51
|
Huang TC, Chen YL, Wu MI, Lin PS, Chen PY, Lee CL. Sonoelectrochemical nitrided graphene nanosheets with vacancies and their applications for catalysis and sensing of uric acid oxidation. ULTRASONICS SONOCHEMISTRY 2023; 99:106589. [PMID: 37683415 PMCID: PMC10495671 DOI: 10.1016/j.ultsonch.2023.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
A sonoelectrochemical method for preparing N-doped defective graphene nanosheets (N/O-dGNs) with point defects and 5-9 or 5-8-5 vacancies and oxygen-containing groups was successfully demonstrated. In this one-pot approach, the N-bonding configuration and N content of N/O-dGNs were finely tuned by the ultrasonic power (192, 320, and 640 W). The N content in atomic percentage (at%) for N/O-dGN (N/O-dGN320W) with point defects and 5-8-5 vacancy prepared at 320 W power was 5.6 at%, greater than 3.0 at% and 2.6 at% for N/O-dGN with point defects and 5-9 vacancies at 192 W and 640 W power (N/O-dGN192W and N/O-dGN640W), respectively. N-bonding sites on N/O-dGN320W were dominantly amine N (2.1 at%) and pyrrolic N (2.4 at%). Additionally, the electrocatalytic activity of N/O-dGN192W, N/O-dGN320W, and N/O-dGN640W was successfully demonstrated for the sequential uric acid (UA) oxidation reaction (UOR), in which N/O-dGN320W displayed a significant mass activity (2.51 A/g). As in the transient catalysis of UOR, N/O-dGN320W with amine N showed 400.8 μA mM-1 cm-2 in sensitivity within a wide linear analysis range (1.5 × 10-2-6 mM) for amperometrically sensing UA. The results of real sample experiments using serum samples further demonstrated the potential of N/O-dGN320W as a non-enzymatic UA sensor.
Collapse
Affiliation(s)
- Tzu-Chen Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Ying-Lung Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Mei-I Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Pei-Ssu Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Po-Yu Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Liang Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.
| |
Collapse
|
52
|
Seselj N, Alfaro SM, Bompolaki E, Cleemann LN, Torres T, Azizi K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302207. [PMID: 37151102 DOI: 10.1002/adma.202302207] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Indexed: 05/09/2023]
Abstract
A constant increase in global emission standard is causing fuel cell (FC) technology to gain importance. Over the last two decades, a great deal of research has been focused on developing more active catalysts to boost the performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC), as well as their durability. Due to material degradation at high-temperature conditions, catalyst design becomes challenging. Two main approaches are suggested: (i) alloying platinum (Pt) with low-cost transition metals to reduce Pt usage, and (ii) developing novel catalyst support that anchor metal particles more efficiently while inhibiting corrosion phenomena. In this comprehensive review, the most recent platinum group metal (PGM) and platinum group metal free (PGM-free) catalyst development is detailed, as well as the development of alternative carbon (C) supports for HT-PEMFCs.
Collapse
Affiliation(s)
- Nedjeljko Seselj
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Silvia M Alfaro
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | | | - Lars N Cleemann
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Tomas Torres
- Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain
- IMDEA-Nanociencia, c/Faraday, 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| |
Collapse
|
53
|
Lorentzen AB, Bouatou M, Chacon C, Dappe YJ, Lagoute J, Brandbyge M. Quantum Transport in Large-Scale Patterned Nitrogen-Doped Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2556. [PMID: 37764585 PMCID: PMC10538011 DOI: 10.3390/nano13182556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
It has recently been demonstrated how the nitrogen dopant concentration in graphene can be controlled spatially on the nano-meter scale using a molecular mask. This technique may be used to create ballistic electron optics-like structures of high/low doping regions; for example, to focus electron beams, harnessing the quantum wave nature of the electronic propagation. Here, we employ large-scale Greens function transport calculations based on a tight-binding approach. We first benchmark different tight-binding models of nitrogen in graphene with parameters based on density functional theory (DFT) and the virtual crystal approximation (VCA). Then, we study theoretically how the random distribution within the masked regions and the discreteness of the nitrogen scattering centers impact the transport behavior of sharp n-p and n-n' interfaces formed by different, realistic nitrogen concentrations. We investigate how constrictions for the current can be realized by patterned high/low doping regions with experimentally feasible nitrogen concentrations. The constrictions can guide the electronic current, while the quantized conductance is significantly washed out due to the nitrogen scattering. The implications for device design is that a p-n junction with nitrogen corrugation should still be viable for current focusing. Furthermore, a guiding channel with less nitrogen in the conducting canal preserves more features of quantized conductance and, therefore, its low-noise regime.
Collapse
Affiliation(s)
| | - Mehdi Bouatou
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France; (M.B.); (C.C.); (J.L.)
| | - Cyril Chacon
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France; (M.B.); (C.C.); (J.L.)
| | - Yannick J. Dappe
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France;
| | - Jérôme Lagoute
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France; (M.B.); (C.C.); (J.L.)
| | - Mads Brandbyge
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| |
Collapse
|
54
|
Lin YC, Rinawati M, Huang WH, Aulia S, Chang LY, Guo YT, Chen KJ, Chiang WH, Haw SC, Yeh MH. Favoring the Selective H 2O 2 Generation of a Self-Antibiofouling Dissolved Oxygen Sensor for Real-Time Online Monitoring via Surface-Engineered N-Doped Reduced Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42520-42531. [PMID: 37655434 DOI: 10.1021/acsami.3c07261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Dissolved oxygen (DO) is a key parameter in assessing water quality, particularly in aquatic ecosystems. The oxygen reduction reaction (ORR) has notable prevalence in energy conversion and biological processes, including biosensing. Nevertheless, the long-term usage of the submersible DO sensors leads to undesirable biofilm formation on the electrode surface, deteriorating their sensitivity and stability. Recently, the reactive oxygen species (ROS), such as the two-electron pathway ORR byproduct, H2O2, had been known for its biofilm-degradation activity. Herein, for the first time, we reported N-doped reduced graphene oxide (N-rGO) for H2O2 selectivity as the self-antibiofouling DO sensor. Introducing foreign atom doping could reorient the electron network of graphene by the electronegativity gap, which facilitated highly selective and efficient two electron pathway of ORR. Mitigating the N content of N-rGO had enhanced the H2O2 selectivity (57.5%) and electron transfer number (n = 2.84) in neutral medium. Moreover, the N-rGO could be integrated to a wireless DO monitoring device that might realize an applicable device in the aquatic fish farming.
Collapse
Affiliation(s)
- Yu-Chi Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Mia Rinawati
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sofiannisa Aulia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ling-Yu Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yi-Ting Guo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | | | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
55
|
Wang C, Deng Z, Phillips DL, Liu J. Extension of Non-alternant Nanographenes Containing Nitrogen-Doped Stone-Thrower-Wales Defects. Angew Chem Int Ed Engl 2023; 62:e202306890. [PMID: 37421410 DOI: 10.1002/anie.202306890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Non-alternant topologies have attracted considerable attention due to their unique physiochemical characteristics in recent years. Here, three novel topological nanographenes molecular models of nitrogen-doped Stone-Thrower-Wales (S-T-W) defects were achieved through intramolecular direct arylation. Their chemical structures were unambiguously elucidated by single-crystal analysis. Among them, threefold intramolecular direct arylation compound (C42 H21 N) is the largest nanographene bearing a N-doped non-alternant topology to date, in which the non-benzenoid rings account for 83 % of the total molecular skeleton. The absorption maxima of this compound was located in the near-infrared region with a long tail up to 900 nm, which was much longer than those reported for similarly sized N-doped nanographene with six-membered rings (C40 H15 N). In addition, the electronic energy gaps of these series compounds clearly decreased with the introduction of non-alternant topologies (from 2.27 eV to 1.50 eV). It is noteworthy that C42 H21 N possesses such a low energy gap (Eg opt =1.40 eV; Eg cv =1.50 eV), yet is highly stable under ambient conditions. Our work reported herein demonstrates that the non-alternant topology could significantly influence the electronic configurations of nanocarbons, where the introduction of a non-alternanting topology may be an effective way to narrow the energy gap without extending the molecular π-conjugation.
Collapse
Affiliation(s)
- Chang Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Ziqi Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
56
|
Taniguchi Y, Shu Y, Takada R, Miyake K, Uchida Y, Nishiyama N. A zeolite templating method for fabricating edge site-enriched N-doped carbon materials. NANOSCALE ADVANCES 2023; 5:4233-4239. [PMID: 37560416 PMCID: PMC10408580 DOI: 10.1039/d3na00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
N-doped carbon materials have attracted considerable attention as highly functional materials because nitrogen doping distorts the carbon lattice, changes the charge density, and introduces additional defects. Among various positions of N atoms in N-doped carbon compounds, pyridinic-N, pyrrolic-N, and valley-N, which are doped at edge sites, exhibit specific electrocatalytic activities during the oxygen reduction reaction (ORR). However, it is difficult to selectively introduce these N atoms into a carbon matrix because the synthesis procedure typically includes high-temperature heat treatment. In this study, we applied a zeolite templating method to synthesize edge site-rich N-doped carbon materials. The sample fabricated using a zeolite template possessed high concentrations of pyridinic-N and valley-N atoms, demonstrating a significantly higher ORR catalytic activity than the sample synthesized without a zeolite template. Additional experiments conducted using various zeolites confirmed the positive effect of N-doped carbons on the ORR catalytic performance. This work demonstrated that the zeolite templating method not only increased the specific surface area and the number of active sites but also selectively created edge sites and improved the quality of the active sites.
