51
|
Okuno Y, Szabo A, Clore GM. Quantitative Interpretation of Solvent Paramagnetic Relaxation for Probing Protein-Cosolute Interactions. J Am Chem Soc 2020; 142:8281-8290. [PMID: 32286812 DOI: 10.1021/jacs.0c00747] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein-small cosolute molecule interactions are ubiquitous and known to modulate the solubility, stability, and function of many proteins. Characterization of such transient weak interactions at atomic resolution remains challenging. In this work, we develop a simple and practical NMR method for extracting both energetic and dynamic information on protein-cosolute interactions from solvent paramagnetic relaxation enhancement (sPRE) measurements. Our procedure is based on an approximate (non-Lorentzian) spectral density that behaves exactly at both high and low frequencies. This spectral density contains two parameters, one global related to the translational diffusion coefficient of the paramagnetic cosolute, and the other residue specific. These parameters can be readily determined from sPRE data, and then used to calculate analytically a concentration normalized equilibrium average of the interspin distance, ⟨r-6⟩norm, and an effective correlation time, τC, that provide measures of the energetics and dynamics of the interaction at atomic resolution. We compare our approach with existing ones, and demonstrate the utility of our method using experimental 1H longitudinal and transverse sPRE data recorded on the protein ubiquitin in the presence of two different nitroxide radical cosolutes, at multiple static magnetic fields. The approach for analyzing sPRE data outlined here provides a powerful tool for deepening our understanding of extremely weak protein-cosolute interactions.
Collapse
Affiliation(s)
- Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
52
|
Anumalla B, Prabhu NP. Surface hydration and preferential interaction directs the charged amino acids-induced changes in protein stability. J Mol Graph Model 2020; 98:107602. [PMID: 32251994 DOI: 10.1016/j.jmgm.2020.107602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
In the present study, we investigate the interaction of amino acid osmolytes, Arg, Lys, Asp and Glu, and a denaturant, guanidinium chloride (Gdm) with proteins. To achieve this, molecular dynamics (MD) simulation of RNase A and α-lactalbumin was performed in the presence of three charged amino acids Arg, Lys, and Asp and the molecular mechanism of amino acid-induced (de)stabilization of the proteins was examined by combining with our earlier report on Glu. As Arg has the side chain similar to that of Gdm and destabilizes the proteins, MD simulation was carried out in the presence of Gdm as well. Radial distribution function and hydration fraction around the protein surface reveals that preferential hydration increases upon the addition of any of the cosolvent; however, the extent of increase is more in the presence of stabilizing cosolvents (stAAs: Lys, Asp and Glu) compared to destabilizing cosolvents (Arg and Gdm). Moreover, the preferential interaction of Arg and Gdm with the proteins is higher than that of stAAs. Residue-level interaction analysis suggests that stAAs preferably interacts with charged amino acids of the proteins whereas Arg and Gdm interactions could be found on almost all the surface exposed residues which might provide higher preferential interaction for these residues. From the results, we propose that the net outcome of preferential hydration versus preferential interaction of the amino acids might determine their effect on the stability of proteins.
Collapse
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
53
|
Agrawal DC, Yadav A, Khan MA, Kundu S, Kayastha AM. Denaturant Induced Equilibrium Unfolding and Conformational Transitional Studies of Germinated Fenugreek β-Amylase Revealed Molten Globule like State at Low pH. Protein Pept Lett 2020; 27:1046-1057. [PMID: 32242773 DOI: 10.2174/0929866527666200403082721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND β-Amylase (EC 3.2.1.2) is a maltogenic enzyme, which releases β-maltose from the non-reducing end of the substrates. The enzyme plays important roles for the production of vaccine, maltiol and maltose rich syrups. Apart from these applications the enzyme protects cells from abiotic as well as oxidative damage. The enzyme is βwell characterized in βplants and microbes and crystal structures of β-amylases βhave been βobtained from sweet potato, soybean and Bacillus cereus. OBJECTIVE Find out correlation between structural and functional stability induced by change in pH, temperature and chaotropes. METHODS Activity, intrinsic fluorescence, extrinsic fluorescence, near- and far- ultraviolet circular dichroism spectroscopic measurements were performed. RESULTS Peaks about 208 nm and 222 nm obtained by near-ultraviolet circular dichroism correspond to α-helix whereas peak at 215 nm shows presence of β-sheet. At pH 2.0, absence of tertiary structures, exposed of hydrophobic regions and presence of substantial secondary structures, revealed the existence of molten globule like state. Temperature induced denaturation studies showed that the enzyme was stable up to 75 ºC and the process was found to be irreversible in nature. Chaotropes dependent equilibrium unfolding studies revealed that at low concentration of chaotropes, ellipticity and intrinsic fluorescence βintensity were βdecreased βwhereas βenzymatic activity remained unchanged, which revealed fenugreek β-amylase is multi-domains enzyme and catalytic βdomain βis more βstable compare to non-catalytic domain. Moreover, the transition was sigmoidal and non-coincidental. CONCLUSION Results indicate the probable existence of intermediate states that might perform significant role in physiological process and biotechnological applications.
