51
|
A recyclable stereoauxiliary aminocatalyzed strategy for one-pot synthesis of indolizine-2-carbaldehydes. Commun Chem 2023; 6:40. [PMID: 36823457 PMCID: PMC9950359 DOI: 10.1038/s42004-023-00828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Indolizine-carbaldehydes with the easily modifiable carbaldehyde group are important synthetic targets as versatile precursors for distinct indolizines. However, the efficient one-pot construction of trisubstituted indolizine-2-carbaldehydes represents a long-standing challenge. Herein, we report an unprecedented recyclable stereoauxiliary aminocatalytic approach via aminosugars derived from biomass, which enable the efficient one-pot synthesis of desired trisubstituted indolizine-2-carbaldehydes via [3+2] annulations of acyl pyridines and α,β-unsaturated aldehyde. Compared to the steric shielding effect from α-anomer, a stereoauxiliary effect favored by β-anomer of D-glucosamine is supported by control experiments. Furthermore, polymeric chitosan containing predominantly β-D-anhydroglucosamine units also shows excellent catalytic performance in aqueous solutions for the conversion of various substrates, large-scale synthesis and catalytic cycling experiments. Thus, our approach advances the existing methodologies by providing a rich library of indolizine-2-aldehydes. In addition, it delivers an efficient protocol for a set of late-stage diversification and targeted modifications of bioactive molecules or drugs, as showcased with 1,2,3-trisubstituted indolizine-2-carbaldehydes.
Collapse
|
52
|
Alimohammadzadeh R, Sanhueza I, Córdova A. Design and fabrication of superhydrophobic cellulose nanocrystal films by combination of self-assembly and organocatalysis. Sci Rep 2023; 13:3157. [PMID: 36823204 PMCID: PMC9950148 DOI: 10.1038/s41598-023-29905-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cellulose nanocrystals, which have unique properties of high aspect ratio, high surface area, high mechanical strength, and a liquid crystalline nature, constitute a renewable nanomaterial with great potential for several uses (e.g., composites, films and barriers). However, their intrinsic hydrophilicity results in materials that are moisture sensitive and exhibit poor water stability. This limits their use and competitiveness as a sustainable alternative against fossil-based materials/plastics in packaging, food storage, construction and materials application, which cause contamination in our oceans and environment. To make cellulose nanocrystal films superhydrophobic, toxic chemicals such as fluorocarbons are typically attached to their surfaces. Hence, there is a pressing need for environmentally friendly alternatives for their modification and acquiring this important surface property. Herein, we describe the novel creation of superhydrophobic, fluorocarbon-free and transparent cellulose nanocrystal films with functional groups by a bioinspired combination of self-assembly and organocatalytic surface modification at the nanoscale using food approved organic acid catalysts. The resulting film-surface is superhydrophobic (water contact angle > 150°) and has self-cleaning properties (the lotus effect). In addition, the superhydrophobic cellulose nanocrystal films have excellent water stability and significantly decreased oxygen permeability at high relative humidity with oxygen transmission rates better than those of commonly used plastics.
Collapse
Affiliation(s)
- Rana Alimohammadzadeh
- Department of Natural Science and Technology, Mid Sweden University, Holmgatan 10, 851 70, Sundsvall, Sweden
| | - Italo Sanhueza
- Department of Natural Science and Technology, Mid Sweden University, Holmgatan 10, 851 70, Sundsvall, Sweden
| | - Armando Córdova
- Department of Natural Science and Technology, Mid Sweden University, Holmgatan 10, 851 70, Sundsvall, Sweden.
| |
Collapse
|
53
|
Zhang XX, Gao Y, Zhang YX, Zhou J, Yu JS. Highly Enantioselective Construction of Multifunctional Silicon-Stereogenic Silacycles by Asymmetric Enamine Catalysis. Angew Chem Int Ed Engl 2023; 62:e202217724. [PMID: 36625565 DOI: 10.1002/anie.202217724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
We report the first highly enantioselective construction of silicon-stereocenters by asymmetric enamine catalysis. An unprecedented desymmetric intramolecular aldolization of prochiral siladials was thus developed for the facile access of multifunctional silicon-stereogenic silacycles in high to excellent enantioselectivity. With an enal moiety, these adducts could be readily elaborated for the diverse synthesis of silicon-stereogenic compounds, and for late-stage modification.
Collapse
Affiliation(s)
- Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yan-Xue Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
54
|
Adili A, Webster JP, Zhao C, Mallojjala SC, Romero-Reyes MA, Ghiviriga I, Abboud KA, Vetticatt MJ, Seidel D. Mechanism of a Dually Catalyzed Enantioselective Oxa-Pictet-Spengler Reaction and the Development of a Stereodivergent Variant. ACS Catal 2023; 13:2240-2249. [PMID: 37711191 PMCID: PMC10501388 DOI: 10.1021/acscatal.2c05484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes proceed under weakly acidic conditions utilizing a combination of two catalysts, an indoline HCl salt and a bisthiourea compound. Mechanistic investigations revealed the roles of both catalysts and confirmed the involvement of oxocarbenium ion intermediates, ruling out alternative scenarios. A stereochemical model was derived from density functional theory calculations, which provided the basis for the development of a highly enantioselective stereodivergent variant with racemic tryptophol derivatives.
Collapse
Affiliation(s)
- Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John-Paul Webster
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Chenfei Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | - Moises A Romero-Reyes
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Daniel Seidel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
55
|
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023; 62:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Enantioselective reduction reactions are privileged transformations for the construction of trisubstituted stereogenic centers. While these include established synthetic strategies, such as asymmetric hydrogenation, methods based on the enantioselective addition of hydridic reagents to electrophilic prochiral substrates have also gained importance. In this context, the asymmetric conjugate reduction (ACR) of α,β-unsaturated compounds has become a convenient approach for the synthesis of chiral compounds with trisubstituted stereocenters in α-, β-, or γ-position to electron-withdrawing functional groups. Because such activating groups are diverse and amenable of further derivatizations, ACRs provide a general and powerful synthetic entry towards a variety of valuable chiral building blocks. This Review provides a comprehensive collection of catalytic ACR methods involving transition-metal, organic, and enzymatic catalysis since its first versions dating back to the late 1970s.
