51
|
Galhardi JA, de Mello JWV, Wilkinson KJ. Bioaccumulation of potentially toxic elements from the soils surrounding a legacy uranium mine in Brazil. CHEMOSPHERE 2020; 261:127679. [PMID: 32717510 DOI: 10.1016/j.chemosphere.2020.127679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
It is important to understand the environmental fate and potential risks posed by metals and metalloids around mines and in legacy mining areas. In order to assess the bioavailable concentrations of several potentially toxic elements (PTEs: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U) and rare earth elements (REEs: La to Lu), a multi-method evaluation of their concentrations/fractionation/speciation in soils was related to their biouptake in corn, for a region surrounding a legacy U mine in Brazil. Chemical fractions of the PTE and REE in soils were determined using the BCR (Community Bureau of Reference) sequential extraction procedure; a single extraction with Ca(NO3)2 and the diffusion gradient in thin films (DGT) technique. All techniques were better correlated to the metals accumulated by the crops as compared to total metal concentrations. Ba, Cu, Mn and Zn were shown to have high mobility and high bioaccumulation factors in the corn. Concentrations of U, As, Cd, and Pb were above threshold concentrations and strongly correlated, suggesting that they had a similar anthropogenic source. Geospatial modeling agreed with results from principal component analysis, indicating multiple sources for the contamination. Results highlighted the need for multi-method approaches when evaluating the long-term risks posed by PTEs and REEs in agricultural soils.
Collapse
Affiliation(s)
- Juliana A Galhardi
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec, H3C 3J7, Canada.
| | - Jaime W V de Mello
- Soil Chemistry and Environmental Geochemistry Group, Department of Soil, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec, H3C 3J7, Canada
| |
Collapse
|
52
|
Uchimiya M, Bannon D, Nakanishi H, McBride MB, Williams MA, Yoshihara T. Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12856-12869. [PMID: 32155055 DOI: 10.1021/acs.jafc.0c00183] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metals in agricultural soils exist in diverse dissolved (free cations and complexed species of positive, neutral, or negative charges), particulate (sorbed, structural, and coprecipitated), and colloidal (micro- and nanometer-sized particles) species. The fate of different heavy metal species is controlled by the master variables: pH (solubility), ionic strength (activity and charge-shielding), and dissolved organic carbon (complexation). In the rhizosphere, chemical speciation controls toxicokinetics (uptake and transport of metals by plants) while toxicodynamics (interaction between the plant and absorbed species) drives the toxicity outcome. Based on the critical review, the authors recommend omics and data mining techniques to link discrete knowledge bases from the speciation dynamics, soil microbiome, and plant transporter/gene expression relevant to homeostasis conditions of modern agriculture. Such efforts could offer a disruptive application tool to improve and sustain plant tolerance, food safety, and environmental quality.
Collapse
Affiliation(s)
- Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Desmond Bannon
- Toxicology Directorate, Army Public Health Center, 8988 Willoughby Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Murray B McBride
- Soil and Crop Sciences, Cornell University, 910 Bradfield Hall, 115 Coastal Way, Ithaca, New York 14853, United States
| | - Marc A Williams
- Toxicology Directorate, Army Public Health Center, 8988 Willoughby Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Toshihiro Yoshihara
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| |
Collapse
|
53
|
Pelcová P, Ridošková A, Hrachovinová J, Grmela J. Fractionation Analysis of Mercury in Soils: A Comparison of Three Techniques for Bioavailable Mercury Fraction Determination. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1670-1677. [PMID: 32516439 DOI: 10.1002/etc.4797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the fractionation of mercury in soils in the vicinity of abandoned cinnabar mines is essential for assessing the usability of soils for the cultivation of agriculturally important crops. Two different sequential extraction methods and the technique of diffusive gradients in thin films (DGT) were applied and compared for fractionation of mercury in soils from mercury-contaminated sites intended for farming purposes. The mercury found in these soils was primarily in the form of mercury sulfide (58.6-83.9%), followed by 6.7 to 15.4% of organically bound mercury and 2.9 to 23.2% of elemental mercury. Up to 10.3% of labile mercury species were determined by both sequential extraction methods in these soils. However, only 0.01 to 0.13% of mercury was determined as a bioavailable fraction using the DGT technique. Both sequential extraction methods tested for the fractionation analysis of mercury in contaminated soils were in excellent agreement. The content of the mobile (labile) mercury determined by the sequential extraction methods was statistically significantly higher (p < 0.0001) than the content of bioavailable mercury determined by the DGT technique. Environ Toxicol Chem 2020;39:1670-1677. © 2020 SETAC.
Collapse
Affiliation(s)
- Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jana Hrachovinová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Grmela
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
54
|
Gao L, Sun K, Xu D, Gao B. Kinetic process of Cr(III) in contaminated soils characterized by diffusive gradients in thin films technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137425. [PMID: 32145614 DOI: 10.1016/j.scitotenv.2020.137425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Trivalent chromium has historically been considered as an environmentally benign micronutrient due to its low mobility; however, its kinetic process in soil remains poorly understood. Here, the labile fraction and kinetics of Cr(III) in contaminated soils were explored using diffusive gradients in thin films (DGT) and the DGT-induced fluxes model. In contrast to the low mobility of Cr(III) in soils reported by the classic equilibrium partitioning method, we observed steady resupply from the solid phase through a dynamic process, wherein Cr(III) in the soils were maintained by an intermediate resupply rate with the R values at their maximum (Rmax). The resupply of Cr(III) was influenced by the kinetic parameters and soil properties: (i) the resupply ability (R-Rdiff) was influenced by pH and response time (Tc); (ii) Rmax, was controlled by pH, Tc, and the desorption rate (k-1); (iii) k-1 was influenced by pH and soil texture. This study presents the new information regarding the kinetics of Cr(III) in soils and demonstrates that Cr(III) is steadily resupplied by soil, which is not captured by equilibrium-based methods, furthering our insight of the geochemical behavior of Cr(III). This information was essential for understanding the toxicity of Cr and improving remediation.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| |
Collapse
|
55
|
Xiao W, Ye X, Zhu Z, Zhang Q, Zhao S, Chen D, Fang X, Gao N, Hu J. Evaluation of cadmium (Cd) transfer from paddy soil to rice (Oryza sativa L.) using DGT in comparison with conventional chemical methods: derivation of models to predict Cd accumulation in rice grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14953-14962. [PMID: 32062776 DOI: 10.1007/s11356-020-07976-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The consumption of rice contaminated with soil cadmium (Cd) threatens human health. It is essential to ensure the production of rice that meets food quality standards. Therefore, a large-scale field survey was conducted in Zhejiang province, southeastern China, to investigate the relationship between Cd accumulation in rice grains and Cd bioavailability in soil, and thus to establish a model to predict Cd contents in rice grains based on soil properties. For this purpose, a total of 156 paired rice and soil samples were collected. Pearson's correlation analysis revealed that Cd measurements obtained by diffusive gradient in thin films (DGT) had a higher correlation (r = 0.818, p < 0.001) with the Cd in rice grains as compared to the Cd measured by the DTPA, CaCl2, EDTA, and HCl extraction methods, which indicated that the DGT technique was a reliable method for the assessment of Cd bioavailability in soils. In addition, among the four extraction methods, the DTPA-extractable Cd showed the highest correlation with the Cd contents in rice grains. Therefore, we developed two predictive models (modelDGT and modelDTPA) to predict Cd levels in rice grains via Cubist multivariate mixed linear regression, using "soil DGT-measured Cd, pH, and oxide contents of Ca, Si, and Fe" or "soil DTPA-extractable Cd, pH, OM, and oxide contents of Ca and Fe" as explanatory variables, respectively. The overall modelDGT and modelDTPA had R2 values of 0.95 and 0.93, respectively, and relative error values of 0.30 and 0.33, respectively. Simple correlation analysis showed direct and close relationships between the measured Cd in rice grains and the Cd concentrations predicted by the Cubist modelDGT and modelDTPA, with R2 values of 0.979 and 0.922, respectively. Therefore, Cd levels in rice grains could be predicted very well based on the two prediction models, and thus, the two models derived in this study are effective in identifying soils in which the Cd in rice grains will exceed food safety standards, thereby helping to ensure safe rice production.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zhiqiang Zhu
- College of Agriculture, Hainan University, Haikou, 570228, China
| | - Qi Zhang
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shouping Zhao
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoman Fang
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Hu
- State Key Laboratory for Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
56
|
Knox AS, Paller MH. Effect of bioturbation on contaminated sediment deposited over remediated sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136537. [PMID: 31955083 DOI: 10.1016/j.scitotenv.2020.136537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
A challenge to all sediment remediation technologies is the continued influx of contaminants from uncontrolled sources following remediation. However, contaminants deposited on sediments remediated with chemically active sequestering agents may be affected by the sequestering agents resulting in reduced impacts. We deposited sediment contaminated with As, Cd, Cu, Ni, Pb, and Zn over clean sediment capped with the sequestering agent, apatite, and clean uncapped sediment in laboratory mesocosms to simulate the recontamination of remediated sediment by influxes of particle-bound contaminants. Cap effectiveness was assessed in the presence and absence of the bioturbating organism Corbicula fluminea based on metal fluxes to sediment pore water and surface water, the distribution of mobile contaminants in sediment and surface water measured by Diffusive Gradients in Thin Films, and contaminant bioaccumulation by Lumbriculus variegatus. The metal sequestration capacity of apatite caps was unaffected or improved by bioturbation for all elements except As. Effects with uncapped sediment were metal specific including reductions in the bioavailable pool for Ni, Cd, and to a lesser extent, Pb, increases in the bioavailable pool for As and Cu, and little effect for Zn. It is likely that the reductions observed for some metals in uncapped, clean sediment were the result of burial and dilution of contaminated sediment combined with chemical processes such as sequestration by minerals and other compounds. These results indicate that apatite caps can control recontamination by metals regardless of bioturbation but point to the complexity of sediment recontamination and the need for further study of this problem.
