, Yang YY. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127196. [PMID: 34601415 DOI: 10.1016/j.jhazmat.2021.127196] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Herein, the authors synthesis an efficient and easily recycled CuCo/C catalyst through one-step carbonization of Cu@Co-MOF-71 (Abbreviated as Cu@Co-MOF in this work) precursor. The prepared CuCo/C has a high degradation efficiency of 90% for ciprofloxacin (CIP) by activating PMS in a wide value of pH 3-9 within 30 min. After pyrolysis, the carbon matrix as a dispersant can promote the highly uniform distribution of active metals. Additionally, the CIP removal efficiency was 85% after four cycles and the catalyst was easily separated from the solution by using magnets, showing the good stability and reusability. To further study the superiority of CuCo/C activated PMS in degrading CIP, the factors such as pH, the dosage of PMS and catalyst, temperature, inorganic ions and pollutant (CIP) concentration were investigated. Furthermore, the Liquid chromatography-mass spectrometry (LC-MS) was utilized to analyze the intermediate products and possible degradation pathways of CIP. Typically, the quenching experiments and electron paramagnetic resonance (EPR) technology were investigated to confirm the main reaction species including SO4▪-, OH▪ and O2▪- radicals as well as nonradical (1O2). This work put forward a simple method for synthesis of metal-organic framework (MOF) derived catalysts and its application in treatment of organic pollutants.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Huai-Yuan Niu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Hai Guo
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Song Liang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ya-Ya Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
56
|
Tong X, Li Y, Ruan Q, Pang N, Zhou Y, Wu D, Xiong D, Xu S, Wang L, Chu PK. Plasma Engineering of Basal Sulfur Sites on MoS 2 @Ni 3 S 2 Nanorods for the Alkaline Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104774. [PMID: 34939374 PMCID: PMC8867165 DOI: 10.1002/advs.202104774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Indexed: 05/22/2023]
Abstract
Inexpensive and efficient catalysts are crucial to industrial adoption of the electrochemical hydrogen evolution reaction (HER) to produce hydrogen. Although two-dimensional (2D) MoS2 materials have large specific surface areas, the catalytic efficiency is normally low. In this work, Ag and other dopants are plasma-implanted into MoS2 to tailor the surface and interface to enhance the HER activity. The HER activty increases initially and then decreases with increasing dopant concentrations and implantation of Ag is observed to produce better results than Ti, Zr, Cr, N, and C. At a current density of 400 mA cm-2 , the overpotential of Ag500-MoS2 @Ni3 S2 /NF is 150 mV and the Tafel slope is 41.7 mV dec-1 . First-principles calculation and experimental results reveal that Ag has higher hydrogen adsorption activity than the other dopants and the recovered S sites on the basal plane caused by plasma doping facilitate water splitting. In the two-electrode overall water splitting system with Ag500-MoS2 @Ni3 S2 /NF, a small cell voltage of 1.47 V yields 10 mA cm-2 and very little degradation is observed after operation for 70 hours. The results reveal a flexible and controllable strategy to optimize the surface and interface of MoS2 boding well for hydrogen production by commercial water splitting.
Collapse
Affiliation(s)
- Xin Tong
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- Jiangsu Laboratory of Advanced Functional MaterialsSchool of Electronic and Information EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yun Li
- School of Physics and Electronic EngineeringHanshan Normal UniversityChaozhou521041P. R. China
| | - Qingdong Ruan
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Ning Pang
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Yang Zhou
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Dajun Wu
- Jiangsu Laboratory of Advanced Functional MaterialsSchool of Electronic and Information EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
| | - Dayuan Xiong
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Shaohui Xu
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Lianwei Wang
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| |
Collapse
|
57
|
Lu Q, Zou X, Bu Y, Liao K, Zhou W, Shao Z. A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105604. [PMID: 34837318 DOI: 10.1002/smll.202105604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Searching for bifunctional noble-free electrocatalysts with high activity and stability are urgently demanded for the commercial application of zinc-air batteries (ZABs). Herein, the authors propose a controllable dual interface engineering concept to design a noble-metal-free bifunctional catalyst with two well-designed interfaces (Ni3 FeN|MnO and MnO|CNTs) via a simple etching and wet chemical route. The heterointerface between MnO and Ni3 FeN facilitates the charge transfer rate during surface reaction, and heterointerface between MnO and carbon nanotubes (CNTs) support provides effective electron transfer path, while the CNTs matrix builds free diffusion channels for gas and electrolyte. Benefiting from the advantages of dual interfaces, Ni3 FeN/MnO-CNTs show superior oxygen reduction reaction and oxygen evolution reaction catalytic activity with an ultralow polarization gap (∆E) of 0.73 V, as well as preferable durability and rapid reaction kinetics. As proof of concept, the practical ZAB with Ni3 FeN/MnO-CNT exhibits high power density of 197 mW cm-2 and rate performance up to 40 mA cm-2 , as well as superior cycling stability over 600 cycles, outperforming the benchmark mixture of Pt/C and RuO2 . This work proposes a controllable dual interface engineering concept toward regulating the charge, electron, and gas transfer to achieve efficient bifunctional catalysts for ZABs.
Collapse
Affiliation(s)
- Qian Lu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, UNIST-NUIST Research Center of Environment and Energy, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Xiaohong Zou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
| | - Yunfei Bu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, UNIST-NUIST Research Center of Environment and Energy, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Kaiming Liao
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
| | - Wei Zhou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
| | - Zongping Shao
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 South Puzu Road, Nanjing, 211816, P. R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
58
|
Lu Y, Liu T, Dong CL, Yang C, Zhou L, Huang YC, Li Y, Zhou B, Zou Y, Wang S. Tailoring Competitive Adsorption Sites by Oxygen-Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107185. [PMID: 34655453 DOI: 10.1002/adma.202107185] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The electrooxidation of 5-hydroxymethylfurfural (HMF) offers a promising green route to attain high-value chemicals from biomass. The HMF electrooxidation reaction (HMFOR) is a complicated process involving the combined adsorption and coupling of organic molecules and OH- on the electrode surface. An in-depth understanding of these adsorption sites and reaction processes on electrocatalysts is fundamentally important. Herein, the adsorption behavior of HMF and OH- , and the role of oxygen vacancy on Co3 O4 are initially unraveled. Correspondingly, instead of the competitive adsorption of OH- and HMF on the metal sites, it is observed that the OH- can fill into oxygen vacancy (Vo) prior to couple with organic molecules through lattice oxygen oxidation reaction process, which could accelerate the rate-determining step of the dehydrogenation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) intermediates. With the modulated adsorption sites, the as-designed Vo-Co3 O4 shows excellent activity for HMFOR with the earlier potential of 90 and 120 mV at 10 mA cm-2 in 1 m KOH and 1 m PBS solution. This work sheds insight on the catalytic mechanism of oxygen vacancy, which benefits designing a novel electrocatalysts to modulate the multi-molecules combined adsorption behaviors.