Collapse
Affiliation(s)
- Giovanni Lonardi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Riccardo Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Manuel Orlandi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
56
|
Némethová V, Krištofíková D, Mečiarová M, Šebesta R. Asymmetric Organocatalysis Under Mechanochemical Conditions. CHEM REC 2023:e202200283. [PMID: 36703542 DOI: 10.1002/tcr.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Asymmetric organocatalysis is a robust methodology providing access to numerous valuable compounds while having green chemistry principles in mind. The realization of organocatalytic transformation under solvent-free mechanochemical conditions brings additional benefits in terms of yields, selectivities, and, last but not least overall improved sustainability. This overview describes developments in the use of mechanochemistry as a vehicle for asymmetric organocatalytic transformations. The material is organized according to main catalytic activation modes, starting with covalent activation and proceeding to non-covalent activation modes. The advantages of mechanochemical organocatalytic reactions are particularly highlighted, but in some cases also, limitations are mentioned. Possibilities for target compound synthesis are also discussed.
Collapse
Affiliation(s)
- Viktória Némethová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Dominika Krištofíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
57
|
Zhang M, Yu S, Hua R, Zhang D, Qiu H, Hu W. Copper-catalyzed multicomponent assembly of γ-butenolides via the interception of carbonyl ylides with iminium ions. Org Biomol Chem 2023; 21:783-788. [PMID: 36594521 DOI: 10.1039/d2ob02075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A Cu(I)-catalyzed three-component reaction of cyclopropenes, enamines and aldehydes has been realized. This reaction proceeds via the interception of carbonyl oxonium ylide intermediates with α, β-unsaturated iminium ions that are in situ generated from enamines and aldehydes under the catalysis of Cu(MeCN)4PF6, leading to the desired γ-butenolide derivatives in good yields and with moderate diastereoselectivities. Access to these derivatives with tethered ketone and alkynal groups will expand the structural diversity of multi-substituted butenolides.
Collapse
Affiliation(s)
- Mengchu Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Sifan Yu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Ruyu Hua
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| |
Collapse
|
58
|
Guan Q, Zhou LL, Dong YB. Construction of Covalent Organic Frameworks via Multicomponent Reactions. J Am Chem Soc 2023; 145:1475-1496. [PMID: 36646043 DOI: 10.1021/jacs.2c11071] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
59
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
60
|
Biswas A. Organocatalyzed Asymmetric Pictet‐Spengler Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anup Biswas
- Departmentof Chemistry Hooghly Women's College Vivekanada Road, Pipulpati Hooghly 712102 India
| |
Collapse
|
61
|
Morofuji T, Nagai S, Watanabe A, Inagawa K, Kano N. Streptocyanine as an activation mode of amine catalysis for the conversion of pyridine rings to benzene rings. Chem Sci 2023; 14:485-490. [PMID: 36741523 PMCID: PMC9847661 DOI: 10.1039/d2sc06225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amine catalysts have emerged as an invaluable tool in organic synthesis. Iminium, enamine, and enamine radical cation species are representative activation modes of amine catalysis. However, the development of new amine catalysis activation modes that enable novel synthetic strategies remains highly desirable. Herein, we report streptocyanine as a new amine catalysis activation mode, which enables the skeletal editing of pyridine rings to benzene rings. N-Arylation of pyridines bearing an alkenyl substituent at the 3-position generates the corresponding N-arylpyridiniums. The resulting pyridinum reacts with a catalytic amount of piperidine to afford a streptocyanine intermediate. Catalytically generated streptocyanine forms a benzene ring via a ring-closing reaction, thereby releasing the amine catalyst. Consequently, the alkene moiety in the starting pyridines is incorporated into the benzene ring of the products. Pyridiniums bearing various alkene moieties were efficiently converted to formyl-substituted benzene derivatives. Mechanistic studies support the postulation that the present catalytic process was intermediated by streptocyanine. In this reaction system, streptocyanine could be regarded as a new activation mode of amine catalysis.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Shota Nagai
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Airi Watanabe
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Kota Inagawa
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
62
|
Qiao J, Wang S, Liu X, Feng X. Enantioselective [3+2] Cycloaddition of Donor-Acceptor Aziridines and Imines to Construct 2,5-trans-Imidazolidines. Chemistry 2023; 29:e202203757. [PMID: 36602265 DOI: 10.1002/chem.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
An enantioselective [3+2] cycloaddition of donor-acceptor aziridines with N-aryl protected imines was developed with a Ni(ClO4 )2 ⋅ 6H2 O/N,N'-dioxide catalyst system, providing a broad range of chiral trans-substituted imidazolidine compounds with good yields and excellent enantioselectivities (up to 99 % yield, up to 98 % ee). Control experiments indicated that the products could offer excellent diastereoselectivities with the control of chiral Ni(II)-N,N'-dioxide complex and the interaction of the substrates. The possible catalytic process was proposed to rationalize the stereocontrol.