Collapse
Affiliation(s)
- Dinesh Chand Agrawal
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anjali Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
54
|
Teng X, Ichiye T. Dynamical Model for the Counteracting Effects of Trimethylamine N-Oxide on Urea in Aqueous Solutions under Pressure. J Phys Chem B 2020; 124:1978-1986. [PMID: 32059113 DOI: 10.1021/acs.jpcb.9b10844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Of cosolutes found in living cells, urea denatures and trimethylamine N-oxide (TMAO) stabilizes proteins; furthermore, these effects cancel at a 2:1 ratio of urea to TMAO. Interestingly, cartilaginous fish use urea and TMAO as osmolytes at similar ratios at the ocean surface but with increasing fractions of TMAO at increasing depths. Here, molecular dynamics simulations of aqueous solutions with different urea:TMAO ratios show that the diffusion coefficients of water in the solutions vary with pressure if the urea:TMAO ratio is constant, but strikingly, they are almost pressure independent at the ratio found in these fish as a function of depth. This suggests that this ratio may be maintaining a homeostasis of water dynamics. In addition, diffusion is determined by hydrogen-bond lifetimes of the different species in the solution. Based on these observations, a dynamical model in terms of hydrogen-bond lifetimes is developed for the hydrogen bonding propensities of cosolutes and water in an aqueous solution to proteins. This model provides an explanation for both the counteracting effects of TMAO on urea denaturation and the depth-dependent urea:TMAO ratio found in cartilaginous fish.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
55
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
56
|
Sahle CJ, Schroer MA, Niskanen J, Elbers M, Jeffries CM, Sternemann C. Hydration in aqueous osmolyte solutions: the case of TMAO and urea. Phys Chem Chem Phys 2020; 22:11614-11624. [DOI: 10.1039/c9cp06785j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray Raman scattering spectroscopy and first principles simulations reveal details of the hydration and hydrogen-bond topology of trimethylamine N-oxide (TMAO) and urea in aqueous solutions.
Collapse
Affiliation(s)
| | - Martin A. Schroer
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- Hamburg 22607
- Germany
| | - Johannes Niskanen
- Department of Physics and Astronomy
- University of Turku
- FI-20014 Turun Yliopisto
- Finland
| | - Mirko Elbers
- Fakultät Physik/DELTA
- Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- Hamburg 22607
- Germany
| | | |
Collapse
|
57
|
Ganguly P, Shea JE. Distinct and Nonadditive Effects of Urea and Guanidinium Chloride on Peptide Solvation. J Phys Chem Lett 2019; 10:7406-7413. [PMID: 31721587 DOI: 10.1021/acs.jpclett.9b03004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using enhanced-sampling replica exchange fully atomistic molecular dynamics simulations, we show that, individually, urea and guanidinium chloride (GdmCl) denature the Trpcage protein, but remarkably, the helical segment 1NLYIQWL7 of the protein is stabilized in mixed denaturant solutions. GdmCl induces protein denaturation via a combination of direct and indirect effects involving dehydration of the protein and destabilization of stabilizing salt bridges. In contrast, urea denatures the protein through favorable protein-urea preferential interactions, with peptide-specific indirect effects of urea on the water structure around the protein. In the case of the helical segment of Trpcage, urea "oversolvates" the peptide backbone by reorganizing water molecules from the peptide side chains to the peptide backbone. An intricate nonadditive thermodynamic balance between GdmCl-induced dehydration of the peptide and the urea-induced changes in solvation structure triggers partial counteraction to urea denaturation and stabilization of the helix.
