51
|
Minaei S, Benis KZ, McPhedran KN, Soltan J. Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
52
|
Hložek T, Bosáková T, Bosáková Z, Tůma P. Hydrophobic eutectic solvents for endocrine disruptors purification from water: Natural and synthetic estrogens study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
53
|
Sivaprakash B, Rajamohan N, Singaramohan D, Ramkumar V, Elakiya BT. Techniques for remediation of pharmaceutical pollutants using metal organic framework - Review on toxicology, applications, and mechanism. CHEMOSPHERE 2022; 308:136417. [PMID: 36108760 DOI: 10.1016/j.chemosphere.2022.136417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Treatment of recalcitrant and xenobiotic pharmaceutical compounds in polluted waters have gained significant attention of the environmental scientists. Antibiotics are diffused into the environment widely owing to their high usages, very particularly in the last two years due to over consumption during covid 19 pandemic worldwide. Quinolones are very effective antibiotics, but do not get completely metabolized due to which they pose severe health hazards if discharged without proper treatment. The commonly reported treatment methods for quinolones are adsorption and advanced oxidation methods. In both the treatment methods, metal organic frameworks (MOF) have been proved to be promising materials used as stand-alone or combined technique. Many composite MOF materials synthesized from renewable, natural, and harmless materials by eco-friendly techniques have been reported to be effective in the treatment of quinolones. In the present article, special focus is given on the abatement of norfloxacin and ofloxacin contaminated wastewater using MOFs by adsorption, oxidation/ozonation, photocatalytic degradation, electro-fenton methods, etc. However, integration of adsorption with any advanced oxidation methods was found to be best remediation technique. Of various MOFs reported by several researchers, the MIL-101(Cr)-SO3H composite was able to give 99% removal of norfloxacin by adsorption. The MIL - 88A(Fe) composite and Fe LDH carbon felt cathode were reported to yield 100% degradation of ofloxacin by photo-Fenton and electro-fenton methods respectively. The synthesis methods and mechanism of action of MOFs towards the treatment of norfloxacin and ofloxacin as reported by several investigation reports are also presented.
Collapse
Affiliation(s)
- Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, 311, Oman.
| | | | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - B Tamil Elakiya
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| |
Collapse
|
54
|
Wu X, Zhang J, Hu S, Zhang G, Lan H, Peng J, Liu H. Evaluation of degradation performance toward antiviral drug ribavirin using advanced oxidation process and its relations to ecotoxicity evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157851. [PMID: 35934038 PMCID: PMC9351291 DOI: 10.1016/j.scitotenv.2022.157851] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 04/14/2023]
Abstract
The rapid spread of coronavirus disease 2019 has increased the consumption of some antiviral drugs, wherein these are discharged into wastewater, posing risks to the ecosystem and human health. Therefore, efforts are being made for the development of advanced oxidation processes (AOPs) to remediate water containing these pharmaceuticals. Here, the toxicity evolution of the antiviral drug ribavirin (RBV) was systematically investigated during its degradation via the UV/TiO2/H2O2 advanced oxidation process. Under optimal conditions, RBV was almost completely eliminated within 20 min, although the mineralization rate was inadequate. Zebrafish embryo testing revealed that the ecotoxicity of the treated RBV solutions increased at some stages and decreased as the reaction time increased, which may be attributed to the formation and decomposition of various transformation products (TPs). Liquid chromatography-mass spectrometry analysis along with density functional theory calculations helped identify possible toxicity increase-causing TPs, and quantitative structure activity relationship prediction revealed that most TPs exhibit higher toxicity than the parent compound. The findings of this study suggest that, in addition to the removal rate of organics, the potential ecotoxicity of treated effluents should also be considered when AOPs are applied in wastewater treatment.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
55
|
Sheng D, Ying X, Li R, Cheng S, Zhang C, Dong W, Pan X. Polydopamine-mediated modification of ZIF-8 onto magnetic nanoparticles for enhanced tetracycline adsorption from wastewater. CHEMOSPHERE 2022; 308:136249. [PMID: 36064011 DOI: 10.1016/j.chemosphere.2022.136249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Magnetic nanoparticle materials which could be used to remove tetracycline were confined seriously due to their poor stability and unsatisfactory reusability. Here, we facilely prepared novel zeolitic imidazolate framework-8 (ZIF-8) functionalized magnetic nanoparticles (Fe3O4@PDA-ZIF-8) adsorbent utilizing polydopamine as a bond to establish a connection between zeolitic imidazolate framework-8 and Fe3O4, which could improve the stability of magnetic nanoparticles and enhance the tetracycline adsorption capacity simultaneously. The prepared nanocomposites were characterized and their TC adsorption abilities under various experiment conditions (contact time, TC initial concentration and pH values) were also investigated. Experimental results proved that the prepared adsorbent showed superior TC adsorption capacities (92.01 mg/g at pH = 7). Further, the adsorption mechanisms were comprehensively studied and the prepared adsorbent showed satisfactory stability and reusability during the cycle experiment. Altogether, our findings provided a feasible way to design and construct functional magnetic MOF materials for enhancing tetracycline adsorption from wastewater.
Collapse
Affiliation(s)
- Daohu Sheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xintong Ying
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Rui Li
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
56
|
Hu J, Liu F, Shan Y, Huang Z, Gao J, Jiao W. Enhanced Adsorption of Sulfonamides by Attapulgite-Doped Biochar Prepared with Calcination. Molecules 2022; 27:8076. [PMID: 36432176 PMCID: PMC9698770 DOI: 10.3390/molecules27228076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The extensive use of sulfonamides seriously threatens the safety and stability of the ecological environment. Developing green inexpensive and effective adsorbents is critically needed for the elimination of sulfonamides from wastewater. The non-modified biochar exhibited limited adsorption capacity for sulfonamides. In this study, the attapulgite-doped biochar adsorbent (ATP/BC) was produced from attapulgite and rice straw by calcination. Compared with non-modified biochar, the specific surface area of ATP/BC increased by 73.53−131.26%, and the average pore width of ATP/BC decreased 1.77−3.60 nm. The removal rates of sulfadiazine and sulfamethazine by ATP/BC were 98.63% and 98.24%, respectively, at the mass ratio of ATP to rice straw = 1:10, time = 4 h, dosage = 2 g∙L−1, pH = 5, initial concentration = 1 mg∙L−1, and temperature = 20 °C. A pseudo-second-order kinetic model (R2 = 0.99) and the Freundlich isothermal model (R2 = 0.99) well described the process of sulfonamide adsorption on ATP/BC. Thermodynamic calculations showed that the adsorption behavior of sulfonamides on the ATP/BC was an endothermic (ΔH > 0), random (ΔS > 0), spontaneous reaction (ΔG < 0) that was dominated by chemisorption (−20 kJ∙mol−1 > ΔG). The potential adsorption mechanisms include electrostatic interaction, hydrogen bonding, π−π interaction, and Lewis acid−base interactions. This study provides an optional material to treat sulfonamides in wastewater and groundwater.
Collapse
Affiliation(s)
- Jianqiao Hu
- College of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450066, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
| | - Feng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
| | - Zhenzhen Huang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450066, China
| | - Jingqing Gao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450066, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
| |
Collapse
|
57
|
Li WB, Cheng YZ, Yang DH, Liu YW, Han BH. Fluorine-Containing Covalent Organic Frameworks: Synthesis and Application. Macromol Rapid Commun 2022:e2200778. [PMID: 36404104 DOI: 10.1002/marc.202200778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymers that possess ordered structures and eternal pores. Because of their unique structural characteristics and diverse functional groups, COFs have been used in various application fields, such as adsorption, catalysis, separation, ion conduction, and energy storage. Among COFs, the fluorine-containing COFs (fCOFs) have been developed for special applications by virtue of special physical and chemical properties resulting from fluorine element, which is a nonmetallic halogen element and possesses strong electronegativity. In the organic chemistry field, introducing fluorine into chemicals enables those chemicals to exhibit many interesting properties, and fluorine chemistry increasingly plays an important role in the history of chemical development. The introduction of fluorine in COFs can enhance the crystallinity, porosity, and stability of COFs, making COFs having superior performances and some new applications. In this review, the synthesis and application of fCOFs are systematically summarized. The application involves photocatalytic production of hydrogen peroxide, photocatalytic water splitting, electrocatalytic CO2 reduction, adsorption for different substances (H2 , pesticides, per-/polyfluoroalkyl substances, polybrominated diphenyl ethers, bisphenols, and positively charged organic dye molecules), oil-water separation, energy storage (e.g., zinc-ion batteries, lithium-sulfur batteries), and proton conduction. Perspectives of remaining challenges and possible directions for fCOFs are also discussed.