Collapse
Affiliation(s)
- Yurika Taniguchi
- Division of Chemical Engineering, Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Yasuhiro Shu
- Division of Chemical Engineering, Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Ryuji Takada
- Division of Chemical Engineering, Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Koji Miyake
- Division of Chemical Engineering, Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
57
|
Rao KS, Senthilnathan J, Ting JM, Yoshimura M. Continuous Production of Functionalized Graphene Inks by Soft Solution Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2043. [PMID: 37513054 PMCID: PMC10384762 DOI: 10.3390/nano13142043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
The continuous production of high-quality, few-layer graphene nanosheets (GNSs) functionalized with nitrogen-containing groups was achieved via a two-stage reaction method. The initial stage produces few-layer GNSs by utilizing our recently developed glycine-bisulfate ionic complex-assisted electrochemical exfoliation of graphite. The second stage, developed here, uses a radical initiator and nitrogen precursor (azobisisobutyronitrile) under microwave conditions in an aqueous solution for the efficient nitrogen functionalization of the initially formed GNSs. These nitrile radical reactions have great advantages in green chemistry and soft processing. Raman spectra confirm the insertion of nitrogen functional groups into nitrogen-functionalized graphene (N-FG), whose disorder is higher than that of GNSs. X-ray photoelectron spectra confirm the insertion of edge/surface nitrogen functional groups. The insertion of nitrogen functional groups is further confirmed by the enhanced dispersibility of N-FG in dimethyl formamide, ethylene glycol, acetonitrile, and water. Indeed, after the synthesis of N-FG in solution, it is possible to disperse N-FG in these liquid dispersants just by a simple washing-centrifugation separation-dispersion sequence. Therefore, without any drying, milling, and redispersion into liquid again, we can produce N-FG ink with only solution processing. Thus, the present work demonstrates the 'continuous solution processing' of N-FG inks without complicated post-processing conditions. Furthermore, the formation mechanism of N-FG is presented.
Collapse
Affiliation(s)
- Kodepelly Sanjeeva Rao
- Promotion Center for Global Materials Research (PCGMR), Department of Material Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jaganathan Senthilnathan
- Promotion Center for Global Materials Research (PCGMR), Department of Material Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Department of Civil Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, Tamil Nadu, India
| | - Jyh-Ming Ting
- Promotion Center for Global Materials Research (PCGMR), Department of Material Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Masahiro Yoshimura
- Promotion Center for Global Materials Research (PCGMR), Department of Material Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
58
|
Li X, Lin S, Yan T, Wang Z, Cai Q, Zhao J. Machine-learning-accelerated screening of single metal atoms anchored on MnPS 3 monolayers as promising bifunctional oxygen electrocatalysts. NANOSCALE 2023. [PMID: 37377102 DOI: 10.1039/d3nr02130k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Searching for bifunctional oxygen electrocatalysts with good catalytic performance to promote the oxygen evolution/reduction reactions (OER/ORR) is of great significance to the development of sustainable and renewable clean energy. Herein, we performed density functional theory (DFT) and machine-learning (DFT-ML) hybrid computations to investigate the potential of a series of single transition metal atoms anchored on the experimentally available MnPS3 monolayer (TM/MnPS3) as the bifunctional electrocatalysts for the ORR/OER. The results revealed that the interactions of these metal atoms with MnPS3 are rather strong, thus guaranteeing their high stability for practical applications. Remarkably, the highly efficient ORR/OER can be achieved on Rh/MnPS3 and Ni/MnPS3 with lower overpotentials than those of metal benchmarks, which can be further rationalized by establishing the volcano and contour plots. Furthermore, the ML results showed that the bond length of TM atoms with the adsorbed O species (dTM-O), the number of d electrons (Ne), the d-center (εd), the radius (rTM) and the first ionization energy (Im) of the TM atoms are the primary descriptors featuring the adsorption behavior. Our findings not only suggest novel highly efficient bifunctional oxygen electrocatalysts, but also provide cost-effective opportunities for the design of single-atom catalysts using the DFT-ML hybrid method.
Collapse
Affiliation(s)
- Xinyi Li
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Shiru Lin
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, Texas 76204, USA.
| | - Tingyu Yan
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
| | - Zhongxu Wang
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
59
|
Huang S, Ye T, Liu X, Cong X, Peng K, Liu L, Jiang Y, Chen Q, Hu Z, Zhang J. Amorphous and defective Co-P-O@NC ball-in-ball hollow structure for highly efficient electrocatalytic overall water splitting. J Colloid Interface Sci 2023; 649:1047-1059. [PMID: 37421805 DOI: 10.1016/j.jcis.2023.06.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023]
Abstract
Electrochemical water splitting using hollow and defect-rich catalysts has emerged as a promising strategy for efficient hydrogen production. However, the rational design and controllable synthesis of such catalysts with intricate morphology and composition present significant challenges. Herein, we propose a template-engaged approach to fabricate a novel ball-in-ball hollow structure of Co-P-O@N-doped carbon with abundant oxygen vacancies. The synthesis process involves the preparation of uniform cobalt-glycerate (Co-gly) polymer microspheres as precursors, followed by surface coating with ZIF-67 layer, adjustable chemical etching by phytic acid, and controllable pyrolysis at high temperature. The resulting ball-in-ball structure offers a large number of accessible active sites and high redox reaction centers, facilitating efficient charge transport, mass transfer, and gas evolution, which are beneficial for the acceleration of electrocatalytic reaction. Additionally, density functional theory (DFT) calculations indicate that the incorporation of oxygen and the presence of Co-P dangling bonds in CoP significantly enhance the adsorption of oxygenated species, leading to improved intrinsic electroactivity at the single-site level. As a sequence, the titled catalyst exhibits remarkable electrocatalytic activity and stability for water splitting in alkaline media. Notably, it only requires a low overpotential of 283 mV to achieve a current density of 10 mA cm-2 for the oxygen evolution reaction. This work may provide some new insights into the design of complex hollow structures of phosphides with abundant defects for energy conversion.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tong Ye
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiao Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiansheng Cong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kaimei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Libin Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qiaochuan Chen
- School of Computer Engineering and Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linkoping 58183, Sweden.
| | - Jiujun Zhang
- Institute for Sustainable Energy College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
60
|
Zhang H, Zhou P, Daaoub A, Sangtarash S, Zhao S, Yang Z, Zhou Y, Zou YL, Decurtins S, Häner R, Yang Y, Sadeghi H, Liu SX, Hong W. Atomically well-defined nitrogen doping for cross-plane transport through graphene heterojunctions. Chem Sci 2023; 14:6079-6086. [PMID: 37293661 PMCID: PMC10246689 DOI: 10.1039/d3sc00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
The nitrogen doping of graphene leads to graphene heterojunctions with a tunable bandgap, suitable for electronic, electrochemical, and sensing applications. However, the microscopic nature and charge transport properties of atomic-level nitrogen-doped graphene are still unknown, mainly due to the multiple doping sites with topological diversities. In this work, we fabricated atomically well-defined N-doped graphene heterojunctions and investigated the cross-plane transport through these heterojunctions to reveal the effects of doping on their electronic properties. We found that a different doping number of nitrogen atoms leads to a conductance difference of up to ∼288%, and the conductance of graphene heterojunctions with nitrogen-doping at different positions in the conjugated framework can also lead to a conductance difference of ∼170%. Combined ultraviolet photoelectron spectroscopy measurements and theoretical calculations reveal that the insertion of nitrogen atoms into the conjugation framework significantly stabilizes the frontier molecular orbitals, leading to a change in the relative positions of the HOMO and LUMO to the Fermi level of the electrodes. Our work provides a unique insight into the role of nitrogen doping in the charge transport through graphene heterojunctions and materials at the single atomic level.
Collapse
Affiliation(s)
- Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Ping Zhou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| |
Collapse
|
61
|
Clark C, O'Keefe CA, Wright DS, Grey CP. Single-source formation and assessment of nitrogen-doped graphitic spheres for lithium- and sodium-ion batteries. RSC Adv 2023; 13:15918-15925. [PMID: 37250222 PMCID: PMC10214001 DOI: 10.1039/d3ra01409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Optimisation of the annealing time for the fabrication of nitrogen-doped graphitic-spheres (NDGSs), formed from a nitrogen-functionalised aromatic precursor at 800 °C, to give high nitrogen doping has been performed. Thorough analysis of the NDGSs, approximately 3 μm in diameter, pinpointed an optimum annealing time of 6 to 12 hours to obtain highest nitrogen content at the surface of the spheres (reaching a stoichiometry of around C3N at the surface and C9N in the bulk), with the quantity of sp2 and sp3 surface nitrogen varying with annealing time. The results suggest that changes in the nitrogen dopant level occur through slow diffusion of the nitrogen throughout the NDGSs, along with reabsorption of nitrogen-based gases produced during annealing. A stable bulk nitrogen dopant level of 9% was revealed in the spheres. The NDGSs performed well as anodes in lithium-ion batteries, providing a capacity of up to 265 mA h g-1 at a charging rate of C/20, but did not perform well in sodium-ion batteries without the use of diglyme, consistent with the presence of graphitic regions, but with low internal porosity.