Collapse
Affiliation(s)
- Yuxuan Lu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, Advanced Catalytic Engineering Research Center of the Ministry of Education, the National Supercomputer Centers in Changsha, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Chunming Yang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, Advanced Catalytic Engineering Research Center of the Ministry of Education, the National Supercomputer Centers in Changsha, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ling Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, Advanced Catalytic Engineering Research Center of the Ministry of Education, the National Supercomputer Centers in Changsha, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, Advanced Catalytic Engineering Research Center of the Ministry of Education, the National Supercomputer Centers in Changsha, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, Advanced Catalytic Engineering Research Center of the Ministry of Education, the National Supercomputer Centers in Changsha, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, Advanced Catalytic Engineering Research Center of the Ministry of Education, the National Supercomputer Centers in Changsha, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
59
|
Liu X, Zhang G, Wang L, Fu H. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006766. [PMID: 34085767 DOI: 10.1002/smll.202006766] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/03/2021] [Indexed: 05/27/2023]
Abstract
Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition-metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Guangying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
60
|
Dun R, Hao M, Su Y, Li W. Alkaline Metal Oxide Assisting the Ionothermal Method for Efficient Fe-N X/C Catalyst Preparation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52479-52486. [PMID: 34699169 DOI: 10.1021/acsami.1c11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to low cost and high efficiency, nonprecious metal catalysts have been widely used in various types of fuel cells. To obtain a high-activity electrocatalyst, a simple method for the synthesis of iron-modified covalent triazine frameworks by the direct heating of a mixture of FeCl3, ZnCl2, ZnO, and m-phthalodinitrile is reported. The role and a possible evolution pathway of the oxygen of metallic oxides are well discussed. To further verify our assumption, the Fe3O4 microspherical nanomaterials were synthesized and the relative Fe-based catalyst (Fe-NX/C) was successfully obtained by the ionothermal polymerization method. Fe-NX/C exhibits an extraordinary oxygen reduction reaction (ORR) performance in acidic solution, with a half-wave potential of only 25 mV negative shifts compared with Pt/C, while the power density is approximately 56% of that of Pt/C catalysts under the proton exchange membrane fuel cell testing condition. This work represents a new strategy to synthesize high-performance Fe-based catalysts toward ORR.
Collapse
Affiliation(s)
- Rongmin Dun
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menggeng Hao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumiao Su
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenmu Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
61
|
Baghban A, Habibzadeh S, Zokaee Ashtiani F. On the evaluation of hydrogen evolution reaction performance of metal-nitrogen-doped carbon electrocatalysts using machine learning technique. Sci Rep 2021; 11:21911. [PMID: 34753937 PMCID: PMC8578608 DOI: 10.1038/s41598-021-00031-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Single-atom catalysts (SACs) introduce as a promising category of electrocatalysts, especially in the water-splitting process. Recent studies have exhibited that nitrogen-doped carbon-based SACs can act as a great HER electrocatalyst. In this regard, Adaptive Neuro-Fuzzy Inference optimized by Gray Wolf Optimization (GWO) method was used to predict hydrogen adsorption energy (ΔG) obtained from density functional theory (DFT) for single transition-metal atoms including Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, and Au embedded in N-doped carbon of different sizes. Various descriptors such as the covalent radius, Zunger radius of the atomic d-orbital, the formation energy of the single-atom site, ionization energy, electronegativity, the d-band center from - 6 to 6 eV, number of valence electrons, Bader charge, number of occupied d states from 0 to - 2 eV, and number of unoccupied d states from 0 to 2 eV were chosen as input parameters based on sensitivity analysis. The R-squared and MSE of the developed model were 0.967 and 0.029, respectively, confirming its great accuracy in determining hydrogen adsorption energy of metal/NC electrocatalysts.
Collapse
Affiliation(s)
- Alireza Baghban
- Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Mahshahr Campus, Mahshahr, Iran.
| | - Sajjad Habibzadeh
- Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Mahshahr Campus, Mahshahr, Iran.
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Farzin Zokaee Ashtiani
- Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
62
|
Lu Y, Zou S, Li J, Li C, Liu X, Dong D. Fe, B, and N Codoped Carbon Nanoribbons Derived from Heteroatom Polymers as High-Performance Oxygen Reduction Reaction Electrocatalysts for Zinc-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13018-13026. [PMID: 34696592 DOI: 10.1021/acs.langmuir.1c02100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For zinc-air batteries, it is of great importance to heighten the oxygen reduction reaction (ORR) activity of cathode electrocatalysts. Herein, we synthesized carbon nanoribbons doped with Fe, B, and N as high-activity ORR electrocatalysts by a templating method. Benefiting from the melamine fiber (MF) and B doping, the as-prepared carbon nanoribbon has a high specific surface area, and the improved turnover frequency of Fe sites increases the ORR activity. The as-synthesized Fe-B-N-C electrocatalyst shows an improved half-wave potential and limited current density compared to Fe-N-C, B-N-C, and N-C. Moreover, zinc-air batteries with the Fe-B-N-C electrocatalyst exhibit a higher specific capacity and better long-term durability compared to those with commercial Pt/C. This work provides an effective strategy to synthesize noble-metal-free electrocatalysts for wide applications of zinc-air batteries.
Collapse
Affiliation(s)
- Yue Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shanbao Zou
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiajie Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chenyu Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dehua Dong
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
63
|
Wei B, Fu Z, Legut D, Germann TC, Du S, Zhang H, Francisco JS, Zhang R. Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102595. [PMID: 34342921 DOI: 10.1002/adma.202102595] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Indexed: 05/14/2023]
Abstract
Designing highly active and bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts has attracted great interest toward metal-air batteries. Herein, an efficient solution to the search for MXene-based bifunctional catalysts is proposed by introducing non-noble metals such as Fe/Co/Ni at the surfaces. These results indicate that the ultrahigh activities in Ni1/Ni2- and Fe1/Ni2-modified MXene-based double-atom catalysts (DACs) for bifunctional ORR/OER are better than those of well-known unifunctional catalysts with low overpotentials, such as Pt(111) for the ORR and IrO2 (110) for the OER. Strain can profoundly regulate the catalytic activities of MXene-based DACs, providing a novel pathway for tunable catalytic behavior in flexible MXenes. An electrochemical model, based on density functional theory and theoretical polarization curves, is proposed to reveal the underlying mechanisms, in agreement with experimental results. Electronic structure analyses indicate that the excellent catalytic activities in the MXene-based DACs are attributed to the electron-capturing capability and synergistic interactions between Fe/Co/Ni adsorbents and MXene substrate. These findings not only reveal promising candidates for MXene-based bifunctional ORR/OER catalysts but also provide new theoretical insights into rationally designing noble-metal-free bifunctional DACs.
