51
|
Abstract
This chapter has been conceived as an introductory text to aid in the understanding of the key design strategies for the development of synthetic analogs of endogenous retinoids as ligands for the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). The structure and binding characteristics of the endogenous retinoids are first explained to put the main chemical design challenges in context. Existing biochemical and structural data is then used to describe the guiding principles used to develop agonists and antagonists of the RARs and RXRs. In light of the increasing proliferation of biophysical methods that employ fluorescence measurements or molecular tags, we also examine the application of retinoids as probes and the chemical principles required to develop these tools.
Collapse
Affiliation(s)
| | - Andrew Whiting
- Department of Chemistry, Durham University, Lower Mountjoy, Durham, United Kingdom
| |
Collapse
|
52
|
Chakravarti LJ, Buerger P, Levin RA, van Oppen MJH. Gene regulation underpinning increased thermal tolerance in a laboratory-evolved coral photosymbiont. Mol Ecol 2020; 29:1684-1703. [PMID: 32268445 DOI: 10.1111/mec.15432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Small increases in ocean temperature can disrupt the obligate symbiosis between corals and dinoflagellate microalgae, resulting in coral bleaching. Little is known about the genes that drive the physiological and bleaching response of algal symbionts to elevated temperature. Moreover, many studies to-date have compared highly divergent strains, making it challenging to accredit specific genes to contrasting traits. Here, we compare transcriptional responses at ambient (27°C) and bleaching-relevant (31°C) temperatures in a monoclonal, wild-type (WT) strain of Symbiodiniaceae to those of a selected-strain (SS), derived from the same monoclonal culture and experimentally evolved to elevated temperature over 80 generations (2.5 years). Thousands of genes were differentially expressed at a log fold-change of >8 between the WT and SS over a 35 days temperature treatment period. At 31°C, WT cells exhibited a temporally unstable transcriptomic response upregulating genes involved in the universal stress response such as molecular chaperoning, protein repair, protein degradation and DNA repair. Comparatively, SS cells exhibited a temporally stable transcriptomic response and downregulated many stress response genes that were upregulated by the WT. Among the most highly upregulated genes in the SS at 31°C were algal transcription factors and a gene probably of bacterial origin that encodes a type II secretion system protein, suggesting interactions with bacteria may contribute to the increased thermal tolerance of the SS. Genes and functional pathways conferring thermal tolerance in the SS could be targeted in future genetic engineering experiments designed to develop thermally resilient algal symbionts for use in coral restoration and conservation.
Collapse
Affiliation(s)
- Leela J Chakravarti
- Australian Institute of Marine Science, Townsville MC, Qld, Australia.,AIMS@JCU, Australian Institute of Marine Science, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia.,College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Patrick Buerger
- CSIRO, Land & Water, Canberra, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, Vic, Australia
| | | | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville MC, Qld, Australia.,School of BioSciences, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
53
|
Adams MK, Belyaeva OV, Kedishvili NY. Generation and isolation of recombinant retinoid oxidoreductase complex. Methods Enzymol 2020; 637:77-93. [PMID: 32359661 DOI: 10.1016/bs.mie.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All-trans-retinoic acid (RA) is a bioactive lipid that influences many processes in embryonic and adult tissues. Given its bioactive nature, cellular concentrations of this molecule are highly regulated. The oxidation of all-trans-retinol to all-trans-retinaldehyde represents the first and rate-limiting step of the RA synthesis pathway. As such, it is the target of mechanisms that fine-tune RA levels within the cell. RDH10 is one enzyme responsible for the oxidation of all-trans-retinol to all-trans-retinaldehyde, and together with the all-trans-retinaldehyde reductase DHRS3 forms an oligomeric protein complex. The resulting retinoid oxidoreductase complex (ROC) is bifunctional and has the capacity to regulate steady-state levels of the direct precursor of RA, all-trans-retinaldehyde. As ROC represents a major regulatory element within the RA synthesis pathway, it is essential that methods are in place that allow for the study of this complex. Here we describe the production and isolation of recombinant ROC using a baculovirus expression system. Recombinant proteins retain enzymatic activities in intact microsomes and can be affinity purified for analysis. These methods can be used to assist in the assessment of ROC properties and the regulation of this protein complex's functional attributes.
Collapse
Affiliation(s)
- Mark K Adams
- Stowers Institute for Medical Research, Kansas City, MO, United States.
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
54
|
Jones BG, Sealy RE, Penkert RR, Surman SL, Maul RW, Neale G, Xu B, Gearhart PJ, Hurwitz JL. Complex sex-biased antibody responses: estrogen receptors bind estrogen response elements centered within immunoglobulin heavy chain gene enhancers. Int Immunol 2020; 31:141-156. [PMID: 30407507 DOI: 10.1093/intimm/dxy074] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023] Open
Abstract
Nuclear hormone receptors including the estrogen receptor (ERα) and the retinoic acid receptor regulate a plethora of biological functions including reproduction, circulation and immunity. To understand how estrogen and other nuclear hormones influence antibody production, we characterized total serum antibody isotypes in female and male mice of C57BL/6J, BALB/cJ and C3H/HeJ mouse strains. Antibody levels were higher in females compared to males in all strains and there was a female preference for IgG2b production. Sex-biased patterns were influenced by vitamin levels, and by antigen specificity toward influenza virus or pneumococcus antigens. To help explain sex biases, we examined the direct effects of estrogen on immunoglobulin heavy chain sterile transcript production among purified, lipopolysaccharide-stimulated B cells. Supplemental estrogen in B-cell cultures significantly increased immunoglobulin heavy chain sterile transcripts. Chromatin immunoprecipitation analyses of activated B cells identified significant ERα binding to estrogen response elements (EREs) centered within enhancer elements of the immunoglobulin heavy chain locus, including the Eµ enhancer and hypersensitive site 1,2 (HS1,2) in the 3' regulatory region. The ERE in HS1,2 was conserved across animal species, and in humans marked a site of polymorphism associated with the estrogen-augmented autoimmune disease, lupus. Taken together, the results highlight: (i) the important targets of ERα in regulatory regions of the immunoglobulin heavy chain locus that influence antibody production, and (ii) the complexity of mechanisms by which estrogen instructs sex-biased antibody production profiles.