Collapse
Affiliation(s)
- Cassius Clark
- Yusuf Hamied Department of Chemistry Lensfield Road Cambridge CB2 1EW UK
- Cambridge Graphene Centre 9 JJ Thompson Avenue Cambridge CB3 0FA UK
| | - Christopher A O'Keefe
- Yusuf Hamied Department of Chemistry Lensfield Road Cambridge CB2 1EW UK
- The Faraday Institution, Quad One Harwell, Science and Innovation Campus Didcot UK
| | - Dominic S Wright
- Yusuf Hamied Department of Chemistry Lensfield Road Cambridge CB2 1EW UK
- The Faraday Institution, Quad One Harwell, Science and Innovation Campus Didcot UK
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry Lensfield Road Cambridge CB2 1EW UK
- Cambridge Graphene Centre 9 JJ Thompson Avenue Cambridge CB3 0FA UK
- The Faraday Institution, Quad One Harwell, Science and Innovation Campus Didcot UK
| |
Collapse
|
62
|
Pei T, Shi F, Liu C, Lu Y, Lin X, Hou D, Yang S, Li J, Zheng Z, Zheng Y. Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K 2FeO 4 and CaCO 3 for phenol removal: Governing factors and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121871. [PMID: 37225081 DOI: 10.1016/j.envpol.2023.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Shunxiong Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Jirong Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen, 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
63
|
Shih CY, Wang PT, Chung WP, Wang WH, Chiang IT, Su WC, Huang WL, Teng H. Concise nanotherapeutic modality for cancer involving graphene oxide dots in conjunction with ascorbic acid. NANOSCALE 2023. [PMID: 37183719 DOI: 10.1039/d3nr00431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer cells tend to have higher intracellular reactive oxygen species (ROS) levels and are more vulnerable to ROS-generating therapies such as ascorbic acid (H2Asc) therapy, whose potency has been explored by several clinical trials. However, its efficiency is restricted by the requirement of pharmacologically high local H2Asc concentrations. Here, we show that nitrogen-doped graphene oxide dots (NGODs), which are highly crystalline and biocompatible, can serve as a catalytic medium for improving H2Asc cancer therapy at orally achievable physiological H2Asc concentrations. NGODs catalyze H2Asc oxidation for H2O2 and dehydroascorbic acid generation to disrupt cancer cells by consuming intracellular glutathione (GSH) and inducing ROS damage. This is the first study to demonstrate the direct consumption of GSH using a carbon-based nano-catalyst (NGODs), which further expedites tumor killing. In addition, as in our previous study, NGODs can also serve as a highly efficient photosensitizer for photodynamic therapy. Under illumination, NGODs produce a considerable amount of H2O2 in the presence of physiological levels of H2Asc as a hole scavenger and further enhance the therapeutic efficiency. Thus, a concise nanotherapeutic modality could be achieved through the conjunction of multifunctional NGODs and H2Asc to selectively eliminate deep-seated and superficial tumors simultaneously (under 65% of normal cell viability, it kills almost all cancer cells). Note that this level of therapeutic versatility generally requires multiple components and complex manufacturing processes that run into difficulties with FDA regulations and clinical applications. In this study, the concise NGOD-H2Asc nanotherapeutic modality has demonstrated its great potential in cancer therapy.
Collapse
Affiliation(s)
- Chun-Yan Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Ting Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Pang Chung
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Hsiu Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Ting Chiang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsisheng Teng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
64
|
He Y, Wang Z, Cao A, Xu X, Li J, Zhang B, Kang L. Construction of graphene oxide-coated zinc tetraphenyporphyrin nanostructures for photocatalytic CO 2 reduction to highly selective CH 4 product. J Colloid Interface Sci 2023; 638:123-134. [PMID: 36736114 DOI: 10.1016/j.jcis.2023.01.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The zinc-based photocatalysts for CO2 reduction have attracted increasing attention, however, usually exhibit low CO2-to-CH4 selectivity. Here, the graphene oxide (GO)-coated zinc tetraphenylporphyrin (ZnTPP/GO) nanocomposites are successfully synthesized through a simple method. It is found that with the increase of GO content, the crystallinity of ZnTPP nanocrystals enhances with the size decrease, and then the light absorption can easily match with the solar spectrum. The optimal ZnTPP/GO sample exhibits the CH4 evolution rate of 41.6 μmol g-1 h-1 and CH4 selectivity of >95%, which are higher than those of ZnTPP nanocrystals (7.8 μmol g-1 h-1 and 50.3%). The systematic characterizations confirm that the generation of axial coordinated ZnOC bonds between ZnTPP and GO plays a key role in the formation of ZnTPP/GO nanostructure and their synergic effect on photocatalytic CO2 reduction. The encapsulation of GO on ZnTPP nanocrystals not only promotes the CO2 adsorption, interfacial reaction, and stability, but also accelerates the separation of photoinduced carriers on ZnTPP (0.1 ps vs. 425.9 ps), the transportation from ZnTPP to GO (2.3 ps vs. 83.6 ps), and their final enrichment on GO. This work provides a new strategy to apply graphene and organic nanomaterials in artificial photosynthesis.
Collapse
Affiliation(s)
- Ying He
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China; China Chengda Engineering Co., Ltd., Chengdu 610041, PR China
| | - Zhuoyue Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Aihui Cao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Xu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junqiang Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Bo Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Longtian Kang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
65
|
Doustkhah E, Kotb A, Tafazoli S, Balkan T, Kaya S, Hanaor DAH, Assadi MHN. Templated Synthesis of Exfoliated Porous Carbon with Dominant Graphitic Nitrogen. ACS MATERIALS AU 2023; 3:231-241. [PMID: 38089135 PMCID: PMC10176611 DOI: 10.1021/acsmaterialsau.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/27/2024]
Abstract
We present here a new approach for the synthesis of nitrogen-doped porous graphitic carbon (g-NC) with a stoichiometry of C6.3H3.6N1.0O1.2, using layered silicate as a hard sacrificial template. Autogenous exfoliation is achieved due to the heterostacking of 2D silicate and nitrogen-doped carbon layers. Micro- and meso-porosity is induced by melamine and cetyltrimethylammonium (C16TMA). Our density functional calculations and X-ray photoelectron spectroscopy (XPS) observations confirm that the most dominant nitrogen configuration in g-CN is graphitic, while pyridinic and pyrrolic nitrogens are thermodynamically less favored. Our large-scale lattice dynamics calculations show that surface termination with H and OH groups at pores accounts for the observed H and O in the composition of the synthesized g-NC. We further evaluate the electrocatalytic and the supercapacitance activities of g-NC. Interestingly, this material exhibits a specific capacitance of ca. 202 F g-1 at 1 A g-1, retaining 90% of its initial capacitance after 10,000 cycles.
Collapse
Affiliation(s)
- Esmail Doustkhah
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
| | - Ahmed Kotb
- Chemistry
Department, Faculty of Science, Al-Azhar
University, 71524 Assiut, Egypt
| | - Saeede Tafazoli
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
- Materials
Science and Engineering, Koç University, 34450 Sarıyer,
Istanbul, Turkey
| | - Timuçin Balkan
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
- n2STAR
Koç University Nanofabrication and Nanocharacterization Center
for Scientific and Technological Advanced Research, 34450 Sarıyer, Istanbul, Turkey
- Department
of Chemistry, Koç University, 34450 Sarıyer,
Istanbul, Turkey
| | - Sarp Kaya
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
- Materials
Science and Engineering, Koç University, 34450 Sarıyer,
Istanbul, Turkey
- Department
of Chemistry, Koç University, 34450 Sarıyer,
Istanbul, Turkey
| | - Dorian A. H. Hanaor
- Fachgebiet
Keramische Werkstoffe, Technische Universität
Berlin, 10623 Berlin, Germany
| | - M. Hussein N. Assadi
- RIKEN
Center for Emergent Matter Science, 2−1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
66
|
Fu S, Li M, Asperti S, de Jong W, Kortlever R. Unravelling the Effect of Activators used in The Synthesis of Biomass-Derived Carbon Electrocatalysts on the Electrocatalytic Performance for CO 2 Reduction. CHEMSUSCHEM 2023; 16:e202202188. [PMID: 36718877 DOI: 10.1002/cssc.202202188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/06/2023]
Abstract
N-doped carbon materials can be efficient and cost-effective catalysts for the electrochemical CO2 reduction reaction (CO2 RR). Activators are often used in the synthesis process to increase the specific surface area and porosity of these carbon materials. However, owing to the diversity of activators and the differences in physicochemical properties that these activators induce, the influence of activators used for the synthesis of N-doped carbon catalysts on their electrochemical performance is unclear. In this study, a series of bagasse-derived N-doped carbon catalysts is prepared with the assistance of different activators to understand the correlation between activators, physicochemical properties, and electrocatalytic performance for the CO2 RR. The properties of N-doped carbon catalysts, such as N-doping content, microstructure, and degree of graphitization, are found to be highly dependent on the type of activator applied in the synthesis procedure. Moreover, the overall CO2 RR performance of the synthesized electrocatalysts is not determined only by the N-doping level and the configuration of the N-dopant, but rather by the overall surface chemistry, where the porosity and the degree of graphitization are jointly responsible for significant differences in CO2 RR performance.