Collapse
Affiliation(s)
- Pritam Ganguly
- Department of Chemistry and Biochemistry , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
- Department of Physics , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
58
|
Kumar G, Chauhan MS, Kumar A. On the Thermodynamics of Micellizationof Oppositely Charged Surfactants in the Presence of Organic Additives in the Aqueous Medium. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To investigate the effect of additives urea and thiourea, on the micellization behavior of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), detailed conductance measurements were carried out in aqueous media at different temperatures. The critical micelle concentration (CMC), determined from the discontinuity in the plots of molar conductance versus square root of concentration, indicated an inhibitory effect of urea and thiourea on micelle forming ability of the surfactants SDS and CTAB in the range of composition studied. The demicellizing effect of urea has been found to be more pronounced in SDS than CTAB. These observations are further augmented by the evaluation of thermodynamic parameters of micellization. A negative change in enthalpy of micellization (
Δ
H
m
∘
$\Delta{\text{H}}_{\text{m}}^{\circ}$
) indicates a strong interaction between water and the additives and a positive change observed in entropy of micellization (
Δ
S
m
∘
$\Delta{\text{S}}_{\text{m}}^{\circ}$
) manifest, that the micellization is an entropy-driven process. Further
Δ
H
m
∘
$\Delta{\text{H}}_{\text{m}}^{\circ}$
and
Δ
S
m
∘
$\Delta{\text{S}}_{\text{m}}^{\circ}$
change in mutually compensating manner, so that
Δ
G
m
∘
<
0
$\Delta{\text{G}}_{\text{m}}^{\circ} < 0$
is not significantly affected. Finally, the counterion binding values (β) obtained for SDS and CTAB remain practically constant from 0.6 to 0.8 between 25 °C and 45 °C indicate that the size and shape of micelle remain essentially constant. Moreover, the increase in
Δ
G
II
∘
$\Delta{\text{G}}_{{\text{II}}}^{\circ}$
values, which represent the effect of co-solvent or additive on micellization, substantiates the above observations. Many early works has investigated the micellization behavior of surfactants using a fixed additive composition. However, in this study, variable aqueous compositions of urea (0.30–1.78 wt%) and thiourea (0.24–1.41 wt%) have been considered.
Collapse
Affiliation(s)
- Girish Kumar
- PG Department of Chemistry , JCDAV College Dasuya , Punjab , India , Tel.: +91 9988154354
| | | | - Anil Kumar
- PG Department of Physics , JCDAV College Dasuya , Punjab , India
| |
Collapse
|
59
|
Su Z, Dias CL. Individual and combined effects of urea and trimethylamine N-oxide (TMAO) on protein structures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Brito e Cunha D, Bartkevihi L, Robert J, Cipolatti E, Ferreira A, Oliveira D, Gomes-Neto F, Almeida R, Fernandez-Lafuente R, Freire D, Anobom C. Structural differences of commercial and recombinant lipase B from Candida antarctica: An important implication on enzymes thermostability. Int J Biol Macromol 2019; 140:761-770. [DOI: 10.1016/j.ijbiomac.2019.08.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 01/29/2023]
|
61
|
Molecular level insight into the counteraction of trehalose on the activity as well as denaturation of lysozyme induced by guanidinium chloride. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
62
|
Jahan I, Nayeem SM. Effect of Osmolytes on Conformational Behavior of Intrinsically Disordered Protein α-Synuclein. Biophys J 2019; 117:1922-1934. [PMID: 31699336 DOI: 10.1016/j.bpj.2019.09.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein is an intrinsically disordered protein whose function in a healthy brain is poorly understood. It is genetically and neuropathologically linked to Parkinson's disease (PD). PD is manifested after the accumulation of plaques of α-synuclein aggregates in the brain cells. Aggregates of α-synuclein are very toxic and lead to the disruption of cellular homeostasis and neuronal death. α-Synuclein can also contribute to disease propagation as it may exert noxious effects on neighboring cells. Understanding the mechanism of α-synuclein aggregation will facilitate the problem of dealing with neurodegenerative diseases in general and that of PD in particular. Here, we have used molecular dynamics simulations to investigate the behavior of α-synuclein at various temperatures and in different concentrations of urea and trimethyl amine oxide. The residue region from 61 to 95 of α-synuclein is experimentally known as amyloidogenic. In our study, we have identified some other regions, which also have the propensity to form an aggregate besides this known sequence. Urea being a denaturant interacts more with these regions of α-synuclein through hydrogen bond formation and inhibits the β-sheet formation, whereas trimethyl amine oxide itself does not interact much with the protein and stabilizes the protein by preferentially distributing water molecules on the surface of the protein.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