Collapse
Affiliation(s)
- Wen-Bo Li
- Key Laboratory of Applied Chemistry of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan-Zhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yu-Wen Liu
- Key Laboratory of Applied Chemistry of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
58
|
Jillani SMS, Baig U, Waheed A, Ansari MA. NH 2-CuO-MCM-41 covalently cross-linked multipurpose membrane for applications in water treatment: Removal of hazardous pollutants from water, water desalination and anti-biofouling performance. CHEMOSPHERE 2022; 307:135592. [PMID: 35803377 DOI: 10.1016/j.chemosphere.2022.135592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The current study was planned to fabricate a new set of membranes to target multiple application areas such as desalting, removal of micropollutants and antibiofouling performance. In-situ incorporated copper oxide to MCM-41 (CuO-MCM-41) was synthesized and amine (-NH2) functionalized by reacting with N1-(3-trimethoxy silylpropyl) diethylenetriamine (NTSDETA) yielding NH2-CuO-MCM-41. Different concentrations of NH2-CuO-MCM-41 were covalently cross-linked in polyamide active layer during interfacial polymerization (IP) between N, N'-bis(3-aminopropyl)ethylenediamine and terephthaloyl chloride (TPC) on polysulfone/poly ester terephthalate (PS/PET) support. The membranes were extensively characterized by Water Contact Angle (WCA), Scanning Electron Microscopy (SEM), Fourier Transform Infra-red (FTIR) spectroscopy, Energy Dispersive X-ray (EDX) analysis, Elemental mapping and Powder X-ray Diffraction (PXRD). From among the different versions of X-CuO-MCM-41/PA@PS/PET membranes, the 0.05%-CuO-MCM-41/PA@PS/PET membrane showed best performance in terms of rejecting a variety of salts, micropollutants and antibiofouling. The 0.05%-CuO-MCM-41/PA@PS/PET showed >98% rejection of MgCl2 and 78% rejection of caffeine with a permeate flux of 16 LMH at 25 bar. The 0.1-NH2-CuO-MCM-41inhibited S. aureus growth by 51.7%. Hence, the current strategy of membrane fabrication proved to be highly efficient for multipurpose applications in water treatment.
Collapse
Affiliation(s)
- Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohammad Azam Ansari
- Epidemic Disease Research Department, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
59
|
Pandya K, T S AS, Kodgire P, Simon S. Combined ultrasound cavitation and persulfate for the treatment of pharmaceutical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2157-2174. [PMID: 36378172 DOI: 10.2166/wst.2022.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years industrialization has caused magnificent leaps in the high profitable growth of pharmaceutical industries, and simultaneously given rise to environmental pollution. Pharmaceutical processes like extraction, purification, formulation, etc., generate a large volume of wastewater that contains high chemical oxygen demand (COD), biological oxygen demand, auxiliary chemicals, and different pharmaceutical substances or their metabolites in their active or inactive form. Its metabolites impart non-biodegradable toxic pollutants as a byproduct and intense color, which increases ecotoxicity into the water, thus this requires proper treatment before being discharged. This study focuses on the feasibility analysis of the utilization of ultrasound cavitation (20 kHz frequency) together with a persulfate oxidation approach for the treatment of complex pharmaceutical effluent. Process parameters like pH, amplitude intensity, oxidant dosage were optimized for COD removal applying response surface methodology-based Box-Behnken design. The optimum value observed for pH, amplitude intensity and oxidant dosage are 5, 20% and 100 mg/L respectively with 39.5% removal of COD in 60 min of fixed processing time. This study confirms that a combination of ultrasound cavitation and persulfate is a viable option for the treatment of pharmaceutical wastewater and can be used as an intensification technology in existing effluent treatment plants to achieve the highest amount of COD removal.
Collapse
Affiliation(s)
- Karan Pandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India E-mail:
| | - Anantha Singh T S
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India E-mail: ; Department of Civil Engineering, National Institute of Technology Calicut, Calicut, India
| | - Pravin Kodgire
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Saji Simon
- Department of Civil Engineering, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
60
|
Lee J, Yang H, Park G, Bae TH. Highly stable epoxy-crosslinked polybenzimidazole membranes for organic solvent nanofiltration under strongly basic conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Shi Z, Rao L, Wang P, Zhang L. The photocatalytic activity and purification performance of g-C 3N 4/carbon nanotubes composite photocatalyst in underwater environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83981-83992. [PMID: 35776310 DOI: 10.1007/s11356-022-21535-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Graphite carbon nitride (g-C3N4) is a promising photocatalyst for its high catalytic activity, low-cost and high-biosafety characteristics. Due to the complexity of underwater photochemical reaction conditions and the disadvantages of g-C3N4 itself such as low specific surface area, easy recombination of photogenerated electron-hole pairs and insufficient light absorption capacity, the application of g-C3N4 in the field of water purification is limited. For improving underwater photocatalytic performance of g-C3N4, a g-C3N4/carbon nanotubes (CNT-CN) composite photocatalyst with high specific surface area and enhanced light absorption capacity were prepared by in situ solvothermal method. Its photodegradation efficiency at different underwater transmission light was further studied. The results show that CNT has good compatibility with g-C3N4. g-C3N4 can grow in situ on the surface of CNT and form a stable composite structure. Moreover, its degradation efficiency under long-wavelength irradiation is improved significantly. The degradation rate of CNT-CN at 550-700 nm was about 3 times than that of g-C3N4. Furthermore, CNT-CN can maintain higher photocatalytic activity under water. At 40 cm depth where light intensity and ultraviolet spectra were attenuated 63.8% and 80.1%, respectively, the degradation rate of CNT-CN3 can still reach 3.49 times than that of g-C3N4. Based on this study, the introduction of CNT effectively promotes the electron-hole separation efficiency of g-C3N4, widens its spectral response range, and thus improves its underwater degradation efficiency.
Collapse
Affiliation(s)
- Zhenyu Shi
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lei Rao
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lixin Zhang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
62
|
Assessment and Removal of Heavy Metals and Other Ions from the Industrial Wastewater of Faisalabad, Pakistan. Processes (Basel) 2022. [DOI: 10.3390/pr10112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The contamination of surface and groundwater is of major concern around the globe due to the fast industrialization and urbanization. The groundwater and water quality of rivers, Ravi and Chenab in Faisalabad, Pakistan are contaminated due to the industrial wastewater. The aim of this study was the assessment of the physiochemical contaminants of Faisalabad’s industrial wastewater area and the adsorptive removal of ions present in high concentrations following the National Environmental Quality Standards (NEQS) for the municipal and industrial liquid effluents of Pakistan. One of the two samples was collected from a drain carrying wastewater from different industries and other from the outlet of a drain discharging wastewater into river Chenab. The analysis results obtained indicate that most of the contaminants were below the acceptable limit of industrial wastewater NEQS, Pakistan. However, contaminants like sulfate ions (714 mg/L), total dissolved solids (33,951–34,620 mg/L) and barium ions (11–15 mg/L) were found to be higher than the allowable level of NEQS for the municipal and industrial liquid effluents for Pakistan. A novel biosorbent synthesized indigenously from Monotheca buxifolia seeds was used for the removal of sulfate, barium and TDS from the wastewater effluent samples. This biosorbent successfully reduced the sulfate ion concentration in the wastewater sample from 714 to 420 mg/L at pH 6 in 1 h. Similarly, the concentration of TDS reduced to 33,951 from 6295 mg/L at pH 4, whereas barium ions were removed from 15 to 1 mg/L at pH 10 in 1 h. Treatment of wastewater through the synthesized biosorbent efficiently removed the high concentration ions and could potentially be applied to reduce the toxic effects of these contaminants on local public health.