Collapse
Affiliation(s)
- Anna Sophia Knox
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - Michael H Paller
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| |
Collapse
|
57
|
Kaninga BK, Chishala BH, Maseka KK, Sakala GM, Lark MR, Tye A, Watts MJ. Review: mine tailings in an African tropical environment-mechanisms for the bioavailability of heavy metals in soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1069-1094. [PMID: 31134395 DOI: 10.1007/s10653-019-00326-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals are of environmental significance due to their effect on human health and the ecosystem. One of the major exposure pathways of Heavy metals for humans is through food crops. It is postulated in the literature that when crops are grown in soils which have excessive concentrations of heavy metals, they may absorb elevated levels of these elements thereby endangering consumers. However, due to land scarcity, especially in urban areas of Africa, potentially contaminated land around industrial dumps such as tailings is cultivated with food crops. The lack of regulation for land-usage on or near to mine tailings has not helped this situation. Moreover, most countries in tropical Africa have not defined guideline values for heavy metals in soils for various land uses, and even where such limits exist, they are based on total soil concentrations. However, the risk of uptake of heavy metals by crops or any soil organisms is determined by the bioavailable portion and not the total soil concentration. Therefore, defining bioavailable levels of heavy metals becomes very important in HM risk assessment, but methods used must be specific for particular soil types depending on the dominant sorption phases. Geochemical speciation modelling has proved to be a valuable tool in risk assessment of heavy metal-contaminated soils. Among the notable ones is WHAM (Windermere Humic Aqueous Model). But just like most other geochemical models, it was developed and adapted on temperate soils, and because major controlling variables in soils such as SOM, temperature, redox potential and mineralogy differ between temperate and tropical soils, its predictions on tropical soils may be poor. Validation and adaptation of such models for tropical soils are thus imperative before such they can be used. The latest versions (VI and VII) of WHAM are among the few that consider binding to all major binding phases. WHAM VI and VII are assemblages of three sub-models which describe binding to organic matter, (hydr)oxides of Fe, Al and Mn and clays. They predict free ion concentration, total dissolved ion concentration and organic and inorganic metal ion complexes, in soils, which are all important components for bioavailability and leaching to groundwater ways. Both WHAM VI and VII have been applied in a good number of soils studies with reported promising results. However, all these studies have been on temperate soils and have not been tried on any typical tropical soils. Nonetheless, since WHAM VII considers binding to all major binding phases, including those which are dominant in tropical soils, it would be a valuable tool in risk assessment of heavy metals in tropical soils. A discussion of the contamination of soils with heavy metals, their subsequent bioavailability to crops that are grown in these soils and the methods used to determine various bioavailable phases of heavy metals are presented in this review, with an emphasis on prospective modelling techniques for tropical soils.
Collapse
Affiliation(s)
- Belinda K Kaninga
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Zambia
- Department of Soil Science, School of Agricultural Sciences, University of Zambia, P.O box 32379, Lusaka, Zambia
| | - Benson H Chishala
- Department of Soil Science, School of Agricultural Sciences, University of Zambia, P.O box 32379, Lusaka, Zambia
| | - Kakoma K Maseka
- Copperbelt University, Jambo Drive, Riverside, Kitwe, Zambia
| | - Godfrey M Sakala
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Zambia
| | - Murray R Lark
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK
| | - Andrew Tye
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK.
| |
Collapse
|
58
|
Yin DX, Fang W, Guan DX, Williams PN, Moreno-Jimenez E, Gao Y, Zhao FJ, Ma LQ, Zhang H, Luo J. Localized Intensification of Arsenic Release within the Emergent Rice Rhizosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3138-3147. [PMID: 31968168 DOI: 10.1021/acs.est.9b04819] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Behavior of trace elements in flooded/lowland rice soils is controlled by root-zone iron oxidation. Insoluble iron species bind/capture toxic elements, i.e., arsenic. However, it was recently observed that within this territory of arsenic immobilization lies a zone of prolific iron release, accompanied by a significant flux of arsenic in close proximity to rice root apices. Questions still remain on how common this phenomenon is and whether the chemical imaging approaches or soils/cultivars used influence this event. Here, three types of ultrathin/high-resolution diffusive gradient in thin films (DGT) substrates were integrated with oxygen planar optodes in a multilayer system, providing two-dimensional mapping of solute fluxes. The three DGT approaches revealed a consistent/overlapping spatial distribution with localized flux maxima for arsenic, which occurred in all experiments, concomitant with iron mobilization. Soil/porewater microsampling within the rhizosphere revealed no significant elevation in the solid phase's total iron and arsenic concentrations between aerobic and anaerobic zones. Contrary to arsenic, phosphorus bioavailability was shown to decrease in the arsenic/iron flux maxima. Rice roots, in addition to their role in nutrient acquisition, also perform a key sensory function. Flux maxima represent a significant departure from the chemical conditions of the bulk/field environment, but our observations of a complete rhizosphere reveal a mixed mode of root-soil interactions.
Collapse
Affiliation(s)
- Dai-Xia Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dong-Xing Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland, United Kingdom
| | - Eduardo Moreno-Jimenez
- Department of Agricultural and Food Chemistry, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Faculty of Science, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
- Soil and Water Science Department, University of Florida, Gainesville, Florida 32611, United States
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
59
|
Lillo-Robles F, Tapia-Gatica J, Díaz-Siefer P, Moya H, Youlton C, Celis-Diez JL, Santa-Cruz J, Ginocchio R, Sauvé S, Brykov VA, Neaman A. Which soil Cu pool governs phytotoxicity in field-collected soils contaminated by copper smelting activities in central Chile? CHEMOSPHERE 2020; 242:125176. [PMID: 31671299 DOI: 10.1016/j.chemosphere.2019.125176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Several studies have attempted to predict the so-called "phytoavailable" fraction by correlating plant responses with different soil metal pools. Most of the data derived from these studies tend to be inconsistent, making interpretations difficult. Thus, the main objective of this study was to determine which soil Cu pool (free Cu2+, salt-exchangeable Cu or total Cu) controls Cu phytotoxicity in soils near a Cu smelter in central Chile. We studied the following traits of the local plant community grown spontaneously on the study site: species richness, shoot biomass, and plant cover. The site was dominated by four early plant colonizers: Eschscholzia californica Cham., Hirschfeldia incana (L.) Lagr.-Fossat, Lolium perenne L., and Vulpia bromoides (L.) Gray. We determined exchangeable soil Cu and activity of free Cu2+ in 0.1 M KNO3 extracts using soil/solution ratio of 1/2.5. The effect of total soil Cu on plant responses was not significant (p > 0.05). In our field-collected soil series, exchangeable Cu was a better indicator of soil phytotoxicity than either total soil Cu or free Cu2+ in the soil solution. We determined upper critical threshold values for Cu exposure using the three plant traits cited above. The mean values of EC10, EC25, and EC50 (effective concentration at 10%, 25%, and 50%, respectively) of exchangeable soil Cu (in μg L-1) were 255, 391, and 533, respectively. The mean EC10, EC25 and EC50 values of pCu2+ were 7.5, 6.8, and 5.9, respectively. We highlight the importance of further studies on Cu phytotoxicity using actual field-contaminated soils.
Collapse
Affiliation(s)
- Felipe Lillo-Robles
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Jaime Tapia-Gatica
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Pablo Díaz-Siefer
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Héctor Moya
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Cristián Youlton
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Juan L Celis-Diez
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Javier Santa-Cruz
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Rosanna Ginocchio
- Departamento de Ecosistemas y Medio Ambiente (DEMA), Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Vasyl A Brykov
- Department of Landscape Design and Sustainable Ecosystems, RUDN University, Moscow, Russia
| | - Alexander Neaman
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile.
| |
Collapse
|
60
|
Golui D, Datta SP, Dwivedi BS, Meena MC, Trivedi VK. Prediction of free metal ion activity in contaminated soils using WHAM VII, baker soil test and solubility model. CHEMOSPHERE 2020; 243:125408. [PMID: 31770700 DOI: 10.1016/j.chemosphere.2019.125408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 05/28/2023]
Abstract
Bioavailability and ecotoxicity of metals in contaminated soils depend largely on their solubility. The present investigation was carried out to predict the free ion activity of Zn2+, Cu2+, Ni2+, Pb2+ and Cd2+ in contaminated soils as a function of pH, organic carbon content and extractable metal concentration. Twenty-five composite soil samples were collected from various locations which had a history of receiving sewage sludge (Keshopur and IARI, Delhi), municipal solid waste (Kolkata, West Bengal), polluted river water (Madanpur, Delhi) and industrial effluents (Debari, Rajasthan and Sonepat, Haryana). Four composite soil samples were also collected from adjacent fields which had not received contaminated amendments. Free ion activities (-log10 values), viz. pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+ as measured by the Baker soil test, were 10.1 ± 1.12, 13.4 ± 1.23, 12.9 ± 0.85, 11.6 ± 0.74 and 12.6 ± 2.26, respectively. Free metal ion activities were also determined using the geochemical speciation model WHAM-VII following extraction of soil solution with porous Rhizon samplers from the rhizosphere of growing plants. pH dependent Freundlich model based on soil properties could explain the variation in pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+ to the extent of 84, 52, 73, 60 and 70%, respectively, in the case of data from Rhizon samplers coupled with speciation modelling. Whereas, C-Q model could explain 84, 57, 82, 72 and 74% variability in pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+, respectively, based on soil properties and free metal ion activity as determined with integrated use of Rhizon-WHAM-VII. Modelling approach was superior compared to that based on the Baker soil test solution.
Collapse
Affiliation(s)
- Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| | - S P Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India.
| | - B S Dwivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| | - M C Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| | - V K Trivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| |
Collapse
|
61
|
Ren S, Wang Y, Cui Y, Wang Y, Wang X, Chen J, Tan F. Desorption kinetics of tetracyclines in soils assessed by diffusive gradients in thin films. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113394. [PMID: 31662246 DOI: 10.1016/j.envpol.2019.113394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Tetracyclines (TCs) are frequently detected in agricultural soils worldwide, causing a potential threat to crops and human health. In this study, diffusive gradients in thin films technique (DGT) was used to measure the distribution and exchange rates of three TCs (tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC)) between the solid phase and solution in five farmland soils. The relationship between the accumulated masses with time suggested that TCs consumption in soil solution by DGT would induce the supply from the soil solid phase. The distribution coefficient for the labile antibiotics (Kdl), response time (Tc) and desorption/adsorption rates (kb and kf) between dissolved and sorbed TCs were derived from the dynamic model of DIFS (DGT induced fluxes in soils). The Kdl showed similar sizes of labile solid phase pools for TC and OTC while larger pool sizes were observed for CTC in the soils. Although the concentrations of CTC were lowest in soil solution, the potential hazard caused by continuous release from soil particles could not be ignored. The long response time (>30 min in most cases) suggested that the resupply of TCs from soil solids was limited by their desorption rates (1.26-121 × 10-6 s-1). The soils in finer texture, with higher clay and silt contents (<50 μm) showed a greater potential for TCs release.
Collapse
Affiliation(s)
- Suyu Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ying Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochun Wang
- Anshan Normal College, Department of Chemistry & Life Science, Anshan 114005, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
62
|
Peng Q, Wang D, Wang M, Zhou F, Yang W, Liu Y, Liang D. Prediction of selenium uptake by pak choi in several agricultural soils based on diffusive gradients in thin-films technique and single extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113414. [PMID: 31662260 DOI: 10.1016/j.envpol.2019.113414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The accurate assessment of soil selenium (Se) bioavailability is crucial for Se biofortification in Se-deficient areas and risk assessment in selenosis areas. However, a universally accepted approach to evaluate Se bioavailability in soil is currently lacking. This research investigated Se bioavailability in six soils treated with selenite (Se(IV)) or selenate (Se(VI)) by comparing diffusive gradients in thin-films (DGT) technique and chemical extraction methods through pot experiments. A bioindicator method was used to evaluate Se concentrations in pak choi and compare the results with the Se concentration measured by other methods. Results showed that chemical extraction methods presented different extraction efficiencies for available Se over a range of soil types, and the same extraction method had various extraction efficiencies for different Se species in the same soil. DGT measured Se concentrations (CDGT-Se) for Se(VI) treatment were 2.3-34.1 times of those for Se(IV) treatment. KH2PO4-K2HPO4 and AB-DTPA extractable Se could predict the bioavailability of soil Se, but they were disturbed by soil properties. HAc extraction was unsuitable for evaluating Se bioavailability in different Se(IV)-treated soils. By contrast, DGT technique was preferable for predicting plant uptake of Se(IV) over chemical extraction methods. Although DGT technique was independent of soil properties, KH2PO4-K2HPO4 extraction provided the best fitting regression equation for Se(VI) when it was dependent on soil organic matter. Thus, KH2PO4-K2HPO4 extraction may be preferred to assess Se(VI) bioavailability in different soil types on a large scale.