Collapse
Affiliation(s)
- Shilong Fu
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ming Li
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
- Chemical Engineering Department, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2628 HZ, Delft, The Netherlands
| | - Simone Asperti
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Wiebren de Jong
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ruud Kortlever
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| |
Collapse
|
67
|
Ding S, Li H, Yuan J, Yuan X, Li M. N-modified carbon-coated NaTi 2(PO 4) 3 as an anode with high capacity and long lifetime for sodium-ion batteries. Phys Chem Chem Phys 2023; 25:13094-13103. [PMID: 37128707 DOI: 10.1039/d3cp00960b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
NASICON-type NaTi2(PO4)3 is recognized as a promising energy storage anode due to its high ionic conductivity and low cost. In this work, N-modified carbon-coated sodium titanium phosphate (NTPGN) composites were prepared by the sol-gel method by using sodium glutamate as a source of nitrogen and partial carbons. The addition of sodium glutamate forms a loose structure of nano-spherical flowers on the surface of sodium titanium phosphate, which shows a higher specific capacity, better rate performance, and excellent cycling performance compared to the carbon-coated titanium phosphate derived only from citric acid. The discharge capacities of NTPGN at 0.1 C, 5 C, 10 C, 20 C, and 30 C are 132.8, 132, 131.4, 105.9, and 98.2 mA h g-1, respectively. In particular, after 1000 cycles at 20 C, the discharge capacity is 102.6 mA h g-1 with a capacity retention rate of 96%. This work reveals that the combination of carbon coating and nitrogen doping using sodium glutamate improves the electrochemical performance of electrode materials.
Collapse
Affiliation(s)
- Shuang Ding
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, Liaoning, China
| | - Huijin Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, Liaoning, China
| | - Jie Yuan
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, Guizhou, China.
| | - Xianli Yuan
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, Liaoning, China
| | - Min Li
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, Guizhou, China.
| |
Collapse
|
68
|
Ji J, Kwak HM, Yu J, Park S, Park JH, Kim H, Kim S, Kim S, Lee DS, Kum HS. Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review. NANO CONVERGENCE 2023; 10:19. [PMID: 37115353 PMCID: PMC10147895 DOI: 10.1186/s40580-023-00368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Remote epitaxy, which was discovered and reported in 2017, has seen a surge of interest in recent years. Although the technology seemed to be difficult to reproduce by other labs at first, remote epitaxy has come a long way and many groups are able to consistently reproduce the results with a wide range of material systems including III-V, III-N, wide band-gap semiconductors, complex-oxides, and even elementary semiconductors such as Ge. As with any nascent technology, there are critical parameters which must be carefully studied and understood to allow wide-spread adoption of the new technology. For remote epitaxy, the critical parameters are the (1) quality of two-dimensional (2D) materials, (2) transfer or growth of 2D materials on the substrate, (3) epitaxial growth method and condition. In this review, we will give an in-depth overview of the different types of 2D materials used for remote epitaxy reported thus far, and the importance of the growth and transfer method used for the 2D materials. Then, we will introduce the various growth methods for remote epitaxy and highlight the important points in growth condition for each growth method that enables successful epitaxial growth on 2D-coated single-crystalline substrates. We hope this review will give a focused overview of the 2D-material and substrate interaction at the sample preparation stage for remote epitaxy and during growth, which have not been covered in any other review to date.
Collapse
Affiliation(s)
- Jongho Ji
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Hoe-Min Kwak
- School of Electrical Engineering and Computer Science, Gwnagju Institute of Science and Technology, Gwangju, South Korea
| | - Jimyeong Yu
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Sangwoo Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Jeong-Hwan Park
- Venture Business Laboratory, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hyunsoo Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Seokgi Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea.
| | - Dong-Seon Lee
- School of Electrical Engineering and Computer Science, Gwnagju Institute of Science and Technology, Gwangju, South Korea.
| | - Hyun S Kum
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea.
| |
Collapse
|
69
|
Inbanathan FPN, Cimatu KLA, Ingram DC, Erasquin UJ, Dasari K, Sultan MS, Sajjad M, Makarov V, Weiner BR, Morell G, Sharifi Abdar P, Jadwisienczak WM. Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093410. [PMID: 37176291 PMCID: PMC10179833 DOI: 10.3390/ma16093410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Nitrogen-doped graphene quantum dots (NGQDs) have gained significant attention due to their various physical and chemical properties; however, there is a gap in the study of NGQDs' magnetic properties. This work adds to the efforts of bridging the gap by demonstrating the room temperature paramagnetism in GQDs doped with Nitrogen up to 3.26 at.%. The focus of this experimental work was to confirm the paramagnetic behavior of metal free NGQDs resulting from the pyridinic N configuration in the GQDs host. Metal-free nitrogen-doped NGQDs were synthesized using glucose and liquid ammonia as precursors by microwave-assisted synthesis. This was followed by dialysis filtration. The morphology, optical, and magnetic properties of the synthesized NGQDs were characterized carefully through atomic force microscopy (AFM), transmission electron microscopy (TEM)), UV-VIS spectroscopy, fluorescence, X-ray photon spectroscopy (XPS), and vibrating sample magnetometer (VSM). The high-resolution TEM analysis of NGQDs showed that the NGQDs have a hexagonal crystalline structure with a lattice fringe of ~0.24 nm of (1120) graphene plane. The N1s peak using XPS was assigned to pyridinic, pyrrolic, graphitic, and oxygenated NGQDs. The magnetic study showed the room-temperature paramagnetic behavior of NGQDs with pyridinic N configuration, which was found to have a magnetization of 20.8 emu/g.
Collapse
Affiliation(s)
- Flavia P N Inbanathan
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | | | - David C Ingram
- Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
| | | | - Kiran Dasari
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA
| | - Muhammad Shehzad Sultan
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926-2614, USA
| | - Muhammad Sajjad
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926-2614, USA
| | - Vladimir Makarov
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926-2614, USA
| | - Brad R Weiner
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926-2614, USA
| | - Payman Sharifi Abdar
- Department of Chemical and Biomedical Engineering, Institute for Corrosion and Multiphase Flow Technology, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
70
|
Fiorio JL, Garcia MA, Gothe ML, Galvan D, Troise PC, Conte-Junior CA, Vidinha P, Camargo PH, Rossi LM. Recent advances in the use of nitrogen-doped carbon materials for the design of noble metal catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
71
|
Chen A, Ye S, Wang Z, Han Y, Cai J, Li J. Machine-learning-assisted rational design of 2D doped tellurene for fin field-effect transistor devices. PATTERNS 2023; 4:100722. [PMID: 37123447 PMCID: PMC10140614 DOI: 10.1016/j.patter.2023.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 04/09/2023]
Abstract
Fin field-effect transistors (FinFETs) have been widely used in electronic devices on account of their excellent performance, but this new type of device is facing many challenges because of size constraints. Two-dimensional (2D) materials with a layer structure can meet the required thickness of FinFETs and provide ideal carrier transport performance. In this work, we used 2D tellurene as the parent material and modified it with doping techniques to improve electronic device performance. High-performance FinFET devices were prepared with 23 systems screened from 385 doping systems by a combination of first-principle calculations and a machine-learning (ML) model. Moreover, theoretical calculations demonstrated that 1S1@Te and 2S2@Te have high carrier mobility and stability with an electron mobility and a hole mobility of 6.211 × 104 cm2 V-1 S-1 and 1.349 × 104 cm2 V-1 S-1, respectively. This work can provide a reference for subsequent experiments and advance the development of functional materials by using an ML-assisted design paradigm.
Collapse
Affiliation(s)
- An Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simin Ye
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanqiang Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junfei Cai
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author
| |
Collapse
|
72
|
Marinoiu A, Raceanu M, Carcadea E, Varlam M. Nitrogen-Doped Graphene Oxide as Efficient Metal-Free Electrocatalyst in PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1233. [PMID: 37049326 PMCID: PMC10096973 DOI: 10.3390/nano13071233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen-doped graphene is currently recognized as one of the most promising catalysts for the oxygen reduction reaction (ORR). It has been demonstrated to act as a metal-free electrode with good electrocatalytic activity and long-term operation stability, excellent for the ORR in proton exchange membrane fuel cells (PEMFCs). As a consequence, intensive research has been dedicated to the investigation of this catalyst through varying the methodologies for the synthesis, characterization, and technologies improvement. A simple, scalable, single-step synthesis method for nitrogen-doped graphene oxide preparation was adopted in this paper. The physical and chemical properties of various materials obtained from different precursors have been evaluated and compared, leading to the conclusion that ammonia allows for a higher resulting nitrogen concentration, due to its high vapor pressure, which facilitates the functionalization reaction of graphene oxide. Electrochemical measurements indicated that the presence of nitrogen-doped oxide can effectively enhance the electrocatalytic activity and stability for ORR, making it a viable candidate for practical application as a PEMFC cathode electrode.