Collapse
Affiliation(s)
- Bo Wei
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials and Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, P. R. China
| | - Zhongheng Fu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials and Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB-Technical University of Ostrava, 17.listopadu 2172/15, Ostrava, CZ-70800, Czech Republic
| | - Timothy C Germann
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Shiyu Du
- Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong, 251100, P. R. China
- Department of Vascular and Intervention, Tenth Peoples' Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials and Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
64
|
Tang Z, Nie Z, Yuan M, Lai Q, Liang Y. Controllable Fabrication of Core‐Shell Co
9
S
8
/Co Embedded on Multi‐Channel Carbon Nanofibers as Efficient Oxygen Electrocatalysts for Rechargeable Zn‐air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zeming Tang
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Zhongxiang Nie
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Meichen Yuan
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Qingxue Lai
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yanyu Liang
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| |
Collapse
|
65
|
Hybridized intercalation of CoMoS4 in interlayer-expanded cobalt-LMO nanosheets as high active bifunctional catalysts in Zn-air battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
66
|
Rao Y, Chen S, Yue Q, Kang Y. Optimizing the Spin States of Mesoporous Co 3O 4 Nanorods through Vanadium Doping for Long-Lasting and Flexible Rechargeable Zn–Air Batteries. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuan Rao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shan Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
67
|
Liu J, Wang C, Song Y, Zhang S, Zhang Z, He L, Du M. Two-dimensional triazine-based porous framework as a novel metal-free bifunctional electrocatalyst for zinc-air batty. J Colloid Interface Sci 2021; 591:253-263. [DOI: 10.1016/j.jcis.2021.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
|
68
|
Niu Y, Teng X, Gong S, Xu M, Sun SG, Chen Z. Engineering Two-Phase Bifunctional Oxygen Electrocatalysts with Tunable and Synergetic Components for Flexible Zn-Air Batteries. NANO-MICRO LETTERS 2021; 13:126. [PMID: 34138326 PMCID: PMC8124028 DOI: 10.1007/s40820-021-00650-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 05/25/2023]
Abstract
Metal-air batteries, like Zn-air batteries (ZABs) are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode. Herein, a novel bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) was prepared through a strategy of coordination construction-cation exchange-pyrolysis and used as a highly efficient bifunctional oxygen electrocatalyst. Experimental characterizations and density functional theory calculations reveal the formation of Co/CoFe heterostructure and synergistic effect between metal layer and NC support, leading to improved electric conductivity, accelerated reaction kinetics, and optimized adsorption energy for intermediates of ORR and OER. The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half-wave potential (E1/2) of ORR and the potential at 10 mA cm‒2 (Ej=10) of OER. The aqueous ZAB constructed using this air electrode exhibits a slight voltage loss of only 60 mV after 550-cycle test (360 h, 15 days). A sodium polyacrylate (PANa)-based hydrogel electrolyte was synthesized with strong water-retention capability and high ionic conductivity. The quasi-solid-state ZAB by integrating the Co/CoFe@NC air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states.
Collapse
Affiliation(s)
- Yanli Niu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xue Teng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shuaiqi Gong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Mingze Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shi-Gang Sun
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Zuofeng Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
69
|
|
70
|
Zhou W, Liu Y, Liu H, Wu D, Zhang G, Jiang J. Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn-air battery. RSC Adv 2021; 11:15753-15761. [PMID: 35481184 PMCID: PMC9029229 DOI: 10.1039/d1ra01639c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Developing efficient electrocatalysts for ORR/OER is the key issue for the large-scale application of rechargeable Zn-air batteries. The design of Co and N co-doped carbon matrices has become a promising strategy for the fabrication of bi-functional electrocatalysts. Herein, the surface-oxidized Co nanoparticles (NPs) encapsulated into N-doped hierarchically porous carbon materials (Co/NHPC) are designed as ORR/OER catalysts for rechargeable Zn-air batteries via dual-templating strategy and pyrolysis process containing Co2+. The fabricated electrocatalyst displays a core-shell structure with the surface-oxidized Co nanoparticles anchored on hierarchically porous carbon sheets. The carbon shells prevent Co NP cores from aggregating, ensuring excellent electrocatalytic properties for ORR with a half-wave potential of 0.82 V and a moderate OER performance. Notably, the obtained Co/NHPC as a cathode was further assembled in a zinc-air battery that delivered an open-circuit potential of 1.50 V, even superior to that of Pt/C (1.46 V vs. RHE), a low charge-discharge voltage gap, and long cycle life. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate cost-effective high-performance ORR/OER catalysts for rechargeable Zn-air batteries.
Collapse
Affiliation(s)
- Wenshu Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA Nanjing Jiangsu Province 210042 China
| | - Yanyan Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA Nanjing Jiangsu Province 210042 China
| | - Huan Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou China
| | - Dichao Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA Nanjing Jiangsu Province 210042 China
| | - Gaoyue Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA Nanjing Jiangsu Province 210042 China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA Nanjing Jiangsu Province 210042 China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing China
| |
Collapse
|
71
|
Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. Sci Bull (Beijing) 2021; 66:708-719. [PMID: 36654446 DOI: 10.1016/j.scib.2020.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Zinc-air batteries (ZnABs) with high theoretical capacity and environmental benignity are the most promising candidates for next-generation electronics. However, their large-scale applications are greatly hindered due to the lack of high-efficient and cost-effective electrocatalysts. Transition metal phosphides (TMPs) have been reported as promising electrocatalysts. Notably, (Ni1-xCrx)2P (0 ≤ x ≤ 0.15) is an unstable electrocatalyst, which undergoes in-situ electrochemical oxidation during the initial oxygen evolution reaction (OER) and even in the activation cycles, and is eventually converted to Cr-NiOOH serving as the actual OER active sites with high efficiency. Density functional theory (DFT) simulations and experimental results elucidate that the OER performance could be significantly promoted by the synergistic effect of surface engineering and electronic modulations by Cr doping and in-situ phase transformation. The constructed rechargeable ZnABs could stably cycle for more than 208 h at 5 mA cm-2, while the voltage degradation is negligible. Furthermore, the developed catalytic materials could be assembled into flexible and all-solid-state ZnABs to power wearable electronics with high performance.