63
|
Ukwaththage TO, Goodwin OY, Songok AC, Tafaro AM, Shen L, Macnaughtan MA. Purification of Tag-Free Chlamydia trachomatis Scc4 for Structural Studies Using Sarkosyl-Assisted on-Column Complex Dissociation. Biochemistry 2019; 58:4284-4292. [PMID: 31545893 DOI: 10.1021/acs.biochem.9b00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes the most common sexually transmitted bacterial disease in the world. The bacterium has a unique biphasic developmental cycle with a type III secretion system (T3SS) to invade host cells. Scc4 is a class I T3SS chaperone forming a heterodimer complex with Scc1 to chaperone the essential virulence effector, CopN. Scc4 also functions as an RNA polymerase binding protein to regulate σ66-dependent transcription. Aggregation and low solubility of 6X-histidine-tagged Scc4 and the insolubility of 6X-histidine and FLAG-tagged Scc1 expressed in Escherichia coli have hindered the high-resolution nuclear magnetic resonance (NMR) structure determination of these proteins and motivated the development of an on-column complex dissociation method to produce tag-free Scc4 and soluble FLAG-tagged Scc1. By utilizing a 6X-histidine-tag on one protein, the coexpressed Scc4-Scc1 complex was captured on nickel-charged immobilized metal affinity chromatography resin, and the nondenaturing detergent, sodium N-lauroylsarcosine (sarkosyl), was used to dissociate and elute the non-6X-histidine-tagged protein. Tag-free Scc4 was produced in a higher yield and had better NMR spectral characteristics compared to 6X-histidine-tagged Scc4, and soluble FLAG-tagged Scc1 was purified for the first time in a high yield. The backbone structure of Scc4 after exposure to sarkosyl was validated using NMR spectroscopy, demonstrating the usefulness of the method to produce proteins for structural and functional studies. The sarkosyl-assisted on-column complex dissociation method is generally applicable to protein complexes with high affinity and is particularly useful when affinity tags alter the protein's biophysical properties or when coexpression is necessary for solubility.
Collapse
Affiliation(s)
- Thilini O Ukwaththage
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Octavia Y Goodwin
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Abigael C Songok
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Alexa M Tafaro
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology , Louisiana State University Health Sciences Center , New Orleans , Louisiana 70112 , United States
| | - Megan A Macnaughtan
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
64
|
Jaganade T, Chattopadhyay A, Pazhayam NM, Priyakumar UD. Energetic, Structural and Dynamic Properties of Nucleobase-Urea Interactions that Aid in Urea Assisted RNA Unfolding. Sci Rep 2019; 9:8805. [PMID: 31217494 PMCID: PMC6584539 DOI: 10.1038/s41598-019-45010-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
Understanding the structure-function relationships of RNA has become increasingly important given the realization of its functional role in various cellular processes. Chemical denaturation of RNA by urea has been shown to be beneficial in investigating RNA stability and folding. Elucidation of the mechanism of unfolding of RNA by urea is important for understanding the folding pathways. In addition to studying denaturation of RNA in aqueous urea, it is important to understand the nature and strength of interactions of the building blocks of RNA. In this study, a systematic examination of the structural features and energetic factors involving interactions between nucleobases and urea is presented. Results from molecular dynamics (MD) simulations on each of the five DNA/RNA bases in water and eight different concentrations of aqueous urea, and free energy calculations using the thermodynamic integration method are presented. The interaction energies between all the nucleobases with the solvent environment and the transfer free energies become more favorable with respect to increase in the concentration of urea. Preferential interactions of urea versus water molecules with all model systems determined using Kirkwood-Buff integrals and two-domain models indicate preference of urea by nucleobases in comparison to water. The modes of interaction between urea and the nucleobases were analyzed in detail. In addition to the previously identified hydrogen bonding and stacking interactions between urea and nucleobases that stabilize the unfolded states of RNA in aqueous solution, NH-π interactions are proposed to be important. Dynamic properties of each of these three modes of interactions have been presented. The study provides fundamental insights into the nature of interaction of urea molecules with nucleobases and how it disrupts nucleic acids.