Collapse
Affiliation(s)
- Adriana Marinoiu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mircea Raceanu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
- Doctoral School, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Elena Carcadea
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mihai Varlam
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| |
Collapse
|
73
|
Bohre A, Jadhao PR, Tripathi K, Pant KK, Likozar B, Saha B. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. CHEMSUSCHEM 2023:e202300142. [PMID: 36972065 DOI: 10.1002/cssc.202300142] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/28/2023]
Abstract
Polyethylene terephthalate (PET) is a non-degradable single-use plastic and a major component of plastic waste in landfills. Chemical recycling is one of the most widely adopted methods to transform post-consumer PET into PET's building block chemicals. Non-catalytic depolymerization of PET is very slow and requires high temperatures and/or pressures. Recent advancements in the field of material science and catalysis have delivered several innovative strategies to promote PET depolymerization under mild reaction conditions. Particularly, heterogeneous catalysts assisted depolymerization of post-consumer PET to monomers and other value-added chemicals is the most industrially compatible method. This review includes current progresses on the heterogeneously catalyzed chemical recycling of PET. It describes four key pathways for PET depolymerization including, glycolysis, pyrolysis, alcoholysis, and reductive depolymerization. The catalyst function, active sites and structure-activity correlations are briefly outlined in each section. An outlook for future development is also presented.
Collapse
Affiliation(s)
- Ashish Bohre
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
- Biomass and Energy Management Division, Sardar Swaran Singh National Institute of Bio-energy Kapurthala, Punjab, 1440603, India
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Prashant Ram Jadhao
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - Komal Tripathi
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Basudeb Saha
- RiKarbon, Inc., 550 S. College Ave, Newark, Delaware, DE 19716, USA
| |
Collapse
|
74
|
Bio-based polyamide nanocomposites of nanoclay, carbon nanotubes and graphene: a review. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
75
|
AlHumaidan FS, Rana MS, Vinoba M, AlSheeha HM, Ali AA, Navvamani R. Synthesis of graphene derivatives from asphaltenes and effect of carbonization temperature on their structural parameters. RSC Adv 2023; 13:7766-7779. [PMID: 36909755 PMCID: PMC9993227 DOI: 10.1039/d2ra07481h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
A method for synthesizing graphene derivatives from asphaltene is proposed in this work. The graphene derivatives are mainly composed of few-layer graphene-like nano-sheets of randomly distributed heteroatoms; mainly sulfur and nitrogen. The proposed method is based on a thermal treatment in which asphaltene is carbonized in a rotating quartz-tube furnace under an inert atmosphere at a temperature in the range of 400-950 °C. Asphaltenes from different origins were employed to verify the synthesis method. The results indicate that graphene derivatives obtained at high carbonization temperature have similar structural parameters, despite the evident differences in parent asphaltenes structures and compositions. The transformation of asphaltene to graphene derivatives mainly occurred due to three factors: the reduction in the average number of aromatic layers (n), the expansion in aromatic sheet diameter (L a), and the elimination of alkyl side chains. The reduction in the number of aromatic sheets per stack is primarily ascribed to thermal exfoliation, while the increase in the aromatic sheet diameter is attributed to secondary reactions in the aromatic core of asphaltene. The elimination of side chains, on the other hand, is mainly credited to thermal cracking. The quantification of defect density (L D) in the graphene derivatives suggests an association between defects and heteroatoms presence.
Collapse
Affiliation(s)
| | - Mohan S Rana
- Petroleum Research Center, Kuwait Institute for Scientific Research Kuwait
| | - Mari Vinoba
- Petroleum Research Center, Kuwait Institute for Scientific Research Kuwait
| | - Hanadi M AlSheeha
- Petroleum Research Center, Kuwait Institute for Scientific Research Kuwait
| | - Afnan A Ali
- Petroleum Research Center, Kuwait Institute for Scientific Research Kuwait
| | - R Navvamani
- Petroleum Research Center, Kuwait Institute for Scientific Research Kuwait
| |
Collapse
|
76
|
Dan H, Gao Y, Feng L, Yin W, Xu X, Gao B, Yue Q. Super-amphiphilic graphene promotes peroxymonosulfate-based emulsion catalysis for efficient oil purification. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130469. [PMID: 36463736 DOI: 10.1016/j.jhazmat.2022.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Oil fractions containing highly toxic and hazardous organic contaminants can not only cause severe environmental disasters, but also an undesired waste of resources. Given the exceptional performance of persulfates in the removal of persistent and refractory organic pollutants from aqueous media, herein, a peroxymonosulfate-based Pickering emulsion catalytic (PPEC) system was constructed for the hazardous oil purification, using super-amphiphilic graphene as a solid emulsifier and a heterogeneous catalyst simultaneously. Combined detailed instrumental analysis with theoretical calculations, we find that the incorporation of pyridinic N and its oxide significantly facilitated the formation of super-amphiphilic graphene and successfully induced the formation of Pickering emulsion. In addition to stabilizing the PPEC system, super-amphiphilic graphene can also achieve efficient removal of Sudan III (simulated lipophilic organic pollutant) by activating peroxymonosulfate (PMS) to generate •O2- and 1O2. Results showed that 80 mg/L Sudan III (20 mL) could be fully degraded within 30 min using 10 mL 5 mmol PMS. More significantly, our proposed PPEC system also exhibited excellent property in the purification of practical waste engine oil. This study provides new insights into the purification and recovery of waste oil.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Lidong Feng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Xing Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
77
|
Si D, Wu H, Yang M, Fan T, Wang D, Chen L, Zhu C, Fang G, Wu S, Zhou D. Linking pyrogenic carbon redox property to arsenite oxidation: Impact of N-doping and pyrolysis temperature. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130477. [PMID: 36493646 DOI: 10.1016/j.jhazmat.2022.130477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Pyrogenic carbon-mediated arsenite (As(III)) oxidation shows great potential as a prerequisite for the efficient removal of arsenic in groundwater. Herein, the critical role of N-containing functional groups in low and high-temperature prepared pyrogenic carbons for mediating As(III) oxidation was systemically explored from an electrochemistry perspective. The pyrogenic carbon electron donating capacity and area-normalized specific capacitance were the key parameters explained the As(III) oxidation kinetics mediated by low electrical conductive 500 °C biomass-derived pyrogenic carbons (N contents of 0.36-7.72 wt%, R2 = 0.87, p < 0.001) and high electrical conductive 800 °C pyrogenic carbons (N contents of 1.00-8.00 wt%, R2 = 0.99, p < 0.001), respectively. The production of H2O2 from the reaction between electron donating phenol groups or semiquinone radicals and oxygen, and the direct electron transfer between semiquinone radicals and As(III) contributed to these pyrogenic carbons mediated As(III) oxidation. While the electron accepting quinone, pyridinic-N, and pyrrolic-N groups did not significantly contribute to the 500 °C pyrogenic carbons mediated As(III) oxidation, the direct electron conduction by these functional groups was responsible for the facilitated As(III) oxidation by the 800 °C pyrogenic carbons. Furthermore, the pyridinic-N and pyrrolic-N groups showed higher electron conduction efficiency than that of the quinone groups. The findings help to develop robust pyrogenic carbons for As(III) contaminated groundwater treatment.
Collapse
Affiliation(s)
- Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
78
|
Luhadiya N, Choyal V, Kundalwal SI, Sahu SK. Investigation of unified impact of Ti adatom and N doping on hydrogen gas adsorption capabilities of defected graphene sheets. J Mol Graph Model 2023; 119:108399. [PMID: 36563644 DOI: 10.1016/j.jmgm.2022.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In this work, we studied the hydrogen adsorption capabilities of functionalized graphene sheets containing a variety of defects (D-G) via molecular dynamics (MD) simulations that govern the mechanisms involved in hydrogen adsorption. Specifically, the graphene sheets containing monovacancy (MV), Stone-Wales (SW), and multiple double vacancy (DV) defects were functionalized with Ti and N atoms to enhance their hydrogen adsorption capacity. We measured the adsorption capacities of the N-/D-G sheets with varying concentrations of Ti adatoms at 300 K and 77 K temperatures and various pressures. Our study revealed that the increasing concentration of Ti adatoms on the D-G sheets led to a significant improvement in the hydrogen adsorption capacity of the graphene sheets. The DV(III)-G sheets showed the maximum adsorption capacity at 300 K because the DV(III)-G sheets had a small number of large-sized pores that bind hydrogen with high binding energy. Thus, hydrogen remained adsorbed even at higher temperatures (300 K). The N doping on the D-G sheets initially reduced their hydrogen adsorption capabilities; however, the N-D-G sheets enhanced their hydrogen adsorption capacity with the increasing concentrations of Ti adatoms. Compared to all other defect types, the Ti-N-DV(III)-G sheet with a Ti concentration of 10.5% showed a hydrogen uptake of 5.5 wt% at 300 K and 100 bar pressure. Thus, the N doping and Ti implantations improved the hydrogen storage capabilities of the graphene sheets, and these findings helped design solid-state hydrogen storage systems operating at ambient conditions and moderate pressure ranges.