Collapse
Affiliation(s)
- Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Geoff Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, USA
| | - Beisi Xu
- Computational Biology, St. Jude Children's Research Hospital, Memphis, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
55
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
56
|
Fenretinide reduces angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and suppressing microRNA-10b. Mol Biol Rep 2020; 47:1649-1658. [DOI: 10.1007/s11033-020-05252-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
|
57
|
|
58
|
Rodriguez V, Bailey R, Larion M, Gilbert MR. Retinoid receptor turnover mediated by sumoylation, ubiquitination and the valosin-containing protein is disrupted in glioblastoma. Sci Rep 2019; 9:16250. [PMID: 31700049 PMCID: PMC6838077 DOI: 10.1038/s41598-019-52696-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Resistance to therapeutic use of retinoids in glioma has been observed for over 20 years; however, the exact mechanism of resistance remains unknown. To understand retinoic acid resistance in glioma, we studied the turnover mechanism of retinoid receptor proteins in neural stem cells and glioma stem-like cells. Here, we show that in normal neural stem cells, proteasomal degradation of retinoid receptors involves sumoylation, ubiquitination and recognition by the valosin-containing protein (VCP/p97/Cdc48). We find that Sumo1 modification has a dual role to stabilize the retinoid receptor from unwanted degradation and signal additional modification via ubiquitination. Subsequently, the modified receptor binds to the VCP chaperone and both proteins are degraded by the proteasome. Additionally, we reveal that all trans retinoic acid (ATRA) induces VCP expression, creating a positive feedback loop that enhances degradation. In contrast, the pathway is impaired in the glioma stem-like cells resulting in the accumulation of sumoylated and high molecular weight forms of retinoid receptors that lack transcriptional activity and fail to be recognized by the proteasome. Moreover, modified receptor accumulation occurs before ATRA treatment; therefore, the transcritptional defect in glioma is due to a block in the proteasomal degradation pathway that occurs after the sumo modification step.
Collapse
Affiliation(s)
- Virginia Rodriguez
- Neuro-oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Rolanda Bailey
- Neuro-oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mioara Larion
- Neuro-oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
59
|
He K, Tang Q, Gong M, Yang S, Chen X, Zhu H, Liu D, Huang B. A transcriptomic study of selenium against liver injury induced by beta-cypermethrin in mice by RNA-seq. Funct Integr Genomics 2019; 20:343-353. [DOI: 10.1007/s10142-019-00719-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/03/2019] [Accepted: 10/09/2019] [Indexed: 01/23/2023]
|
60
|
Drowley L, McPheat J, Nordqvist A, Peel S, Karlsson U, Martinsson S, Müllers E, Dellsén A, Knight S, Barrett I, Sánchez J, Magnusson B, Greber B, Wang QD, Plowright AT. Discovery of retinoic acid receptor agonists as proliferators of cardiac progenitor cells through a phenotypic screening approach. Stem Cells Transl Med 2019; 9:47-60. [PMID: 31508905 PMCID: PMC6954720 DOI: 10.1002/sctm.19-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of small molecules with the potential to selectively proliferate cardiac progenitor cells (CPCs) will aid our understanding of the signaling pathways and mechanisms involved and could ultimately provide tools for regenerative therapies for the treatment of post‐MI cardiac dysfunction. We have used an in vitro human induced pluripotent stem cell‐derived CPC model to screen a 10,000‐compound library containing molecules representing different target classes and compounds reported to modulate the phenotype of stem or primary cells. The primary readout of this phenotypic screen was proliferation as measured by nuclear count. We identified retinoic acid receptor (RAR) agonists as potent proliferators of CPCs. The CPCs retained their progenitor phenotype following proliferation and the identified RAR agonists did not proliferate human cardiac fibroblasts, the major cell type in the heart. In addition, the RAR agonists were able to proliferate an independent source of CPCs, HuES6. The RAR agonists had a time‐of‐differentiation‐dependent effect on the HuES6‐derived CPCs. At 4 days of differentiation, treatment with retinoic acid induced differentiation of the CPCs to atrial cells. However, after 5 days of differentiation treatment with RAR agonists led to an inhibition of terminal differentiation to cardiomyocytes and enhanced the proliferation of the cells. RAR agonists, at least transiently, enhance the proliferation of human CPCs, at the expense of terminal cardiac differentiation. How this mechanism translates in vivo to activate endogenous CPCs and whether enhancing proliferation of these rare progenitor cells is sufficient to enhance cardiac repair remains to be investigated.
Collapse
Affiliation(s)
- Lauren Drowley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Jane McPheat
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anneli Nordqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | | | - Ulla Karlsson
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sofia Martinsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Erik Müllers
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anita Dellsén
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ian Barrett
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - José Sánchez
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Alleyn T Plowright
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| |
Collapse
|
61
|
Gonçalves A, Estevinho BN, Rocha F. Formulation approaches for improved retinoids delivery in the treatment of several pathologies. Eur J Pharm Biopharm 2019; 143:80-90. [PMID: 31446044 DOI: 10.1016/j.ejpb.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023]
Abstract
Retinoid acid (RA) and other retinoids are extensively used as therapeutic agents in the treatment of several types of cancer and skin disorders. However, the efficiency of these medical agents is compromised due to the unsatisfactory concentration of retinoids in the target cells/tissues. Furthermore, severe side-effects are related to retinoids administration. Incorporation of retinoids into carrier-based delivery systems using encapsulation technology has been proposed in order to overcome the limitations of using free retinoids in the treatment of several pathologies. The present work starts exploring the competences and the difficulties of using retinoids in health care. The metabolism and the main considerations about the mechanism of action of retinoids are also discussed. The final sections are focused on the most recent studies about RA controlled delivery systems to be used in the medical field.
Collapse
Affiliation(s)
- Antónia Gonçalves
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
62
|
Huang M, Song K, Liu X, Lu S, Shen Q, Wang R, Gao J, Hong Y, Li Q, Ni D, Xu J, Chen G, Zhang J. AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res 2019; 46:W451-W458. [PMID: 29757429 PMCID: PMC6030990 DOI: 10.1093/nar/gky374] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 01/07/2023] Open
Abstract
Allostery tweaks innumerable biological processes and plays a fundamental role in human disease and drug discovery. Exploration of allostery has thus been regarded as a crucial requirement for research on biological mechanisms and the development of novel therapeutics. Here, based on our previously developed allosteric data and methods, we present an interactive platform called AlloFinder that identifies potential endogenous or exogenous allosteric modulators and their involvement in human allosterome. AlloFinder automatically amalgamates allosteric site identification, allosteric screening and allosteric scoring evaluation of modulator-protein complexes to identify allosteric modulators, followed by allosterome mapping analyses of predicted allosteric sites and modulators in human proteome. This web server exhibits prominent performance in the reemergence of allosteric metabolites and exogenous allosteric modulators in known allosteric proteins. Specifically, AlloFinder enables identification of allosteric metabolites for metabolic enzymes and screening of potential allosteric compounds for disease-related targets. Significantly, the feasibility of AlloFinder to discover allosteric modulators was tested in a real case of signal transduction and activation of transcription 3 (STAT3) and validated by mutagenesis and functional experiments. Collectively, AlloFinder is expected to contribute to exploration of the mechanisms of allosteric regulation between metabolites and metabolic enzymes, and to accelerate allosteric drug discovery. The AlloFinder web server is freely available to all users at http://mdl.shsmu.edu.cn/ALF/.