Collapse
|
63
|
Fortunato A, Mba M. A Peptide-Based Hydrogel for Adsorption of Dyes and Pharmaceuticals in Water Remediation. Gels 2022; 8:672. [PMID: 36286173 PMCID: PMC9601570 DOI: 10.3390/gels8100672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 08/26/2023] Open
Abstract
The removal of dyes and pharmaceuticals from water has become a major issue in recent years due to the shortage of freshwater resources. The adsorption of these pollutants through nontoxic, easy-to-make, and environmentally friendly adsorbents has become a popular topic. In this work, a tetrapeptide-pyrene conjugate was rationally designed to form hydrogels under controlled acidic conditions. The hydrogels were thoroughly characterized, and their performance in the adsorption of various dyes and pharmaceuticals from water was investigated. The supramolecular hydrogel efficiently adsorbed methylene blue (MB) and diclofenac (DCF) from water. The effect of concentration in the adsorption efficiency was studied, and results indicated that while the adsorption of MB is governed by the availability of adsorption sites, in the case of DCF, concentration is the driving force of the process. In the case of MB, the nature of the dye-hydrogel interactions and the mechanism of the adsorption process were investigated through UV-Vis absorption spectroscopy. The studies proved how this dye is first adsorbed as a monomer, probably through electrostatic interactions; successively, at increasing concentrations as the electrostatic adsorption sites are depleted, dimerization on the hydrogel surface occurs.
Collapse
Affiliation(s)
| | - Miriam Mba
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
64
|
Almufarij RS, Abdulkhair BY, Salih M, Alhamdan NM. Sweep-Out of Tigecycline, Chlortetracycline, Oxytetracycline, and Doxycycline from Water by Carbon Nanoparticles Derived from Tissue Waste. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203617. [PMID: 36296807 PMCID: PMC9610714 DOI: 10.3390/nano12203617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/27/2023]
Abstract
Pharmaceutical pollution has pervaded many water resources all over the globe. The propagation of this health threat drew the researchers' concern in seeking an efficient solution. This study introduced toilet paper waste as a precursor for carbon nanoparticles (CRNPs). The TEM results showed a particle size range of 30.2 nm to 48.1 nm, the BET surface area was 283 m2 g-1, and the XRD pattern indicated cubical-graphite crystals. The synthesized CRNPs were tested for removing tigecycline (TGCN), chlortetracycline (CTCN), oxytetracycline (OTCN), and doxycycline (DXCN) via the batch process. The adsorption equilibrium time for TGCN, DXCN, CTCN, and OTCN was 60 min, and the concentration influence revealed an adsorption capacity of 172.5, 200.1, 202.4, and 200.0 mg g-1, respectively. The sorption of the four drugs followed the PSFO, and the LFDM models indicated their high sorption affinity to the CRNPs. The adsorption of the four drugs fitted the multilayer FIM that supported the high-affinity claim. The removals of the four drugs were exothermic and spontaneous physisorption. The fabricated CRNPs possessed an excellent remediation efficiency for contaminated SW and GW; therefore, CRNPs are suggested for water remediation as low-cost sorbent.
Collapse
Affiliation(s)
- Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y. Abdulkhair
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mutaz Salih
- Department of Chemistry, College of Science and Humanities-Hurrymilla, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Nujud M. Alhamdan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
65
|
Zheng W, Chen Y, Fu H, Yan Z, Lei Z, Duan W, Feng C. Reactive species conversion into 1O 2 promotes substantial inhibition of chlorinated byproduct formation during electrooxidation of phenols in Cl --laden wastewater. WATER RESEARCH 2022; 225:119143. [PMID: 36182674 DOI: 10.1016/j.watres.2022.119143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The generation of chlorinated byproducts during the electrochemical oxidation (EO) of Cl--laden wastewater is a significant concern. We aim to propose a concept of converting reactive species (e.g., reactive chlorines and HO• resulting from electrolysis) into 1O2 via the addition of H2O2, which substantially alleviates chlorinated organic formation. When phenol was used as a model organic compound, the results showed that the H2O2-involving EO system outperformed the H2O2-absent system in terms of higher rate constants (5.95 × 10-2 min-1vs. 2.97 × 10-2 min-1) and a much lower accumulation of total organic chlorinated products (1.42 mg L-1vs. 8.18 mg L-1) during a 60 min operation. The rate constants of disappearance of a variety of phenolic compounds were positively correlated with the Hammett constants (σ), suggesting that the reactive species preferred oxidizing phenols with electron-rich groups. After the identification of 1O2 that was abundant in the bulk solution with the use of electron paramagnetic resonance and computational kinetic simulation, the routes of 1O2 generation were revealed. Despite the consensus as to the contribution of reaction between H2O2 and ClO- to 1O2 formation, we conclude that the predominant pathway is through H2O2 reaction with electrogenerated HO• or chlorine radicals (Cl• and Cl2•-) to produce O2•-, followed by self-combination. Density functional theory calculations theoretically showed the difficulty in forming chlorinated byproducts for the 1O2-initiated phenol oxidation in the presence of Cl-, which, by contrast, easily occurred for the Cl•-or HO•-initiated phenol reaction. The experiments run with real coking wastewater containing high-concentration phenols further demonstrated the superiority of the H2O2-involving EO system. The findings imply that this unique method for treating Cl--laden organic wastewater is expected to be widely adopted for generalizing EO technology for environmental applications.
Collapse
Affiliation(s)
- Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P R China
| | - Yingkai Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P R China
| | - Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P R China
| | - Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P R China
| | - Zhenchao Lei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P R China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P R China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P R China.
| |
Collapse
|
66
|
A facile crosslinking method for polybenzimidazole membranes toward enhanced organic solvent nanofiltration performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Zhang H, Jiao Y, Zhao Q, Li C, Cui P, Wang Y, Zheng S, Li X, Zhu Z, Gao J. Sustainable separation of ternary azeotropic mixtures based on enhanced extractive distillation/pervaporation structure and multi-objective optimization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
68
|
Antonopoulou M. Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review. TOXICS 2022; 10:toxics10090539. [PMID: 36136504 PMCID: PMC9503482 DOI: 10.3390/toxics10090539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 05/14/2023]
Abstract
Pharmaceuticals are biologically active compounds used for therapeutical purposes in humans and animals. Pharmaceuticals enter water bodies in various ways and are detected at concentrations of ng L-1-μg L-1. Their presence in the environment, and especially long-term pollution, can cause toxic effects on the aquatic ecosystems. The pharmaceutical industry is one of the main sources introducing these compounds in aquatic systems through the disposal of untreated or partially treated wastewaters produced during the different procedures in the manufacturing process. Pharmaceutical industry wastewaters contain numerous pharmaceutical compounds and other chemicals and are characterized by high levels of total dissolved solids (TDS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). The toxic and recalcitrant nature of this type of wastewater hinders conventional biological processes, leading to its ineffective treatment. Consequently, there is an urgent demand for the development and application of more efficient methods for the treatment of pharmaceutical industry wastewaters. In this context, advanced oxidation processes (AOPs) have emerged as promising technologies for the treatment of pharmaceutical industry wastewaters through contaminant removal, toxicity reduction as well as biodegradability improvement. Therefore, a comprehensive literature study was conducted to review the recent published works dealing with the application of heterogeneous and homogeneous photocatalysis for pharmaceutical industry wastewater treatment as well as the advances in the field. The efficiency of the studied AOPs to treat the wastewaters is assessed. Special attention is also devoted to the coupling of these processes with other conventional methods. Simultaneously with their efficiency, the cost estimation of individual and integrated processes is discussed. Finally, the advantages and limitations of the processes, as well as their perspectives, are addressed.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
69
|
Preparation of Quercus mongolica leaf-derived porous carbon with a large specific surface area for highly effective removal of dye and antibiotic from water. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
70
|
Singh A, Srivastava A, Saidulu D, Gupta AK. Advancements of sequencing batch reactor for industrial wastewater treatment: Major focus on modifications, critical operational parameters, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115305. [PMID: 35642808 DOI: 10.1016/j.jenvman.2022.115305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Industrial wastewater discharge has increased manifolds over the last few decades. Efficient industrial wastewater treatment is mandatory to meet stringent discharge regulations. Biological treatment systems, such as the sequencing batch reactor (SBR) are generally employed for domestic wastewater treatment. However, low infrastructure and energy requirements, as well as low footprint, make SBR a prominent technique to treat industrial wastewater. In the present review, the feasibility of SBR to treat wastewater generated from industries, such as textile, pulp and paper, pharmaceutical, tannery, etc., has been discussed. The factors affecting the treatment efficacy of the SBR in terms of organics and nutrient removal have also been investigated. It has been observed that the SBR system is effective for industrial wastewater treatment as it is easy to operate, resistant to shock loads, and can retain high biomass concentrations. The modifications to the conventional SBR, such as sludge granulation, the addition of bio-film carriers, and the incorporation of adsorbents, salt-tolerant microbes, and coagulants have been discussed. Further, various novel combinations of SBR with the other advanced treatment technologies, such as Fenton, membrane-based process, and electrochemical process have shown enhanced removal of various conventional and recalcitrant pollutants. The current review also accentuates the sustainability aspects of SBR technology to treat industrial wastewater which may be beneficial for researchers and engineers working in this field.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
71
|
Tóth AJ, Fózer D, Mizsey P, Varbanov PS, Klemeš JJ. Physicochemical methods for process wastewater treatment: powerful tools for circular economy in the chemical industry. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the chemical industry, a typical problem is the appropriate treatment of the process wastewaters. The biological treatment cannot be usually applied because of the high content of organochemical compounds. However, phsycicochemical methods can significantly contribute to the proper treatment of the process wastewater and usually also allows the recovery of the polluting materials. This phenomenon opens the application area of physicochemical methods for the treatment of process wastewater and can contribute not only to the aims of the circular economy but also to the zero liquid discharge. Besides literature studies, authors’ own results and innovations have been also presented. The treatment strategy for pharmaceutical process wastewater is reviewed in detail, which also serves to point out that hybrid methods can be usually efficient to solve the primary goal–maximum recovery and reuse of polluting materials.