Collapse
|
72
|
Yan X, Ha Y, Wu R. Binder-Free Air Electrodes for Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. SMALL METHODS 2021; 5:e2000827. [PMID: 34927848 DOI: 10.1002/smtd.202000827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Indexed: 06/14/2023]
Abstract
Designing an efficient air electrode is of great significance for the performance of rechargeable zinc (Zn)-air batteries. However, the most widely used approach to fabricate an air electrode involves polymeric binders, which may increase the interface resistance and block electrocatalytic active sites, thus deteriorating the performance of the battery. Therefore, binder-free air electrodes have attracted more and more research interests in recent years. This article provides a comprehensive overview of the latest advancements in designing and fabricating binder-free air electrodes for electrically rechargeable Zn-air batteries. Beginning with the fundamentals of Zn-air batteries and recently reported bifunctional active catalysts, self-supported air electrodes for liquid-state and flexible solid-state Zn-air batteries are then discussed in detail. Finally, the conclusion and the challenges faced for binder-free air electrodes in Zn-air batteries are also highlighted.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yuan Ha
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
73
|
Qin Y, Yang M, Deng C, Shen W, He R, Li M. Theoretical insight into single Rh atoms anchored on N-doped γ-graphyne as an excellent bifunctional electrocatalyst for the OER and ORR: electronic regulation of graphitic nitrogen. NANOSCALE 2021; 13:5800-5808. [PMID: 33710226 DOI: 10.1039/d0nr07513b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reducing the overpotential and increasing the reaction rate, which are respectively determined by the thermodynamics and kinetics of electrocatalysis, are the keys to obtaining high-performance bifunctional electrocatalysts for the OER/ORR. Herein, six late-transition metals (Ru, Rh, Pd, Os, Ir, and Pt) anchored on γ-GY and graphitic N doped γ-GY substrates are screened as electrocatalysts for the OER and ORR via density functional theory, and the effects of electronic regulation due to the presence of graphitic N on the thermodynamics and kinetics of electrocatalysis are investigated in detail. Among the six γ-GY@TM candidates, only γ-GY@Rh exhibits excellent OER activity, with an overpotential of 0.42 V. Furthermore, graphitic N doped graN-γ-GY@Rh shows outstanding bifunctional electrocatalytic activity, with overpotentials of 0.27 V for the OER and 0.33 V for the ORR, which are remarkably superior to the values of 0.43 V for RuO2 and 0.45 V for noble-metal Pt electrocatalysts. The present results present some of the lowest overpotentials for OER/ORR electrocatalysts given by theoretical studies to date. From a kinetics point of view, N-doping also remarkably reduces the activation energy barriers of the catalytic rate-limiting steps of the OER and ORR, accelerating the reaction processes and significantly improving the conductivity. Our work provides a theoretical strategy for designing high-efficiency bifunctional OER/ORR electrocatalysts based on γ-GY materials.
Collapse
Affiliation(s)
- Youcheng Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | | | | | | | | | | |
Collapse
|
74
|
Yin X, Liu Q, Ding Y, Chen K, Cai P, Wen Z. Hierarchical Carbon/Metal Nanostructure with a Combination of 0D Nanoparticles, 1D Nanofibers, and 2D Nanosheets: An Efficient Bifunctional Catalyst for Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ximeng Yin
- College of Chemistry Fuzhou University Fuzhou, Fujian 350002 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
| | - Qian Liu
- College of Chemistry Fuzhou University Fuzhou, Fujian 350002 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
| | - Yichun Ding
- College of Chemistry Fuzhou University Fuzhou, Fujian 350002 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian 350108 P. R. China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
| | - Pingwei Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
| | - Zhenhai Wen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350002 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
| |
Collapse
|
75
|
Cheng R, Ding Y, Wang Y, Wang H, Zhang Y, Wei Q. A novel molecularly imprinted electrochemiluminescence sensor based on cobalt nitride nanoarray electrode for the sensitive detection of bisphenol S. RSC Adv 2021; 11:11011-11019. [PMID: 35423555 PMCID: PMC8695819 DOI: 10.1039/d0ra10676c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
A substitute for bisphenol A (BPA), bisphenol S (BPS) has endocrine disruptive and toxic effects and could pose potential risk on human health and the environment. Herein, we fabricated a sensitive molecularly imprinted electrochemiluminescence (MIECL) sensor for the determination of BPS. CoN nanoarray with outstanding electrical conductivity was prepared and it directly served as the sensor platform. Especially, due to the high surface area of the porous CoN nanoarray, the ECL probe of Ru(bpy)3 2+ could be absorbed on the electrode. By means of the cation exchange of Nafion membrane and utilizing tripropylamine (TPrA) as co-reactant, boosted ECL signals were obtained. Meanwhile, by combining with molecularly imprinted polymers (MIPs), the constructed sensor achieved specific recognition of BPS. On the basis of the superior properties of the CoN nanoarray-based electrode, the ECL signal of the proposed sensor was linearly proportional to the BPS concentration from 2.4 × 10-9 to 5.0 × 10-5 mol L-1 (R 2 = 0.9965) with a low limit of detection (LOD) of 8.1 × 10-10 mol L-1 (S/N = 3). To test the accuracy of the proposed method, the HPLC method was adopted to analyze drinking water samples as a comparison. The t-test result proved that discrepancies between HPLC analysis and the method using the fabricated MIECL sensor were acceptable. The developed MIECL sensor with the sensitive, selective, reproducible, and stable analytical performance provides a potential pathway for the detection of BPS and other BPA substitutes in drinking water samples.
Collapse
Affiliation(s)
- Rongqi Cheng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Yulong Ding
- Shanghai Quality Supervision and Inspection Technology Research Institute Shanghai 200233 China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 PR China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| |
Collapse
|
76
|
Wang Y, Wang J, Liu J, Xiao Z, Xue Y, Yu F. Concomitant induction to few-layer and 1T-rich two-dimensional MoS 2 by rigid segment-containing polysulfide as a sulfur source and in situ intercalator. Chem Commun (Camb) 2021; 57:2277-2280. [PMID: 33533383 DOI: 10.1039/d0cc06933g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Few-layer and 1T-rich MoS2 is synthesized by a one-step solvothermal process using a rigid segment-containing polysulfide as a concomitant sulfur source and in situ intercalator. The prepared MoS2 displays superior hydrogen evolution reaction activity, providing a facile and mild approach for the development of high performing MoS2 and other two-dimensional lamellar materials.