Collapse
Affiliation(s)
- Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
63
|
Ofori Atta L, Zhou Z, Roelfes G. In Vivo Biocatalytic Cascades Featuring an Artificial-Enzyme-Catalysed New-to-Nature Reaction. Angew Chem Int Ed Engl 2023; 62:e202214191. [PMID: 36342952 PMCID: PMC10100225 DOI: 10.1002/anie.202214191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Artificial enzymes utilizing the genetically encoded non-proteinogenic amino acid p-aminophenylalanine (pAF) as a catalytic residue are able to react with carbonyl compounds through an iminium ion mechanism to promote reactions that have no equivalent in nature. Herein, we report an in vivo biocatalytic cascade that is augmented with such an artificial enzyme-catalysed new-to-nature reaction. The artificial enzyme in this study is a pAF-containing evolved variant of the lactococcal multidrug-resistance regulator, designated LmrR_V15pAF_RMH, which efficiently converts benzaldehyde derivatives produced in vivo into the corresponding hydrazone products inside E. coli cells. These in vivo biocatalytic cascades comprising an artificial-enzyme-catalysed reaction are an important step towards achieving a hybrid metabolism.
Collapse
Affiliation(s)
- Linda Ofori Atta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands.,Current address: School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
64
|
Reyes E, Prieto L, Milelli A. Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules 2022; 28:271. [PMID: 36615465 PMCID: PMC9822454 DOI: 10.3390/molecules28010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Majority of drugs act by interacting with chiral counterparts, e.g., proteins, and we are, unfortunately, well-aware of how chirality can negatively impact the outcome of a therapeutic regime. The number of chiral, non-racemic drugs on the market is increasing, and it is becoming ever more important to prepare these compounds in a safe, economic, and environmentally sustainable fashion. Asymmetric organocatalysis has a long history, but it began its renaissance era only during the first years of the millennium. Since then, this field has reached an extraordinary level, as confirmed by the awarding of the 2021 Chemistry Nobel Prize. In the present review, we wish to highlight the application of organocatalysis in the synthesis of enantio-enriched molecules that may be of interest to the pharmaceutical industry and the medicinal chemistry community. We aim to discuss the different activation modes observed for organocatalysts, examining, for each of them, the generally accepted mechanisms and the most important and developed reactions, that may be useful to medicinal chemists. For each of these types of organocatalytic activations, select examples from academic and industrial applications will be disclosed during the synthesis of drugs and natural products.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
65
|
Hu CH, Li Y. Visible-Light Photoredox-Catalyzed Decarboxylation of α-Oxo Carboxylic Acids to C1-Deuterated Aldehydes and Aldehydes. J Org Chem 2022; 88:6401-6406. [DOI: 10.1021/acs.joc.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Chun-Hong Hu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Yang Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
66
|
Guo Y, Wu L, Qiu FG. Highly Diastereo- and Enantioselective Formal [4 + 2] Cyclization of Nitroalkenes and Unsaturated Ketoesters under Phase-Transfer Catalysis. Org Lett 2022; 24:8370-8374. [DOI: 10.1021/acs.orglett.2c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yiming Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linping Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
67
|
Corti V, Bartolomei B, Mamone M, Gentile G, Prato M, Filippini G. Amine-Rich Carbon Dots as Novel Nano-Aminocatalytic Platforms in Organic Synthesis. European J Org Chem 2022; 2022:e202200879. [PMID: 36632560 PMCID: PMC9826489 DOI: 10.1002/ejoc.202200879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/06/2022] [Indexed: 01/14/2023]
Abstract
The development of novel and effective metal-free catalytic systems, which can drive value-added organic transformations in environmentally benign solvents (for instance, water), is highly desirable. Moreover, these new catalysts need to be harmless, easy-to-prepare, and potentially recyclable. In this context, amine-rich carbon dots (CDs) have recently emerged as promising nano-catalytic platforms. These nitrogen-doped nanoparticles, which show dimensions smaller than 10 nm, generally consist of carbon cores that are surrounded by shells containing numerous amino groups. In recent years, organic chemists have used these surface amines to guide the design of several synthetic methodologies under mild operative conditions. This Concept highlights the recent advances in the synthesis of amine-rich carbon dots and their applications in organic catalysis, including forward-looking opportunities within this research field.
Collapse
Affiliation(s)
- Vasco Corti
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Beatrice Bartolomei
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Martina Mamone
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn SciIkerbasque48013BilbaoSpain
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| |
Collapse
|
68
|
McErlain H, McLean EB, Morgan TEF, Burianova VK, Tavares AAS, Sutherland A. Organocatalytic Asymmetric Synthesis of SynVesT-1, a Synaptic Density Positron Emission Tomography Imaging Agent. J Org Chem 2022; 87:14443-14451. [PMID: 36222243 PMCID: PMC9639009 DOI: 10.1021/acs.joc.2c01895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heterocyclic nonacetamide ligands are used as positron emission tomography (PET) imaging agents of the synaptic vesicle glycoprotein 2A (SV2A), with potential applications in the diagnosis of various neuropsychiatric diseases. To date, the main synthetic strategy to access these optically active compounds has involved the racemic synthesis of a late-stage intermediate followed by the separation of the enantiomers. Here, we describe the use of iminium organocatalysis for the asymmetric synthesis of SynVesT-1, an important PET imaging agent of SV2A. The key step involved the conjugate addition of nitromethane with a cinnamaldehyde in the presence of the Jørgensen-Hayashi catalyst using the Merck dual acid cocatalyst system. Pinnick-type oxidation and esterification of the adduct was then followed by chemoselective nitro group reduction and cyclization using nickel borate. N-Alkylation of the resulting lactam then completed the seven-step synthesis of SynVesT-1. This approach was amenable for the synthesis of an organotin analogue, which following copper(II)-mediated fluoro-destannylation allowed rapid access to [18F]SynVesT-1.