Collapse
Affiliation(s)
- Min Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Renxiao Wang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingze Gao
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yuanyuan Hong
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qian Li
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jianrong Xu
- Department of Pharmacology, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
63
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
64
|
Chitranshi N, Dheer Y, Kumar S, Graham SL, Gupta V. Molecular docking, dynamics, and pharmacology studies on bexarotene as an agonist of ligand-activated transcription factors, retinoid X receptors. J Cell Biochem 2019; 120:11745-11760. [PMID: 30746761 DOI: 10.1002/jcb.28455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Retinoid X receptors (RXRs) belong to the nuclear receptor superfamily, and upon ligand activation, these receptors control gene transcription via either homodimerization with themselves or heterodimerization with the partner-nuclear receptor. The protective effects of RXRs and RXR agonists have been reported in several neurodegenerative diseases, including in the retina. This study was aimed to prioritize compounds from natural and synthetic origin retinoids as potential RXR agonists by molecular docking and molecular dynamic simulation strategies. The docking studies indicated bexarotene as a lead compound that can activate various RXR receptor isoforms (α, β, and γ) and has a strong binding affinity to the receptor protein than retinoic acid, which is known as a natural endogenous RXR agonist. Dynamic simulation studies confirmed that the hydrogen bonding and hydrophobic interactions were highly stable in all the three isoforms of the RXR-bexarotene complex. To further validate the significance of the RXR receptor in neurons, in vitro pharmacological treatment of neuronal SH-SY5Y cells with bexarotene was performed. In vitro data from SH-SY5Y cells confirmed that bexarotene activated RXR-simulated neurite outgrowth significantly. We conclude that bexarotene could be potentially used as an exogenous activator of RXRs and emerge as a good drug target for several neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Jankipuram, Lucknow, Uttar Pradesh, India
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
- Save Sight Institute, Sydney University, Sydney, New South Wales, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| |
Collapse
|
65
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
66
|
Shamilov R, Aneskievich BJ. Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
67
|
de Almeida NR, Conda-Sheridan M. A review of the molecular design and biological activities of RXR agonists. Med Res Rev 2019; 39:1372-1397. [PMID: 30941786 DOI: 10.1002/med.21578] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022]
Abstract
An attractive approach to combat disease is to target theregulation of cell function. At the heart of this task are nuclear receptors (NRs); which control functions such as gene transcription. Arguably, the key player in this regulatory machinery is the retinoid X receptor (RXR). This NR associates with a third of the NRs found in humans. Scientists have hypothesized that controlling the activity of RXR is an attractive approach to control cellular functions that modulate diseases such as cancer, diabetes, Alzheimer's disease and Parkinson's disease. In this review, we will describe the key features of the RXR, present a historic perspective of the first RXR agonists, and discuss various templates that have been reported to activate RXR with a focus on their molecular structure, biological activity, and limitations. Finally, we will present an outlook of the field and future directions and considerations to synthesize or modulate RXR agonists to make these compounds a clinical reality.
Collapse
Affiliation(s)
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
68
|
In Silico Identification and Experimental Validation of (-)-Muqubilin A, a Marine Norterpene Peroxide, as PPARα/γ-RXRα Agonist and RARα Positive Allosteric Modulator. Mar Drugs 2019; 17:md17020110. [PMID: 30759808 PMCID: PMC6410278 DOI: 10.3390/md17020110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptors (NRs) RARα, RXRα, PPARα, and PPARγ represent promising pharmacological targets for the treatment of neurodegenerative diseases. In the search for molecules able to simultaneously target all the above-mentioned NRs, we screened an in-house developed molecular database using a ligand-based approach, identifying (−)-Muqubilin (Muq), a cyclic peroxide norterpene from a marine sponge, as a potential hit. The ability of this compound to stably and effectively bind these NRs was assessed by molecular docking and molecular dynamics simulations. Muq recapitulated all the main interactions of a canonical full agonist for RXRα and both PPARα and PPARγ, whereas the binding mode toward RARα showed peculiar features potentially impairing its activity as full agonist. Luciferase assays confirmed that Muq acts as a full agonist for RXRα, PPARα, and PPARγ with an activity in the low- to sub-micromolar range. On the other hand, in the case of RAR, a very weak agonist activity was observed in the micromolar range. Quite surprisingly, we found that Muq is a positive allosteric modulator for RARα, as both luciferase assays and in vivo analysis using a zebrafish transgenic retinoic acid (RA) reporter line showed that co-administration of Muq with RA produced a potent synergistic enhancement of RARα activation and RA signaling.
Collapse
|
69
|
Abstract
Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. RXR ligands ("rexinoids") either transcriptionally activate the "permissive" subclass of heterodimers or synergize with partner ligands in the "nonpermissive" subclass of heterodimers. The rationale for rexinoid design with a wide structural diversity going from the structures of existing complexes with RXR determined by X-Ray, to natural products and other ligands discovered by high-throughput screening (HTS), mere serendipity, and rationally designed based on Molecular Modeling, will be described. Included is the new generation of ligands that modulate the structure of specific receptor surfaces that serve to communicate with other regulators. The panel of the known RXR agonists, partial (ant)agonists, and/or heterodimer-selective rexinoids require the exploration of their therapeutic potential in order to overcome some of the current limitations of rexinoids in therapy.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - José A Souto
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
70
|
Abstract
Retinoid and rexinoid receptors are known to regulate key processes during development, differentiation, and cell death in vertebrates. However, their contributions to progression of malignant disease remain largely elusive although it is realized that transformed cancer cells, which essentially evade apoptosis, may display altered molecular expressions or functions associated with retinoid signaling. Here, using a progression model of ovarian cancer, we describe a proteomics-based approach including experimental procedures toward identification and validation of altered protein profiles during transformation. Effectively, this specifies loss of RXR-γ during progression of epithelial ovarian cancer.
Collapse
|
71
|
Thompson JJ, Kaur R, Sosa CP, Lee JH, Kashiwagi K, Zhou D, Robertson KD. ZBTB24 is a transcriptional regulator that coordinates with DNMT3B to control DNA methylation. Nucleic Acids Res 2018; 46:10034-10051. [PMID: 30085123 PMCID: PMC6212772 DOI: 10.1093/nar/gky682] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
The interplay between transcription factors and epigenetic writers like the DNA methyltransferases (DNMTs), and the role of this interplay in gene expression, is being increasingly appreciated. ZBTB24, a poorly characterized zinc-finger protein, or the de novo methyltransferase DNMT3B, when mutated, cause Immunodeficiency, Centromere Instability, and Facial anomalies (ICF) syndrome, suggesting an underlying mechanistic link. Chromatin immunoprecipitation coupled with loss-of-function approaches in model systems revealed common loci bound by ZBTB24 and DNMT3B, where they function to regulate gene body methylation. Genes coordinately regulated by ZBTB24 and DNMT3B are enriched for molecular mechanisms essential for cellular homeostasis, highlighting the importance of the ZBTB24-DNMT3B interplay in maintaining epigenetic patterns required for normal cellular function. We identify a ZBTB24 DNA binding motif, which is contained within the promoters of most of its transcriptional targets, including CDCA7, AXIN2, and OSTC. Direct binding of ZBTB24 at the promoters of these genes targets them for transcriptional activation. ZBTB24 binding at the promoters of RNF169 and CAMKMT, however, targets them for transcriptional repression. The involvement of ZBTB24 targets in diverse cellular programs, including the VDR/RXR and interferon regulatory pathways, suggest that ZBTB24's role as a transcriptional regulator is not restricted to immune cells.