Collapse
Affiliation(s)
- Yijuan Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology and School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | | | | | | | | | | |
Collapse
|
77
|
Enhanced photochemical properties of S-doped ZnO half-arc mesoporous superstructured nanowires. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Kisand K, Sarapuu A, Kikas A, Kisand V, Rähn M, Treshchalov A, Käärik M, Piirsoo HM, Aruväli J, Paiste P, Leis J, Sammelselg V, Tamm A, Tammeveski K. Bifunctional multi-metallic nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
79
|
Synthesis of nitrogen and sulfur doped graphene on graphite foam for electro-catalytic phenol degradation and water splitting. J Colloid Interface Sci 2021; 583:139-148. [PMID: 33002686 DOI: 10.1016/j.jcis.2020.09.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022]
Abstract
A rational design of electrode materials with both high electron conductivity and abundant of catalytic sites is essential for high-performance electrochemical reactions. Herein, a nitrogen and sulfur co-doped graphene (SNG) anchored on the interconnected conductive graphite foam (GF) is fabricated via drop-casting and in situ annealing. The SNG flakes are tightly immobilized on the GF surface, which can provide fast electron transfer rate and large electrolyte/electrode interfaces. The SNG@GF composite can be directly used as a free-standing electrode for electro-catalytic degradation of organic pollutants and overall water splitting. SNG@GF significantly enhanced the electrochemical activation of peroxymonosulfate (PMS) for catalytic oxidation. During the oxygen evolution reaction (OER), the SNG@GF exhibits an initial overpotential of 330 mV vs. RHE at 10 mA cm-2 with a Tafel slope of 149 mV dec-1 in 1 M KOH, which outperforms most of the reported metal-free catalysts. The density functional theory calculations are also used to unveil the S, N dual doping effects of carbon materials and their synergy in carbocatalysis. This study dedicates to developing multi-functional carbocatalysts for environmental and energy applications, and enables insights into carbocatalysis in electrochemistry.
Collapse
|
80
|
Wang Y, Chu F, Zeng J, Wang Q, Naren T, Li Y, Cheng Y, Lei Y, Wu F. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS NANO 2021; 15:210-239. [PMID: 33405889 DOI: 10.1021/acsnano.0c08652] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to the energy crisis and environmental pollution, developing efficient and robust electrochemical energy storage (or conversion) systems is urgently needed but still very challenging. Next-generation electrochemical energy storage and conversion devices, mainly including fuel cells, metal-air batteries, metal-sulfur batteries, and metal-ion batteries, have been viewed as promising candidates for future large-scale energy applications. All these systems are operated through one type of chemical conversion mechanism, which is currently limited by poor reaction kinetics. Single atom catalysts (SACs) perform maximum atom efficiency and well-defined active sites. They have been employed as electrode components to enhance the redox kinetics and adjust the interactions at the reaction interface, boosting device performance. In this Review, we briefly summarize the related background knowledge, motivation and working principle toward next-generation electrochemical energy storage (or conversion) devices, including fuel cells, Zn-air batteries, Al-air batteries, Li-air batteries, Li-CO2 batteries, Li-S batteries, and Na-S batteries. While pointing out the remaining challenges in each system, we clarify the importance of SACs to solve these development bottlenecks. Then, we further explore the working principle and current progress of SACs in various device systems. Finally, future opportunities and perspectives of SACs in next-generation electrochemical energy storage and conversion devices are discussed.
Collapse
Affiliation(s)
- Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fulu Chu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, P. R. China
| | - Jian Zeng
- State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qijun Wang
- State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Tuoya Naren
- State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yueyang Li
- State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yi Cheng
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Feixiang Wu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
81
|
Dai Y, Ding J, Li J, Li Y, Zong Y, Zhang P, Wang Z, Liu X. N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:202. [PMID: 33466815 PMCID: PMC7829757 DOI: 10.3390/nano11010202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
In this work, reduced graphene oxide (rGO) nanocomposites doped with nitrogen (N), sulfur (S) and transitional metal (Ni, Co, Fe) were synthesized by using a simple one-step in-situ hydrothermal approach. Electrochemical characterization showed that rGO-NS-Ni was the most prominent catalyst for glucose oxidation. The current density of the direct glucose alkaline fuel cell (DGAFC) with rGO-NS-Ni as the anode catalyst reached 148.0 mA/cm2, which was 40.82% higher than the blank group. The DGAFC exhibited a maximum power density of 48 W/m2, which was more than 2.08 folds than that of blank group. The catalyst was further characterized by SEM, XPS and Raman. It was speculated that the boosted performance was due to the synergistic effect of N, S-doped rGO and the metallic redox couples, (Ni2+/Ni3+, Co2+/Co3+ and Fe2+/Fe3+), which created more active sites and accelerated electron transfer. This research can provide insights for the development of environmental benign catalysts and promote the application of the DGAFCs.
Collapse
Affiliation(s)
- Yexin Dai
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.D.); (J.D.); (J.L.); (Y.L.)
| | - Jie Ding
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.D.); (J.D.); (J.L.); (Y.L.)
| | - Jingyu Li
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.D.); (J.D.); (J.L.); (Y.L.)
| | - Yang Li
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.D.); (J.D.); (J.L.); (Y.L.)
| | - Yanping Zong
- Tianjin Marine Environmental Center Station, State Oceanic Administration, Tianjin 300450, China;
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin 300384, China;
| | - Zhiyun Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.D.); (J.D.); (J.L.); (Y.L.)
| | - Xianhua Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.D.); (J.D.); (J.L.); (Y.L.)
| |
Collapse
|
82
|
Zhong Y, Peng C, He Z, Chen D, Jia H, Zhang J, Ding H, Wu X. Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01847c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1D nanomaterial-based heterojunctions with unique structures and outstanding physicochemical properties are divided into several types including type II heterojunction, p–n type heterojunction, Schottky junction, Z-type heterojunction, and S-scheme heterojunction.