Collapse
Affiliation(s)
- Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Aditya Chattopadhyay
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Nila M Pazhayam
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
65
|
Amsdr A, Noudeh ND, Liu L, Chalikian TV. On urea and temperature dependences of m-values. J Chem Phys 2019; 150:215103. [DOI: 10.1063/1.5097936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alah Amsdr
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Negar Dehghan Noudeh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
66
|
Bayat M, Karami L, Gourabi H, Ahmad F, Dormiani K, Nasr Esfahani MH, Saboury AA. Stabilizing osmolytes' effects on the structure, stability and function of tc-tenecteplase: A one peptide bond digested form of tenecteplase. Int J Biol Macromol 2019; 130:863-877. [PMID: 30849467 DOI: 10.1016/j.ijbiomac.2019.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023]
Abstract
Organic osmolytes, as major cellular compounds, cause protein stabilization in the native form. In the present study, the possible chaperone effects of the three naturally occurring osmolytes on the two-chain form of tenecteplase (tc-TNK), a recombinant, genetically engineered mutant tissue plasminogen activator, have been explored by using circular dichroism, steady-state fluorescence, UV-Visible spectroscopy, and in silico experiments. The tc-TNK is derived from the one-chain protein upon disruption of one peptide bond. Thermal denaturation experiments showed a slightly more stabilizing effect of the three co-solvents on the single-chain TNK (sc-TNK) in comparison to that on tc-TNK. Unlike single-chain tenecteplase, the two-chain form undergoes reversible denaturation which is somehow perturbed in some cases as the result of the presence of osmolytes. Very minor changes in the secondary structure and the tertiary structure were observed. The molecular dynamics simulations and comparative structural analysis of catalytic domain of the protein in the single-chain and two-chain forms in pure water, mannitol/water, trehalose/water, and sucrose/water showed that while the stabilizing effect of the three osmolytes on tc-TNK might be induced by preferential accumulation of these molecules around the nonpolar and aromatic residues, that is to say, fewer water-hydrophobic residues' interactions in tc-TNK, sc-TNK is stabilized by preferential exclusion effect.
Collapse
Affiliation(s)
- Mahdieh Bayat
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute, Tehran, Iran
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Kianoush Dormiani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad H Nasr Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Ali A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
67
|
Budkov YA, Kolesnikov AL. Models of the Conformational Behavior of Polymers in Mixed Solvents. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Quantum mechanical investigation of the nature of nucleobase-urea stacking interaction, a crucial driving force in RNA unfolding in aqueous urea. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
69
|
Chakraborty S, Ray D, Aswal VK, Ghosh S. Multi-Stimuli-Responsive Directional Assembly of an Amphiphilic Donor-Acceptor Alternating Supramolecular Copolymer. Chemistry 2018; 24:16379-16387. [DOI: 10.1002/chem.201803170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Saptarshi Chakraborty
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| | - Debes Ray
- Solid State Physics Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| | - Suhrit Ghosh
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| |
Collapse
|
70
|
Zetterholm SG, Verville GA, Boutwell L, Boland C, Prather JC, Bethea J, Cauley J, Warren KE, Smith SA, Magers DH, Hammer NI. Noncovalent Interactions between Trimethylamine N-Oxide (TMAO), Urea, and Water. J Phys Chem B 2018; 122:8805-8811. [PMID: 30165021 DOI: 10.1021/acs.jpcb.8b04388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) and urea are two important osmolytes with their main significance to the biophysical field being in how they uniquely interact with proteins. Urea is a strong protein destabilizing agent, whereas TMAO is known to counteract urea's deleterious effects. The exact mechanisms by which TMAO stabilizes and urea destabilizes folded proteins continue to be debated in the literature. Although recent evidence has suggested that urea binds directly to amino acid side chains to make protein folding less thermodynamically favored, it has also been suggested that urea acts indirectly to denature proteins by destabilizing the surrounding hydrogen bonding water networks. Here, we elucidate the molecular level mechanism of TMAO's unique ability to counteract urea's destabilizing nature by comparing Raman spectroscopic frequency shifts to the results of electronic structure calculations of microsolvated molecular clusters. Experimental and computational data suggest that the addition of TMAO into an aqueous solution of urea induces blue shifts in urea's H-N-H symmetric bending modes, which is evidence for direct interactions between the two cosolvents.