Collapse
Affiliation(s)
- Joyce J Thompson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
| | - Rupinder Kaur
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
| | - Carlos P Sosa
- Clinical Genome Sequencing Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Stabile12-58, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Epigenomics Translational Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Katsunobu Kashiwagi
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Dan Zhou
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
- Epigenomics Translational Program, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
72
|
Southard SM, Kotipatruni RP, Rust WL. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PLoS One 2018; 13:e0203126. [PMID: 30183752 PMCID: PMC6124757 DOI: 10.1371/journal.pone.0203126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology enables the creation and selection of pluripotent cells with specific genetic traits. This report describes a pluripotent cell line created specifically to form replacement pancreatic cells as a therapy for insulin-dependent diabetes. Beginning with primary pancreatic tissue acquired through organ donation, cells were isolated, re-programmed using non-integrating vectors and exposed to a four day differentiation protocol to generate definitive endoderm, a developmental precursor to pancreas. The best performing iPSC lines were then subjected to a 12-day basic differentiation protocol to generate endocrine pancreas precursors. The line that most consistently generated highly pure populations was selected for further development. This approach created an iPSC-variant cell line, SR1423, with a genetic profile correlated with preferential differentiation toward endodermal lineage at the loss of mesodermal potential. This report further describes an improved differentiation protocol that, coupled with SR1423, generated populations of greater than 60% insulin-expressing cells that secrete insulin in response to glucose and are capable of reversing diabetes in rodents. Created and banked following cGMP guidelines, SR1423 is a candidate cell line for the production of insulin-producing cells useful for the treatment of diabetes.
Collapse
|
73
|
Saeb S, Azari H, Mostafavi-Pour Z, Ghanbari A, Ebrahimi S, Mokarram P. 9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:523-532. [PMID: 30214105 PMCID: PMC6123560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways. METHODS Cortical neural stem cells were isolated from 14-day-old rat embryos and cultured using the neurosphere assay. The cells were treated in 4 different conditions for 1 week: the negative control group received only the basic fibroblast growth factor, the positive control group received only T3 without growth factors, the RA group was treated with 9-cis-RA, and the Vit D3 group was treated with 1,25(OH)2D3. The effects of 9-cis-RA and 1,25(OH)2D3 on the level of the myelin basic protein (MBP) and the gene expression of the SOX10, MBP gene, HES5, and LRP6 were studied using flow cytometry and real-time PCR. The data were analyzed using one-way ANOVA with GraphPad Prism. A P value less than 0.05 was considered significant. RESULTS The mRNA expressions of the SOX10, MBP, and MBP gene were significantly increased in the treated groups compared with the negative control group; the increase was similar in the 9-cis-RA group and the positive control group. Furthermore, 9-cis-RA significantly decreased the expression of the HES5 gene, a Notch signaling pathway transcription factor, and 1,25(OH)2D3 significantly reduced the expression of the LRP6 gene, a Wnt signaling pathway co-receptor. CONCLUSION It seems that 9-cis-RA and 1,25(OH)2D3 are good candidates to improve the differentiation of OPCs into oligodendrocytes.
Collapse
Affiliation(s)
- Saeedeh Saeb
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Hassan Azari
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences and Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran;
| | | | - Amir Ghanbari
- Department of Anatomical Sciences, Yasuj University of Medical sciences, Yasuj, Iran
| | - Sepideh Ebrahimi
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Pooneh Mokarram
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
74
|
Abdelhamid L, Luo XM. Retinoic Acid, Leaky Gut, and Autoimmune Diseases. Nutrients 2018; 10:E1016. [PMID: 30081517 PMCID: PMC6115935 DOI: 10.3390/nu10081016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
A leaky gut has been observed in a number of autoimmune diseases including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and systemic lupus erythematosus. Previous studies from our laboratory have shown that lupus mice also bear a leaky gut and that the intestinal barrier function can be enhanced by gut colonization of probiotics such as Lactobacillus spp. Retinoic acid (RA) can increase the relative abundance of Lactobacillus spp. in the gut. Interestingly, RA has also been shown to strengthen the barrier function of epithelial cells in vitro and in the absence of probiotic bacteria. These reports bring up an interesting question of whether RA exerts protective effects on the intestinal barrier directly or through regulating the microbiota colonization. In this review, we will discuss the roles of RA in immunomodulation, recent literature on the involvement of a leaky gut in different autoimmune diseases, and how RA shapes the outcomes of these diseases.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
75
|
Mohsenzadeh M, Sadeghi RN, Vahedi M, Kamani F, Hashemi M, Asadzadeh H, Zali MR. Promoter hypermethylation of RAR-β tumor suppressor gene in gastric carcinoma: Association with histological type and clinical outcomes. Cancer Biomark 2018; 20:7-15. [PMID: 28759951 DOI: 10.3233/cbm-160331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND While gastric cancer is a common cancer in the world and Iran, its molecular mechanisms are not fully understood as yet. Epigenetic modifications can lead to alteration of gene expression and development of tumorigenesis mechanisms. METHODS To clarify the difference in DNA methylation pattern of histological types in gastric carcinoma, CpG islands in the promoters of retinoic acid receptor β gene (RAR-β) was studied using methylation-specific PCR. RESULTS In gastric cancer tissues, hypermethylation frequency of RAR-β gene was respectively 61 and 33% for diffuse and intestinal type. In diffuse type, hypermethylation of RAR-β has been significantly associated with invasion (P= 0.007), differentiation (P= 0.033) and location (P= 0.012) of the tumor. However, hypermethylation of RAR-β correlated only with tumor size (P= 0.029) in intestinal type. For adjacent non-tumor samples, hypermethylation of RAR-β was not detected and there was no significant association between age of diagnosis and hypermethylation of RAR-β in both types of gastric cancer. CONCLUSIONS These results support previous findings denoting a distinct profile of promoter hypermethylation status in the development of the intestinal and diffuse type of gastric carcinoma and the process of the tumorigenesis in these subtypes of gastric cancer is different from each other.