Collapse
Affiliation(s)
- Yi Zhong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Chundong Peng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Zetian He
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Daimei Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Hailong Jia
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Jinzhong Zhang
- Department of Chemistry and Biochemistry
- University of California
- Santa Cruz
- USA
| | - Hao Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Xiangfeng Wu
- Hebei Key Laboratory of New Materials for Collaborative Development of Traffic Engineering and Environment
- Shijiazhuang Tiedao University
- Shijiazhuang 050043
- China
| |
Collapse
|
83
|
Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev 2021; 50:1354-1390. [DOI: 10.1039/d0cs00415d] [Citation(s) in RCA: 295] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarizes the progress on the structural and electronic modulation of transition metal nitrides for electrochemical energy applications.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Ke Li
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Yanping Lin
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
- Suzhou 215123
- China
| | - Lijun Gao
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Valeria Nicolosi
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
84
|
Malik B, Vijaya Sankar K, Konar R, Tsur Y, Nessim GD. Determining the Electrochemical Oxygen Evolution Reaction Kinetics of Fe
3
S
4
@Ni
3
S
2
Using Distribution Function of Relaxation Times. ChemElectroChem 2020. [DOI: 10.1002/celc.202001410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bibhudatta Malik
- Department of Chemistry and Institute of Nanotechnology Bar-Ilan University Ramat Gan 52900 Israel
| | - Kalimuthu Vijaya Sankar
- The Nancy and Stephen Grand Technion Energy Program Technion-Israel Institute of Technology Haifa 3200003 Israel
- Department of Chemical Engineering Technion-Israel Institute of Technology Haifa 3200003 Israel
| | - Rajashree Konar
- Department of Chemistry and Institute of Nanotechnology Bar-Ilan University Ramat Gan 52900 Israel
| | - Yoed Tsur
- The Nancy and Stephen Grand Technion Energy Program Technion-Israel Institute of Technology Haifa 3200003 Israel
- Department of Chemical Engineering Technion-Israel Institute of Technology Haifa 3200003 Israel
| | - Gilbert Daniel Nessim
- Department of Chemistry and Institute of Nanotechnology Bar-Ilan University Ramat Gan 52900 Israel
| |
Collapse
|
85
|
In-situ synthesis of hybrid nickel cobalt sulfide/carbon nitrogen nanosheet composites as highly efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
86
|
Patil AM, Kitiphatpiboon N, An X, Hao X, Li S, Hao X, Abudula A, Guan G. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti 3C 2T x-MXene and Battery-Type Reduced Graphene Oxide/Nickel-Cobalt Bimetal Oxide Electrode Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52749-52762. [PMID: 33185100 DOI: 10.1021/acsami.0c16221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to excellent metallic conductivity, hydrophilic surfaces, and surface redox properties, a two-dimensional (2D) metal carbide of Ti3C2Tx-MXene could serve as a promising pseudocapacitive electrode material for energy storage devices. Meanwhile, the 2D reduced graphene oxide (rGO) combining with the hierarchical cubic spinel nickel-cobalt bimetal oxide (NiCo2O4) nanospikes could control ion diffusion for charge storage, thereby facilitating the improvement of the energy density of a supercapacitor. As per the strategy, the pseudocapacitive 2D Ti3C2Tx was loaded on a flexible acid-treated carbon fiber (ACF) backbone to prepare a Ti3C2Tx/ACF negative electrode by a convenient drop-casting method. Meanwhile, 2D rGO was deposited on ACF by a simple dip-dry process, which was further decorated by the spinel NiCo2O4 nanospikes using a hydrothermal method to obtain a NiCo2O4@rGO/ACF positive electrode. The fabricated Ti3C2Tx/ACF electrode exhibited an excellent specific capacitance of 246.9 F/g (197.5 mF/cm2) at 4 mA/cm2 along with 96.7% capacity retention over 5000 charge/discharge cycles, whereas the NiCo2O4@rGO/ACF electrode showed a specific capacitance of 1487 F/g (458.3 mA h/g) at 3 mA/cm2 with a cycling stability of 88.2% over 10 000 charge/discharge cycles. As a result, a flexible all-solid-state hybrid supercapacitor (FHSC) device using the pseudocapacitive Ti3C2Tx/ACF on the negative side with a widespread voltage window and the battery-type NiCo2O4@rGO/ACF on the positive side with high electrochemical activity delivered an excellent volumetric capacitance of 2.32 F/cm3 (141.9 F/g) at a current density of 5 mA/cm2 with a high-energy density of 44.36 Wh/kg (0.72 mWh/cm3) at a power density of 985 W/kg (16.13 mW/cm3) along with a cycling stability of 90.48% over 4500 charge/discharge cycles. Therefore, the pseudocapacitive 2D Ti3C2Tx/ACF negative electrode could replace carbon-based electrodes and a combination of it with the battery-type NiCo2O4@rGO/ACF positive electrode should be a promising way to step up the energy density of a supercapacitor.
Collapse
Affiliation(s)
- Amar M Patil
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813, Japan
| | - Nutthaphak Kitiphatpiboon
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Xiaowei An
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Xiaoqiong Hao
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813, Japan
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030012, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Guoqing Guan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813, Japan
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| |
Collapse
|
87
|
Wang Y, Liang Z, Zheng H, Cao R. Recent Progress on Defect‐rich Transition Metal Oxides and Their Energy‐Related Applications. Chem Asian J 2020; 15:3717-3736. [DOI: 10.1002/asia.202000925] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
88
|
Zhang J, Qian J, Ran J, Xi P, Yang L, Gao D. Engineering Lower Coordination Atoms onto NiO/Co3O4 Heterointerfaces for Boosting Oxygen Evolution Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03756] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingyan Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jinmei Qian
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiaqi Ran
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pinxian Xi
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and The Research Center of Biomedical Nanotechnology, Lanzhou University, Lanzhou 730000, P. R. of China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
89
|
Li H, Xu SM, Li Y, Yan H, Xu S. An in situ phosphorization strategy towards doped Co 2P scaffolded within echinus-like carbon for overall water splitting. NANOSCALE 2020; 12:19253-19258. [PMID: 32930311 DOI: 10.1039/d0nr04722h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eco-environmental synthesis of non-expensive electrocatalysts such as transition-metal phosphides (TMPs) is critical to advancing renewable hydrogen fuel. TMP nanostructures prepared typically by introducing additional conventional phosphorus sources are suggested as promising durable and low-cost electrocatalysts. Herein, an eco-efficient guest/host precursor-based synthesis route is demonstrated to prepare doped Co2P scaffolded within echinus-like carbon ((M0.2Co0.8)2P@C, M = Fe and Ni) as electrocatalysts for overall water splitting. (Fe0.2Co0.8)2P@C is derived by directly pyrolyzing a precursor of sodium dodecyl phosphate-intercalated CoFe-layered double hydroxide (CoFe-LDH), without introducing any additional phosphorus source. Electrocatalytic testing shows that (Fe0.2Co0.8)2P@C requires overpotentials of 290 and 130 mV at a current density of 10 mA cm-2 for oxygen and hydrogen evolution reactions (OER and HER) in an alkaline electrolyte, respectively. Furthermore, a different (Ni0.2Co0.8)2P@C composite, obtained only by altering a NiCo-LDH host, exhibits better electrocatalytic activities than those of Fe-doped (Fe0.2Co0.8)2P@C. In particular, the (No0.2Co0.8)2P@C||(Ni0.2Co0.8)2P@C electrolyzer affords a current density of 10 mA cm-2 at a decent voltage of 1.62 V for overall water splitting. Electron energy-loss spectroscopy (EELS) observations show the oxyhydroxide layer formed on the surface, and density functional theory (DFT) calculations reveal that Fe-/Ni-doping lowers the Gibbs free energy barrier for the OER and the HER, both underpinning the enhancements.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
90
|
Lei H, Tan S, Ma L, Liu Y, Liang Y, Javed MS, Wang Z, Zhu Z, Mai W. Strongly Coupled NiCo 2O 4 Nanocrystal/MXene Hybrid through In Situ Ni/Co-F Bonds for Efficient Wearable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44639-44647. [PMID: 32815716 DOI: 10.1021/acsami.0c11185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, owing to the high energy density and excellent security, wearable Zn-air batteries (ZABs) have been known as one of the most prominent wearable energy storage devices. However, sluggish oxygen reaction kinetics of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in the air-breathe cathode seriously has limited further practical applications. In this work, we synthesize a NiCo2O4 nanocrystal/MXene hybrid with strong Ni/Co-F bonds. The prepared MXene-based hybrid composites show remarkable ORR and OER electrocatalytic activity, which results in the fabricated solid-state ZAB device to achieve an open-circuit voltage of 1.40 V, peak power density of 55.1 mW cm-2, and energy efficiency of 66.1% at 1.0 mA cm-2; to the best of our knowledge, this is the record performance among all reported flexible ZABs with MXene-based air cathodes and comparable with some noble metal catalysts. Moreover, even after cutting and suturing, our flexible solid-state ZAB devices are tailorable with high rate of performance.