Collapse
Affiliation(s)
- Holly McErlain
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Euan B. McLean
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Timaeus E. F. Morgan
- BHF-University
Centre for Cardiovascular Science, University
of Edinburgh, EdinburghEH16 4TJ, U.K.
| | - Valeria K. Burianova
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Adriana A. S. Tavares
- BHF-University
Centre for Cardiovascular Science, University
of Edinburgh, EdinburghEH16 4TJ, U.K.
| | - Andrew Sutherland
- School
of Chemistry, The Joseph Black Building, University of Glasgow, GlasgowG12 8QQ, U.K.,
| |
Collapse
|
69
|
Girvin ZC, Cotter LF, Yoon H, Chapman SJ, Mayer JM, Yoon TP, Miller SJ. Asymmetric Photochemical [2 + 2]-Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. J Am Chem Soc 2022; 144:20109-20117. [PMID: 36264837 PMCID: PMC9633457 DOI: 10.1021/jacs.2c09690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereochemical control of photochemical reactions that occur via triplet energy transfer remains a challenge. Suppressing off-catalyst stereorandom reactivity is difficult for highly reactive open-shell intermediates. Strategies for suppressing racemate-producing, off-catalyst pathways have long focused on formation of ground state, substrate-catalyst chiral complexes that are primed for triplet energy transfer via a photocatalyst in contrast to their off-catalyst counterparts. Herein, we describe a strategy where both a chiral catalyst-associated vinylpyridine and a nonassociated, free vinylpyridine substrate can be sensitized by an Ir(III) photocatalyst, yet high levels of diastereo- and enantioselectivity in a [2 + 2] photocycloaddition are achieved through a preferred, highly organized transition state. This mechanistic paradigm is distinct from, yet complementary to current approaches for achieving high levels of stereocontrol in photochemical transformations.
Collapse
Affiliation(s)
- Zebediah C. Girvin
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Laura F. Cotter
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Hyung Yoon
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Steven J. Chapman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
70
|
Tanaka F. Amines as Catalysts: Dynamic Features and Kinetic Control of Catalytic Asymmetric Chemical Transformations to Form C-C Bonds and Complex Molecules. CHEM REC 2022:e202200207. [PMID: 36202628 DOI: 10.1002/tcr.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Carbonyl transformations involving enolates and/or enamines have been used for various types of bond-forming reactions. In this account, catalysts and catalyst systems that have amino acids or primary, secondary, and/or tertiary amines as key catalytic functional groups that we have developed to accelerate chemical transformations, including regio-, diastereo- and enantioselective reactions, are discussed. Our chemical transformation strategies and methods that use amine derivatives as catalysts are also discussed. As amines can have different functions depending on protonation and on the species formed during the catalysis (such as enamines and iminium ions), dynamics and kinetic controls are the keys for understanding the catalysis. Further, strategies that harness dynamic steps and kinetic control in amine-catalyzed reactions have enabled the synthesis of complex molecules in stereocontrolled manners. Understanding the dynamic features and the kinetic controls of the catalysis will further the design of the catalysts and the development of chemical transformation strategies and methods.
Collapse
Affiliation(s)
- Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
71
|
Ascaso‐Alegre C, Herrera RP, Mangas‐Sánchez J. Stereoselective Three-Step One-Pot Cascade Combining Amino- and Biocatalysis to Access Chiral γ-Nitro Alcohols. Angew Chem Int Ed Engl 2022; 61:e202209159. [PMID: 35983936 PMCID: PMC9826084 DOI: 10.1002/anie.202209159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
The combination of small-molecule catalysis and enzyme catalysis represents an underexploited area of research with huge potential in asymmetric synthetic chemistry due to both compatibility of reaction conditions and complementary reactivity. Herein, we describe the telescopic synthesis of chiral nitro alcohols starting from commercially available benzaldehyde derivatives through the one-pot three-step chemoenzymatic cascade combination of a Wittig reaction, chiral-thiourea-catalysed asymmetric conjugate addition, and ketoreductase-mediated reduction to access the corresponding target compounds in moderate to excellent overall isolated yields (36-80 %) and high diastereomeric and enantiomeric ratios (up to >97 : 3). This represents the first example of the combination of an organocatalysed asymmetric conjugate addition via iminium ion activation and a bioreduction step catalysed by ketoreductases.
Collapse
Affiliation(s)
- Christian Ascaso‐Alegre
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH)Spanish National Research Council (CSIC)—University of ZaragozaPedro Cerbuna 1250009ZaragozaSpain
| | - Raquel P. Herrera
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH)Spanish National Research Council (CSIC)—University of ZaragozaPedro Cerbuna 1250009ZaragozaSpain
| | - Juan Mangas‐Sánchez
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH)Spanish National Research Council (CSIC)—University of ZaragozaPedro Cerbuna 1250009ZaragozaSpain
- ARAID Foundation50018ZaragozaSpain
| |
Collapse
|
72
|
Bondzić BP, Daskalakis K, Taniguchi T, Monde K, Hayashi Y. Stereoselective Construction of Fluorinated Quaternary Stereogenic Centers via an Organocatalytic Asymmetric exo-Selective Diels-Alder Reaction in the Presence of Water. Org Lett 2022; 24:7455-7460. [PMID: 36190808 DOI: 10.1021/acs.orglett.2c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic, asymmetric Diels-Alder reaction of α-fluoro α,β-unsaturated aldehydes and cyclopentadiene was developed using diarylprolinol silyl ether as an organocatalyst. The reaction proceeds in toluene with trifluoroacetic acid as an additive (condition A). Perchloric acid salt of diarylprolinol silyl ether also promotes the reaction using water as a reaction medium (condition B). In both cases, excellent exo-selectivity and enantioselectivity were obtained with generation of a fluorinated quaternary chiral center.