Collapse
Affiliation(s)
- Maedeh Mohsenzadeh
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Rouhallah Najjar Sadeghi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Vahedi
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fereshteh Kamani
- Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Asadzadeh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
76
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
77
|
Chandra V, Wu D, Li S, Potluri N, Kim Y, Rastinejad F. The quaternary architecture of RARβ-RXRα heterodimer facilitates domain-domain signal transmission. Nat Commun 2017; 8:868. [PMID: 29021580 PMCID: PMC5636793 DOI: 10.1038/s41467-017-00981-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Assessing the physical connections and allosteric communications in multi-domain nuclear receptor (NR) polypeptides has remained challenging, with few crystal structures available to show their overall structural organizations. Here we report the quaternary architecture of multi-domain retinoic acid receptor β-retinoic X receptor α (RARβ-RXRα) heterodimer bound to DNA, ligands and coactivator peptides, examined through crystallographic, hydrogen-deuterium exchange mass spectrometry, mutagenesis and functional studies. The RARβ ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected to foster allosteric signal transmission between them. Direct comparisons among all the multi-domain NRs studied crystallographically to date show significant variations within their quaternary architectures, rather than a common architecture adhering to strict rules. RXR remains flexible and adaptive by maintaining loosely organized domains, while its heterodimerization partners use a surface patch on their LBDs to form domain-domain interactions with DBDs.Nuclear receptors (NR) are multidomain proteins, which makes their crystallization challenging. Here the authors present the crystal structure of the retinoic acid receptor β-retinoic X receptor α (RARβ-RXRα) heterodimer bound to DNA, ligands and coactivator peptides, which shows that NR quaternary architectures are variable.
Collapse
Affiliation(s)
- Vikas Chandra
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA
| | - Dalei Wu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Sheng Li
- Department of Medicine and UCSD DXMS Proteomics Resource, University of California, San Diego, La Jolla, CA, 92023, USA
| | - Nalini Potluri
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA
| | - Youngchang Kim
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Fraydoon Rastinejad
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA.
| |
Collapse
|
78
|
Scheepstra M, Andrei SA, de Vries RMJM, Meijer FA, Ma JN, Burstein ES, Olsson R, Ottmann C, Milroy LG, Brunsveld L. Ligand Dependent Switch from RXR Homo- to RXR-NURR1 Heterodimerization. ACS Chem Neurosci 2017; 8:2065-2077. [PMID: 28691794 PMCID: PMC5609127 DOI: 10.1021/acschemneuro.7b00216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
![]()
Retinoid
X receptors (RXRs) play key roles in many physiological
processes in both the periphery and central nervous system. In addition,
RXRs form heterodimers with other nuclear receptors to exert their
physiological effects. The nuclear receptor related 1 protein (NURR1)
is particularly interesting because of its role in promoting differentiation
and survival of dopamine neurons. However, only a small number of
RXR-heterodimer selective modulators are available, with limited chemical
diversity. This work describes the synthesis, biochemical evaluation,
and structural elucidation of a novel series of RXR ligands with strongly
biased interactions with RXRα–NURR1 heterodimers. Targeted
modifications to the small molecule biaryl scaffold caused local RXRα
side-chain disturbances and displacement of secondary structural elements
upon ligand binding. This resulted in the repositioning of protein
helices in the heterodimer interface of RXRα, alterations in
homo- versus heterodimer formation, and modulation of activation function
2 (AF2). The data provide a rationale for the design of RXR ligands
consisting of a highly conserved hydrophilic region, strongly contributing
to the ligand affinity, and a variable hydrophobic region, which efficiently
probes the effects of structural changes at the level of the ligand
on co-regulator recruitment or the RXRα–NURR1 dimerization
interface.
Collapse
Affiliation(s)
- Marcel Scheepstra
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Sebastian A. Andrei
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Rens M. J. M. de Vries
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Femke A. Meijer
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Jian-Nong Ma
- ACADIA Pharmaceuticals
Inc., San Diego, California 92130, United States
| | - Ethan S. Burstein
- ACADIA Pharmaceuticals
Inc., San Diego, California 92130, United States
| | - Roger Olsson
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 00 Lund, Sweden
| | - Christian Ottmann
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems,
Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
79
|
Pingitore P, Dongiovanni P, Motta BM, Meroni M, Lepore SM, Mancina RM, Pelusi S, Russo C, Caddeo A, Rossi G, Montalcini T, Pujia A, Wiklund O, Valenti L, Romeo S. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis. Hum Mol Genet 2017; 25:5212-5222. [PMID: 27742777 PMCID: PMC5886043 DOI: 10.1093/hmg/ddw341] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/28/2016] [Indexed: 01/22/2023] Open
Abstract
Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis. Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-β), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-β-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling.
Collapse
Affiliation(s)
- Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
| | - Paola Dongiovanni
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | | | - Marica Meroni
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Saverio Massimo Lepore
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | | | - Serena Pelusi
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Cristina Russo
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
| | - Giorgio Rossi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Liver Surgery and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Tiziana Montalcini
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luca Valenti
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
80
|
Pein H, Koeberle SC, Voelkel M, Schneider F, Rossi A, Thürmer M, Loeser K, Sautebin L, Morrison H, Werz O, Koeberle A. Vitamin A regulates Akt signaling through the phospholipid fatty acid composition. FASEB J 2017; 31:4566-4577. [PMID: 28687611 DOI: 10.1096/fj.201700078r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Protein kinases, including the serine/threonine kinase Akt, mediate manifold bioactivities of vitamin A, although the mechanisms behind the sustained kinase activation are diffuse. To investigate the role of cellular lipids as targetable factors in Akt signaling, we combined mass spectrometry-based lipidomics with immunologic detection of Akt (Ser473) phosphorylation. A screening campaign revealed retinol (vitamin A alcohol) and all-trans retinoic acid (vitamin A acid) (RA) as hits that time-dependently (≥24 h) deplete phosphatidylcholine-bound polyunsaturated fatty acids (PUFA-PCs) from NIH-3T3 mouse fibroblasts while inducing Akt activation (EC50 ≈ 0.1-1 µM). Other mitogenic and stress-regulated kinases were hardly affected. Organized in a coregulated phospholipid subcluster, PUFA-PCs compensated for the RA-induced loss of cellular PUFA-PCs and diminished Akt activation when supplemented. The counter-regulation of phospholipids and Akt by RA was mimicked by knockdown of lysophosphatidylcholine acyltransferase-3 or the selective retinoid X receptor (RXR) agonist bexarotene and prevented by the selective RXR antagonist Hx531. Treatment of mice with retinol decreased the tissue ratio of PUFA-PC and enhanced basal Akt activation preferentially in brain, which was attributed to astrocytes in dissociated cortical cultures. Together, our findings show that RA regulates the long-term activation of Akt by changes in the phospholipid composition.-Pein, H., Koeberle, S. C., Voelkel, M., Schneider, F., Rossi, A., Thürmer, M., Loeser, K., Sautebin, L., Morrison, H., Werz, O., Koeberle, A. Vitamin A regulates Akt signaling through the phospholipid fatty acid composition.