Collapse
Affiliation(s)
- András József Tóth
- Department of Chemical and Environmental Process Engineering , Budapest University of Technology and Economics , HU 1111, Műegyetem rkp. 3 , Budapest , Hungary
| | - Dániel Fózer
- Division for Sustainability, Department of Technology, Management and Economics , Technical University of Denmark , Produktionstorvet, Building, 424, DK-2800 Kgs , Lyngby , Denmark
| | - Péter Mizsey
- Institute of Chemistry , University of Miskolc , HU 3515, Egyetemváros C/1 108 , Miskolc , Hungary
| | - Petar Sabev Varbanov
- Sustainable Process Integration Laboratory SPIL, NETME Centre, Faculty of Mechanical Engineering , Brno University of Technology VUT Brno , Technická 2896/2, 616 69 , Brno , Czech Republic
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory SPIL, NETME Centre, Faculty of Mechanical Engineering , Brno University of Technology VUT Brno , Technická 2896/2, 616 69 , Brno , Czech Republic
| |
Collapse
|
72
|
Liu X, Xu P, Yang Z, Zhu P, Wang L, Xie S. Catalytic oxidation of 4-acetamidophenol with Fe 3+-enhanced Cu 0 particles: In-site generation and activation of hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129291. [PMID: 35739796 DOI: 10.1016/j.jhazmat.2022.129291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Cu0 coupled with O2 was used to degrade contaminant due to in-site generation and catalysis of H2O2, while the low reactivity and active dismutation reaction of Cu+ refrained the performance at acidic condition. In this study, the removal rate of 4-acetamidophenol increased from 27 % to 83.4 % with Fe3+ spiked into the Cu0 system within 60 min •OH was the primary reactive species in the Fe3+/Cu0 system. In the Fe3+/Cu0 system, Cu0 was corroded to form Cu+ by H+ and O2, and then Cu+ interacted with O2 generating H2O2, and meanwhile Fe3+ was reduced to Fe2+ by Cu+ and Cu0; Consequently, Cu+ and Fe2+ induced H2O2 to produce •OH, but Fe2+ was easier to catalyze H2O2 than Cu+ at acidic pH. Except for fulvic acid, common water matrix including sulfate ion, phosphate ion, chloride ion and nitrate ion had no inhibition effect on the degradation of 4-acetamidophenol in the Fe3+/Cu0 system. over 62 % of 4-acetamidophenol in tap water, Hou-lake water and well water was greatly oxidized by the Fe3+/Cu0 system. Furthermore, the amount of total dissolved copper decreased to 0.895 mg/L by the method of alkali precipitation in the Fe3+/Cu0 system. The study provided a theoretical direction to the Fe3+-enhanced Cu0 system for purifying wastewater.
Collapse
Affiliation(s)
- Xin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Zhuoyu Yang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Pengfei Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Lei Wang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Shiqi Xie
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
73
|
The modelling of biosorption for rapid removal of organic matter with activated sludge biomass from real industrial effluents. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
74
|
Bala S, Abdullah CAC, Tahir MIM, Abdul Rahman MB. Adsorptive Removal of Naproxen from Water Using Polyhedral Oligomeric Silesquioxane (POSS) Covalent Organic Frameworks (COFs). NANOMATERIALS 2022; 12:nano12142491. [PMID: 35889714 PMCID: PMC9324651 DOI: 10.3390/nano12142491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
Covalent organic frameworks are porous crystalline compounds made up of organic material bonded together by strong reversible covalent bonds (these are novel types of materials which have the processability of extended or repeated structures with high performance, like those of thermosets and thermoplastics that produce high surface coverage). These have a long-term effect on an arrangement’s geometry and permeability. These compounds are entirely made up of light elements like H, B, C, N, O and Si. Pharmaceuticals and personal care products (PPCPs) have emerged as a new threatened species. A hazardous substance known as an “emerging toxin,” such as naproxen, is one that has been established or is generated in sufficient amounts in an environment, creating permanent damage to organisms. COF-S7, OAPS and 2-methylanthraquionone(2-MeAQ), and COF-S12, OAPS and terephthalaldehyde (TPA) were effectively synthesized by condensation (solvothermal) via a Schiff base reaction (R1R2C=NR′), with a molar ratio of 1:8 for OAPS to linker (L1 and L2), at a temperature of 125 °C and 100 °C for COF-S7 and COF-S12, respectively. The compounds obtained were assessed using several spectroscopy techniques, which revealed azomethine C=N bonds, aromatic carbon environments via solid 13C and 29Si NMR, the morphological structure and porosity, and the thermostability of these materials. The remedied effluent was investigated, and a substantial execution was noted in the removal ability of the naproxen over synthesized materials, such as 70% and 86% at a contact time of 210 min and 270 min, respectively, at a constant dose of 0.05 g and pH 7. The maximum adsorption abilities of the substances were found to be 35 mg/g and 42 mg/g. The pH result implies that there is stable exclusion with a rise in pH to 9. At pH 9, the drop significance was attained for COF-S7 with the exception of COF-S12, which was detected at pH 11, due to the negative Foster charge, consequent to the repulsion among the synthesized COFs and naproxen solution. From the isotherms acquired (Langmuir and Freundlich), the substances displayed a higher value (close to 1) of correlation coefficient (R2), which showed that the substances fit into the Freundlich isotherm (heterogenous process), and the value of heterogeneity process (n) achieved (less than 1) specifies that the adsorption is a chemical process. Analysis of the as-prepared composites revealed remarkable reusability in the elimination of naproxen by adsorption. Due to its convenience of synthesis, significant adsorption effectiveness, and remarkable reusability, the as-synthesized COFs are expected to be able to be used as potential adsorbents for eliminating AIDs from water.
Collapse
Affiliation(s)
- Suleiman Bala
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia; (S.B.); (M.I.M.T.)
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Mohamed Ibrahim Mohamed Tahir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia; (S.B.); (M.I.M.T.)