Collapse
Affiliation(s)
- Bojan P Bondzić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11 000 Belgrade, Serbia
| | - Konstantinos Daskalakis
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
73
|
Qian P, Zhang S, Luo F, Wang J, Zhang X, Liu X, Chen X, Wang W, Chen X. Site-selective deuteration at the α-position of enals by an amine and bis(phenylsulfonyl)methane co-catalyzed H/D exchange reaction. Chem Commun (Camb) 2022; 58:11458-11461. [PMID: 36149351 DOI: 10.1039/d2cc04959g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amine and bis(phenylsulfonyl)methane co-catalyzed hydrogen-deuterium exchange (HDE) method via a Michael-retro-Michael pathway for site-selective introduction of deuterium at the α-position of enals using D2O as a deuterium source has been achieved. The mild, operationally simple protocol allows for high yielding and high level deuterium incorporation (up to 99%) for structurally diverse aromatic-derived enals and dienals.
Collapse
Affiliation(s)
- Pengfei Qian
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China.
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China.
| | - Fan Luo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Jiarui Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Xinyu Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Xuejun Liu
- Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai, P. R. China
| | - Xiaodong Chen
- Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai, P. R. China
| | - Wei Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China. .,Department of Pharmacology and Toxicology, and BIO5 Institute, University of Arizona, 1703 E. Mabel St., P. O. Box 210207, Tucson, AZ 85721-0207, USA.
| | - Xiaobei Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
74
|
Leveson‐Gower RB, Roelfes G. Biocatalytic Friedel-Crafts Reactions. ChemCatChem 2022; 14:e202200636. [PMID: 36606067 PMCID: PMC9804301 DOI: 10.1002/cctc.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Indexed: 01/07/2023]
Abstract
Friedel-Crafts alkylation and acylation reactions are important methodologies in synthetic and industrial chemistry for the construction of aryl-alkyl and aryl-acyl linkages that are ubiquitous in bioactive molecules. Nature also exploits these reactions in many biosynthetic processes. Much work has been done to expand the synthetic application of these enzymes to unnatural substrates through directed evolution. The promise of such biocatalysts is their potential to supersede inefficient and toxic chemical approaches to these reactions, with mild operating conditions - the hallmark of enzymes. Complementary work has created many bio-hybrid Friedel-Crafts catalysts consisting of chemical catalysts anchored into biomolecular scaffolds, which display many of the same desirable characteristics. In this Review, we summarise these efforts, focussing on both mechanistic aspects and synthetic considerations, concluding with an overview of the frontiers of this field and routes towards more efficient and benign Friedel-Crafts reactions for the future of humankind.
Collapse
Affiliation(s)
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
75
|
Hu Y, Yuan J, Li Z, Zhao L, Zhao J, Yu X. Asymmetric α-spirocyclopropanation of oxindoles and benzofuranones via dynamic kinetic resolution. Commun Chem 2022; 5:106. [PMID: 36697948 PMCID: PMC9814566 DOI: 10.1038/s42004-022-00695-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/23/2022] [Indexed: 01/28/2023] Open
Abstract
Chiral benzo five-membered heterocyclic spirocyclopropanes are an important class of parent core structures with pharmacological activity. A novel organocatalytic one-pot cascade ether oxidation iminium-ion activation strategy for the asymmetric spirocyclopropylation of benzofuran-2-ones and indolin-2-ones from allyl tert-butyl ethers/ pent-2,4-dienyl ethyl ethers with excellent enantioselectivity (ee% up to > 99) and diastereoselectivity(dr.% up to 91:9) has been developed. This process involves the successful dynamic kinetic resolution of racemic 3-bromobenzofuran-2-ones or 3-bromoindolin-2-ones. Its synthetic application will provide a new aminocatalytic cascade tool for the efficient synthesis of complex molecules.
Collapse
Affiliation(s)
- Yang Hu
- grid.28056.390000 0001 2163 4895Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, People’s Republic of China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioengineering Reactors, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| | - Jie Yuan
- grid.28056.390000 0001 2163 4895Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, People’s Republic of China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioengineering Reactors, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| | - Zheyao Li
- grid.28056.390000 0001 2163 4895Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, People’s Republic of China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioengineering Reactors, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| | - Lin Zhao
- grid.28056.390000 0001 2163 4895Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, People’s Republic of China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioengineering Reactors, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| | - Jianhong Zhao
- grid.28056.390000 0001 2163 4895Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, People’s Republic of China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioengineering Reactors, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| | - Xinhong Yu
- grid.28056.390000 0001 2163 4895Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, People’s Republic of China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioengineering Reactors, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| |
Collapse
|
76
|
Tang Z, Mo K, Ma X, Huang J, Zhao D. para
‐Selective Radical Trifluoromethylation of Benzamide Derivatives via Iminium Intermediates. Angew Chem Int Ed Engl 2022; 61:e202208089. [DOI: 10.1002/anie.202208089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Ke Mo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Xiaoqiang Ma
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| |
Collapse
|
77
|
Mhaldar SN, Kotkar GD, Tilve SG. Synthetic access to Syn-functionalised chiral hydroxy pyrrolidines and pyrrolidones: Evaluation of α-glucosidase inhibition activity, docking studies and pharmacokinetics prediction. Bioorg Chem 2022; 129:106115. [DOI: 10.1016/j.bioorg.2022.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
|
78
|
Del Vecchio A, Sinibaldi A, Nori V, Giorgianni G, Di Carmine G, Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chemistry 2022; 28:e202200818. [PMID: 35666172 PMCID: PMC9539941 DOI: 10.1002/chem.202200818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Synergistic catalysis offers the unique possibility of simultaneous activation of both the nucleophile and the electrophile in a reaction. A requirement for this strategy is the stability of the active species towards the reaction conditions and the two concerted catalytic cycles. Since the beginning of the century, aminocatalysis has been established as a platform for the stereoselective activation of carbonyl compounds through HOMO-raising or LUMO-lowering. The burgeoning era of aminocatalysis has been driven by a deep understanding of these activation and stereoinduction modes, thanks to the introduction of versatile and privileged chiral amines. The aim of this review is to cover recent developments in synergistic strategies involving aminocatalysis in combination with organo-, metal-, photo-, and electro-catalysis, focusing on the evolution of privileged aminocatalysts architectures.