Collapse
Affiliation(s)
- Helmut Pein
- Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | | | - Maria Voelkel
- Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Freya Schneider
- Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Thürmer
- Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | | | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Helen Morrison
- Leibniz Institute of Age Research, Fritz-Lipmann-Institute, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Andreas Koeberle
- Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany;
| |
Collapse
|
81
|
Boto C, Quartin E, Cai Y, Martín-Lorenzo A, Cenador MBG, Pinto S, Gupta R, Enver T, Sánchez-García I, Hong D, Pires das Neves R, Ferreira L. Prolonged intracellular accumulation of light-inducible nanoparticles in leukemia cells allows their remote activation. Nat Commun 2017; 8:15204. [PMID: 28492285 PMCID: PMC5437273 DOI: 10.1038/ncomms15204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/09/2017] [Indexed: 01/24/2023] Open
Abstract
Leukaemia cells that are resistant to conventional therapies are thought to reside in protective niches. Here, we describe light-inducible polymeric retinoic acid (RA)-containing nanoparticles (NPs) with the capacity to accumulate in the cytoplasm of leukaemia cells for several days and release their RA payloads within a few minutes upon exposure to blue/UV light. Compared to NPs that are not activated by light exposure, these NPs more efficiently reduce the clonogenicity of bone marrow cancer cells from patients with acute myeloid leukaemia (AML) and induce the differentiation of RA-low sensitive leukaemia cells. Importantly, we show that leukaemia cells transfected with light-inducible NPs containing RA can engraft into bone marrow in vivo in the proximity of other leukaemic cells, differentiate upon exposure to blue light and release paracrine factors that modulate nearby cells. The NPs described here offer a promising strategy for controlling distant cell populations and remotely modulating leukaemic niches.
Collapse
Affiliation(s)
- Carlos Boto
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- 3Is—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Emanuel Quartin
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- 3Is—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Yijun Cai
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Alberto Martín-Lorenzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biologia Molecular y Celular del Cancer (IBMCC), CSIC/University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Virgen de La Vega, 37007 Salamanca, Spain
| | - María Begoña García Cenador
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Virgen de La Vega, 37007 Salamanca, Spain
- Department of Surgery, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra Pinto
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- 3Is—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rajeev Gupta
- UCL Cancer Institute, University College London, WC1E 6DD London, UK
| | - Tariq Enver
- UCL Cancer Institute, University College London, WC1E 6DD London, UK
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biologia Molecular y Celular del Cancer (IBMCC), CSIC/University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Virgen de La Vega, 37007 Salamanca, Spain
| | - Dengli Hong
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ricardo Pires das Neves
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- 3Is—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
82
|
El Haddad M, Notarnicola C, Evano B, El Khatib N, Blaquière M, Bonnieu A, Tajbakhsh S, Hugon G, Vernus B, Mercier J, Carnac G. Retinoic acid maintains human skeletal muscle progenitor cells in an immature state. Cell Mol Life Sci 2017; 74:1923-1936. [PMID: 28025671 PMCID: PMC11107588 DOI: 10.1007/s00018-016-2445-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 01/18/2023]
Abstract
Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.
Collapse
Affiliation(s)
- Marina El Haddad
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Cécile Notarnicola
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Brendan Evano
- Stem Cells and Development, CNRS URA 2578, Department of Developmental and Stem Cell Biology, Pasteur Institute, 25 rue du Dr Roux, 75015, Paris, France
| | - Nour El Khatib
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Marine Blaquière
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Anne Bonnieu
- INRA, UMR866, Dynamique Musculaire et Métabolisme, Université Montpellier, 34060, Montpellier, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental and Stem Cell Biology, Pasteur Institute, 25 rue du Dr Roux, 75015, Paris, France
| | - Gérald Hugon
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Barbara Vernus
- INRA, UMR866, Dynamique Musculaire et Métabolisme, Université Montpellier, 34060, Montpellier, France
| | - Jacques Mercier
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
- Département de Physiologie Clinique, CHRU de Montpellier, 34295, Montpellier Cedex 5, France
| | - Gilles Carnac
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
83
|
Malinina L, Patel DJ, Brown RE. How α-Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Annu Rev Biochem 2017; 86:609-636. [PMID: 28375742 DOI: 10.1146/annurev-biochem-061516-044445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-β-strand barrels, to β-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Rhoderick E Brown
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| |
Collapse
|
84
|
Wu Y, Su G, Tang S, Liu W, Ma Z, Zheng X, Liu H, Yu H. The combination of in silico and in vivo approaches for the investigation of disrupting effects of tris (2-chloroethyl) phosphate (TCEP) toward core receptors of zebrafish. CHEMOSPHERE 2017; 168:122-130. [PMID: 27776230 DOI: 10.1016/j.chemosphere.2016.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 05/24/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), a substitute for brominated flame retardants (FRs) that have been phased out of use, is frequently detected in aqueous environments. However, previous studies on its endocrine disrupting effects have mainly focused on terrestrial mammals. Here, to comprehensively evaluate the potential adverse effects of TCEP on aquatic vertebrates, zebrafish was used as a model to examine developmental phenotypes. The underlying mechanisms of toxicity of TCEP were further explored using in silico and in vivo approaches. In vivo results demonstrated morphologic changes and mortalities of zebrafish when exposed to high concentrations (14,250 and 28,500 μg TCEP/L). In silico results showed that TCEP can bind to and interact with nuclear receptors with different patterns. The combination of in vivo and in silico analyses indicated that receptors can influence each other at the molecular level and that ER, ThR, RXR and RyR were the key receptors influencing the transcriptional pathways. Our results demonstrate that TCEP has adverse effects at relatively low concentrations by affecting key receptors and genes of vertebrates. These results exhibited the need for further studies to evaluate the potential health risks of TCEP to human infants/children due to its high concentration in Chinese rivers (up to 3700 ng/L) and potential for human exposure.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guanyong Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Wei Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Jiangsu Provincial Academy of Environmental Sciences, Nanjing, Jiangsu, 210036, China
| | - Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xinmei Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
85
|
Grumet L, Taschler U, Lass A. Hepatic Retinyl Ester Hydrolases and the Mobilization of Retinyl Ester Stores. Nutrients 2016; 9:nu9010013. [PMID: 28035980 PMCID: PMC5295057 DOI: 10.3390/nu9010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022] Open
Abstract
For mammals, vitamin A (retinol and metabolites) is an essential micronutrient that is required for the maintenance of life. Mammals cannot synthesize vitamin A but have to obtain it from their diet. Resorbed dietary vitamin A is stored in large quantities in the form of retinyl esters (REs) in cytosolic lipid droplets of cells to ensure a constant supply of the body. The largest quantities of REs are stored in the liver, comprising around 80% of the body’s total vitamin A content. These hepatic vitamin A stores are known to be mobilized under times of insufficient dietary vitamin A intake but also under pathological conditions such as chronic alcohol consumption and different forms of liver diseases. The mobilization of REs requires the activity of RE hydrolases. It is astounding that despite their physiological significance little is known about their identities as well as about factors or stimuli which lead to their activation and consequently to the mobilization of hepatic RE stores. In this review, we focus on the recent advances for the understanding of hepatic RE hydrolases and discuss pathological conditions which lead to the mobilization of hepatic RE stores.