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia
- Correspondence: ; Tel.: +60-397697489
| |
Collapse
|
75
|
Nabgan W, Saeed M, Jalil AA, Nabgan B, Gambo Y, Ali MW, Ikram M, Fauzi AA, Owgi AHK, Hussain I, Thahe AA, Hu X, Hassan NS, Sherryna A, Kadier A, Mohamud MY. A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater. ENVIRONMENTAL RESEARCH 2022; 210:112975. [PMID: 35196501 DOI: 10.1016/j.envres.2022.112975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - M Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - B Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Y Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M W Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A H K Owgi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - I Hussain
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Asad A Thahe
- Department of X- Ray and Sonar, Faculty Of Medical Technology, AL-Kitab University, Iraq
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A Sherryna
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, China.
| | - M Y Mohamud
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
76
|
Hamadeen HM, Elkhatib EA. New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms. ENVIRONMENTAL RESEARCH 2022; 210:112929. [PMID: 35167852 DOI: 10.1016/j.envres.2022.112929] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Developing green inexpensive and effective adsorbents is critically needed for elimination of antibiotics from contaminated water. The current study assessed the nanostructured activated biochar (nPPAB) derived from pomegranate peels (PP) as a promising sorbent for efficient removal of the antibiotic ciprofloxacin (CIP). The results affirm that the second order and Langmuir models fit well to adsorption kinetics and equilibrium data respectively. The nPPAB adsorption capacity of Langmuir (qmax) for CIP was 142.86 mg g-1 which is 26.85 times greater than that of bulk PP. Hydrogen bonding, π-π interaction, hydrophobic and electrostatic interactions are the dominant mechanisms of CIP adsorption by nPPAB. The efficiency of nPPAB for CIP removal from real wastewater using batch and packed-bed reactor were 89.94 and 84.74% respectively. This study clearly demonstrated the substantial capacity of nPPAB as an ecofriendly, feasible, and in-expensive adsorbent for successful elimination of CIP from wastewater.
Collapse
Affiliation(s)
- Hala M Hamadeen
- Department of Soil and Water Sciences, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Elsayed A Elkhatib
- Department of Soil and Water Sciences, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
77
|
Salehipour M, Rezaei S, Asadi Khalili HF, Motaharian A, Mogharabi-Manzari M. Nanoarchitectonics of Enzyme/Metal–Organic Framework Composites for Wastewater Treatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
78
|
Ding M, Zeng H. A bibliometric analysis of research progress in sulfate-rich wastewater pollution control technology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113626. [PMID: 35561547 DOI: 10.1016/j.ecoenv.2022.113626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Sustainable industrial development requires research on pollution control in industrial wastewater, particularly sulfate-rich wastewater, which poses a threat to the environment. This article differs from the previous sulfate wastewater treatment process and equipment review. Based on the quantitative analysis, this paper has determined some characteristics of the related literature on the pollution control technology of high-concentration sulfate wastewater to help researchers establish future research directions. From 1991-2020, the WoS database published 9473 articles related to high-concentration sulfate wastewater treatment technology. We used bibliometric analysis combined with social network analysis and s-curve technical analysis in this research. The United States was the first to start this type of research, Australia has insightful and instructive research articles in this area, and China is the most active in international cooperation. The keywords that appear most frequently in the dataset are degradation, adsorption, oxidation, reduction, and recovery. By S-curve fitting, it is known that biological treatment methods are closer to the maturity stage than physical and chemical treatment methods.
Collapse
Affiliation(s)
- Meng Ding
- Peking University ShenZhen Graduate School, Shenzhen 518055, China; Ier Environmental Protection Engineering Technique Co., ltd., Shenzhen 518071, China.
| | - Hui Zeng
- Peking University ShenZhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
79
|
Zhao X, Yuan P, Yang Z, Peng W, Meng X, Cheng J. Integration of Micro-Nano-Engineered Hydroxyapatite/Biochars with Optimized Sorption for Heavy Metals and Pharmaceuticals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1988. [PMID: 35745328 PMCID: PMC9227354 DOI: 10.3390/nano12121988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023]
Abstract
From the perspective of treating wastes with wastes, bamboo sawdust was integrated with a hydroxyapatite (HAP) precursor to create engineered nano-HAP/micro-biochar composites (HBCs) by optimizing the co-precipitated precursor contents and co-pyrolysis temperature (300, 450, 600 °C). The physicochemical properties of HBCs, including morphologies, porosities, component ratios, crystalline structures, surface elemental chemical states, surface functional groups, and zeta potentials as a function of carbonization temperatures and components of precursors, were studied. Biochar matrix as an efficient carrier with enhanced specific surface area to prevent HAP from aggregation was desired. The sorption behavior of heavy metal (Cu(II), Cd(II), and Pb(II)) and pharmaceuticals (carbamazepine and tetracycline) on HBCs were analyzed given various geochemical conditions, including contact time, pH value, ionic strength, inferencing cations and anions, coexisting humic acid, and ambient temperature. HBCs could capture these pollutants efficiently from both simulated wastewaters and real waters. Combined with spectroscopic techniques, proper multiple dominant sorption mechanisms for each sorbate were elucidated separately. HBCs presented excellent reusability for the removal of these pollutants through six recycles, except for tetracycline. The results of this study provide meaningful insight into the proper integration of biochar-mineral composites for the management of aquatic heavy metals and pharmaceuticals.
Collapse
Affiliation(s)
- Xin Zhao
- Graduate Department, Civil Aviation Flight University of China, Guanghan 618307, China;
| | - Peiling Yuan
- Zhengzhou Key Laboratory of Low-Dimensional Quantum Materials and Devices, College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Peng
- Department of Ecology and Environment of Henan Province, Zhengzhou 450046, China;
| | - Xiang Meng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| | - Jiang Cheng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| |
Collapse
|
80
|
Wang Q, Sun SP, Wu Q, Huhe T, Zhou Z. Energy Consumption of Nanofiltration Diafiltration Process: Identifying the Optimal Conditions of Continuous and Intermittent Feed Diafiltration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qigang Wu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Taoli Huhe
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| |
Collapse
|
81
|
de Araújo Gusmão C, Palharim PH, Ramos B, Teixeira ACSC. Enhancing the visible-light photoactivity of silica-supported TiO 2 for the photocatalytic treatment of pharmaceuticals in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42215-42230. [PMID: 34628619 DOI: 10.1007/s11356-021-16718-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Catalyst samples based on SiO2-supported TiO2 were prepared with the incorporation of Ag (metal), S (nonmetal), and ZnO@S (semiconductor and nonmetal). The materials were evaluated regarding their morphological, optical, and crystalline properties as well as their photoactivity under visible and ultraviolet light toward the degradation rate of a model emerging pollutant, acetaminophen (ACT). All modified materials exhibited improved performance over the undoped catalyst. The Ag-doped catalyst achieved the largest degradation under visible radiation (about 30% in 120 min), whereas under ultraviolet irradiation, the ZnO@S-doped sample exhibited the best performance (about 62% in 120 min). A Doehlert design was carried out to evaluate the influence of pH and temperature on the photoactivity of Ag-TiO2/SiO2. In addition, the role of each reactive species in the photodegradation reaction was investigated by radical scavenger experiments, and the superoxide radical anion O2•- was shown to be the predominant reactive species. The stability of the Ag-TiO2/SiO2 material under ultraviolet and visible light was confirmed after five successive operation cycles, showing a reasonable (about 50%) loss of activity under visible irradiation and a slight improvement (about 13%) under UV light, as a result of the photo-reduction of Ag+. Lastly, the effect of the initial pollutant concentration showed that ACT degradation using Ag-TiO2/SiO2 follows the Langmuir-Hinshelwood kinetics, with intrinsic reaction rate k = 2.71 × 10-4 mmol L-1 min-1 under visible-light radiation.
Collapse
Affiliation(s)
- Carolina de Araújo Gusmão
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, SP, 380, Brazil.
| | - Priscila Hasse Palharim
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, SP, 380, Brazil
| | - Bruno Ramos
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, SP, 380, Brazil
- Department of Metallurgical and Materials Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, SP, 380, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, SP, 380, Brazil
| |
Collapse
|
82
|
Phan Quang HH, Nguyen TP, Duc Nguyen DD, Ngoc Bao LT, Nguyen DC, Nguyen VH. Advanced electro-Fenton degradation of a mixture of pharmaceutical and steel industrial wastewater by pallet-activated-carbon using three-dimensional electrode reactor. CHEMOSPHERE 2022; 297:134074. [PMID: 35219712 DOI: 10.1016/j.chemosphere.2022.134074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/29/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
In the present work, a three-dimensional electrode reactor (3Der) using pallet activated carbon (PAC), as particle electrodes, was investigated to degrade non-biodegradable organic pollutants in pharmaceutical wastewater and steel industry wastewater. The effect of operating parameters, such as pH, electrode distance, O2 flow rate, and current density was investigated. The TOC removal efficiency in 3Der was achieved at the highest mineralization yield of 94.1% after 180 min electrolysis, which was 10-19% higher than the two-dimensional electrode reactor (2Der). The higher performance of the 3Der can be attributed to the indirect and direct oxidation mechanisms. The impact of supporting electrolytes was decreased in order as chloride > nitrate > sulfate. The morphology of sludge and the presence of Fe(OH)3 after Fenton-oxidation were investigated. 3Der system improved biodegradability of pharmaceutical wastewater after electro-Fenton treatment at a PW/SIW ratio of 3:1 (BOD5/COD = 0.6). Hence, the mechanism of 3Der/PAC, as particle electrodes was also proposed. 3Der with PAC particle electrodes using steel industry wastewater as a catalyst is an exciting technique for remediation of organic contaminated pharmaceutical wastewater.