Collapse
Affiliation(s)
- Antonio Del Vecchio
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Arianna Sinibaldi
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Valeria Nori
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Giuliana Giorgianni
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences Università degli Studi di FerraraVia Fossato di Mortara 1744121FerraraItaly
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| |
Collapse
|
79
|
Kowalska J, Łukasik B, Frankowski S, Sieroń L, Albrecht Ł. Vinylogous hydrazone umpolung in stereoselective synthesis of 2,3‐dihydro‐1H‐pyrrolizines – an organocatalytic, metal‐free route to ketorolac. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
80
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Guo Y, Qi X, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp
3
)−H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022; 61:e202208232. [DOI: 10.1002/anie.202208232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 01/22/2023]
Affiliation(s)
- Rui Guo
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Haijing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Sijia Li
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mengzhen Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
81
|
Ascaso-Alegre C, P. Herrera R, Mangas-Sanchez J. Stereoselective Three‐Step One‐Pot Cascade Combining Amino‐ and Biocatalysis to Access Chiral Υ‐Nitro Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christian Ascaso-Alegre
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - Raquel P. Herrera
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - Juan Mangas-Sanchez
- ARAID: Agencia Aragonesa para la Investigacion y Desarrollo ISQCH PEDRO CERBUNA, 12FACULTAD DE CIENCIAS D 50009 ZARAGOZA SPAIN
| |
Collapse
|
82
|
Himani, Pratap Singh Raman A, Babu Singh M, Jain P, Chaudhary P, Bahadur I, Lal K, Kumar V, Singh P. An Update on Synthesis, Properties, Applications and Toxicity of the ILs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
83
|
Eckhardt AK. Spectroscopic evidence for 1,2-diiminoethane - a key intermediate in imidazole synthesis. Chem Commun (Camb) 2022; 58:8484-8487. [PMID: 35815822 DOI: 10.1039/d2cc03065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple imines and diimines are common building blocks in organic synthesis, but the compound class is spectroscopically not well characterized. Herein we report the formation of the simplest diimine, namely 1,2-diiminoethane, as well as spectroscopic characterization by cryogenic matrix isolation IR and UV/Vis spectroscopy. Three conformers of 1,2-diiminoethane form after UV irradiation of 1,2-diazidoethane by N2 extrusion at 3 K in solid argon and can be photochemically interconverted. In a matrix isolation pyrolysis experiment at 600 °C with 1,2-diazidoethane as the starting material we observe hydrogen cyanide and formaldimine as the main decomposition products. All experimental findings are supported by deuterium labeling experiments and B3LYP/6-311++G(2d,2p) calculations. Irradiation of 1,2-diazidoethane in aqueous solution leads to the formation of imidazoles as indicated by NMR spectroscopy and GC-MS analysis. Our results underline the key role of diimines as building blocks in N-heterocyclic chemistry.
Collapse
Affiliation(s)
- André K Eckhardt
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801, Bochum, Germany.
| |
Collapse
|
84
|
Abstract
The application of biocatalysis in conquering challenging synthesis requires the constant input of new enzymes. Developing novel biocatalysts by absorbing catalysis modes from synthetic chemistry has yielded fruitful new-to-nature enzymes. Organocatalysis was originally bio-inspired and has become the third pillar of asymmetric catalysis. Transferring organocatalytic reactions back to enzyme platforms is a promising approach for biocatalyst creation. Herein, we summarize recent developments in the design of novel biocatalysts that adopt iminium catalysis, a fundamental branch in organocatalysis. By repurposing existing enzymes or constructing artificial enzymes, various biocatalysts for iminium catalysis have been created and optimized via protein engineering to promote valuable abiological transformations. Recent advances in iminium biocatalysis illustrate the power of combining chemomimetic biocatalyst design and directed evolution to generate useful new-to-nature enzymes.
Collapse
Affiliation(s)
- Guangcai Xu
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713AV GroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713AV GroningenThe Netherlands
| |
Collapse
|
85
|
Dong Y, Li X, Ji P, Gao F, Meng X, Wang W. Synthesis of C-1 Deuterated 3-Formylindoles by Organophotoredox Catalyzed Direct Formylation of Indoles with Deuterated Glyoxylic Acid. Org Lett 2022; 24:5034-5039. [PMID: 35799325 DOI: 10.1021/acs.orglett.2c01768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct formylation of feedstock indoles with newly developed, cost-effective deuterated glyoxylic acid as formylation agent under visible light and air (O2) as terminal oxidant has been developed. An isatin byproduct produced from the corresponding indole reactant serves as a facilitator for the formylation process. The simple, mild, metal- and oxidant-free protocol enables the synthesis of structurally diverse C1-deuterated 3-formylindoles with broad functional group tolerance and late-stage functionalization at a high level of D-incorporation (95-99%).