Collapse
Affiliation(s)
- Sarah G Zetterholm
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Genevieve A Verville
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - Leeann Boutwell
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Christopher Boland
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - John C Prather
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - Jonathan Bethea
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Jordan Cauley
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States.,Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Kayla E Warren
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| | - Shelley A Smith
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - David H Magers
- Department of Chemistry and Biochemistry , Mississippi College , P.O. Box 4036, Clinton , Mississippi 39058 , United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry , University of Mississippi , P.O. Box 1848, University , Mississippi 38655 , United States
| |
Collapse
|
71
|
Rowe JB, Flynn RP, Wooten HR, Noufer HA, Cancel RA, Zhang J, Subramony JA, Pechenov S, Wang Y. Submicron Aggregation of Chemically Denatured Monoclonal Antibody. Mol Pharm 2018; 15:4710-4721. [DOI: 10.1021/acs.molpharmaceut.8b00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jacob B. Rowe
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Rhiannon P. Flynn
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Harrison R. Wooten
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hailey A. Noufer
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Rachel A. Cancel
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Jifeng Zhang
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - J. Anand Subramony
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Sergei Pechenov
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| |
Collapse
|
72
|
Kadtsyn ED, Anikeenko AV, Medvedev NN. Structure of Aqueous Solutions of Trimethylaminoxide, Urea, and Their Mixture. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618020130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Han X, Xie Y, Wu Q, Wu S. A novel protein digestion method with the assistance of alternating current denaturation for high efficient protein digestion and mass spectrometry analysis. Talanta 2018; 184:382-387. [PMID: 29674058 DOI: 10.1016/j.talanta.2018.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
Protein denaturation has always displayed a huge necessity for mass spectrometry (MS)-based protein identification methods in proteomics. In this research, a novel protein digestion method with the assistance of alternating current (AC) denaturation has been proposed and evaluated. In this method, merely, 200 mM ammonium bicarbonate buffer solution (pH, 8.2) was used to dissolve proteins and act as the electrolyte, and protein denaturation could be achieved in several seconds. For apo-transferrin, ovalbumin and bovine serum albumin that are resistant to digestion in their native states, confident amino acid sequence coverage by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis were obtained after 200 v AC denaturation. The applicability of this method was further investigated via analyzing a rat liver proteome sample using nano reversed phase liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoRPLC-ESI-MS/MS). As a result, 458 proteins were identified which is comparable to the in-solution digestion via 8 M urea denaturation (375 proteins). All these results demonstrated that AC denaturation could offer an efficient assistance for a clean and high-throughput digestion in the individual level and proteome level.
Collapse
Affiliation(s)
- Xiaoxun Han
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Yiming Xie
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Qin Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Shuaibin Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China.
| |
Collapse
|
74
|
Espinosa YR, Grigera RJ, Ferrara CG. Mechanisms associated with the effects of urea on the micellar structure of sodium dodecyl sulphate in aqueous solutions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:117-123. [PMID: 29758250 DOI: 10.1016/j.pbiomolbio.2018.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/10/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
Abstract
We used simulations by Molecular Dynamics to characterize the mechanism whereby the variations in the urea concentration modifies the micellar structure of sodium dodecyl sulfate monomers in water. From a self-assembled micellar system, we observed that increasing urea concentration leads to a decrease in aggregation number. Likewise, when increasing urea concentration, the micelles increase their nonpolar surface exposed to solvent, while the polar surface exposed to solvent decreases. This rearrangement process of SDS micelles in presence of urea is mainly due to the fact that the ions of Na+ that stabilize the micellar structure increase its interaction with urea. In this process, the SDS hydrophilic head and Na+ ions increases its solvation by urea, destabilizing micellar structure and exponing the hydrophobic core to the solvent.
Collapse
Affiliation(s)
- Yanis R Espinosa
- Institute of Physics of Liquids and Biological Systems (IFLYSIB), CONICET and National University of La Plata, Argentina
| | - Raúl J Grigera
- CEQUINOR, National University of La Plata and Conicet, Argentina
| | - C Gastón Ferrara
- Institute of Engineering and Agronomy, National University Arturo Jauretche, Av Calchaqui no. 6200, B1888BTE, Florencio Varela, Argentina; Institute of Physics of Liquids and Biological Systems (IFLYSIB), CONICET and National University of La Plata, Argentina.