Collapse
Affiliation(s)
- Huy Hoang Phan Quang
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Tan Phong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam.
| | - Duc Dat Duc Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Luan Tran Ngoc Bao
- Department of Environmental Engineering, Ho Chi Minh University of Natural Resources and Environment, 236B Le Van Sy Street, Ward 1, Tan Binh District, Ho Chi Minh City, Viet Nam
| | - D C Nguyen
- Department of Chemistry, The University of Danang, University of Science and Education, Danang, 550000, Viet Nam
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
83
|
Zeng Y, Chang F, Liu Q, Duan L, Li D, Zhang H. Recent Advances and Perspectives on the Sources and Detection of Antibiotics in Aquatic Environments. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5091181. [PMID: 35663459 PMCID: PMC9159860 DOI: 10.1155/2022/5091181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 05/31/2023]
Abstract
Water quality and safety are vital to the ecological environment, social development, and ecological susceptibility. The extensive use and continuous discharge of antibiotics have caused serious water pollution; antibiotics are widely found in freshwater, drinking water, and reservoirs; and this pollution has become a common phenomenon and challenge in global water ecosystems, as water polluted by antibiotics poses serious risks to human health and the ecological environment. Therefore, the antibiotic content in water should be identified, monitored, and eliminated. Nevertheless, there is no single method that can detect all different types of antibiotics, so various techniques are often combined to produce reliable results. This review summarizes the sources of antibiotic pollution in water, covering three main aspects: (1) wastewater discharges from domestic sewage, (2) medical wastewater, and (3) animal physiology and aquaculture. The existing analytical techniques, including extraction techniques, conventional detection methods, and biosensors, are reviewed. The electrochemical biosensors have become a research hotspot in recent years because of their rapid detection, high efficiency, and portability, and the use of nanoparticles contributes to these outstanding qualities. Additionally, the comprehensive quality evaluation of various detection methods, including the linear detection range, detection limit (LOD), and recovery rate, is discussed, and the future of this research field is also prospected.
Collapse
Affiliation(s)
- Yanbo Zeng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| |
Collapse
|
84
|
Nayak V, Cuhorka J, Mikulášek P. Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling. MEMBRANES 2022; 12:membranes12050528. [PMID: 35629854 PMCID: PMC9145772 DOI: 10.3390/membranes12050528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Pharmaceutical drugs have recently emerged as one the foremost water pollutants in the environment, triggering a severe threat to living species. With their complex chemical nature and the intricacy involved in the removal process in mind, the present work investigates the performance of commercially available polyamide thin-film composite tubular nanofiltration (NF) membranes (AFC 40 and AFC 80) in removing polluting pharmaceutical drugs, namely caffeine, paracetamol and naproxen. The structural parameters of the NF membranes were estimated by water permeability measurements and retention measurements with aqueous solutions of organic, uncharged (glycerol) solutes. The effect of various operating conditions on the retention of solutes by the AFC 40 and AFC 80 membranes, such as applied transmembrane pressure, tangential feed flow velocity, feed solution concentration and ionic strength, were evaluated. It was found that the rejection of drugs was directly proportional to transmembrane pressure and feed flow rate. Due to the size difference between caffeine (MW = 194.9 g/mol), naproxen (MW = 230.2 g/mol) and paracetamol (MW = 151.16 g/mol), the AFC 40 membrane proved to be efficient for caffeine and naproxen, with rejection efficiencies of 88% and 99%, respectively. In contrast, the AFC 80 membrane proved to be better for paracetamol, with a rejection efficiency of 96% (and rejection efficiency of 100% for caffeine and naproxen). It was also observed that the rejection efficiency of the AFC 80 membrane did not change with changes in external operating conditions compared to the AFC 40 membrane. The membrane performance was predicted using the Spiegler–Kedem model based on irreversible thermodynamics, which was successfully used to explain the transport mechanism of solutes through the AFC 40 and AFC 80 membranes in the NF process.
Collapse
|
85
|
González-González RB, Sharma P, Singh SP, Américo-Pinheiro JHP, Parra-Saldívar R, Bilal M, Iqbal HMN. Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153329. [PMID: 35093347 DOI: 10.1016/j.scitotenv.2022.153329] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Pharmaceutical compounds are designed to elicit a biological reaction in specific organisms. However, they may also elicit a biological response in non-specific organisms when exposed to ambient quantities. Therefore, the potential human health hazards and environmental effects associated with pharmaceutically active compounds presented in aquatic environments are being studied by researchers all over the world. Owing to their broad-spectrum occurrence in various environmental matrices, direct or indirect environmental hazardous impacts, and human-health related consequences, several pharmaceutically active compounds have been categorized as emerging contaminants (ECs) of top concern. ECs are often recalcitrant and resistant to abate from water matrices. In this review, we have examined the classification, occurrence, and environmental hazards of pharmaceutically active compounds. Moreover, because of their toxicity and the inefficiency of wastewater treatment plants to remove pharmaceutical pollutants, novel wastewater remediation technologies are urgently required. Thus, we have also analyzed the recent advances in microbes-assisted bioremediation as a suitable, cost-effective, and eco-friendly alternative for the decontamination of pharmaceutical pollutants. Finally, the most important factors to reach optimal bioremediation are discussed.
Collapse
Affiliation(s)
| | - Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow 226 025, Uttar Pradesh, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208 001, India
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
86
|
Narayanan M, El-Sheekh M, Ma Y, Pugazhendhi A, Natarajan D, Kandasamy G, Raja R, Saravana Kumar RM, Kumarasamy S, Sathiyan G, Geetha R, Paulraj B, Liu G, Kandasamy S. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118922. [PMID: 35114308 DOI: 10.1016/j.envpol.2022.118922] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India.
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | | | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Rathinam Raja
- Central Research Laboratory, Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH) - BIHER, Chromepet, Chennai, 600 044, India
| | - R M Saravana Kumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Govindasamy Sathiyan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - R Geetha
- Department of Electrical and Electronics Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sabariswaran Kandasamy
- Department of Biomass and Energy Conversion, Institute of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 602 105, India.
| |
Collapse
|
87
|
Mylapilli SVP, Reddy SN. Catalytic and non-catalytic degradation of acetaminophen in supercritical water. ENVIRONMENTAL RESEARCH 2022; 207:112191. [PMID: 34637760 DOI: 10.1016/j.envres.2021.112191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical industrial wastewater is typical wastewater consisting of complex organic compounds with higher concentration, microbial toxicity, strenuous to deteriorate, and environmental threatening. The present work assesses the degradation of recalcitrant acetaminophen (ACM) by a green technology known as supercritical water oxidation (SCWO). Experiments were carried out in a continuous flow SCWO reactor by altering reaction conditions such as temperature 400-600 °C, oxidant coefficient (OC 0 to 3), and Fe(II) catalyst concentration (0.5 and 1 mg L-1) to study the technical feasibility of highly concentrated ACM. Liquid product analysis indicated the total organic carbon (TOC) removal efficiency could reach up to 99.5% without catalyst at 600 °C and 99.9% with Fe(II) at 500 °C. The addition of Fe not only suppressed the intermediate ring components but also promoted the formation of permanent gases via decarboxylation and reforming reactions. The reaction between Fe(II) and H2O2 in supercritical water is extremely fast, which has a direct impact on the system's operating conditions. The high activity exhibited by Fe(II) catalyst degraded the ACM completely at an operating condition of 500 °C. Maximum H2 fraction was attained without catalyst at 600 °C, OC 0.5, and with the catalyst at 500 °C, respectively, whereas, CO2 tends to rise significantly with both temperature and oxidant concentration. The catalytic process is efficient in comparison to the non-catalytic process. A possible reaction pathway was proposed based on the intermediates generated during the degradation.