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiangmin Li
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Peng Ji
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
86
|
Xu WK, Guo JM, Liu CH, Sun JT, Lv M, Wei BG. AgNTf 2 catalyzed cycloaddition of N-acyliminium ions with alkynes for the synthesis of the 3,4-dihydro-1,3-oxazin-2-one skeleton. Org Biomol Chem 2022; 20:5086-5094. [PMID: 35698865 DOI: 10.1039/d2ob00900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A catalyzed process for the synthesis of the 4,6-substituted 3,4-dihydro-1,3-oxazin-2-one skeleton has been developed through cycloaddition of in situ generated acyliminium intermediates with alkynes. A range of chain N,O-acetals and terminal alkynes were amenable for this mild transformation. As a result, a series of desired cycloaddition products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Wen-Ke Xu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Chang-Hong Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Min Lv
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
87
|
Scharinger F, Pálvölgyi ÁM, Weisz M, Weil M, Stanetty C, Schnürch M, Bica‐Schröder K. Sterically Demanding Flexible Phosphoric Acids for Constructing Efficient and Multi-Purpose Asymmetric Organocatalysts. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202202189. [PMID: 38504771 PMCID: PMC10947075 DOI: 10.1002/ange.202202189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Herein, we present a novel approach for various asymmetric transformations of cyclic enones. The combination of readily accessible chiral diamines and sterically demanding flexible phosphoric acids resulted in a simple and highly tunable catalyst framework. The careful optimization of the catalyst components led to the identification of a particularly powerful and multi-purpose organocatalyst, which was successfully applied for asymmetric epoxidations, aziridinations, aza-Michael-initiated cyclizations, as well as for a novel Robinson-like Michael-initiated ring closure/aldol cyclization. High catalytic activities and excellent stereocontrol was observed for all four reaction types, indicating the excellent versatility of our catalytic system. Furthermore, a simple change in the diamine's configuration provided easy access to both product antipodes in all cases.
Collapse
Affiliation(s)
- Fabian Scharinger
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/1631060WienAustria
| | - Ádám Márk Pálvölgyi
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/1631060WienAustria
| | - Melanie Weisz
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/1631060WienAustria
| | - Matthias Weil
- Institute of Chemical Technologies and Analytics, TU WienGetreidemarkt 9/1631060WienAustria
| | - Christian Stanetty
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/1631060WienAustria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/1631060WienAustria
| | | |
Collapse
|
88
|
Scharinger F, Pálvölgyi ÁM, Weisz M, Weil M, Stanetty C, Schnürch M, Bica‐Schröder K. Sterically Demanding Flexible Phosphoric Acids for Constructing Efficient and Multi‐Purpose Asymmetric Organocatalysts. Angew Chem Int Ed Engl 2022; 61:e202202189. [PMID: 35413147 PMCID: PMC9324080 DOI: 10.1002/anie.202202189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/23/2022]
Abstract
Herein, we present a novel approach for various asymmetric transformations of cyclic enones. The combination of readily accessible chiral diamines and sterically demanding flexible phosphoric acids resulted in a simple and highly tunable catalyst framework. The careful optimization of the catalyst components led to the identification of a particularly powerful and multi‐purpose organocatalyst, which was successfully applied for asymmetric epoxidations, aziridinations, aza‐Michael‐initiated cyclizations, as well as for a novel Robinson‐like Michael‐initiated ring closure/aldol cyclization. High catalytic activities and excellent stereocontrol was observed for all four reaction types, indicating the excellent versatility of our catalytic system. Furthermore, a simple change in the diamine's configuration provided easy access to both product antipodes in all cases.
Collapse
Affiliation(s)
- Fabian Scharinger
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163 1060 Wien Austria
| | - Ádám Márk Pálvölgyi
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163 1060 Wien Austria
| | - Melanie Weisz
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163 1060 Wien Austria
| | - Matthias Weil
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9/163 1060 Wien Austria
| | - Christian Stanetty
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163 1060 Wien Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163 1060 Wien Austria
| | | |
Collapse
|
89
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Qi X, Guo Y, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp3)‐H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Haijing Xiao
- Central China Normal University Department of Chemistry CHINA
| | - Sijia Li
- Central China Normal University Department of Chemistry CHINA
| | - Yixin Luo
- Wuhan University Department of Chemistry CHINA
| | - Jiahui Bai
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Mengzhen Zhang
- Central China Normal University Department of Chemistry CHINA
| | - Xiaotian Qi
- Wuhan University Department of Chemistry CHINA
| | - Yinlong Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Guozhu Zhang
- Shanghai Institute of Organic Chemistry Chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
90
|
Ren D, Lee YH, Wang SA, Liu HW. Characterization of the Oxazinomycin Biosynthetic Pathway Revealing the Key Role of a Nonheme Iron-Dependent Mono-oxygenase. J Am Chem Soc 2022; 144:10968-10977. [PMID: 35687050 DOI: 10.1021/jacs.2c04080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxazinomycin is a C-nucleoside natural product with antibacterial and antitumor activities. In addition to the characteristic C-glycosidic linkage shared with other C-nucleosides, oxazinomycin also features a structurally unusual 1,3-oxazine moiety, the biosynthesis of which had previously been unknown. Herein, complete in vitro reconstitution of the oxazinomycin biosynthetic pathway is described. Construction of the C-glycosidic bond between ribose 5-phosphate and an oxygen-labile pyridine heterocycle is catalyzed by the C-glycosidase OzmB and involves formation of an enzyme-substrate Schiff base intermediate. The DUF4243 family protein OzmD is shown to catalyze oxygen insertion and rearrangement of the pyridine C-nucleoside intermediate to generate the 1,3-oxazine moiety along with the elimination of cyanide. Spectroscopic analysis and mutagenesis studies indicate that OzmD is a novel nonheme iron-dependent enzyme in which the catalytic iron center is likely coordinated by four histidine residues. These results provide the first example of 1,3-oxazine biosynthesis catalyzed by an unprecedented iron-dependent mono-oxygenase.