Collapse
Affiliation(s)
- Hang Lei
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Lujie Ma
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Yongyin Liang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Muhammad Sufyan Javed
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zilong Wang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
91
|
Li Y, Cui M, Yin Z, Chen S, Ma T. Metal-organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries: current progress and prospects. Chem Sci 2020; 11:11646-11671. [PMID: 34094409 PMCID: PMC8163256 DOI: 10.1039/d0sc04684a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023] Open
Abstract
Zinc-air batteries (ZABs) are regarded as ideal candidates for next-generation energy storage equipment due to their high energy density, non-toxicity, high safety, and environmental friendliness. However, the slow oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics on the air cathode limit their efficiency and the development of highly efficient, low cost and stable bifunctional electrocatalysts is still challenging. Metal-Organic Framework (MOF) based bifunctional oxygen electrocatalysts have been demonstrated as promising alternative catalysts due to the regular structure, tunable chemistry, high specific surface area, and simple and easy preparation of MOFs, and great progress has been made in this area. Herein, we summarize the latest research progress of MOF-based bifunctional oxygen electrocatalysts for ZABs, including pristine MOFs, derivatives of MOFs and MOF composites. The effects of the catalysts' composites, morphologies, specific surface areas and active sites on catalytic performances are specifically addressed to reveal the underlying mechanisms for different catalytic activity of MOF based catalysts. Finally, the main challenges and prospects for developing advanced MOF-based bifunctional electrocatalysts are proposed.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus Panjin 124221 China
| | - Ming Cui
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus Panjin 124221 China
| | - Zehao Yin
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus Panjin 124221 China
| | - Siru Chen
- Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University Hangzhou 310018 China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu Fukuoka 808-0196 Japan
| |
Collapse
|
92
|
Yin J, Jin J, Liu H, Huang B, Lu M, Li J, Liu H, Zhang H, Peng Y, Xi P, Yan CH. NiCo 2 O 4 -Based Nanosheets with Uniform 4 nm Mesopores for Excellent Zn-Air Battery Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001651. [PMID: 32844534 DOI: 10.1002/adma.202001651] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/24/2020] [Indexed: 05/06/2023]
Abstract
Herein, a strategy is reported for the fabrication of NiCo2 O4 -based mesoporous nanosheets (PNSs) with tunable cobalt valence states and oxygen vacancies. The optimized NiCo2.148 O4 PNSs with an average Co valence state of 2.3 and uniform 4 nm nanopores present excellent catalytic performance with an ultralow overpotential of 190 mV at a current density of 10 mA cm-2 and long-term stability (700 h) for the oxygen evolution reaction (OER) in alkaline media. Furthermore, Zn-air batteries built using the NiCo2.148 O4 PNSs present a high power and energy density of 83 mW cm-2 and 910 Wh kg-1 , respectively. Moreover, a portable battery box with NiCo2.148 O4 PNSs as the air cathode presents long-term stability for 120 h under low temperatures in the range of 0 to -35 °C. Density functional theory calculations reveal that the prominent electron exchange and transfer activity of the electrocatalyst is attributed to the surface lower-coordinated Co-sites in the porous region presenting a merging 3d-eg -t2g band, which overlaps with the Fermi level of the Zn-air battery system. This favors the adsorption of the *OH, and stabilized *O radicals are reached, toward competitively lower overpotential, demonstrating a generalized key for optimally boosting overall OER performance.
Collapse
Affiliation(s)
- Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongbo Liu
- Petroleum Engineering School, Southwest Petroleum University, Chengdu, 610000, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong SAR, China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianyi Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong Zhang
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
93
|
Yin J, Jin J, Lu M, Huang B, Zhang H, Peng Y, Xi P, Yan CH. Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. J Am Chem Soc 2020; 142:18378-18386. [DOI: 10.1021/jacs.0c05050] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong, SAR, China
| | - Hong Zhang
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
94
|
Jiang T, Hu H, Lei F, Hu J, Wu M, Ho D. Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38031-38044. [PMID: 32799437 DOI: 10.1021/acsami.0c08676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simultaneous realization of confined growth and doping of transition metals within carbon hosts promises to deliver unusual bifunctional catalytic activity but still remains challenging due to the difficulty in achieving synchronous nucleation and diffusion of metallic ions in a single synthesis step. Herein, we present a simple synthesis strategy capable of concurrently realizing geometric confined growth and doping of transition metals within graphene hosts, demonstrated in Co,N-codoped graphene-confined FeNi nanoparticles (Co,N-GN-FeNi). The obtained Co,N-GN-FeNi can take full advantage of the hierarchy of interactions between the confined-grown FeNi nanoparticles (for high oxygen evolution reaction (OER) activity) and the Co,N-codoped graphene hosts (for high oxygen reduction reaction (ORR) activity). The overall structure is a rationally designed synergy that simultaneously realizes (i) adequate exposure of electroactive sites, (ii) effective protection against corrosion/aggregation of FeNi nanoparticles, and (iii) rapid transport of ions/electrons between the interfaces. As a result, Co,N-GN-FeNi exhibits excellent bifunctional electrocatalytic activity relying on a low ORR/OER subtraction (ΔE = 0.81 V). Subsequent combination with a planar electrode configuration and a solid polymer electrolyte further demonstrates the utilization of Co,N-GN-FeNi as air cathode bifunctional electrocatalysts in a solid-state rechargeable micro-Zn-air battery (SR-MZAB), which exhibits a large open-circuit voltage of 1.39 V, a high power density/specific capacity of 62.3 mW cm-2/763 mAh g-1, excellent durability (126 cycles/42 h), and mechanical flexibility. This work demonstrates an effective synthesis strategy for concurrently realizing geometric confined growth and doping of transition metals within carbon hosts, for enhanced bifunctional catalytic activity toward novel SR-MZABs with high energy efficiency, security, and flexibility for wearable micropower sources.