| |
Collapse
|
75
|
Adamczak B, Kogut M, Czub J. Effect of osmolytes on the thermal stability of proteins: replica exchange simulations of Trp-cage in urea and betaine solutions. Phys Chem Chem Phys 2018; 20:11174-11182. [PMID: 29629459 DOI: 10.1039/c7cp07436k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although osmolytes are known to modulate the folding equilibrium, the molecular mechanism of their effect on thermal denaturation of proteins is still poorly understood. Here, we simulated the thermal denaturation of a small model protein (Trp-cage) in the presence of denaturing (urea) and stabilizing (betaine) osmolytes, using the all-atom replica exchange molecular dynamics simulations. We found that urea destabilizes Trp-cage by enthalpically-driven association with the protein, acting synergistically with temperature to induce unfolding. In contrast, betaine is sterically excluded from the protein surface thereby exerting entropic depletion forces that contribute to the stabilization of the native state. In fact, we find that while at low temperatures betaine slightly increases the folding free energy of Trp-cage by promoting another near-native conformation, it protects the protein against temperature-induced denaturation. This, in turn, can be attributed to enhanced exclusion of betaine at higher temperatures that arises from less attractive interactions with the protein surface.
Collapse
Affiliation(s)
- Beata Adamczak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | | | | |
Collapse
|
76
|
Syed SB, Khan FI, Khan SH, Srivastava S, Hasan GM, Lobb KA, Islam A, Ahmad F, Hassan MI. Mechanistic insights into the urea-induced denaturation of kinase domain of human integrin linked kinase. Int J Biol Macromol 2018; 111:208-218. [DOI: 10.1016/j.ijbiomac.2017.12.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 01/01/2023]
|
77
|
Tokunaga Y, Yamamori Y, Matubayasi N. Probabilistic analysis for identifying the driving force of protein folding. J Chem Phys 2018; 148:125101. [PMID: 29604891 DOI: 10.1063/1.5019410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.
Collapse
Affiliation(s)
- Yoshihiko Tokunaga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yu Yamamori
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
78
|
Kundu A, Verma PK, Cho M. Effect of Osmolytes on the Conformational Behavior of a Macromolecule in a Cytoplasm-like Crowded Environment: A Femtosecond Mid-IR Pump-Probe Spectroscopy Study. J Phys Chem Lett 2018; 9:724-731. [PMID: 29365266 DOI: 10.1021/acs.jpclett.7b03297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Osmolytes found endogenously in almost all living beings play an important role in regulating cell volume under harsh environment. Here, to address the longstanding questions about the underlying mechanism of osmolyte effects, we use femtosecond mid-IR pump-probe spectroscopy with two different IR probes that are the OD stretching mode of HDO and the azido stretching mode of azido-derivatized poly(ethylene glycol) dimethyl ether (PEGDME). Our experimental results show that protecting osmolytes bind strongly with water molecules and dehydrate polymer surface, which results in promoting intramolecular interactions of the polymer. By contrast, urea behaves like water molecules without significantly disrupting water H-bonding network and favors extended and random-coil segments of the polymer chain by directly participating in solvation of the polymer. Our findings highlight the importance of direct interaction between urea and macromolecule, while protecting osmolytes indirectly affect the macromolecule through enhancing the water-osmolyte interaction in a crowded environment, which is the case that is often encountered in real biological systems.
Collapse
Affiliation(s)
- Achintya Kundu
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Republic of Korea
| | - Pramod Kumar Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi-221005, India
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| |
Collapse
|
79
|
The opposing effect of urea and high pressure on the conformation of the protein β-hairpin: A molecular dynamics simulation study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
80
|
Budkov YA, Kiselev MG. Flory-type theories of polymer chains under different external stimuli. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:043001. [PMID: 29271365 DOI: 10.1088/1361-648x/aa9f56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.