Collapse
Affiliation(s)
- Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shao-An Wang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
91
|
Zhao D, Tang Z, Mo K, Ma X, Huang J. para‐Selective Radical Trifluoromethylation of Benzamide Derivatives via Iminium Intermediates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Depeng Zhao
- School of Pharmaceutical Sciences Sun Yat-sen University Waihuan East Road 510006 Guangzhou CHINA
| | - Zhanyong Tang
- Sun Yat-Sen University School of Pharmaceutical Sciences Wai-Huan east roadNo. 132 Guangzhou CHINA
| | - Ke Mo
- Sun Yat-Sen University School of Pharmaceutical Sciences WaiHuan east roadNo 132 Guangzhou CHINA
| | - Xiaoqiang Ma
- Sun Yat-Sen University School of Pharmaceutical Sciences Waihuan east roadNo. 132 Guangzhou CHINA
| | - Jialin Huang
- Sun Yat-Sen University School of Pharmaceutical Sciences Waihuan east roadNo. 132 Guangzhou CHINA
| |
Collapse
|
92
|
Abstract
The multicomponent reaction of aldehydes, amines, and alkynes, known as A3 coupling, yields propargylamines, a valuable organic scaffold, and has received significant interest and attention in the last years. In order to fully realise the potential of the metal-based catalytic protocols that facilitate this transformation, we summarise substrates, in situ and well-characterised synthetic methods that provide this scaffold and attempt a monumental classification considering several variables (Metal, Coordinating atom(s), Ligand type and name, in-situ or well-characterised, co-catalyst, catalyst and ligand Loading (mol%), solvent, volume, atmosphere, temperature, microwave, time, yield, selectivity (e.e. d.r.), substrate name, functionality, loading (amines, aldehydes, alkynes), and use of molecular sieves). This pioneering work creates a valuable database that contains 2376 entries and allows us to produce graphs and better visualise their impact on the reaction.
Collapse
|
93
|
Peraka S, Gorachand B, Hussain A, Sravanthi R, Ramachary DB. Organocatalytic One‐pot Synthesis of Pseudo‐Terpenoids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Swamy Peraka
- University of Hyderabad School of Chemistry INDIA
| | | | | | | | - Dhevalapally B. Ramachary
- University of Hyderabad School of Chemistry Prof. C.R.Rao RoadCentral University PostGachi BowliHyderabad 500 046 Hyderabad INDIA
| |
Collapse
|
94
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
95
|
Xiao X, Tian HY, Huang YQ, Lu YJ, Fang JJ, Zhou GJ, Chen FE. Atom- and step-economic 1,3-thiosulfonylation of activated allenes with thiosulfonates to access vinyl sulfones/sulfides. Chem Commun (Camb) 2022; 58:6765-6768. [PMID: 35612002 DOI: 10.1039/d2cc01731h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of organocatalyzed 1,3-thiosulfonylation has been developed to straightforwardly access highly functionalized vinyl sulfones, which features mild conditions, atom- and step-economy, practicability, conciseness, and environmental friendliness. Moreover, these valuable products can be transformed to vinyl sulfides via a base-promoted isomerization. The versatile route can efficiently and rapidly introduce SCD3 groups with excellent levels of deuterium content (>99% D) by utilizing our newly developed SCD3 reagents. Gram-scale operations and further transformations are smoothly carried out, providing promising applications for drug discovery.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn.,Zhejiang Hisoar Pharmaceutical Co., Ltd, Taizhou 318000, China
| | - Hong-Yu Tian
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Yin-Jie Lu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Jing-Jie Fang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Gao-Jie Zhou
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
96
|
Moriyama K, Oka Y. Enantioselective Cascade Michael/Hemiaminal Formation of α,β-Unsaturated Iminoindoles with Aldehydes Using a Chiral Aminomethylpyrrolidine Catalyst Bearing a SO 2C 6F 5 Group as a Strongly Electron Withdrawing Arylsulfonyl Group. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yukari Oka
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
97
|
Abstract
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Collapse
|
98
|
Roy S, Paul H, Chatterjee I. Light‐Mediated Aminocatalysis: The Dual‐Catalytic Ability Enabling New Enantioselective Route. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sourav Roy
- IIT Ropar: Indian Institute of Technology Ropar Chemistry INDIA
| | - Hrishikesh Paul
- IIT Ropar: Indian Institute of Technology Ropar Chemistry INDIA
| | - Indranil Chatterjee
- Indian Institute of Technology, Ropar Chemistry Nangal Road 140001 Rupnagar INDIA
| |
Collapse
|
99
|
A. Farghaly T, A. Al-Hussain S, E. A. Zaki M, H. Asghar B, A. Muhammad Z. Synthesis of spiropyrazoles under organic and nonorganic catalysis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220517220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Spiropyrazoles display many biological biological activities such as antitumor, vasodilation, analgesic, phosphodiesterase inhibitors, aldosterone antagonistic, anabolic, androgenic, anti-inflammatory, progestational and salt-retaining activities and they also exert neuroprotection in dopaminergic cell death. Many efforts have been made to obtain these derivatives with high yield and excellent regio-, diastereo- and enantioselectivities. Most of the spiroprazole synthesis methods were proceeded in good to excellent yield in the presence of organic catalysts as for examples squaramide, NHC pre-catalyst, pyrrole derivatives, bis-oxazoline, DMAP, DABCO, thiourea derivatives, DBU, acetic acid and quinoline catalysts. In addition, the inorganic and organo-metallic catalysts have been proven their efficiency in synthesis of various types of spiro-pyrazoles in excellent yield. Thus, in this review we have compiled all citations for the synthesis of spiropyrazoles in the presence of various types of catalysts such as organic, inorganic, and metalorganic catalysts in the range 2020 to 2012. This review article is a useful compilation for researchers interested in the synthesis of spiropyrazole derivatives and will assist them in selecting appropriate catalysts for preparation of their spiropyrazoles.
Collapse
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zeinab A. Muhammad
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
100
|
Xu G, Poelarends GJ. Unlocking New Reactivities in Enzymes by Iminium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangcai Xu
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Gerrit J. Poelarends
- University of Groningen Chemical and Pharmaceutical Biology Antonius Deusinglaan 1 9713 AV Groningen NETHERLANDS
| |
Collapse
|