Collapse
Affiliation(s)
- Lukas Grumet
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| |
Collapse
|
86
|
Abstract
Nuclear receptors (NRs) are master regulators of broad genetic programs in metazoans. These programs are regulated in part by the small-molecule ligands that bind NRs and modulate their interactions with transcriptional coregulatory factors. X-ray crystallography is now delivering more complete pictures of how the multidomain architectures of NR homo- and heterodimers are physically arranged on their DNA elements and how ligands and coactivator peptides act through these complexes. Complementary studies are also pointing to a variety of novel mechanisms by which NRs access their DNA-response elements within chromatin. Here, we review the new structural advances together with proteomic discoveries that shape our understanding of how NRs form a variety of functional interactions with collaborating factors in chromatin.
Collapse
Affiliation(s)
| | - Fraydoon Rastinejad
- Integrative Metabolism Program, SBP Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
87
|
Marchwicka A, Cunningham A, Marcinkowska E, Brown G. Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review. Expert Opin Ther Pat 2016; 26:957-71. [PMID: 27336223 DOI: 10.1080/13543776.2016.1205586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Differentiation therapy using all-trans retinoic acid (ATRA) revolutionised the treatment of acute promyelocytic leukaemia to such an extent that it is now one of the most curable types of leukaemia, with ATRA and anthracycline-based chemotherapy providing cure rates above 80%. Isotretinoin is used to treat chronic acne. Here, we examine the information described in recent patents and the extent to which new findings are influencing extending retinoid-based differentiation therapy to other cancers, as well as the development of new therapies for other disorders. AREAS COVERED A search has been performed on the literature and worldwide patents filed during 2014 to the present time, focusing on synthetic agonists and antagonists of retinoic acid receptors and novel compositions for the delivery of these agents. EXPERT OPINION New potential therapeutic applications have been described, including lung, breast and head and neck cancers, T cell lymphoma and neurodegenerative, metabolic, ophthalmic, muscle, and inflammatory disorders. Recent patents have described the means to maximise retinoid activity. Two decades of efforts to extend retinoid-based therapies have been disappointing and new synthetic retinoids, target diseases and modes of delivery may well resolve this long standing issue.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Alan Cunningham
- b Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| | - Ewa Marcinkowska
- a Laboratory of Protein Biochemistry, Faculty of Biotechnology , University of Wroclaw , Wroclaw , Poland
| | - Geoffrey Brown
- c Institute of Clinical Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
88
|
Vaz B, Alvarez R, de Lera AR. Stereocontrolled synthesis of ( S )-9- cis - and ( S )-11- cis -13,14-dihydroretinoic acid. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
89
|
de Lera ÁR, Krezel W, Rühl R. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last! ChemMedChem 2016; 11:1027-37. [PMID: 27151148 DOI: 10.1002/cmdc.201600105] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Indexed: 12/27/2022]
Abstract
9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand.
Collapse
Affiliation(s)
- Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale, U964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404, Illkirch, France
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Hungary
| |
Collapse
|
90
|
Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS One 2016; 11:e0153556. [PMID: 27078158 PMCID: PMC4831765 DOI: 10.1371/journal.pone.0153556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.
Collapse
|
91
|
Lee H, Jeong H, Park S, Yoo W, Choi S, Choi K, Lee MG, Lee M, Cha D, Kim YS, Han J, Kim W, Park SH, Oh J. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis. EMBO Mol Med 2016; 7:819-30. [PMID: 25864124 PMCID: PMC4459820 DOI: 10.15252/emmm.201404527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.
Collapse
Affiliation(s)
- Hongsik Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Hyeyeun Jeong
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Sangeun Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Wonbaek Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Soyoung Choi
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Kyungmin Choi
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Min-Goo Lee
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Mihwa Lee
- Department of Nephrology, College of Medicine, Korea University, Seoul, Korea
| | - DaeRyong Cha
- Department of Nephrology, College of Medicine, Korea University, Seoul, Korea
| | - Young-Sik Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, Korea
| | - Jeeyoung Han
- Department of Pathology, Inha University Hospital, Incheon, Korea
| | - Wonkon Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, Korea
| | - Sun-Hwa Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Junseo Oh
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
92
|
Surman SL, Penkert RR, Jones BG, Sealy RE, Hurwitz JL. Vitamin Supplementation at the Time of Immunization with a Cold-Adapted Influenza Virus Vaccine Corrects Poor Mucosal Antibody Responses in Mice Deficient for Vitamins A and D. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:219-27. [PMID: 26740391 PMCID: PMC4783424 DOI: 10.1128/cvi.00739-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Vitamin A and D deficiencies and insufficiencies are prevalent worldwide in developed and developing countries. Vitamin metabolites are functionally intertwined in that they are high-affinity ligands for related receptors of the nuclear receptor superfamily. The effects of vitamin A deficiencies (VAD) on antibody responses to respiratory virus vaccines have already been demonstrated. Of particular concern was the reduction in IgA, a first line of defense against pathogens in the respiratory tract. Here, we describe the individual and combined effects of vitamin A and D deficiencies in mice immunized with an attenuated influenza virus vaccine. Relative to VAD, vitamin D deficiency (VDD) had a limited effect, but double deficiencies for vitamins A and D (VAD+VDD) further reduced antibody responses in the respiratory tract. The administration of supplemental vitamins A and D to VAD+VDD mice at the time of vaccination restored responses in a dose-dependent manner. Results suggest that vitamin supplementation programs may be beneficial in a clinical setting to promote healthy immune responses to respiratory virus vaccines in vitamin-deficient individuals.
Collapse
Affiliation(s)
- S L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - B G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
93
|
Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors. J Comput Aided Mol Des 2015; 29:975-88. [DOI: 10.1007/s10822-015-9869-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
94
|
Abstract
Vitamin A (retinol) and its congeners - the retinoids - participate in a panoply of biological events, as for instance cell differentiation, proliferation, survival, and death, necessary to maintain tissue homeostasis. Furthermore, such molecules may be applied as therapeutic agents in the case of some diseases, including dermatological disturbances, immunodeficiency, and cancer (mainly leukemia). In spite of this, there is a growing body of evidences showing that vitamin A doses exceeding the nutritional requirements may lead to negative consequences, including bioenergetics state dysfunction, redox impairment, altered cellular signaling, and cell death or proliferation, depending on the cell type. Neurotoxicity has long been demonstrated as a possible side effect of inadvertent consumption, or even under medical recommendation of vitamin A and retinoids at moderate to high doses. However, the exact mechanism by which such molecules exert a neurotoxic role is not clear yet. In this review, recent data are discussed regarding the molecular findings associated with the vitamin A-related neurotoxicity.