Collapse
Affiliation(s)
- Nitin Luhadiya
- Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India.
| | - Vijay Choyal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Shailesh I Kundalwal
- Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India.
| | - S K Sahu
- Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India
| |
Collapse
|
79
|
Guo S, Zou Z, Chen Y, Long X, Liu M, Li X, Tan J, Chen R. Synergistic effect of hydrogen bonding and π-π interaction for enhanced adsorption of rhodamine B from water using corn straw biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121060. [PMID: 36641067 DOI: 10.1016/j.envpol.2023.121060] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Dyes adsorption to biochar via hydrogen bonding, and π-π interaction alone have attracted much research attention, however, their synergism in adsorption mechanisms remains largely unnoticed. The synergistic effects of the hydrogen bonding and π-π interaction might improve the adsorption capacity and need more understanding to prepare high-capacity biochar. In this work, we evaluated the adsorption of various dyes on biochar prepared via the activation of potassium bicarbonate and urea (named BC-KN) to explore their synergistic effects. Batch experiments indicated the BC-KN showed a high adsorption capacity to rhodamine B at 4839.0 mg/g, azure B at 4477.7 mg/g, and methylene blue at 2223.0 mg/g, respectively. The mechanism of such significant adsorption was investigated by their comparative experiments, characterizations, and computational analyses. The computational analyses suggested that the synergism of the hydrogen bonding and π-π interaction improves the adsorption energies of BC-KN/RhB system from -10.35 kcal/mol to -20.49 kcal/mol. It can be concluded that the hydrogen bonding and π-π interaction can synergize to significantly improve the adsorption by increasing the π-electron density and shortening the distance of aromatic rings, thus dyes with H-donor show significantly better adsorption capacities. The insight of hydrogen bonding being the governing factor in the synergistic system will help produce high-capacity biochar in removing aromatic dyes and suggest a sustainable technology for the efficient decolorization of dye effluent to minimize its damage to the health and environment.
Collapse
Affiliation(s)
- Songjun Guo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhiyuan Zou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Yang Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Xinxin Long
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Meng Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Xiaoping Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Jihua Tan
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
| |
Collapse
|
80
|
Hong R, Liu Q, Cao Q, Xu J, Xiao R, Zhang H. Catalytic upcycling of waste polypropylene for gram-scale production of FeCo@N-doped carbon nanotubes toward efficient oxygen reduction electrocatalysis. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
81
|
Adegoke KA, Maxakato NW. Electrocatalytic CO2 conversion on metal-organic frameworks derivative electrocatalysts. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
82
|
Jia X, Ma J, Zhang C, Zhang Z, Fu L, Wang G. Gel Polymer Electrolyte with Alkaline Aquatic Colloidal Graphene for Flexible and Rechargeable Zinc Air Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
83
|
Olatomiwa A, Adam T, Edet C, Adewale A, Chik A, Mohammed M, Gopinath SC, Hashim U. Recent advances in density functional theory approach for optoelectronics properties of graphene. Heliyon 2023; 9:e14279. [PMID: 36950613 PMCID: PMC10025043 DOI: 10.1016/j.heliyon.2023.e14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Graphene has received tremendous attention among diverse 2D materials because of its remarkable properties. Its emergence over the last two decades gave a new and distinct dynamic to the study of materials, with several research projects focusing on exploiting its intrinsic properties for optoelectronic devices. This review provides a comprehensive overview of several published articles based on density functional theory and recently introduced machine learning approaches applied to study the electronic and optical properties of graphene. A comprehensive catalogue of the bond lengths, band gaps, and formation energies of various doped graphene systems that determine thermodynamic stability was reported in the literature. In these studies, the peculiarity of the obtained results reported is consequent on the nature and type of the dopants, the choice of the XC functionals, the basis set, and the wrong input parameters. The different density functional theory models, as well as the strengths and uncertainties of the ML potentials employed in the machine learning approach to enhance the prediction models for graphene, were elucidated. Lastly, the thermal properties, modelling of graphene heterostructures, the superconducting behaviour of graphene, and optimization of the DFT models are grey areas that future studies should explore in enhancing its unique potential. Therefore, the identified future trends and knowledge gaps have a prospect in both academia and industry to design future and reliable optoelectronic devices.
Collapse
Affiliation(s)
- A.L. Olatomiwa
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
| | - C.O. Edet
- Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Engineering Mathematics, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Department of Physics, Cross River University of Technology, Calabar, Nigeria
| | - A.A. Adewale
- Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdullah Chik
- Centre for Frontier Materials Research, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, Jejawi, 02600, Arau, Perlis, Malaysia
| | - Mohammed Mohammed
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, Jejawi, 02600, Arau, Perlis, Malaysia
- Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Subash C.B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, Jejawi, 02600, Arau, Perlis, Malaysia
| | - U. Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| |
Collapse
|
84
|
Efficient direct electrocatalysis of nano-dodecahedron for the highly sensitive and selective detection of rutin. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
85
|
Mechanistic Studies into the Selective Production of 2,5-furandicarboxylic Acid from 2,5-bis(hydroxymethyl)furan Using Au-Pd Bimetallic Catalyst Supported on Nitrated Carbon Material. Catalysts 2023. [DOI: 10.3390/catal13020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Aerobic oxidation of bio-sourced 2,5-bis(hydroxymethyl)furan (BHMF) to 2, 5-furandicarboxylic acid (FDCA), a renewable and green alternative to petroleum-derived terephthalic acid (TPA), is of great significance in green chemicals production. Herein, hierarchical porous bowl-like nitrogen-rich (nitrated) carbon-supported bimetallic Au-Pd nanocatalysts (AumPdn/ N-BNxC) with different nitrogen content and bimetal nanoparticle sizes were developed and employed for the highly efficient aerobic oxidation of BHMF to FDCA in sodium carbonate aqueous solution. The reaction pathway for catalytic oxidation of BHMF went through the steps of BHMF→HMF→HMFCA→FFCA→FDCA. Kinetics studies showed that the activation energies of BHMF, HMF, HMFCA, and FFCA were 58.1 kJ·moL−1, 39.1 kJ·moL−1, 129.2 kJ·moL−1, and 56.3 kJ·moL−1, respectively, indicating that the oxidation of intermediate HMFCA to FFCA was the rate-determining step. ESR tests proved that the active species was a superoxide radical. Owing to the synergy between the nitrogen-rich carbon support and bimetallic Au-Pd nanoparticles, the Au1Pd1/N-BN2C nanocatalysts exhibited BHMF conversion of 100% and FDCA yield of 95.8% under optimal reaction conditions. Furthermore, the nanocatalysts showed good stability and reusability. This work provides a versatile strategy for the design of heterogeneous catalysts for the highly efficient production of FDCA from BHMF.
Collapse
|
86
|
Dalwadi S, Goel A, Kapetanakis C, Salas-de la Cruz D, Hu X. The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. Int J Mol Sci 2023; 24:3975. [PMID: 36835387 PMCID: PMC9960122 DOI: 10.3390/ijms24043975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Biopolymers are an emerging class of novel materials with diverse applications and properties such as superior sustainability and tunability. Here, applications of biopolymers are described in the context of energy storage devices, namely lithium-based batteries, zinc-based batteries, and capacitors. Current demand for energy storage technologies calls for improved energy density, preserved performance overtime, and more sustainable end-of-life behavior. Lithium-based and zinc-based batteries often face anode corrosion from processes such as dendrite formation. Capacitors typically struggle with achieving functional energy density caused by an inability to efficiently charge and discharge. Both classes of energy storage need to be packaged with sustainable materials due to their potential leakages of toxic metals. In this review paper, recent progress in energy applications is described for biocompatible polymers such as silk, keratin, collagen, chitosan, cellulose, and agarose. Fabrication techniques are described for various components of the battery/capacitors including the electrode, electrolyte, and separators with biopolymers. Of these methods, incorporating the porosity found within various biopolymers is commonly used to maximize ion transport in the electrolyte and prevent dendrite formations in lithium-based, zinc-based batteries, and capacitors. Overall, integrating biopolymers in energy storage solutions poses a promising alternative that can theoretically match traditional energy sources while eliminating harmful consequences to the environment.
Collapse
Affiliation(s)
- Shrey Dalwadi
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | | | - David Salas-de la Cruz
- Department of Chemistry, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
87
|
Nath U, Sarma M. Pyridinic Dominance N-Doped Graphene: A Potential Material for SO 2 Gas Detection. J Phys Chem A 2023; 127:1112-1123. [PMID: 36716442 DOI: 10.1021/acs.jpca.2c06154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sensors based on graphene have shown great promise in the detection of toxic air pollutants that are detrimental to nature and create risks to human health. Many recent experimental and computational efforts have been dedicated to sensor concepts incorporating pure graphene, graphene oxide, and doped graphene. Herein, a combination of spin-polarized density functional theory (DFT) with van der Waals correction and ab initio molecular dynamics (AIMD) approaches are utilized to assess the gas sensing potential of pyridinic dominance N-doped graphene (PNG) toward SO2 detection. The potential of PNG systems as SO2 sensing can be explored through an in-depth analysis of adsorption energies, electronic parameters, charge transfer, selectivity, and thermal stability. It is further demonstrated that external strains and the modulation of external electric fields are two effective ways to modify the adsorption strength. In light of these findings, our studies suggest that PNG monolayers have the potential to be an essential substrate for the detection of SO2.