Collapse
Affiliation(s)
- Qin Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongxian Liu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
63
|
Zheng C, Wang X, Liu J, Ji X, Huang B. Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36688-36697. [PMID: 31741273 DOI: 10.1007/s11356-019-06688-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1-5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50-100 μg/L in 1-3% biochar treatments was recorded over 0-60 mm depth, with 25-71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale.
Collapse
Affiliation(s)
- Chujing Zheng
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Xin Wang
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Jing Liu
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- School of Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Changsha, 410125, People's Republic of China.
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha, 410125, People's Republic of China.
- Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha, 410125, People's Republic of China.
| | - Bojun Huang
- Center for Foreign Economic & Technical Cooperation in Agriculture Department of Hunan Province, Changsha, 410006, People's Republic of China
| |
Collapse
|
64
|
Pelcová P, Zouharová I, Ridošková A, Smolíková V. Evaluation of mercury availability to pea parts (Pisum sativum L.) in urban soils: Comparison between diffusive gradients in thin films technique and plant model. CHEMOSPHERE 2019; 234:373-378. [PMID: 31228839 DOI: 10.1016/j.chemosphere.2019.06.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/15/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The diffusive gradients in thin films technique (DGT) was used for the determination of bioavailable mercury in urban soils, and results were compared to the mercury accumulation by Pisum sativum L. (pea) parts (leaf, root, stem, blossom, legume, and green seed). The total mercury concentration in soil samples was ranged between 0.084 and 0.326 mg kg-1. The soil solutions contained 0.15%-0.20% of mercury present in soils. In the soil solution, 2.21%-3.45% of mercury was available for DGT units. The highest mercury content was determined in the leaf and root of the pea plant, and the lowest in the consumable part of the pea plant (green seed). Mercury concentration in the parts of the pea plant increased over time, alongside the growth of the plant. The effect of acid precipitation on mercury bioavailability was statistically non-significant (p = 0.53). Significant and positive correlations were found between mercury flux into DGT unit, and mercury flux into the root (r = 0.989), leaf (r = 0.985), and stem (r = 0.904) of the pea plant. The obtained results suggest that the DGT method could be used for description of the uptake of mercury by pea plant parts in non-contaminated and slightly contaminated soils.
Collapse
Affiliation(s)
- Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.
| | - Iveta Zouharová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| | - Vendula Smolíková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| |
Collapse
|
65
|
Wang M, Cui Z, Xue M, Peng Q, Zhou F, Wang D, Dinh QT, Liu Y, Liang D. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1-9. [PMID: 31260894 DOI: 10.1016/j.scitotenv.2019.06.346] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 05/21/2023]
Abstract
A generally accepted method to predict selenium (Se) bioavailability of long-term contaminated soils has not yet been established, even if risk assessments in selenosis areas are crucial. In this study, a set of methods were tested to assess the bioavailability of Se to field maize. Fifty maize (Zea mays L.) samples and corresponding soils were collected from a selenosis area (Ziyang, China). The diffusive gradients in thin-films (DGT) technique and the traditional chemical extraction methods, including seven single-step extraction procedures and a five-step sequential extraction were used to predict the bioaccumulation of Se in plant. The result verified the presence of 50% of total Se in the form of residual Se fraction, followed by organic-bound and Fe-Mn oxide-bound Se fractions in soil. In addition, Se6+, Se4+, and Se2- were all detected in the solution extracted by H2O, KCl, phosphate-buffered solution (PBS), NaHCO3, ethylenediaminetetraacetic acid-2Na (EDTA-2Na) and ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA), but Se6+ was not extracted by NaOH. The Se extracted by single-step extraction methods was weakly correlated with the Se uptake by plants with relatively high Se concentration (>3 mg·kg-1). The abilities of the tested methods to predict Se bioavailability in naturally Se-enriched soils declined in the following order: DGT > soil solution > PBS > KCl > H2O > NaHCO3 > EDTA > DTPA > NaOH. The ratio of CDGT to soil solution Se (Csoln) totaled 0.13, indicating an extremely low Se supply from the soil solid phase to the soil solution. Se measured by DGT was mainly derived from the soluble and exchangeable Se fractions that can accurately reflect the plant-absorbed Se pool. Therefore, the DGT technique is highly applicable in the simultaneous prediction of Se bioavailability in naturally Se-enriched soils.
Collapse
Affiliation(s)
- Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zewei Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongxian Liu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
66
|
Visconti D, Fiorentino N, Caporale AG, Stinca A, Adamo P, Motti R, Fagnano M. Analysis of native vegetation for detailed characterization of a soil contaminated by tannery waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1599-1608. [PMID: 31279978 DOI: 10.1016/j.envpol.2019.06.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 05/25/2023]
Abstract
The risks for human health and the ecosystem due to potentially toxic elements (PTEs) were investigated in a farmland classified as potentially contaminated by Cr and Zn by analysing native vegetation and relative rhizo-soils. Rhizo-soils of different plant species were found to be enriched by Cr and Zn as well as by elements omitted from official environmental characterization, namely Cd, As and Pb. The ecological risk index (ERI) had a mean value of 510, indicating high to "very high" risk in different habitats. ERI above the very high risk threshold characterized the rhizo-soils of Lolium perenne, Erigeron sumatrensis, Oloptum thomasii and Amaranthus retroflexus. Two of these plant species (E. sumatrensis and A. retroflexus) are exotic in Italy and accumulated Cd in the shoots above the EU threshold for forage, suggesting a potential risk of Cd transfer to the food chain. Hence, this element was found to contribute most to the ERI. Cynodon dactylon was recognized as the most suitable plant species for the phytostabilization of the contaminated site, as it showed the highest bioavailable Cd accumulation in roots coupled with the highest frequency and soil-cover capacity during spring-summer, when the risk of soil resuspension is generally more intense.
Collapse
Affiliation(s)
- Donato Visconti
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Naples, Italy.
| | - Nunzio Fiorentino
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Naples, Italy
| | - Antonio G Caporale
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Naples, Italy
| | - Adriano Stinca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi 43, 81100 Caserta, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Naples, Italy
| | - Riccardo Motti
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Naples, Italy
| | - Massimo Fagnano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Naples, Italy
| |
Collapse
|
67
|
Li Y, Rothwell S, Cheng H, Jones KC, Zhang H. Bioavailability and metabolism in a soil-crop system compared using DGT and conventional extraction techniques. ENVIRONMENT INTERNATIONAL 2019; 130:104924. [PMID: 31260928 DOI: 10.1016/j.envint.2019.104924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Traditional extraction methods (soil solution and solvent extraction) are simple to use and conventionally employed to assess pesticide chemical form and bioavailability in soils. However, whilst convenient for regulatory testing, it has been suggested that these approaches may be too crude or are poor predictors of bioavailability, due to their arbitrary original development to detect 'total' concentration using exhaustive extraction. The diffusive gradients in thin films (DGT) technique has been widely used to measure chemical speciation in situ and shown to reliably predict bioavailability of a range of contaminants (e.g. heavy metals, radionuclides, nutrients) in soil systems, because it dynamically samples contaminants from/re-supplied to the soil solution phase. Experiments were therefore conducted with 5 soils of different properties to compare DGT and the two conventional extraction approaches for sampling atrazine (ATR) and its metabolites from soils and for predicting their uptake by maize tissues. After 23 days aging, a large proportion of total ATR was still available for solvent (acetonitrile) extraction and the major constituent in soils was parent ATR. The best correlations of total ATR concentrations in maize and total ATR measured in soil were with DGT and soil solution measurements. This is encouraging, in jointly supporting one of the established methodologies traditionally used in pesticide testing (i.e. soil solution) and a widely used method (i.e. DGT), which has been validated previously for a range of contaminants. The poorer performance of solvent extraction (a procedure widely used for pesticide testing) is perhaps to be expected, given that solvents will not truly mimic the conditions encountered in soil-plant systems.
Collapse
Affiliation(s)
- Yanying Li
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Shane Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hao Cheng
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
68
|
Han L, Zhao X, Jin J, Gao B, Yang Y, Sun K, Li F. Using sequential extraction and DGT techniques to assess the efficacy of plant- and manure-derived hydrochar and pyrochar for alleviating the bioavailability of Cd in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:543-550. [PMID: 31078844 DOI: 10.1016/j.scitotenv.2019.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Biochar has emerged as a useful tool to reduce the bioavailability of heavy metals in contaminated soils. However, limited research has been directed towards determining the effects of pyrolysis conditions and feedstock types of biochar on the bioavailability of heavy metals in biochar-treated soils. This work evaluated the efficacy of plant- and manure-derived hydrochar and pyrochar for alleviating Cd bioavailability in soils using conventional chemical extraction, diffusive gradients in thin films (DGT) and plant uptake. For each feedstock type, hydrochar showed lower maximum adsorption capacity than pyrochar. As determined by diethylenetriamine pentaacetic acid, BCR extraction and DGT measurement, pyrochar significantly decreased the theoretical bioavailability of Cd. Moreover, a slight decrease in the ability of soil to resupply Cd to the solution was detected. Also, pyrochar induced a substantial reduction in Cd uptake in ryegrass. Corresponding to the high sorption capacity, swine solid-derived 450 °C pyrochar was the most effective in alleviating Cd bioavailability in soils, indicating its great potential for remediating Cd-contaminated soils. Additionally, the bioavailable Cd amount determined by DGT had the best correlation with the Cd content in ryegrass, showing that DGT technology could better represent the effects of biochars on Cd phytoavailability in the studied soil.
Collapse
Affiliation(s)
- Lanfang Han
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingjuan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jie Jin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yan Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Fangbai Li
- Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| |
Collapse
|
69
|
Sun H, Gao B, Gao L, Xu D, Sun K. Using diffusive gradients in thin films (DGT) and DGT-induced fluxes in sediments model to assess the dynamic release of copper in sediment cores from the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:192-200. [PMID: 30954818 DOI: 10.1016/j.scitotenv.2019.03.400] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
As one of the largest man-made reservoir, the Three Gorges Reservoir (TGR) brings great uncertainty and challenges regarding trace metal (e.g., Cu) remobilization in the sediment. Therefore, in this study, sediment cores were collected from the mainstream of the Yangtze River and its three tributaries in the TGR, with a focus on evaluating the Cu remobilization risk and release dynamics using conventional methods, diffusive gradients in thin films (DGT), and the DGT-induced fluxes in sediments (DIFS) model. The results showed that although total Cu concentrations were slightly higher than background values, Cu was mainly observed in the unreactive residual fraction. Additionally, assessment of sediment quality guidelines and the risk assessment code indicated low Cu contamination risk for all sampling sites. However, the results of DGT measurements at the sediment-water interface showed efflux of Cu from sediment to the overlying water at most sites, except for the upstream of the Meixi River and the mainstream of the Yangtze River. Interestingly, diffusion fluxes at the three tributaries displayed an increase trend from the upper to lower reaches. The DIFS model simulation further implied that the highest resupply capacity and desorption rate occurred in the Zhuyi River and the upstream of the Meixi River. In fact, the accumulation of Cu from the upper to the lower reaches of the Zhuyi River significantly elevated the Cu resupply capacity. Thus, more attention should be paid to Cu mobilization in the TGR, especially in the Zhuyi River and the upstream of the Meixi River.