Collapse
Affiliation(s)
- Tongtong Jiang
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
| | - Haibo Hu
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Junjie Hu
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
| | - Mingzai Wu
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
95
|
Wang Y, Cao Q, Guan C, Cheng C. Recent Advances on Self-Supported Arrayed Bifunctional Oxygen Electrocatalysts for Flexible Solid-State Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002902. [PMID: 32639086 DOI: 10.1002/smll.202002902] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Flexible solid-state Zn-air batteries have been rapidly developed benefiting from the uprising demand for wearable electronic devices, wherein the air electrode integrated with efficient bifunctional oxygen electrocatalysts plays an important role to achieve high performance. Binder-free self-supported bifunctional catalysts can provide large active surface area, fast electron transport path, easy ion diffusion, and excellent structural stability and flexibility, thus acting as promising flexible air cathodes. In this review, recent advances on the application of nanoarrayed electrocatalysts as air cathodes in flexible Zn-air batteries are reviewed. Especially, various types of bifunctional oxygen electrocatalysts, including carbonaceous material arrays, transition metal compound arrays, transition metal/carbon arrays, transition metal compound/carbon arrays, and other hybrid arrays, are discussed. The applications of flexible Zn-air batteries with two configurations (i.e., planar stacks and cable fibers) are also introduced. Finally, perspectives on the optimization of arrayed air cathodes for future development to achieve high-performance flexible Zn-air batteries are shared.
Collapse
Affiliation(s)
- Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qinghe Cao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Cao Guan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
96
|
Deep-Breathing Honeycomb-like Co-N x-C Nanopolyhedron Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. iScience 2020; 23:101404. [PMID: 32777777 PMCID: PMC7416340 DOI: 10.1016/j.isci.2020.101404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022] Open
Abstract
Metal organic framework (MOF) derivatives have been extensively used as bifunctional oxygen electrocatalysts. However, the utilization of active sites is still not satisfactory owing to the sluggish mass transport within their narrow pore channels. Herein, interconnected macroporous channels were constructed inside MOFs-derived Co-Nx-C electrocatalyst to unblock the mass transfer barrier. The as-synthesized electrocatalyst exhibits a honeycomb-like morphology with highly exposed Co-Nx-C active sites on carbon frame. Owing to the interconnected ordered macropores throughout the electrocatalyst, these active sites can smoothly “exhale/inhale” reactants and products, enhancing the accessibility of active sites and the reaction kinetics. As a result, the honeycomb-like Co-Nx-C displayed a potential difference of 0.773 V between the oxygen evolution reaction potential at 10 mA cm−2 and the oxygen reduction reaction half-wave potential, much lower than that of bulk-Co-Nx-C (0.842 V). The rational modification on porosity makes such honeycomb-like MOF derivative an excellent bifunctional oxygen electrocatalyst in rechargeable Zn-air batteries. A deep-breathing oxygen electrocatalyst with highly dispersed active sites was built Sculpturing ordered macropores in MOF derivatives enables fast mass transport The honeycomb-like Co-Nx-C nanopolyhedron worked well in rechargeable Zn-air battery
Collapse
|
97
|
Wang R, Wei Y, An L, Yang R, Guo L, Weng Z, Da P, Chen W, Jin J, Li J, Xi P. Construction and Application of Interfacial Inorganic Nanostructures. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Rui Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Linchuan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Wenqing Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jianyi Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
98
|
Lian Y, Shi K, Yang H, Sun H, Qi P, Ye J, Wu W, Deng Z, Peng Y. Elucidation of Active Sites on S, N Codoped Carbon Cubes Embedding Co-Fe Carbides toward Reversible Oxygen Conversion in High-Performance Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907368. [PMID: 32372461 DOI: 10.1002/smll.201907368] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/23/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The development of high-performance but low-cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal-air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co-Fe carbides by pyrolyzing the Co-Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal-sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2 . Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co-Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn-air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.
Collapse
Affiliation(s)
- Yuebin Lian
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Kefei Shi
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Haojing Yang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Hao Sun
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Pengwei Qi
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Jing Ye
- Analysis and Testing Center, Soochow University, Suzhou, 215123, China
| | - Wenbin Wu
- KeTai Advanced Materials Co., Ltd, Yichun, Jiangxi, 330800, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
99
|
Tian L, Ji D, Zhang S, He X, Ramakrishna S, Zhang Q. A Humidity-Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001743. [PMID: 32406150 DOI: 10.1002/smll.202001743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Hierarchical porous carbons (HPCs) are highly efficient supports for various remarkable catalytic systems. However, templates are commonly utilized for the preparation of HPCs, and the postremoval of the templates is uneconomical, time-consuming, and harmful for the environment in most cases. Herein, a new humidity-induced nontemplating strategy is developed to prepare 1D HPC with rich topologies and interconnected cavities for catalysis and energy storage applications. Porous electrospun nanofibers as calcination precursors are prepared via a humidity-induced phase separation strategy. A nitrogen-doped hierarchical porous carbon nanofiber (HPCNF), loading Co/Co3 O4 hetero-nanoparticles as exemplary nonprecious-metal active substance (Co/Co3 O4 @HPCNF), is fabricated through the subsequent hydrothermal and pyrolysis treatment. The internal mesopore and cavity structure can be simply controlled by varying environment humidity during the electrospinning process. Benefiting from the unique topology, Co/Co3 O4 @HPCNF exhibits superior bifunctional activity when being used as electrocatalysts for oxygen reduction/evolution reactions. Moreover, the hybrid catalyst also demonstrates a remarkable power density of 102.5 mW cm-2 , a high capacity of 748.5 mAh gZn -1 , and long cycle life in Zinc-air batteries. The developed approach offers a facile template-free route for the preparation of HPCNF hybrid and can be extended to other members of the large polymer family for catalyst design and energy storage applications.
Collapse
Affiliation(s)
- Lidong Tian
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Faculty of Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Dongxiao Ji
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Faculty of Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Shan Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Faculty of Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Xiaowei He
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Seeram Ramakrishna
- Faculty of Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Qiuyu Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
100
|
Abstract
AbstractElectrocatalysis offers an alternative solution for the energy crisis because it lowers the activation energy of reaction to produce economic fuels more accessible. Non-noble electrocatalysts have shown their capabilities to practical catalytic applications as compared to noble ones, whose scarcity and high price limit the development. However, the puzzling catalytic processes in non-noble electrocatalysts hinder their advancement. In-situ techniques allow us to unveil the mystery of electrocatalysis and boost the catalytic performances. Recently, various in-situ X-ray techniques have been rapidly developed, so that the whole picture of electrocatalysis becomes clear and explicit. In this review, the in-situ X-ray techniques exploring the structural evolution and chemical-state variation during electrocatalysis are summarized for mainly oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). These approaches include X-ray Absorption Spectroscopy (XAS), X-ray diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The information seized from these in-situ X-ray techniques can effectively decipher the electrocatalysis and thus provide promising strategies for advancing the electrocatalysts. It is expected that this review could be conducive to understanding these in-situ X-ray approaches and, accordingly, the catalytic mechanism to better the electrocatalysis.
Collapse
|