Collapse
Affiliation(s)
- Upasana Nath
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
88
|
Zhu Y, Shen J, Guo M, Zheng H, Cao Y. Nitrogen-doped magnetic porous carbon material from low-cost anion-exchange resin as an efficient adsorbent for tetracyclines in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27315-27327. [PMID: 36378367 DOI: 10.1007/s11356-022-24093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this work, nitrogen-doped magnetic porous carbon material (N-MPC) was prepared through the high-temperature calcination of low-cost [Fe(CN)6]3--loaded anion-exchange resin, which was experimentally demonstrated to have significant adsorption performance for tetracycline (TC) in water. The N-MPC adsorbent with a large specific surface area (781.1 m2 g-1) was able to maintain excellent performance in a wide pH range from 4 to 10 or in high ionic strength solution. The adsorption of TC on N-MPC was found to be more consistent with the pseudo-second-order model and Langmuir adsorption model, and the maximum adsorption capacity (qm, cal) was calculated to be 603.4 mg g-1. As a recoverable magnetic adsorbent, the N-MPC remained a TC removal rate higher than 70% after four adsorption cycles. The adsorption mechanism was speculated on the basis of characterizations, where pore filling, hydrogen bonding interaction, and π-π electron donor-acceptor (EDA) interaction were crucial adsorption mechanisms. A variety of antibiotics were selected for adsorption, and excellent performance was found especially for TCs, indicating that the N-MPC can be used for the efficient removal of TCs from water.
Collapse
Affiliation(s)
- Yating Zhu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jia Shen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Haoling Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
89
|
Jin X, Wu C, Fu L, Tian X, Wang P, Zhou Y, Zuo J. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. J Environ Sci (China) 2023; 124:330-349. [PMID: 36182143 DOI: 10.1016/j.jes.2021.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
With the continuous development of nanomaterials in recent years, the application of nanocatalysts in catalytic ozone oxidation has attracted more and more researchers' attention due to their excellent catalytic properties. In this review, we systematically summarized the current research status of nanocatalysts mainly involving material categories, mechanisms and catalytic efficiency. Based on summary and analysis, we found most of the reported nanocatalysts were in the stage of laboratory research, which was caused by the nanocatalysts defects such as easy aggregation, difficult separation, and easy leakage. These defects might result in severe resource waste, economic loss and potentially adverse effects imposed on the ecosystem and human health. Aiming at solving these defects, we further analyzed the reasons and the existing reports, and revealed that coupling nano-catalyst and membrane, supported nanocatalysts and magnetic nanocatalysts had promising potential in solving these problems and promoting the actual application of nanocatalysts in wastewater treatment. Furthermore, the advantages, shortages and our perspectives of these methods are summarized and discussed.
Collapse
Affiliation(s)
- Xiaoguang Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| | - Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xiangmiao Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Panxin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| | - Jiane Zuo
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
90
|
Sheikh Beig Goharrizi MA, Kazemi Oskuee R, Aleyaghoob G, Mohajeri T, Mohammadinejad A, Rezayi M. A new molecularly imprinted polymer electrochemical sensor based on CuCo 2 O 4 /N-doped CNTs/P-doped GO nanocomposite for detection of 25-hydroxyvitamin D 3 in serum samples. Biotechnol Appl Biochem 2023; 70:357-373. [PMID: 35638383 DOI: 10.1002/bab.2363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022]
Abstract
25-Hydroxyvitamin D3 as a main circulating metabolite of vitamin D is usually measured in serum to evaluate the vitamin D status of humans. So, developing an accessible, fast response, sensitive, and selective detection method for 25-hydroxyvitamin D3 is highly important. In this study, we designed a sensitive and selective electrochemical sensor based on the modification of glassy carbon electrode by nanocomposite of CuCo2 O4 /nitrogen-doped carbon nanotubes and phosphorus-doped graphene oxide. Then 25-hydroxyvitamin D3 -imprinted polypyrrole was coated on the electrode surface through electropolymerization. Moreover, ferricyanide was used as a mediator for the creation of a readable signal, which was considerably decreased after rebinding of 25-hydroxyvitamin D3 on the electrode. The proposed sensor successfully detected 25-hydroxyvitamin D3 in the range of 0.002-10 μM, with a detection limit of 0.38 nM, which was highly lower than deficiency concentration (20 ng/ml; 49.92 nM). Finally, the proposed sensor was checked for detection of 25-hydroxyvitamin D3 in serum samples with recovery in the range of 80%-106.42%. The results demonstrated the applicability of the designed sensor for the detection of 25-hydroxyvitamin D3 in biological samples.
Collapse
Affiliation(s)
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Arash Mohammadinejad
- Atherosclerosis Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
91
|
N-Doped Carbon/CeO 2 Composite as a Biomimetic Catalyst for Antibacterial Application. Int J Mol Sci 2023; 24:ijms24032445. [PMID: 36768764 PMCID: PMC9916758 DOI: 10.3390/ijms24032445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Exploring new and high efficiency mimic enzymes is a vital and novel strategy for antibacterial application. Haloperoxidase-like enzymes have attracted wide attention thanks to their amazing catalytic property for hypohalous acid generation from hydrogen peroxide and halides. However, few materials have displayed halogenating catalytic performance until now. Herein, we synthesized N-doped C/CeO2 (N-C/CeO2) composite materials by a combination of the liquid and solid-state method. N-C/CeO2 can possess haloperoxidase-like catalytic activity by catalyzing the bromination of organic signaling compounds (phenol red) with H2O2 at a wide range of temperatures (20 °C to 55 °C), with a solution color changing from yellow to blue. Meanwhile, it exhibits high catalytic stability/recyclability in the catalytic reaction. The synthesized N-C/CeO2 composite can effectively catalyze the oxidation of Br- with H2O2 to produce HBrO without the presence of phenol red. The produced HBrO can resist typical marine bacteria like Pseudomonas aeruginosa. This study provides an efficient biomimetic haloperoxidase and a novel sustainable method for antibacterial application.
Collapse
|
92
|
Liu H, Lin R, Huang Z, Yin X, Lin X, Lin W, Li Y, Gu Y, Yi G. Modified ethylene/α‐octene co‐polymer elastomer composites with sacrificial bonds crosslinking networks and their reinforced mechanical performance. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Huameng Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Ruijun Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Xingshan Yin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), School of Advanced Manufacturing Jieyang China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), School of Advanced Manufacturing Jieyang China
| | - Yong Li
- Kinte Material Technology Co., Ltd. Dongguan China
| | - Yuxin Gu
- Kinte Material Technology Co., Ltd. Dongguan China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), School of Advanced Manufacturing Jieyang China
| |
Collapse
|
93
|
Tian X, Shoyama K, Würthner F. Nitrogen-doped polycyclic aromatic hydrocarbons by a one-pot Suzuki coupling/intramolecular S NAr reaction. Chem Sci 2023; 14:284-290. [PMID: 36687343 PMCID: PMC9811559 DOI: 10.1039/d2sc05409d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
We report a new method for the synthesis of nitrogen-doped (N-doped) polycyclic aromatic hydrocarbons (PAHs) by a Suzuki coupling/intramolecular SNAr cascade reaction. A one- or two-fold [3 + 3] naphtho-annulation of halogenated aniline was conducted under Suzuki-Miyaura cross-coupling conditions to yield a series of fully fused N-doped PAHs. In contrast to reported methods to synthesize pyridinic or pyrrolic nitrogen-doped PAHs, our method enables preparation of PAHs doped with graphitic nitrogen, for which few reports are known in the literature. The crystal structure as well as absorption, fluorescence and electrochemical properties of these N-doped PAHs were investigated, which demonstrated the capability of N-doping to adjust optical and electronic properties and alter the LUMO energy level.