Collapse
Affiliation(s)
- Haoran Sun
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
70
|
Huu Nguyen V, Yee SK, Hong Y, Moon DH, Han S. Predicting mercury bioavailability in soil for earthworm Eisenia fetida using the diffusive gradients in thin films technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19549-19559. [PMID: 31079304 DOI: 10.1007/s11356-019-05180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
In general, the diffusive gradients in thin films (DGT) technique is an effective tool for evaluating metal bioavailability; however, its applicability is subject to the type of metal and organism involved. In this study, the accumulated masses of Hg in DGT probes and in the earthworm species Eisenia fetida were monitored for 10 days, to test if the DGT technique can be used as a predicting method for the bioavailability of soil Hg to earthworms. In the Hg exposure tests using soils prepared with different peat moss concentrations of 5, 10, 15, and 20% and varying pH values of 4.6, 5.6, and 6.2, the experimentally determined DGT-soil accumulation factor (DSAF) and biota-soil accumulation factor (BSAF) both increased as the peat moss content decreased and the pH increased. According to a one compartment model, this was a result of the increased Hg uptake rate constant (k1) and the relatively stable Hg elimination constant (k2) under lower peat moss and higher pH conditions. It is interesting to note that the Hg uptake rates by DGT and earthworms were considerably higher for fresh soils than for aged soils, while porewater (and acid-extractable) Hg concentrations were rather similar between the two types of soils. Across diverse soil properties, steady-state Hg in earthworm tissue showed a strong positive correlation with DGT-measured Hg flux ([earthworm Hg] = 354(DGT-Hg flux)-34, r2 = 0.88), while meager correlations were found between Hg concentration in earthworms and that in porewater (and acid-extractable). The overall results indicate that DGT-measured Hg flux is a better tool than conventional methods for predicting Hg bioavailability for earthworms inhabiting diverse types of soil.
Collapse
Affiliation(s)
- Viet Huu Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seah Kah Yee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Systems Engineering, Korea University, Sejong City, 30019, Republic of Korea
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
71
|
Wang W, Wang S, Chen J, Jiang X, Zheng B. Combined use of diffusive gradients in thin film, high-resolution dialysis technique and traditional methods to assess pollution and bioavailability of sediment metals of lake wetlands in Taihu Lake Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:28-40. [PMID: 30927725 DOI: 10.1016/j.scitotenv.2019.03.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The geochemical behavior of trace metals at the sediment/water interface in Taihu Lake, the third-largest fresh water lake in China, has been widely explored. However, information on metals in lake wetlands of the basin is lacking. Here, diffusive gradients in thin film (DGT), high-resolution dialysis technique (HR-Peeper) and traditional methods were jointly used to study the occurrence characteristics, pollution degree, bioavailability, and mobility of sediment metals in the northern lake wetlands of Jiaxing City in Taihu Lake Basin. The contents of Cr, Ni, Cu, Zn, As, Cd and Pb were 101, 52.8, 62.3, 184, 10.3, 0.4, and 39.8 mg/kg, respectively. The metals in the sediments were in an overall low enrichment level. The main form of Cd was acid-soluble (F1), and the other metals mainly existed in residual (F4) or oxidable (F3) forms. The mean DGT-labile contents (CDGT) of Cr, Ni, Cu, Zn, As, Cd and Pb were 1.3, 1.2, 9.3, 6.7, 13.4, 0.7, and 0.8 μg/L, respectively. CDGT-Cu and CDGT-As were significantly and positively related to the Cu and As contents in pore water (Csol). CDGT-Cr, CDGT-Cd, CDGT-Pb, and CDGT-Cu were significantly and positively related to CF1-Cr, CF1-Cd, CF1-Pb, and CF3-Cu, respectively. The stability of Cd was the worst with a mean risk assessment code of 40%, indicating a high risk of remobilization in the sediment. The remobilization risks of other metals were low or moderate. The CDGT/Csol ratio of Cd was also the largest, with a mean of 0.99, suggesting that the Cd resupplying ability from sediment solid to pore water was strong.
Collapse
Affiliation(s)
- Wenwen Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
72
|
Ono K, Yasutaka T, Hayashi TI, Kamo M, Iwasaki Y, Nakamori T, Fujii Y, Kamitani T. Model construction for estimating potential vulnerability of Japanese soils to cadmium pollution based on intact soil properties. PLoS One 2019; 14:e0218377. [PMID: 31199845 PMCID: PMC6570033 DOI: 10.1371/journal.pone.0218377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/29/2019] [Indexed: 11/19/2022] Open
Abstract
Prediction of heavy metal bioavailability in intact soil is important to manage soil pollution risks. We developed a regression model for representative Japanese soils to judge their potential vulnerability to cadmium (Cd) pollution. We added four rates of Cd to 17 sample soils to mimic artificial contamination. After aging the contaminated soils, we measured Cd's bioavailability using the diffusive gradients in thin-films (DGT) technique. We then evaluated the relationships between bioavailability of Cd ([CdDGT]) and intact soil properties by statistical analyses. Cation exchange capacity (CEC) and pH emerged as significant factors to explain the cadmium bioavailability in Japanese soils. Specifically, lower CEC and lower pH were associated with higher [CdDGT], which poses a higher risk for soil ecosystems. The correlation between pH and [CdDGT] had a high dependence on [CdAdd], whereas that for CEC did not. Regression analysis also showed that the interaction between intact soil pH and spiked concentration ([CdAdd]) had a significant contribution to [CdDGT]. The regression model developed was rationally supported by a biotic ligand model. This simplified but realistic model would be useful in estimating the vulnerability of representative Japanese soils and determining the risk for Japanese soils in relation to Cd contamination.
Collapse
Affiliation(s)
- Kyoko Ono
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Tetsuo Yasutaka
- Research Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | - Masashi Kamo
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Yuichi Iwasaki
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Taizo Nakamori
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yoshikazu Fujii
- Environmental Education Center, University of Human Environments, Okazaki, Aichi, Japan
| | - Takafumi Kamitani
- Shizuoka Institute of Environment and Hygiene, Shizuoka, Shizuoka, Japan
| |
Collapse
|
73
|
Knox AS, Paller MH, Seaman JC. Removal of low levels of Cu from ongoing sources in the presence of other elements - Implications for remediated contaminated sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:645-657. [PMID: 30856573 DOI: 10.1016/j.scitotenv.2019.02.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Mesocosms were used to investigate the effects of Cu influx, alone and in the presence of other elements, on sediments remediated by active caps, passive caps, and in situ treatment. Competitive interactions between Cu and other elements were investigated because contaminants often co-occur. Elements in surface water remained at significantly lower concentrations in mesocosms with apatite and mixed amendment caps than in mesocosms with passive sand caps or uncapped sediment. Element concentrations in Lumbriculus variegatus were significantly higher in untreated sediment than in active caps and significantly related to element concentrations in sediment measured by DGT probes. The cumulative toxicity of Cu mixed with other elements was greater than the toxicity of Cu alone in treatments without active caps, but the ability of active caps to control Cu was not affected by the presence of other elements. Active caps can protect remediated sediments by reducing bioavailable elements in ongoing contamination.
Collapse
Affiliation(s)
- Anna Sophia Knox
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - Michael H Paller
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - John C Seaman
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, United States.
| |
Collapse
|
74
|
Wang M, Ren L, Wang D, Cai Z, Xia X, Ding A. Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods. J Environ Sci (China) 2019; 79:91-99. [PMID: 30784468 DOI: 10.1016/j.jes.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used as a stabilization agent to remediate Cu- and Pb-contaminated sediments, collected from three locations in or close to Beijing. The sediments were mixed with a palm sawdust gasified biochar at a range of weight ratios (2.5%, 5%, and 10%) and incubated for 10, 30, or 60 days. The performance of the different treatments and the heavy metal fractions in the sediments were assessed using four extraction methods, including diffusive gradients in thin films, the porewater concentration, a sequential extraction, and the toxicity characteristic leaching procedure. The results showed that biochar could enhance the stability of heavy metals in contaminated sediments. The degree of stability increased as both the dose of biochar and the incubation time increased. The sediment pH and the morphology of the metal crystals adsorbed onto the biochar changed as the contact time increased. Our results showed that adsorption, metal crystallization, and the pH were the main controls on the stabilization of metals in contaminated sediment by biochar.
Collapse
Affiliation(s)
- Mingming Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China..
| | - Liangsuo Ren
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Dayang Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zuansi Cai
- School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Xuefeng Xia
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, China..
| |
Collapse
|
75
|
Yu J, Chen Q, Zhang J, Zhong J, Fan C, Hu L, Shi W, Yu W, Zhang Y. In situ simulation of thin-layer dredging effects on sediment metal release across the sediment-water interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:501-509. [PMID: 30579207 DOI: 10.1016/j.scitotenv.2018.12.226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Dredging is widely applied to remediate contaminated sediments in aquatic ecosystems. However, the efficiency of thin-layer dredging for metal pollution control remains uncertain and even controversial. This study conducted an in-situ simulation experiment in Lake Taihu to investigate dredging effects on sediment metal release based on metal fractions, diffusion flux and kinetics parameters of metal resupply, using diffusive gradient in thin films (DGT), multi-microelectrode, and European Community Bureau of Reference (BCR) sequential extraction scheme. Results indicated that the exchange fluxes of metals did not necessarily correspond to total sediment metal concentrations or the contents of different sequentially-extracted metal fractions; there were appreciable decreases in Ni, Cd, Cu and Zn in terms of total sediment metal concentrations and metal fractions, whereas the bioavailability and release fluxes of labile Ni, Cu and Zn (but not Cd) were all notably promoted (by 136, 128 and 149%, respectively) in dredged area compared to those in un-dredged sediments. Further analysis on the kinetics of metal resupply by DGT technique and DGT-induced fluxes in sediments model (DIFS) showed higher concentrations of labile metals, with a larger resupply ability from sediments after dredging. Therefore, thin-layer dredging had the possibility to increase metal release from sediments to the water column. This was attributed to the remobilization of metal sulfides in anoxic deep sediments, as oxidation increased after dredging due to the introduction of oxygenated water, causing subsequent dissolution of sulfide-bound metals. In conclusion, dredging may not mitigate metal contamination, although it can reduce the total pollution load. Our findings indicated dual effects of dredging and provided new insights into the remobilization mechanism of metal release induced by dredging.