Collapse
Affiliation(s)
- S V Prasad Mylapilli
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sivamohan N Reddy
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
88
|
Divya S, Oh TH. Polymer Nanocomposite Membrane for Wastewater Treatment: A Critical Review. Polymers (Basel) 2022; 14:polym14091732. [PMID: 35566901 PMCID: PMC9100919 DOI: 10.3390/polym14091732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
With regard to global concerns, such as water scarcity and aquatic pollution from industries and domestic activities, membrane-based filtration for wastewater treatment has shown promising results in terms of water purification. Filtration by polymeric membranes is highly efficient in separating contaminants; however, such membranes have limited applications. Nanocomposite membranes, which are formed by adding nanofillers to polymeric membrane matrices, can enhance the filtration process. Considerable attention has been given to nanofillers, which include carbon-based nanoparticles and metal/metal oxide nanoparticles. In this review, we first examined the current status of membrane technologies for water filtration, polymeric nanocomposite membranes, and their applications. Additionally, we highlight the challenges faced in water treatment in developing countries.
Collapse
|
89
|
Saeed MU, Hussain N, Sumrin A, Shahbaz A, Noor S, Bilal M, Aleya L, Iqbal HMN. Microbial bioremediation strategies with wastewater treatment potentialities - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151754. [PMID: 34800451 DOI: 10.1016/j.scitotenv.2021.151754] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
The demand for innovative waste treatment techniques has arisen because of the establishment and operation of rigorous waste discharge guidelines into the environment. Due to the rapid increase in the human population, wastewater treatment is a procedure of increasing significance. As a result, wastewater treatment systems are intended to sustain high activities and densities of such microorganisms which meet the different purification requirements. The waste produced by the pharmaceutical industry, if not adequately treated, has harmful repercussions for the environment as well as public health. Bioremediation is an innovative and optimistic technology that can be used to remove and reduce heavy metals from polluted water and contaminated soil. Because of cost-effectiveness and environmental compatibility, bioremediation using microorganisms has an excellent potential for future development. A diverse range of microorganisms, including algae, fungi, yeasts, and bacteria, can function as biologically active methylators, capable of modifying toxic species. Microorganisms play a crucial role in heavy metal bioremediation. Nanotechnology may minimize industry expenses by producing environmentally friendly nanomaterials to alleviate these contaminants. The use of microorganisms in nanoparticle synthesis gives green biotechnology a positive impetus to cost reduction and sustainable production as a developing nanotechnology sector.
Collapse
Affiliation(s)
- Muhammad Usama Saeed
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Saman Noor
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
90
|
Nguyen THA, Tran TDM, Ky Vo T, Nguyen QT, Nguyen VC. Facile synthesis of low-cost chitosan/Fe 3O 4@C composite for highly efficient adsorption of levofloxacin antibiotic. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2053680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh, Viet Nam;
| | - Thi Dieu My Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - The Ky Vo
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Quoc Thang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Van-Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
| |
Collapse
|
91
|
Sathya K, Nagarajan K, Carlin Geor Malar G, Rajalakshmi S, Raja Lakshmi P. A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. APPLIED WATER SCIENCE 2022; 12:70. [PMID: 35340731 PMCID: PMC8935115 DOI: 10.1007/s13201-022-01594-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/11/2022] [Indexed: 05/27/2023]
Abstract
In recent years, rapid development in the industrial sector has offered console to the people but at the same time, generates numerous amounts of effluent composed of toxic elements like nitrogen, phosphorus, hydrocarbons, and heavy metals that influences the environment and mankind hazardously. While the technological advancements are made in industrial effluent treatment, there arising stretch in the techniques directing on hybrid system that are effective in resource recovery from effluent in an economical, less time consuming and viable manner. The key objective of this article is to study, propose and deliberate the process and products obtained from different industries and the quantity of effluents produced, and the most advanced and ultra-modern theoretical and scientific improvements in treatment methods to remove those dissolved matter and toxic substances and also the challenges and perspectives in these developments. The findings of this review appraise new eco-friendly technologies, provide intuition into the efficiency in contaminants removal and aids in interpreting degradation mechanism of toxic elements by various treatment assemblages.
Collapse
Affiliation(s)
- K. Sathya
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, India
| | - K. Nagarajan
- Department of Chemical Engineering, Rajalakshmi Engineering College, Thandalam, India
| | | | - S. Rajalakshmi
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, India
| | - P. Raja Lakshmi
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, India
| |
Collapse
|
92
|
Investigation of the Degradation Behavior of Cyclophosphamide by Catalytic Ozonation Based on Mg(OH)2. ENERGIES 2022. [DOI: 10.3390/en15062274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metal hydroxides, owing to their catalytic active sites for the decomposition of O3 to Reactive Oxygen Species (ROS), have been adapted for catalytic ozonation of micropollutants in wastewater. In this study, commercial Mg (OH)2 was used for the degradation of cyclophosphamide (CYP) by ozone. The crystal phase was confirmed by X-ray powder Diffraction (XRD). Percent degradation of 10 ppm CYP after 30 min by O3 and Mg (OH)2/O3 was 56 and 93, respectively, suggesting enhanced decomposition of O3 to ROS by the catalyst. The presence of ROS was further confirmed using pCBA as a probe, which showed that the concentration of ROS was eight times higher in the presence of Mg (OH)2/O3 than O3 alone. Catalytic ozonation experiments in the presence of scavengers showed that OH· radicals play a significant role in the degradation of CYP. The catalyst was found to be reusable for at least three cycles without significant loss in degradation efficiency. To study the compatibility of Mg (OH)2 for wastewater treatment applications, synthetic effluent was spiked with CYP and subjected to ozonation by Mg(OH)2/O3. The TOC of CYP before and after the treatment showed that Mg (OH)2/O3 not only degrades CYP but also mineralizes to a certain extent unlike O3 alone.