Collapse
Affiliation(s)
- Xiaoqi Tian
- Universität Würzburg, Institut für Organische ChemieAm HublandWürzburg 97074Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Institut für Organische ChemieAm HublandWürzburg 97074Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische ChemieAm HublandWürzburg 97074Germany,Universität Würzburg, Center for Nanosystems Chemistry (CNC)Theodor-Boveri-WegWürzburg 97074Germany
| |
Collapse
|
94
|
Alkoshab MQ, Thomou E, Abdulazeez I, Suliman MH, Spyrou K, Iali W, Alhooshani K, Baroud TN. Low Overpotential Electrochemical Reduction of CO 2 to Ethanol Enabled by Cu/Cu xO Nanoparticles Embedded in Nitrogen-Doped Carbon Cuboids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:230. [PMID: 36677984 PMCID: PMC9863918 DOI: 10.3390/nano13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The electrochemical conversion of CO2 into value-added chemicals is a promising approach for addressing environmental and energy supply problems. In this study, electrochemical CO2 catalysis to ethanol is achieved using incorporated Cu/CuxO nanoparticles into nitrogenous porous carbon cuboids. Pyrolysis of the coordinated Cu cations with nitrogen heterocycles allowed Cu nanoparticles to detach from the coordination complex but remain dispersed throughout the porous carbon cuboids. The heterogeneous composite Cu/CuxO-PCC-0h electrocatalyst reduced CO2 to ethanol at low overpotential in 0.5 M KHCO3, exhibiting maximum ethanol faradaic efficiency of 50% at -0.5 V vs. reversible hydrogen electrode. Such electrochemical performance can be ascribed to the synergy between pyridinic nitrogen species, Cu/CuxO nanoparticles, and porous carbon morphology, together providing efficient CO2 diffusion, activation, and intermediates stabilization. This was supported by the notably high electrochemically active surface area, rich porosity, and efficient charge transfer properties.
Collapse
Affiliation(s)
- Monther Q. Alkoshab
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Eleni Thomou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Munzir H. Suliman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Wissam Iali
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and & Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Alhooshani
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Turki N. Baroud
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
95
|
Wang T, Husein DZ. Novel synthesis of multicomponent porous nano-hybrid composite, theoretical investigation using DFT and dye adsorption applications: disposing of waste with waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8928-8955. [PMID: 35460480 DOI: 10.1007/s11356-022-20050-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Extensive studies have shown that doping can enhance the properties of graphene, but the application to real industrial wastewater treatment and theoretical calculations are limited. In this study, the hybrid nanoadsorbent Cu, N co-doped graphene (Cu@NG) was successfully synthesized via green route using carbon rods from waste dry batteries, human urine and copper nitrate, then multiple characterizations, detailed density functional theory (DFT) theoretical calculations and comprehensive actual wastewater tests are performed in environmental applications to investigate the adsorption properties and mechanism. The results showed that Cu@NG surface is mesoporous, decorated with CuO crystals and doped with N atoms. The isotherms and kinetics were simulated by Langmuir and pseudo-second-order models, respectively. The theoretical maximum sorption for MB and CV on Cu@NG is 116.28 mg·g-1 and CV is 86.96 mg·g-1, respectively. Pilot tests with Cu@NG on real textile wastewater showed that COD, BOD and color were removed by 54.2%, 55.2% and 86.4%, respectively. The desorption rate of Cu@NG is approximately above 90% for both MB and CV on Cu@NG after six cycles of treatment. The DFT calculations confirmed the experimental results as MB is more reactive than CV molecules. Besides, interactions have been systematically investigated via topology and natural bond orbital (NBO) analyses. The process mechanism involved mainly electrostatic adsorption, π-π stacking interactions and H-bonding interactions and ion exchange.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| |
Collapse
|
96
|
Effect of Nitrogen Doping in GO as Support in ZnO/GO-N Compounds and Their Photocatalytic Assessment to Degrade the Lignin Molecule. Catalysts 2022. [DOI: 10.3390/catal13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Control of the recombination process and improvement of transport charge carriers could be achieved in photocatalysts by modifying the catalytic support. In the present study, our goal was to study the effect of nitrogen doping on graphene oxide sheets using doping sources such as urea, thiourea, or ethylenediamine to produce GO-N catalytic supports which were used to form ZnO/GO-N systems. The synthesis of ZnO and GO-N was carried out through a hydrothermal process under microwave heating. The ZnO/GO-N compounds were tested to study the degradation of the lignin molecule under UV irradiation. A set of characterization techniques were used to study the ZnO/GO-N compounds, including XPS analyses which confirmed the N-doping in the samples. The ZnO compound reached 40% of lignin degradation in 70 min, while the ZnO/GO-N compound produced 79% of lignin degradation, also in 70 min evidencing the positive effect of the GO-N support. The best results of degradation were obtained when thiourea was used as the N-doping media.
Collapse
|
97
|
Al-Gamal AG, Elseman AM, Chowdhury TH, Kabel KI, Farag AA, Rabie AM, Abd El-Sattar NEA, Islam A. Promising Nitrogen-Doped Graphene Derivatives; A Case Study for Preparations, Fabrication Mechanisms, and Applications in Perovskite Solar Cells. Top Curr Chem (Cham) 2022; 381:6. [PMID: 36574160 DOI: 10.1007/s41061-022-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022]
Abstract
Graphene (G) has been a game-changer for conductive optical devices and has shown promising aspects for its implementation in the power industry due to its diverse structures. Graphene has played an essential role as electrodes, hole transport layers (HTLs), electron transport layers (ETLs), and a chemical modulator for perovskite layers in perovskite solar cells (PSCs) over the past decade. Nitrogen-doped graphene (N-DG) derivatives are frequently evaluated among the existing derivatives of graphene because of their versatility of design, easy synthesis process, and high throughput. This review presents a state-of-the-art overview of N-DG preparation methods, including wet chemical process, bombardment, and high thermal treatment methods. Furthermore, it focuses on different structures of N-DG derivatives and their various applications in PSC applications. Finally, the challenges and opportunities for N-DG derivatives for the continuous performance improvement of PSCs have been highlighted.
Collapse
Affiliation(s)
- A G Al-Gamal
- Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - Ahmed Mourtada Elseman
- Electronic and Magnetic Materials Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt.
| | - T H Chowdhury
- Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Laboratory for Solar Energy and Fuels (LSEF), School of Engineering, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - K I Kabel
- Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - A A Farag
- Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - A M Rabie
- Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - N E A Abd El-Sattar
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Ashraful Islam
- Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
98
|
Li D, Lu Y, Zhang C. Superhydrophobic and Electrochemical Performance of CF 2-Modified g-C 3N 4/Graphene Composite Film Deposited by PECVD. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4387. [PMID: 36558242 PMCID: PMC9782866 DOI: 10.3390/nano12244387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The physicochemical properties of functional graphene are regulated by compositing with other nano-carbon materials or modifying functional groups on the surface through plasma processes. The functional graphene films with g-C3N4 and F-doped groups were produced by controlling the deposition steps and plasma gases via radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The first principles calculation and electrochemistry characteristic of the functional graphene films were performed on Materials Studio software and an electrochemical workstation, respectively. It is found that the nanostructures of functional graphene films with g-C3N4 and F-doped groups were significantly transformed. The introduction of fluorine atoms led to severe deformation of the g-C3N4 nanostructure, which created gaps in the electrostatic potential of the graphene surface and provided channels for electron transport. The surface of the roving fabric substrate covered by pure graphene is hydrophilic with a static contact angle of 79.4°, but the surface is transformed to a hydrophobic state for the g-C3N4/graphene film with an increased static contact angle of 131.3° which is further improved to 156.2° for CF2-modified g-C3N4/graphene film exhibiting the stable superhydrophobic property. The resistance of the electron movement of CF2-modified g-C3N4/graphene film was reduced by 2% and 76.7%, respectively, compared with graphene and g-C3N4/graphene.
Collapse
Affiliation(s)
- Dayu Li
- Correspondence: (D.L.); (C.Z.)
| | | | | |
Collapse
|
99
|
Ayyubov I, Tálas E, Berghian-Grosan C, Románszki L, Borbáth I, Pászti Z, Szegedi Á, Mihály J, Vulcu A, Tompos A. Nitrogen doped carbonaceous materials as platinum free cathode electrocatalysts for oxygen reduction reaction (ORR). REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractComparison of physicochemical properties and electrocatalytic behavior of different N-doped carbonaceous materials as potential catalysts for oxygen reduction reaction (ORR) was attended. Ball-milling of graphite with melamine and solvothermal treatment of graphite oxide, graphene nanoplatelets (GNP) with ammonia were used as preparation methods. Elemental analysis and N2 physisorption measurements revealed the synthesis of N-doped materials with strongly different morphological parameters. Contact angle measurements proved that all three samples had good wettability properties. According to analysis of XRD data and Raman spectra a higher nitrogen concentration corresponded to a smaller size of crystallites of the N-doped carbonaceous material. Surface total N content determined by XPS and bulk N content assessed by elemental analysis were close, indicating homogenous inclusion of N in all samples. Rotating disc electrode tests showed that these N-doped materials weremuch less active in acidic medium than in an alkaline environment. Although the presence of in-plane N species is regarded to be advantageous for the ORR activity, no particular correlation was found in these systems with any type of N species. According to Koutecky–Levich analysis, both the N-containing carbonaceous materials and the reference Pt/C catalyst displayed a typical one-step, four-electron ORR route. Both ball-milled sample with high N-content but with low SSA and solvothermally synthesized N-GNP with high SSA but low N content showed significant ORR activity. It could be concluded that beside the total N content other parameters such as SSA, pore structure, structural defects, wettability were also essential for achieving high ORR activity.
Collapse
|
100
|
Zhang Y, Yang L, Wang W, Wang G. Nitrogen-doped carbon nanotube in-situ loaded LiNbO3 anode with high capacitance contribution for lithium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|