Collapse
Affiliation(s)
- Juhua Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chengxin Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liuming Hu
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Wenqing Shi
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Wenyong Yu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinlong Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
76
|
Almeida DS, Menezes-Blackburn D, Zhang H, Haygarth PM, Rosolem CA. Phosphorus availability and dynamics in soil affected by long-term ruzigrass cover crop. GEODERMA 2019; 337:434-443. [PMID: 30828103 PMCID: PMC6358123 DOI: 10.1016/j.geoderma.2018.09.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
The use of grasses as cover crops in the off-season of cash crops under no-till has been largely adopted. However, soil phosphorus (P) uptake was previously shown to be reduced when ruzigrass is introduced in the rotation, affecting the viability and sustainability of this cropping system. The objective of this study was to assess the effect of ruzigrass on soil P availability and desorption kinetics under different P fertilizer application rates. A long-term field experiment where soybean (Glycine max) has been grown in rotation with ruzigrass (Urochloa ruziziensis) or fallow for 10 years, with the application of 0, 13, and 26 kg ha-1 of P, was evaluated for two consecutive years. Soil P desorption kinetics was assessed using diffusive equilibrium (DET) and gradient in thin films (DGT) techniques, as well as the DGT-induced fluxes in soils model (DIFS). Microbial biomass P (MBP) was assessed to verify if soil solution P (PDET) was reduced due to immobilization by microorganisms. Ruzigrass reduced MBP and PDET especially when P fertilizer was applied. The concentration of labile P (PDGT) was also lower after ruzigrass than in fallow. The soil ability to resupply P to soil solution was lower after ruzigrass regardless of P rates due to a slower desorption in response to the perturbation imposed by DGT. Growing ruzigrass as cover crop in the soybean off-season decreases soil P availability regardless of P fertilizer application rates by fundamentally reducing P mobility and P resupply from soil solid phase into soil solution.
Collapse
Key Words
- Crop rotation
- DET
- DET, diffusive equilibrium in thin films
- DGT
- DGT, diffusive gradient in thin films
- DIFS, DGT induced fluxes in soils and sediments model
- Fallow
- Kd, equilibrium distribution coefficient between solid phase and soil solution
- MBP, microbial biomass phosphorus
- PDET, soil solution P concentration measured by DET
- PDGT, DGT measured time average P concentration at the interface of soil and DGT device
- PE, effective P concentration
- Presin, soil phosphorus extractable with anion exchange pearl resin
- R, ratio of PDGT and PDET
- R-Rdiff, relative resupply from solid phase
- Rdiff, ratio of PDGT to PE in the case where there is no P resupply from the solid phase
- SOM, soil organic matter
- Tc, response time of (de)sorption process
- Urochloa ruziziensis
- k−1, desorption rate constant
Collapse
Affiliation(s)
- Danilo S. Almeida
- São Paulo State University, College of Agricultural Sciences, Department of Crop Science, Botucatu 18610-307, Brazil
| | - Daniel Menezes-Blackburn
- Lancaster University, Lancaster Environment Centre, Lancaster LA1 4YQ, UK
- Sultan Qaboos University, Water and Agricultural Engineering, College of Agricultural and Marine Sciences, Department of Soils, PO Box 34, Al-khod 123, Oman
| | - Hao Zhang
- Lancaster University, Lancaster Environment Centre, Lancaster LA1 4YQ, UK
| | - Philip M. Haygarth
- Lancaster University, Lancaster Environment Centre, Lancaster LA1 4YQ, UK
| | - Ciro A. Rosolem
- São Paulo State University, College of Agricultural Sciences, Department of Crop Science, Botucatu 18610-307, Brazil
| |
Collapse
|
77
|
Wang YM, Tang DD, Zhang XH, Uchimiya M, Yuan XY, Li M, Chen YZ. Effects of soil amendments on cadmium transfer along the lettuce-snail food chain: Influence of chemical speciation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:801-807. [PMID: 30176490 DOI: 10.1016/j.scitotenv.2018.08.323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) trophic transfer along the soil-lettuce-snail food chain was investigated using the root bags-based pot experiments. Two amendments (corn straw biochar and micro-hydroxyapatite (μHAP)) were investigated on Cd (0, 2.5, and 5 mg/kg soil) availability in soils, chemical distribution in plant cells and accumulation in snails. After 60 days, both the CaCl2 extractable Cd in rhizosphere soil (CdCaCl2,rhizo) and Cd accumulation in lettuce decreased with amendments addition. Biochar had a great capacity to reduce both Cd contents and toxicity-sensitive associated Cd (CdFi+Fii) percentages in lettuce roots at 2.5 mg/kg Cd contaminated soil; while μHAP generates a higher reduction in both Cd contents and chain transfer associated Cd (CdFi+Fii+Fiii) percentages in lettuce shoots at 5 mg/kg Cd contaminated soil. Linear regression showed that both contents of root CdFi+Fii and shoot CdFi+Fii+Fiii are better correlated with the CdCaCl2,rhizo (R2 > 0.70, p < 0.01). After 15 days feeding, almost 90% content of Cd accumulated in snail viscera. μHAP had a higher reduction in snail soft tissues Cd accumulation than biochar. Distributions of Cd in snail tissues are significantly correlated with CdFi+Fii+Fiii in shoots (viscera R2 = 0.835; soft tissue R2 = 0.771). Established quantitative relationships could be used to predict the bioavailability and transfer of Cd in terrestrial food chain in the presence of amendments.
Collapse
Affiliation(s)
- Yi-Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dou-Dou Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao-Hui Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, United States of America
| | - Xu-Yin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Ming Li
- MCC Huatian Nanjing Engineering & Technology Corporation, Nanjing 210019, China
| | - Yao-Zu Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
78
|
Xu D, Gao B, Peng W, Gao L, Wan X, Li Y. Application of DGT/DIFS and geochemical baseline to assess Cd release risk in reservoir riparian soils, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1546-1553. [PMID: 30235639 DOI: 10.1016/j.scitotenv.2018.07.262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
As the sole drinking water source for Beijing City, Cd has been previously assessed as the major contaminant in Miyun Reservoir (MYR) riparian soils. However, the potential release risk of Cd in such soils, and the labile-Cd release-resupply process from the soil solid phase to solution after water impoundment remain poorly understood. We established a geochemical baseline concentration (GBC) of Cd in MYR riparian soils, combined with the diffusive gradient in thin films (DGT) technique and DGT-induced fluxes in soil (DIFS) model, to reveal a dynamic release-resupply process and influencing factors of labile Cd in riparian soils. The results showed that Cd GBC in riparian soils was 0.12 mg/kg, which was higher than the Cd background value (BV) for Beijing. Using Cd GBC as BV to assess the Cd contaminant level, the geo-accumulation index showed that Cd in riparian soils was at the uncontaminated level. In addition, Cd in the soils belonged to the non-residual fraction using the Community Bureau of Reference method. Cd mobility coefficients (F1/CTotal-Cd) of soils at low elevation had relatively high values, implying that Cd may be released during the initial impoundment of the MYR. Moreover, correlation analysis was used to found the major influencing factors between DGT-labile Cd and several parameters. The results showed that the DGT-labile Cd was positively correlated to the reducible and oxidizable fraction, CDGT-Fe, and total organic carbon, illustrating that the release of Cd from soils was controlled by Fe oxides and organic matter. The resupply ability (R values) and DIFS model parameters revealed that Cd in MYR soils belonged to the partially sustained case, and the slow desorption rate suggested that the release risk of Cd was low in the MYR riparian soils.
Collapse
Affiliation(s)
- Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Li Gao
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaohong Wan
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yanyan Li
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
79
|
Liu JF, Zhao YJ, Song ZT, Zhou QW, Liu XW, Fan HT. Characterization of the dissociation kinetics of Cd and Ni in soils based on diffusive gradients in thin films technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:446-452. [PMID: 30292111 DOI: 10.1016/j.ecoenv.2018.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
A new theoretical method was established for the combinatorial calculation of the dissociation rate constant (K-1) of the metal-organic complexes (MLs), the concentration of free ionic soil metals (CM), the labile concentration of soil metal-organic complexes (CML) based on diffusive gradients in thin-films (DGT) technique with a range of diffusive layer thicknesses (0.053-0.173 mm) in soils. The fitting results agreed well with the determined values. The values of K-1, CML and CM were calculated without other morphological analysis software and the fitting results agreed well with the determined values with some advantages such as the use of fewer hypothetical parameters, ease of calculation, the full embodiment of the contribution of MLs to the labile content. According to the results of model fitting, cation exchange capacity and soil organic matter were found to be the key environmental factors for K-1 values of Cd and Ni, respectively. The labile contents of Cd and Ni in soil were closely related with pH, soil organic matter and the total contents of heavy metals.
Collapse
Affiliation(s)
- Jia-Feng Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China; College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu-Jie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China.
| | - Zhi-Ting Song
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China
| | - Qi-Wen Zhou
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China
| | - Xiao-Wei Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China.
| | - Hong-Tao Fan
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning University of Petroleum & Chemical Technology, Fushun 113001, China.
| |
Collapse
|
80
|
Yuan Y, Ding S, Wang Y, Zhang L, Ren M, Zhang C. Simultaneous measurement of fifteen rare earth elements using diffusive gradients in thin films. Anal Chim Acta 2018; 1031:98-107. [DOI: 10.1016/j.aca.2018.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
|
81
|
Guan DX, Sun FS, Yu GH, Polizzotto ML, Liu YG. Total and available metal concentrations in soils from six long-term fertilization sites across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31666-31678. [PMID: 30209764 DOI: 10.1007/s11356-018-3143-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Approximately 19% of agricultural soils in China are contaminated by heavy metals. However, the effects of agricultural management practices on soil contamination are not well understood. Taking advantage of six long-term (23-34 years) field sites across China, this study examined the effects of different agricultural fertilization treatments, including control (no fertilization), inorganic nitrogen, phosphorus and potassium fertilization (NPK), manure fertilization (M), and NPK plus manure fertilization (NPKM), on the total and available metal concentrations in soils. The results showed that after 23-34 years of fertilization, the M and NPKM treatments significantly increased the total concentration of cadmium (Cd), copper (Cu), and zinc (Zn) in soils compared with the concentrations measured for the control and NPK treatments. In contrast, the fertilization treatments had almost no influence on soil lead (Pb) and nickel (Ni) concentrations. The results of analysis via diffusive gradients in thin films demonstrated that long-term sheep or cattle manure fertilization increased the available metals, especially Cd, Cu, and Zn, but long-term swine manure application decreased the available metals, except for Cu and Zn, in soils. Further analysis revealed that the manure source, soil pH level, and biogeochemical properties of metals affected the availability of Cd, Cu, Pb, Zn, and Ni in soils. Collectively, organic fertilizers had the potential to reduce metal uptake by crops, but caution should be taken to reduce metal concentrations in manure.