Collapse
|
93
|
Saya L, Malik V, Gautam D, Gambhir G, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Among various classes of antibiotics, fluoroquinolones, especially Levofloxacin, are being administered on a large scale for numerous purposes. Being highly stable to be completely metabolized, residual quantities of Levofloxacin get accumulated into the food chain proving a great global threat for aquatic as well as terrestrial ecosystems. Various removal techniques including both conventional and advanced methods have been reported for this purpose. This review is a novel attempt to make a critical analysis of the recent advances made exclusively toward the sequestration of Levofloxacin from wastewater through an extensive literature survey (2015-2021). Adsorption and advanced oxidation processes especially photocatalytic degradation are the most tested techniques in which assorted nanomaterials play a significant role. Several photocatalysts exhibited up to 100% degradation of LEV which makes photocatalytic degradation the best method among other tested methods. However, the degraded products need to be further monitored in terms of their toxicity. Biological degradation may prove to be the most environment-friendly with the least toxicity, unfortunately, not much research is reported in the field. With these key findings and knowledge gaps, authors suggest the scope of hybrid techniques, which have been experimented on other antibiotics. These can potentially minimize the disadvantages of the individual techniques concurrently improving the efficiency of LEV removal. Besides, techniques like column adsorption, membrane treatment, and ozonation, being least reported, reserve good perspectives for future research. With these implications, the review will certainly serve as a breakthrough for researchers working in this field to aid their future findings.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Vipin Malik
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Drashya Gautam
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
94
|
Zhang X. Selective separation membranes for fractionating organics and salts for industrial wastewater treatment: Design strategies and process assessment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
95
|
Zou R, Tang K, Hambly AC, Wünsch UJ, Andersen HR, Angelidaki I, Zhang Y. When microbial electrochemistry meets UV: The applicability to high-strength real pharmaceutical industry wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127151. [PMID: 34536845 DOI: 10.1016/j.jhazmat.2021.127151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Wastewater from pharmaceutical and related industries contains many residual pharmaceutical components rich in color and high COD contents, which cannot be removed through the traditional wastewater treatment processes. Recently, microbial electrolysis ultraviolet cell (MEUC) process has shown its promising potential to remove recalcitrant organics because of its merits of wide pH range, iron-free, and without complications of iron sludge production. However, its application to the real pharmaceutical-rich industrial wastewater is still unknown. In this study, the MEUC process was validated with real ciprofloxacin-rich (6863.79 ± 2.21 µg L-1) industrial wastewater (6840 ± 110 mg L-1 of COD). The MEUC process achieved 100% removal of ciprofloxacin, 100% decolorization, and 99.1% removal of COD within 12, 60 and 30 h, respectively, when it was operated at pH-controlled at 7.8, applied voltage of 0.6 V, UV intensity of 10 mW cm-2, and cathodic aeration velocity of 0.005 mL min-1 mL-1. Moreover, fluorescence analysis showed that protein- and humic-like substances in such wastewater were effectively removed, providing further evidence of its high treatment efficiency. Furthermore, eco-toxicity testing with luminescent bacteria Vibro Feschri confirmed that the treated effluent was utterly non-toxic. The results demonstrated the broad application potential of MEUC technology for treating industrial wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Urban J Wünsch
- National Institute of Aquatic Resources, Section for Oceans and Arctic, Technical University of Denmark, Kemitorvet, Building 201, 2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
96
|
Ihsanullah I, Khan MT, Zubair M, Bilal M, Sajid M. Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review. CHEMOSPHERE 2022; 289:133196. [PMID: 34890621 DOI: 10.1016/j.chemosphere.2021.133196] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
In recent years, considerable attention has been paid to the beneficial utilization of sewage sludge to reduce the risks associated with sludge disposal. Besides other applications of sludge, biochar produced from sludge has also been employed for the elimination of various pollutants from water. This review critically evaluates the recent progress in applications of sludge-based biochar for the adsorption of pharmaceuticals from water. The synthesis techniques of biochar production from sludge and their effects on physicochemical characteristics of produced biochar are discussed. The removal of various pharmaceuticals by sludge-based biochar are described in detail, with the emphasis on the adsorption mechanism and their reusability potential. It is evident from the literature that sludge-based biochar has demonstrated excellent potential for the adsorption of numerous pharmaceuticals from the aqueous phase. The major hurdles and issues related to the synthesis of sludge-based biochar and applications are highlighted, with reference to the adsorption of pharmaceuticals. Finally, a roadmap is suggested along with future research directions to ensure the sustainable production of biochar from sludge and its applications in water treatment.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
97
|
Extraction of antibiotics identified in the EU Watch List 2020 from hospital wastewater using hydrophobic eutectic solvents and terpenoids. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
98
|
Nabgan W, Jalil AA, Nabgan B, Ikram M, Ali MW, Lakshminarayana P. A state of the art overview of carbon-based composites applications for detecting and eliminating pharmaceuticals containing wastewater. CHEMOSPHERE 2022; 288:132535. [PMID: 34648794 DOI: 10.1016/j.chemosphere.2021.132535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The growing prevalence of new toxins in the environment continues to cause widespread concerns. Pharmaceuticals, organic pollutants, heavy metal ions, endocrine-disrupting substances, microorganisms, and others are examples of persistent organic chemicals whose effects are unknown because they have recently entered the environment and are displaying up in wastewater treatment facilities. Pharmaceutical pollutants in discharged wastewater have become a danger to animals, marine species, humans, and the environment. Although their presence in drinking water has generated significant concerns, little is known about their destiny and environmental effects. As a result, there is a rising need for selective, sensitive, quick, easy-to-handle, and low-cost early monitoring detection systems. This study aims to deliver an overview of a low-cost carbon-based composite to detect and remove pharmaceutical components from wastewater using the literature reviews and bibliometric analysis technique from 1970 to 2021 based on the web of science (WoS) database. Various pollutants in water and soil were reviewed, and different methods were introduced to detect pharmaceutical pollutants. The advantages and drawbacks of varying carbon-based materials for sensing and removing pharmaceutical wastes were also introduced. Finally, the available techniques for wastewater treatment, challenges and future perspectives on the recent progress were highlighted. The suggestions in this article will facilitate the development of novel on-site methods for removing emerging pollutants from pharmaceutical effluents and commercial enterprises.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Aishah Abdul Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Bahador Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - Mohamad Wijayanuddin Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | |
Collapse
|
99
|
Andrade PHM, Gomes ALM, Palhares HG, Volkringer C, Moissette A, Victória HFV, Hatem NMA, Krambrock K, Houmard M, Nunes EHM. Post-synthetic modification of aluminum trimesate and copper trimesate with TiO 2 nanoparticles for photocatalytic applications. JOURNAL OF MATERIALS SCIENCE 2022; 57:4481-4503. [PMID: 35125514 PMCID: PMC8796608 DOI: 10.1007/s10853-021-06842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Organic pollutants have been a significant source of concern in recent years due to their facile dissemination and harmful effects. In this work, two different metal-organic frameworks (MOFs) were initially prepared by hydrothermal treatment, namely aluminum trimesate (MIL-100(Al)) and copper trimesate (HKUST-1). These materials were subsequently submitted to a post-synthetic modification step to grow titania nanoparticles on their surface. Anatase nanoparticles with sizes around 5 nm were successfully anchored on MIL-100(Al), and the concentration of TiO2 in this sample was about 68 wt.%. This is the first time that this composite (TiO2@MIL-100(Al)) is reported in the literature. It showed an improved photocatalytic activity, removing 90% of methylene blue (k app = 1.29 h-1), 55% of sodium diclofenac (k app = 0.21 h-1), and 62% of ibuprofen (k app = 0.37 h-1) after four hours of illumination with UV-A light. A significant concentration (14 µM) of reactive oxygen species (ROS) was detected for this composite. HKUST-1 showed a structural collapse during its post-synthetic modification, leading to a non-porous material and providing fewer sites for the heterogeneous nucleation of titania. This behavior led to a low concentration of rutile nanoparticles on HKUST-1 (9 wt.%). However, the obtained composite (TiO2@HKUST) also showed an improved photoactivity compared to HKUST-1, increasing the photodegradation rates evaluated for methylene blue (0.05 h-1 vs. 0.29 h-1), sodium diclofenac (negligible vs. 0.03 h-1), and ibuprofen (0.01 h-1 vs. 0.02 h-1). This work brings new insights concerning the preparation of photocatalysts by growing semiconductor nanoparticles on trimesate-based MOFs.
Collapse
Affiliation(s)
- Pedro H. M. Andrade
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
- Laboratoire de Spectroscopie Pour Les Interactions, La Réactivité Et L’Environnement, Université de Lille—Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| | - Ana L. M. Gomes
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Hugo G. Palhares
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS—Unité de Catalyse Et Chimie du Solide, 59000 Lille, France
| | - Alain Moissette
- Laboratoire de Spectroscopie Pour Les Interactions, La Réactivité Et L’Environnement, Université de Lille—Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| | - Henrique F. V. Victória
- Departamento de Física, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Nádia M. A. Hatem
- Departamento de Física, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Klaus Krambrock
- Departamento de Física, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Manuel Houmard
- Departamento de Engenharia Química, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Eduardo H. M. Nunes
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| |
Collapse
|
100
|
Polybenzimidazole Membrane Crosslinked with Epoxy-Containing Inorganic Networks for Organic Solvent Nanofiltration and Aqueous Nanofiltration under Extreme Basic Conditions. MEMBRANES 2022; 12:membranes12020140. [PMID: 35207063 PMCID: PMC8877178 DOI: 10.3390/membranes12020140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
In this study, a novel polybenzimidazole (PBI)-based organic solvent nanofiltration (OSN) membrane possessing excellent stability under high pH condition was developed. To improve the chemical stability, the pristine PBI membrane was crosslinked with a silane precursor containing an epoxy end group. In detail, hydrolysis and condensation reaction of methoxysilane in the 3-glycidyloxypropyl trimethoxysilane (GPTMS) yields organic–inorganic networks within the PBI membrane structure. At the same time, the epoxy end groups on the organosiloxane network (Si–O–Si) reacted with amine groups of PBI to complete the crosslinking. The resulting crosslinked PBI membrane exhibited a good stability upon exposure to organic solvents and was not decomposed even in basic solution (pH 13). Our membrane showed an ethanol permeance of 27.74 LMHbar−1 together with a high eosin Y rejection of >90% under 10 bar operation pressure at room temperature. Furthermore, our PBI membrane was found to be operational even under an extremely basic condition, although the effective pore size was slightly enlarged due to the pore swelling effect. The results suggest that our membrane is a promising candidate for OSN application under basic conditions.
Collapse
|