Collapse
|
95
|
Álvarez S, Lieb M, Martínez C, Khanwalkar H, Rodríguez-Barrios F, Álvarez R, Gronemeyer H, de Lera AR. Modulation of Retinoic Acid Receptor Subtypes by 5- and 8-Substituted (Naphthalen-2-yl)-based Arotinoids. ChemMedChem 2015; 10:1378-91. [PMID: 26012882 DOI: 10.1002/cmdc.201500150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 12/29/2022]
Abstract
Retinoid receptors (RARs and RXRs) transduce the signals of their natural and synthetic ligands (retinoids and rexinoids) to cellular transcriptional machinery to induce gene programs that control diverse biological and physiological effects on organisms. All-trans-retinoic acid, the natural ligand for RARs, is used therapeutically for the treatment of acute promyelocytic leukemia (APL), whereas the synthetic rexinoid bexarotene (a representative member of the aromatic retinoids or arotinoids) is approved for the treatment of cutaneous T-cell lymphoma (CTCL). Other retinoids have found applications in the topical treatment of skin disorders. In continuation of previous work on the naphthalene-based arotinoid scaffold, we synthesized a new series of (3-halo)benzoic acids connected to C5- or C8-substituted naphthyl rings via (E)-ethenyl and amide and, for the C5 series, (E)-chalcone linkers. These compounds were evaluated as RAR modulators in comparison with previously described dihydronaphthalene arotinoids with the same substitution pattern. Transactivation studies in this series revealed an absence of synergy between small halogen atoms (F, Cl) at C3 and the groups at C5 or C8, as had been observed on some of the dihydronaphthalene analogues. Instead, non-halogenated 4-(2-naphthamido)benzoic acid derivatives transactivated toward the RARβ subtype in preference to the paralogues. The derivatives with bulkier substituents at C8 were characterized as dual RARβ/RARα antagonists, and (E)-4-[(8-(phenylethynyl)naphthalene-2-yl)ethenyl]benzoic acid (11 c), with an ethenyl connector, was shown to be a potent antagonist of RARα.
Collapse
Affiliation(s)
- Susana Álvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain)
| | - Michele Lieb
- Department of Cancer Biology, Institut de Génetique et de Biologie Moleculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, BP 163, Ilkirch Cedex, C.U. de Strasbourg (France)
| | - Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain)
| | - Harshal Khanwalkar
- Department of Cancer Biology, Institut de Génetique et de Biologie Moleculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, BP 163, Ilkirch Cedex, C.U. de Strasbourg (France)
| | - Fátima Rodríguez-Barrios
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain)
| | - Rosana Álvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain).
| | - Hinrich Gronemeyer
- Department of Cancer Biology, Institut de Génetique et de Biologie Moleculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, BP 163, Ilkirch Cedex, C.U. de Strasbourg (France).
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain).
| |
Collapse
|
96
|
Zolfaghari R, Ross AC. Hepatocyte nuclear factor 4α (HNF4α) in coordination with retinoic acid receptors increases all-trans-retinoic acid-dependent CYP26A1 gene expression in HepG2 human hepatocytes. J Cell Biochem 2015; 115:1740-51. [PMID: 24819304 DOI: 10.1002/jcb.24839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/11/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022]
Abstract
CYP26A1 expression is very highly induced by retinoic acid (RA) in the liver, compared to most other tissues, suggesting that a liver-enriched factor may be required for its physiological transcriptional response. HNF4α is a highly conserved liver-specific/enriched member of nuclear receptor superfamily. In this study, we hypothesized that HNF4α and RARs may cooperate in an RA-dependent manner to induce a high level of CYP26A1 expression in liver cells. Partial inhibition of endogenous HNF4α by siRNA reduced the level of RA-induced CYP26A1 mRNA in HepG2 cells. Cotransfection of HNF4α, with or without RARs, demonstrated RA-dependent activation of a human CYP26A1 promoter-luciferase construct. Analysis of a 2.5-kbp putative CYP26A1 promoter sequence identified five potential HNF4α DNA response elements: H1 located in a proximal region overlapping with an RAR element-1 (RARE1 or R1); H2 and H3 in the distal region, close to RARE2 (R2) and RARE3 (R3); and H4 and H5 in intermediary regions. In EMSA and ChIP analyses HNF4α and RARs binding in the proximal and distal CYP26A1 promoter regions was significantly higher in RA-treated cells. Mutational analysis of the individual HNF4α DNA-response elements identified H1 as the major site for HNF4α binding because mutation of H1 inhibited the promoter activity by ~90%, followed by H2 mutation with less than 40% inhibition. Our results indicate that HNF4α coordinates with RARs in an RA-dependent manner to strongly induce CYP26A1 gene expression in the liver, which may explain the high level of response to RA observed in vivo.
Collapse
Affiliation(s)
- Reza Zolfaghari
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
97
|
Roshan-Moniri M, Hsing M, Butler MS, Cherkasov A, Rennie PS. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Cancer Treat Rev 2015; 40:1137-52. [PMID: 25455729 DOI: 10.1016/j.ctrv.2014.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers.
Collapse
|
98
|
Rastinejad F, Ollendorff V, Polikarpov I. Response to Moras et al. Trends Biochem Sci 2015; 40:290-2. [PMID: 25890866 DOI: 10.1016/j.tibs.2015.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 10/01/2022]
Abstract
We recently reviewed full-length nuclear receptor (NR) structures in an Opinion article wherein we carefully evaluated a large body of literature. As heads of three separate laboratories working on NR architectures, we expressed our shared insights and critical comments. One group (Moras et al.) has declined to accept our strong concerns about several of their published reports. We comment on their letter.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Sanford-Burnham Medical Research Institute, Metabolic Disease Program, 6400 Sanger Road, Lake Nona, FL 32827, USA.
| | - Vincent Ollendorff
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, 34000 Montpellier, France
| | - Igor Polikarpov
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), Avenida Trabalhador São-Carlense 400, São Carlos, SP, 13560-970 Brazil
| |
Collapse
|
99
|
Rastinejad F, Ollendorff V, Polikarpov I. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Trends Biochem Sci 2014; 40:16-24. [PMID: 25435400 DOI: 10.1016/j.tibs.2014.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
The crystal structures of three nuclear receptor (NR) complexes have emerged to reveal their multidomain architectures on DNA. These pictures provide unprecedented views of interfacial couplings between the DNA-binding domains (DBDs) and ligand-binding domains (LBDs). The detailed pictures contrast with previous interpretations of low-resolution electron microscopy (EM) and small angle X-ray scattering (SAXS) data, which had suggested a common architecture with noninteracting DBDs and LBDs. Revisiting both historical and recent interpretations of NR architecture, we invoke new principles underlying higher-order quaternary organization and the allosteric transmission of signals between domains. We also discuss how NR architectures are being probed in living cells to understand dimerization and DNA-binding events in real time.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Sanford-Burnham Medical Research Institute, Metabolic Disease Program, 6400 Sanger Road, Lake Nona, FL 32827, USA.
| | - Vincent Ollendorff
- INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060 Montpellier Université Montpellier 1, F-34000 Montpellier - Université Montpellier 2, F-34000 Montpellier, France
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
100
|
Gege C, Schlüter T, Hoffmann T. Identification of the first inverse agonist of retinoid-related orphan receptor (ROR) with dual selectivity for RORβ and RORγt. Bioorg Med Chem Lett 2014; 24:5265-7. [DOI: 10.1016/j.bmcl.2014.09.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022]
|