Collapse
Affiliation(s)
- Dong-Xing Guan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Fu-Sheng Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | - Yun-Gen Liu
- Research Center for Soil Contamination & Environment Remediation, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
82
|
Tian K, Xing Z, Liu G, Wang H, Jia M, Hu W, Huang B. Cadmium phytoavailability under greenhouse vegetable production system measured by diffusive gradients in thin films (DGT) and its implications for the soil threshold. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:412-421. [PMID: 29860157 DOI: 10.1016/j.envpol.2018.05.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/11/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
The diffusive gradients in thin films (DGT) technique is recognized to have advantages over traditional techniques. For example, the passive measurement generally follows the principle of metal uptake by plants, and its result incorporates the influences of soil properties, which may make DGT a good protocol for improving soil quality guidelines (SQGs). However, DGT has rarely been applied to assess Cd phytoavailability in soils under greenhouse vegetable production (GVP) systems. In this study, 29 turnips (Raphanussativus L.), 21 eggplants (Solanum melongena L.) and their corresponding soils were collected from GVP systems in Dongtai and Shouguang, eastern China. Simple linear regression and stepwise regression were performed using the soil Cd content and soil properties to predict the vegetable Cd content. Soil thresholds were derived based on both total and available Cd concentrations. The results showed that total Cd, DGT-measured Cd (DGT-Cd), soil-solution Cd (Soln-Cd) and CaCl2-extractable Cd (CaCl2-Cd) were all significantly correlated with vegetable Cd. DGT-Cd had the best correlation with turnip Cd. The total Cd threshold values ranged from 4.87 (pH 6.5) to 5.18 (pH 7.5) mg kg-1 for turnips and 14.60 (pH 6.5) to 14.90 (pH 7.5) mg kg-1 for eggplants. These Cd thresholds were higher than the current SQGs. The predicted of turnip Cd by DGT-Cd was not improved significantly by further considering the soil properties. The calculated soil threshold of DGT-Cd was 5.35 μg L-1 for turnips. However, the predicted soil threshold of DGT-Cd for eggplant was improved by including SOM, with R2 values from 0.53 to 0.70. The DGT-Cd threshold was calculated as 1.81 μg L-1 for eggplant (30.0 g kg-1 SOM). In conclusion, whether DGT measurements are independent of soil properties and preferable for the evaluation of Cd phytoavailability and the generation of soil thresholds remains to be clarified in future research.
Collapse
Affiliation(s)
- Kang Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Soil Resources & Biotech Applications, Northwestern Bio-Agriculture Research Center, Chinese Academy of Sciences, Xi'an, 710043, China
| | - Zhe Xing
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, 710061, China
| | - Guoming Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huifeng Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mengmeng Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Soil Resources & Biotech Applications, Northwestern Bio-Agriculture Research Center, Chinese Academy of Sciences, Xi'an, 710043, China
| |
Collapse
|
83
|
Philipps RR, Xu X, Mills GL, Bringolf RB. Impact of natural organic matter and increased water hardness on DGT prediction of copper bioaccumulation by yellow lampmussel (Lampsilis cariosa) and fathead minnow (Pimephales promelas). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:451-458. [PMID: 29864748 DOI: 10.1016/j.envpol.2018.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/04/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
We conducted an exposure experiment with Diffusive Gradients in Thin- Films (DGT), fathead minnow (Pimephales promelas), and yellow lampmussel (Lampsilis cariosa) to estimate bioavailability and bioaccumulation of Cu. We hypothesized that Cu concentrations measured by DGT can be used to predict Cu accumulation in aquatic animals and alterations of water chemistry can affect DGT's predict ability. Three water chemistries (control soft water, hard water, and addition of natural organic matter (NOM)) and three Cu concentrations (0, 30, and 60 μg/L) were selected, so nine Cu-water chemistry combinations were used. NOM addition treatments resulted in decreased concentrations of DGT-measured Cu and free Cu ion predicted by Biotic Ligand Model (BLM). Both hard water and NOM addition treatments had reduced concentrations of Cu ion and Cu-dissolved organic matter complexes compared to other treatments. DGT-measured Cu concentrations were linearly correlated to fish accumulated Cu, but not to mussel accumulated Cu. Concentrations of bioavailable Cu predicted by BLM, the species complexed with biotic ligands of aquatic organisms and, was highly correlated to DGT-measured Cu. In general, DGT-measured Cu fit Cu accumulations in fish, and this passive sampling technique is acceptable at predicting Cu concentrations in fish in waters with low NOM concentrations.
Collapse
Affiliation(s)
- Rebecca R Philipps
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Gary L Mills
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| |
Collapse
|
84
|
Xu Q, Gao L, Peng W, Gao B, Xu D, Sun K. Assessment of labile Zn in reservoir riparian soils using DGT, DIFS, and sequential extraction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:184-190. [PMID: 29804015 DOI: 10.1016/j.ecoenv.2018.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The middle route of the South-to-North Water Diversion project alleviates drought in northern China, especially reducing water shortage pressure in Beijing. However, after submersion, the potential release risk of metals in newly submerged soils into the water in the receiving reservoir remains unclear. Here, we assess the labile Zn in the riparian soils of Miyun Reservoir (MYR) using the diffusive gradients in thin films (DGT), DGT-induced fluxes in soils (DIFS) model, and Community Bureau of Reference (BCR) sequential extraction. The results showed that the average Zn concentrations at three sampling sites (S2, S3, and S5) exceeded soil background value (74.8 mg/kg), indicative of Zn accumulation in the MYR. The concentrations of DGT-labile Zn varied within 39.7-62.4 μg/L (average: 56.7 μg/L), with the greatest value observed at 145 m at sampling site S3, attributed to anthropogenic activities in recreational areas. The DGT-labile Zn showed no correlation with classes of land, elevations, or soil properties. Sequential extraction results demonstrated that Zn predominantly existed in the residual fraction, but still showed a strong capability for resupply from the solid phase (R >1). The DIFS model simulation results showed that Zn underwent irreversible diffusion of intra-particle metals from the solid phase to the soil solution. Therefore, the potential release risk of labile Zn in riparian soils in MYR cannot be ignored, especially for areas experiencing human disturbance.
Collapse
Affiliation(s)
- Qiuyun Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
85
|
He Y, Guo C, Lv J, Hou S, Zhang Y, Zhang Y, Xu J. Predicting trace metal bioavailability to chironomids in sediments by diffusive gradients in thin films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:134-141. [PMID: 29704710 DOI: 10.1016/j.scitotenv.2018.04.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
The technique of diffusive gradients in thin films (DGT) has been developed as a promising tool to assess metal bioavailability in sediment. However, it has yet to be determined whether the DGT-labile metal in sediment is representative of bioavailable fraction for benthic organisms. In this study, the performance of DGT for predicting metal bioavailability was evaluated by exposing DGT and chironomids Chironomus tentans to a series of metal-contaminated natural sediments in the laboratory. Conventional methods, including acid-volatile sulfides and simultaneously extracted metals method, and total recoverable and dilute-acid extractable metal concentrations were also used to assess the availability of Zn, Cu and Pb to chironomids. The bioassay results showed that >70% of the larvae (73 ± 1.7%-98 ± 0.5%) survived in all sediment samples, however, an enhanced uptake of Zn, Cu and Pb by C. tentans in contaminated sediments was observed compared to control sediments. The correlation analyses indicated that the total recoverable metal concentrations and DGT-metal fluxes in the surficial sediment (-1 cm) were all significantly associated with metal bioaccumulation in C. tentans (p < 0.01). Given the advantages of DGT devices for in situ and time-averaged measurement of the potentially bioavailable fraction, DGT-metal fluxes were proved to be a better surrogate to predict C. tentans response to metal contamination. The results further supported the applicability of the DGT technique as an alternative method to assess the bioavailability of metals in sediment to benthic invertebrates.
Collapse
Affiliation(s)
- Yan He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
86
|
Lomaglio T, Hattab-Hambli N, Miard F, Lebrun M, Nandillon R, Trupiano D, Scippa GS, Gauthier A, Motelica-Heino M, Bourgerie S, Morabito D. Cd, Pb, and Zn mobility and (bio)availability in contaminated soils from a former smelting site amended with biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25744-25756. [PMID: 28730365 DOI: 10.1007/s11356-017-9521-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Biochar is a potential candidate for the remediation of metal(loid)-contaminated soils. However, the mechanisms of contaminant-biochar retention and release depend on the amount of soil contaminants and physicochemical characteristics, as well as the durability of the biochar contaminant complex, which may be related to the pyrolysis process parameters. The objective of the present study was to evaluate, in a former contaminated smelting site, the impact of two doses of wood biochar (2 and 5% w/w) on metal immobilization and/or phytoavailability and their effectiveness in promoting plant growth in mesocosm experiments. Different soil mixtures were investigated. The main physicochemical parameters and the Cd, Pb, and Zn contents were determined in soil and in soil pore water. Additionally, the growth, dry weight, and metal concentrations were analyzed in the different dwarf bean plant (Phaseolus vulgaris L.) organs tested. Results showed that the addition of biochar at two doses (2 and 5%) improved soil conditions by increasing soil pH, electrical conductivity, and water holding capacity. Furthermore, the application of biochar (5%) to metal-contaminated soil reduced Cd, Pb, and Zn mobility and availability, and hence their accumulation in the different P. vulgaris L. organs. In conclusion, the data clearly demonstrated that biochar application can be effectively used for Cd, Pb, and Zn immobilization, thereby reducing their bioavailability and phytotoxicity.
Collapse
Affiliation(s)
- Tonia Lomaglio
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Nour Hattab-Hambli
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
| | - Florie Miard
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
| | - Manhattan Lebrun
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Romain Nandillon
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
- Campus Géosciences ISTO, UMR 7327 and CNRS/University of Orléans, 45071, Orléans CEDEX 2, France
| | - Dalila Trupiano
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Gabriella Stefania Scippa
- Department of Bioscienze and Territorio, Contrada fonte Lappone, University of Molise, 86090, Isernia, Italy
| | - Arnaud Gauthier
- LGCgE, University of Lille 1, 59655, Villeneuve d'Ascq, France
| | - Mikael Motelica-Heino
- Campus Géosciences ISTO, UMR 7327 and CNRS/University of Orléans, 45071, Orléans CEDEX 2, France
| | - Sylvain Bourgerie
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France
| | - Domenico Morabito
- LBLGC-EA 1207, INRA USC1328, Orléans University, rue de Chartres, BP 6759, 45067, Orléans CEDEX 2, France.
| |
Collapse
|
87
|
Kalkhajeh YK, Sørensen H, Huang B, Guan DX, Luo J, Hu W, Holm PE, Hansen HCB. DGT technique to assess P mobilization from greenhouse vegetable soils in China: A novel approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:331-339. [PMID: 29482141 DOI: 10.1016/j.scitotenv.2018.02.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Intensive phosphorus (P) inputs to plastic-covered greenhouse vegetable production (PGVP) in China has led to excessive soil P accumulation increasing the potential for leaching to surface waters. This study examined the mobility and hence the potential risk of P losses through correlations between soil solution P (PSol) and soil extractable P as determined by conventional soil P test methods (STPs) including degree of P saturations (DPSs), and diffusive gradient in thin-films (DGT P) technique. A total of 75 topsoil samples were chosen from five representative Chinese PGVPs covering a wide range of physiochemical soil properties and cultivation history. Total P and Olsen P contents varied from 260 to 4900, and 5 to 740mgkg-1, respectively, while PSol concentrations were between 0.01 and 10.8mgL-1 reflecting the large differences in vegetation history, fertilization schemes, and soil types. Overall, DGT P provided the best correlation with PSol (r2=0.97) demonstrating that DGT P is a versatile measure of P mobility regardless of soil type. Among the DPSs tested, oxalate extractable Al (DPSOx-Al) had the best correlation with PSol (r2=0.87). In the STP versus PSol relationships, STP break-points above which P mobilization increases steeply were 513μgL-1 and 190mgkg-1 for DGT P or Olsen P, respectively, corresponding to PSol concentration of 0.88mgL-1. However, for PSol concentration of 0.1mgL-1 that initiates eutrophication, the corresponding DGT P and Olsen P values were 27μgL-1 and 22mgkg-1, respectively. Over 80% of the investigated soils had DGT P and Olsen P above these values, and thus are at risk of P mobilization threatening receiving waters by eutrophication. This paper demonstrates that the DGT extracted P is a powerful measure for soluble P and hence for assessment of P mobility from a broad range of soil types.
Collapse
Affiliation(s)
- Yusef Kianpoor Kalkhajeh
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC).
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen East, Denmark.
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Center for Education and Research (SDC).
| | - Dong-Xing Guan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC).
| | - Hans Christian Bruun Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC).
| |
Collapse
|
88
|
Zhao X, Jiang Y, Gu X, Gu C, Taylor JA, Evans LJ. Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:590-598. [PMID: 29609170 DOI: 10.1016/j.envpol.2018.03.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Continual efforts have been made to determine a simple and universal method of estimating heavy metal phytoavailability in terrestrial systems. In the present study, a mechanism-based multi-surface model (MSM) was developed to predict the partition of Ni(II) in soil-solution phases and its bioaccumulation in wheat (Triticum aestivum L.) in 19 Chinese soils with a wide range of soil properties. MSM successfully predicted the Ni(II) dissolution in 0.01 M CaCl2 extracting solution (R2 = 0.875). The two-site model for clay fraction improved the prediction, particularly for alkaline soils, because of the additional consideration of edge sites. More crucially, the calculated dissolved Ni(II) was highly correlated with the metal accumulation in wheat (R2 = 0.820 for roots and 0.817 for shoots). The correlation coefficients for the MSM and various chemical extraction methods have the following order: soil pore water > MSM ≈ diffuse gradient technique (DGT) > soil total Ni > 0.43 M HNO3 > 0.01 M CaCl2. The results suggested that the dissolved Ni(II) calculated using MSM can serve as an effective indicator of the bioavailability of Ni(II) in various soils; hence, MSM can be used as an supplement for metal risk prediction and assessment besides chemical extraction techniques.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing, 210023, PR China.
| | - Yang Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing, 210023, PR China.
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing, 210023, PR China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing, 210023, PR China.
| | - J Anita Taylor
- School of Environmental Sciences, University of Guelph Canada, Guelph, Ontario, N1G 2W1, Canada.
| | - Les J Evans
- School of Environmental Sciences, University of Guelph Canada, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
89
|
Philipps RR, Xu X, Mills GL, Bringolf RB. Evaluation of diffusive gradients in thin films for prediction of copper bioaccumulation by yellow lampmussel (Lampsilis cariosa) and fathead minnow (Pimephales promelas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1535-1544. [PMID: 29405356 DOI: 10.1002/etc.4108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 02/02/2018] [Indexed: 06/07/2023]
Abstract
Using a coupled method of diffusive gradients in thin films (DGT) exposure with aquatic organism bioassays, we assessed the use of DGT as a tool for estimating copper (Cu) bioavailability in contaminated waters. The DGT-accumulated Cu fraction could possibly be used as a surrogate for other assessments of metal bioavailability. The Cu concentrations in fathead minnow (Pimephales promelas) and yellow lampmussel (Lampsilis cariosa) soft tissue were compared with DGT-accumulated Cu after 2, 4, and 6 d of exposure to a Cu concentration series in static, water-only assays. The DGT-accumulated Cu was found to include free Cu ions, labile inorganic Cu complexes, and labile dissolved organic matter Cu complexes, compared with Cu speciation output from the biotic ligand model. Regressions of Cu concentrations between DGT and fathead minnow at 4 and 6 d of exposure demonstrated linear relationships. The Cu bioaccumulated in yellow lampmussel was overpredicted by DGT at Cu concentrations greater than 10 µg L-1 , which may be caused by internal regulation of Cu. The speciation component of the biotic ligand model predicted relationships between inorganic Cu and animal-accumulated Cu that were similar to predicted relationships between DGT-indicated Cu and animal-accumulated Cu at all deployment durations. Environ Toxicol Chem 2018;37:1535-1544. © 2018 SETAC.
Collapse
Affiliation(s)
- Rebecca R Philipps
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Gary L Mills
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
90
|
Egene CE, Van Poucke R, Ok YS, Meers E, Tack FMG. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:195-202. [PMID: 29339263 DOI: 10.1016/j.scitotenv.2018.01.054] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
To determine the long-term impact of organic amendments on metal (Cd and Zn) immobilization, soil from the Campine region was amended with holm oak-derived biochar, compost, and peat, and monitored over a 3-year period. Pot experiments were conducted by mixing the amendments independently at 2% and 4% (g/g) with the soil. The mobility and solubility of metals in the treatments were assessed by means of rhizon soil moisture samplers, sequential BCR extractions, and diffusive gradient in thin films (DGT). Over the three-year period, the 2% biochar addition resulted in an average decrease in pore water concentration of 40% for Cd and 48% for Zn whereas the 4% addition led to an average decrease of 66% for Cd and 77% for Zn. The immobilization effect in the biochar treatments was attributed to the consistently higher pH and lower concentrations of dissolved organic carbon (DOC) in the soil. The latter may have been caused by sorption of DOC onto the surface of biochar thereby increasing its negatively charged functional groups that are able to sorb cations. On the other hand, compost and peat had the unwanted effect of significantly increasing the concentrations of Cd and Zn in the soil pore water. This was partly due to the formation of soluble organo-metallic complexes as significantly higher DOC concentrations were found in the compost and peat treatments. Results from the DGT measurements, after a 24 h deployment time, revealed a low resupply (R ≤ 0.4) of Cd and Zn from the solid phase to the soil solution in both amended and unamended soil. This suggests a case of slow metal desorption kinetics in the soil that was relatively unchanged by the presence of organic amendments.
Collapse
Affiliation(s)
- C E Egene
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Analytical and Physical Chemistry, Coupure Links 653, Ghent 9000, Belgium.
| | - R Van Poucke
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Analytical and Physical Chemistry, Coupure Links 653, Ghent 9000, Belgium
| | - Y S Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - E Meers
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Analytical and Physical Chemistry, Coupure Links 653, Ghent 9000, Belgium
| | - F M G Tack
- Ghent University, Faculty of Bioscience Engineering, Department of Applied Analytical and Physical Chemistry, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
91
|
Deng S, Ke T, Li L, Cai S, Zhou Y, Liu Y, Guo L, Chen L, Zhang D. Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1088-1097. [PMID: 29153474 DOI: 10.1016/j.envpol.2017.11.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 05/08/2023]
Abstract
Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH4-N, NO3-N, NO2-N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere.
Collapse
Affiliation(s)
- Songqiang Deng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China
| | - Tan Ke
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Longtai Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China
| | - Shenwen Cai
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563000, PR China
| | - Yuyue Zhou
- College of Life Sciences, Wuhan University, Wuhan 430079, PR China
| | - Yue Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China.
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
92
|
Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G, Huang C, Cheng M, Xue W, Wang X, Hu Z. Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:229-237. [PMID: 29453100 DOI: 10.1016/j.ecoenv.2018.01.060] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/22/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Lead (Pb) is a highly toxic environmental pollutant, and could result in toxic effects on living organisms. The effects of 0, 100, 200, 500, 1000 and 2000 mg/kg of nZVI on plant growth, Pb accumulation and antioxidative responses of Lolium perenne were investigated. Results showed that the total Pb contents in L. perenne with the treatment of low concentrations of nZVI (100, 200 and 500 mg/kg) were higher than those in the non-nZVI treatments, and the highest Pb accumulation capacity of 1175.40 μg per pot was observed in L. perenne with the treatment of 100 mg/kg nZVI. However, the total Pb contents in L. perenne decreased at high concentrations of nZVI (1000 and 2000 mg/kg). This might be resulted from the decrease of photosynthetic chlorophyll content and the aggravated oxidative stress induced by the high concentration of nZVI, which caused the decrease of plant biomass and metal accumulation capacity in plant. Moreover, the sequential extraction experiments results showed that the lowest acid soluble fraction of Pb in the sediments was found in the treatment with 100 mg/kg of nZVI, indicating that 100 mg/kg was the optimum concentration for nZVI to assist the phytoremediation of Pb-polluted sediment. To conclude, these findings provide a promising method to remediate Pb-polluted sediment by nZVI assisted phytoremediation.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Xiang Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zhiwei Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Chao Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Xi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zhengxun Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
93
|
Wu Z, Wang S, Luo J. Transfer kinetics of phosphorus (P) in macrophyte rhizosphere and phytoremoval performance for lake sediments using DGT technique. JOURNAL OF HAZARDOUS MATERIALS 2018; 350:189-200. [PMID: 29501960 DOI: 10.1016/j.jhazmat.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 01/13/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
DGT (diffusive gradients in thin films) technique and DIFS (DGT induced fluxes in sediment) model are firstly designed for macrophyte-rhizobox system and in-situ macrophytes in Lake Erhai. Dynamics of phosphorus (P) transfer in Zizania latifolia (ZL) and Myriophyllum verticiilatur (MV) rhizosphere is revealed and phytoremediation performance for P in sediment is evaluated. Dynamic transfer process of P at DGT/sediment interface includes (i) diffusion flux and concentration gradients at DGT(root)/porewater interface leading to porewater concentration (C0) depletion and (ii) P desorption from labile P pool in sediment solid to resupply C0 depletion. Fe-redox controlled P release from Fe-bound P (BD-P2) and then NH4Cl-P1 in rhizosphere sediment resupplies porewater depletion due to DGT (root) sink. Kd (labile P pool size in solid phase), r (resupply ratio) and kinetic exchange (Tc and k-1) lead to change characters of DIFS curves of (1) r against deployment time and (2) Csolu (dissolved concentration) against distance at 24 h. They include two opposite types of "fast" and "slow" rate of resupplies. Sediment properties and DIFS parameters control P diffusion and resupply in rhizosphere sediment. Phytoremoval ability for sediment P in lake is estimated to be 23.4 (ZL) or 15.0 t a-1 (MV) by "DGT-flux" method.
Collapse
Affiliation(s)
- Zhihao Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; National Engineering Laboratory for Lake Water Pollution Control and Ecological Restoration Technology, Research Center of Lake Eco-Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China
| | - Shengrui Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; National Engineering Laboratory for Lake Water Pollution Control and Ecological Restoration Technology, Research Center of Lake Eco-Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China.
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
94
|
Wang J, Zeng X, Zhang H, Li Y, Zhao S, Bai L, Su S, Wang Y. Kinetic release of arsenic after exogenous inputs into two different types of soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12876-12882. [PMID: 29478161 DOI: 10.1007/s11356-018-1550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The mobility of arsenic (As) in soil depends on its sorption/desorption processes on soil particles. Plant uptake locally lowers As concentration in soil pore water, which would trigger resupplies of As from soil solid phase. To better understand the fate of As in soil system after its inputs into soil and its subsequent dynamic processes, diffusive gradients in thin films (DGT) technique along with DGT-induced fluxes in soils (DIFS) model were introduced to study the kinetic information of As in soils, including its response time (TC) and resupply rate constant (k-1). To achieve a series of soils with gradient As level, two different types of soils with similar As level (total As in soil JL is 7.4 mg kg-1, while in soil BJ is 6.5 mg kg-1) were collected and amended with exogenous As. Then, DGT deployments were carried out following a period of 90-day soil incubation. The simulated TC values in non-amended soil JL and soil BJ were 0.036 and 0.001 s-1, respectively. The difference may due to the properties of these two soils, including pH values and contents of adsorption materials, such as Fe and Al compounds. After As inputs into soils, the intrinsic rate of As release from the solid phase to the solution phase in As-amended JL soil was much higher than that in non-amended soil. While for soil BJ, a decreasing trend was observed after As spiking. The redistribution of As may responsible for the different variation trends of As kinetics in these two soils after As spiking. The results indicated that the distribution coefficient of As (Kd) in soil was mainly affected by soil Olsen-P content due to an ubiquitous competition between P and As on soil particles.
Collapse
Affiliation(s)
- Jinjin Wang
- Institute of Environment and Sustainable Development in Agriculture/Key Laboratory of Agro-Environment, Chinese Academy of Agriculture Sciences/Ministry of Agriculture, Beijing, 100081, China
- The College of Natural Resources and Environment of South China Agricultural University/Key Laboratory of Arable Land Conservation, Ministry of Agriculture, Guangzhou, 510642, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture/Key Laboratory of Agro-Environment, Chinese Academy of Agriculture Sciences/Ministry of Agriculture, Beijing, 100081, China.
| | - Hao Zhang
- Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Yongtao Li
- The College of Natural Resources and Environment of South China Agricultural University/Key Laboratory of Arable Land Conservation, Ministry of Agriculture, Guangzhou, 510642, China
| | - Shizhen Zhao
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Lingyu Bai
- Institute of Environment and Sustainable Development in Agriculture/Key Laboratory of Agro-Environment, Chinese Academy of Agriculture Sciences/Ministry of Agriculture, Beijing, 100081, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture/Key Laboratory of Agro-Environment, Chinese Academy of Agriculture Sciences/Ministry of Agriculture, Beijing, 100081, China
| | - Yanan Wang
- Institute of Environment and Sustainable Development in Agriculture/Key Laboratory of Agro-Environment, Chinese Academy of Agriculture Sciences/Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
95
|
Zhao YP, Cui JL, Chan TS, Dong JC, Chen DL, Li XD. Role of chelant on Cu distribution and speciation in Lolium multiflorum by synchrotron techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:772-781. [PMID: 29202288 DOI: 10.1016/j.scitotenv.2017.11.189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Chelants are known to enhance metal translocation in plants; however, the underlying mechanisms are still not fully understood. This study aimed to elucidate the distribution and speciation of Cu in ryegrass (Lolium multiflorum) in both absence and presence of the biodegradable chelant [S,S']-ethylenediamine disuccinic acid (EDDS). The results showed that EDDS increased the Cu translocation factor from root to shoot by 6-9 folds under CuEDDS in comparison with free Cu (50-250μM). Synchrotron-based microscopic X-ray fluorescence (μ-XRF) mapping revealed that EDDS alleviated Cu deposition in the root meristem of root apex and the junction of lateral root zone, and facilitated Cu transport to root stele for subsequent translocation upwards. X-ray absorption near edge structure (XANES) analysis found that free Cu was sequestered in plants as a mixture of Cu-organic ligands. In the EDDS treatment, Cu was primarily present as CuEDDS (49-67%) in plants with partial chemical transformation to Cu-histidine (21-36%) and Cu(I)-glutathione (0-24%). These results suggest that EDDS improves internal Cu mobility through forming CuEDDS, thus decreasing the root sequestration of Cu, and ultimately facilitating Cu transport to plant shoots.
Collapse
Affiliation(s)
- Yan-Ping Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Jun-Cai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Liang Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
96
|
Wang J, Zeng X, Zhang H, Li Y, Zhao S, Su S, Bai L, Wang Y, Zhang T. Effect of exogenous phosphate on the lability and phytoavailability of arsenic in soils. CHEMOSPHERE 2018; 196:540-547. [PMID: 29329086 DOI: 10.1016/j.chemosphere.2017.12.191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
The effect of exogenous phosphate (P, 200 mg⋅kg-1 soil) on the lability and phytoavailability of arsenic (As) was studied using the diffusive gradients in thin films (DGT) technique. Lettuce were grown on the As-amended soils following the stabilization of soil labile As after 90 days incubation. Phosphate (P) application generally facilitated plant growth except one grown on P-sufficient soil. Soil labile As concentration increased in all the soils after P application due to a competition effect. Plant As concentration increased in red soils collected from Hunan Province, while decreases were observed in the other soils. Even though, an overall trend of decrease was obtained in As phytoavailability along with the increase of DGT-measured soil labile P/As molar ratio. The functional equation between P/As and As phytoavailability provided a critical value of 1.7, which could be used as a guidance for rational P fertilization, thus avoiding overfertilization.
Collapse
Affiliation(s)
- Jinjin Wang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China; The College of Natural Resources and Environment of South China Agricultural University/Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, Guangzhou, 510642, China
| | - Xibai Zeng
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China.
| | - Hao Zhang
- Lancaster Environment Center, Lancaster University, LA1 4YQ, UK.
| | - Yongtao Li
- The College of Natural Resources and Environment of South China Agricultural University/Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, Guangzhou, 510642, China
| | - Shizhen Zhao
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510642, China
| | - Shiming Su
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Lingyu Bai
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Yanan Wang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Tuo Zhang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
97
|
Song Z, Shan B, Tang W. Evaluating the diffusive gradients in thin films technique for the prediction of metal bioaccumulation in plants grown in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:360-368. [PMID: 29080489 DOI: 10.1016/j.jhazmat.2017.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The diffusive gradients in thin films (DGT) technique is a useful tool for assessing metal bioavailability in sediments. However, the DGT technique has not been used to predict metal bioaccumulation in plants grown in sediments in river systems. In this study, the DGT technique was evaluated for predicting metal bioaccumulation in Phragmites australis growing in contaminated sediments. In sediments with high levels of contamination, release of DGT-labile Cr, Zn, Cu, and Cd occurred, which resulted in high bioaccumulation of these metals in P. australis. Bioaccumulation of Cr, Cu, Zn, and Cd was strongly correlated with the metal concentrations in the sediments measured by the DGT technique. By contrast, the correlation between sediment content and bioaccumulation for As was weak. There were significant negative correlations between the content of Ni in the plant tissues and the contents of the other metals. Overall, the DGT technique provided predictions of metal bioaccumulation similar to those obtained using total metal measurements in multiple polluted sediment samples. Therefore, DGT analysis could be used for assessing heavy metal bioavailability, and metal bioaccumulation in P. australis was not all significantly correlated with the bioavailability concentrations of metals in river sediments.
Collapse
Affiliation(s)
- Zhixin Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
98
|
Wang S, Wu Z, Luo J. Transfer Mechanism, Uptake Kinetic Process, and Bioavailability of P, Cu, Cd, Pb, and Zn in Macrophyte Rhizosphere Using Diffusive Gradients in Thin Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1096-1108. [PMID: 29240996 DOI: 10.1021/acs.est.7b01578] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The transfer-uptake-bioavailability of phosphorus (P), Cu, Cd, Zn, and Pb in rhizosphere of Zizania latifolia (ZL) and Myriophyllum verticiilaturn (MV) cultivated in rhizoboxes in Lake Erhai (China) is evaluated by DGT (diffusive gradients in thin films) technique. DGT induced fluxes in sediments (DIFS) model reveals that resupply ability (r), liable pool size in sediment solid (kd), kinetic parameter (k-1), or response time (Tc) control the diffusion-resupply characters of P and Cu (standing for four metals) in rhizosphere interface. The linear fitting curves of element content in ZL or MV roots (Croot) against DGT (CDGT), porewater (C0), or sediment concentration demonstrate that Croot for five elements can be predicted by CDGT more effectively than the other methods. (I) DOC (dissolved organic carbon) in porewater controlled by OM (organic matter) in solid plus pH for Cu and Cd or (II) DOP/DTP ratio in porewater (between dissolved organic P and dissolved total P) for P controlled by Fe-bound P and OM in solid, can affect phytoavailability in rhizosphere. They lead to (I) the larger slope (s) and the linear regression coefficient (R2) in the first part than those for the complete fitting curve (ZL or MV root against CDGT(Cu) or C0(Cu) and MV root against CDGT(Cd)) or (II) the outliers above or below the fitting curve (ZL root (P) against C0(P) or CDGT(P)) and the larger R2 without outliers. DGT-rhizobox-DIFS should be a reliable tool to research phytoremediation mechanism of macrophytes.
Collapse
Affiliation(s)
- Shengrui Wang
- College of Water Sciences, Beijing Normal University , Beijing 100875, China
- National Engineering Laboratory for Lake Water Pollution Control and Ecological Restoration Technology, Research Center of Lake Eco-environment, Chinese Research Academy of Environmental Sciences , Beijing, 100012 China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing, 100012 China
| | - Zhihao Wu
- National Engineering Laboratory for Lake Water Pollution Control and Ecological Restoration Technology, Research Center of Lake Eco-environment, Chinese Research Academy of Environmental Sciences , Beijing, 100012 China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing, 100012 China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
99
|
Dufka M, Dočekal B. Characterization of Urban Particulate Matter by Diffusive Gradients in Thin Film Technique. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:9698710. [PMID: 29629215 PMCID: PMC5832093 DOI: 10.1155/2018/9698710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/08/2017] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
A diffusive gradient in thin films (DGT) technique was employed in characterization of the particulate matter related to the urban area suffering from heavy traffic. Kinetics of mobilization metals fluxes from the metal-contaminated particulate matter was investigated. To monitor responses of the particulate matter sample, DGT probes of various thickness of diffusion layer were deployed in aqueous model suspensions of the particulate matter for different time periods. Particulate matter samples and exposed DGT resin gels were decomposed in a mixture of nitric and hydrochloric acid in a microwave pressurized PTFE-lined system. Total content of some traffic-related elements (Cd, Co, Cu, Mo, Ni, Pb, Pd, Pt, Rh, Sb, and V) was determined by inductively coupled plasma mass spectrometry. DGT measurements revealed that two metals pools associated with particles could be recognized, which can be characterized as high soluble fraction and almost insoluble fraction. DGT-measured metal fluxes from the labile pool showed significant difference in mobilization and resupply fluxes of individual selected elements, which might reflect the origin of selected metals and their speciation in particulate matter. The DGT technique can be applied as a useful tool for characterization of metals mobilization from the particulate matter.
Collapse
Affiliation(s)
- Michaela Dufka
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i., Veveří 97, 602 00 Brno, Czech Republic
| | - Bohumil Dočekal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i., Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
100
|
Cole RF, Mills GA, Hale MS, Parker R, Bolam T, Teasdale PR, Bennett WW, Fones GR. Development and evaluation of a new diffusive gradients in thin-films technique for measuring organotin compounds in coastal sediment pore water. Talanta 2018; 178:670-678. [DOI: 10.1016/j.talanta.2017.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 11/28/2022]
|