Collapse
Affiliation(s)
- Yu A Budkov
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia. Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | | |
Collapse
|
81
|
Liu Z, Thirumalai D. Denaturants Alter the Flux through Multiple Pathways in the Folding of PDZ Domain. J Phys Chem B 2018; 122:1408-1416. [PMID: 29303586 DOI: 10.1021/acs.jpcb.7b11408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although we understand many aspects of how small proteins (number of residues less than about hundred) fold, it is a major challenge to quantitatively describe how large proteins self-assemble. To partially overcome this challenge, we performed simulations using the self-organized polymer model with side chains (SOP-SC) in guanidinium chloride (GdmCl), using the molecular transfer model (MTM), to describe the folding of the 110-residue PDZ3 domain. The simulations reproduce the folding thermodynamics accurately including the melting temperature (Tm), the stability of the folded state with respect to the unfolded state. We show that the calculated dependence of ln kobs (kobs is the relaxation rate) has the characteristic chevron shape. The slopes of the chevron plots are in good agreement with experiments. We show that PDZ3 folds by four major pathways populating two metastable intermediates, in accord with the kinetic partitioning mechanism. The structure of one of the intermediates, populated after polypeptide chain collapse, is structurally similar to an equilibrium intermediate. Surprisingly, the connectivities between the intermediates and hence, the fluxes through the pathways depend on the concentration of GdmCl. The results are used to predict possible outcomes for unfolding of PDZ domain subject to mechanical forces. Our study demonstrates that, irrespective of the size or topology, simulations based on MTM and SOP-SC offer a theoretical framework for describing the folding of proteins, mimicking precisely the conditions used in experiments.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department of Physics, Beijing Normal University , Beijing 100875, China
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
82
|
Esposito C, Vitalis A. Precise estimation of transfer free energies for ionic species between similar media. Phys Chem Chem Phys 2018; 20:27003-27010. [DOI: 10.1039/c8cp05331f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two-dimensional umbrella sampling is combined with molecular dynamics to calculate correction-free estimates of transfer properties for individual ions.
Collapse
Affiliation(s)
- Carmen Esposito
- University of Zurich
- Department of Biochemistry
- CH-8057 Zurich
- Switzerland
| | - Andreas Vitalis
- University of Zurich
- Department of Biochemistry
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
83
|
Ganguly P, Boserman P, van der Vegt NFA, Shea JE. Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein–Urea Preferential Interaction. J Am Chem Soc 2017; 140:483-492. [DOI: 10.1021/jacs.7b11695] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pritam Ganguly
- Department
of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Pablo Boserman
- Department
of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Center of Smart
Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße
10, Darmstadt 64287, Germany
| | - Joan-Emma Shea
- Department
of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
84
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
85
|
Dey N, Bhattacharya S. Fluorescent Organic Nanoaggregates for Selective Recognition of d
-(−)-Ribose in Biological Fluids and Oral Supplements. Chemistry 2017; 23:16547-16554. [DOI: 10.1002/chem.201703034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
- Indian Association of Cultivation of Science; Kolkata 70032 India
| |
Collapse
|
86
|
Goyal S, Chattopadhyay A, Kasavajhala K, Priyakumar UD. Role of Urea–Aromatic Stacking Interactions in Stabilizing the Aromatic Residues of the Protein in Urea-Induced Denatured State. J Am Chem Soc 2017; 139:14931-14946. [DOI: 10.1021/jacs.7b05463] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siddharth Goyal
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Aditya Chattopadhyay
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Koushik Kasavajhala
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - U. Deva Priyakumar
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
87
|
van der Vegt NFA, Nayar D. The Hydrophobic Effect and the Role of Cosolvents. J Phys Chem B 2017; 121:9986-9998. [DOI: 10.1021/acs.jpcb.7b06453] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nico F. A. van der Vegt
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Divya Nayar
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
88
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
89
|
Chand A, Chowdhuri S. A comparative study of hydrogen bonding structure and dynamics in aqueous urea solution of amides with varying hydrophobicity: Effect of addition of trimethylamine N -oxide (TMAO). J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
90
|
Prakash A, Dixit G, Meena NK, Singh R, Vishwakarma P, Mishra S, Lynn AM. Elucidation of stable intermediates in urea-induced unfolding pathway of human carbonic anhydrase IX. J Biomol Struct Dyn 2017; 36:2391-2406. [DOI: 10.1080/07391102.2017.1355847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amresh Prakash
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gunjan Dixit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Naveen Kumar Meena
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ruhar Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Smriti Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
91
|
Yamamori Y, Matubayasi N. Interaction-component analysis of the effects of urea and its alkylated derivatives on the structure of T4-lysozyme. J Chem Phys 2017; 146:225103. [DOI: 10.1063/1.4985222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu Yamamori
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
92
|
Ploetz EA, Smith PE. Simulated pressure denaturation thermodynamics of ubiquitin. Biophys Chem 2017; 231:135-145. [PMID: 28576277 DOI: 10.1016/j.bpc.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, 213 CBC Building, 1212 Mid Campus Dr. North, Kansas State University, Manhattan, KS 66506-0401, United States
| | - Paul E Smith
- Department of Chemistry, 213 CBC Building, 1212 Mid Campus Dr. North, Kansas State University, Manhattan, KS 66506-0401, United States.
| |
Collapse
|
93
|
Miner JC, García AE. Equilibrium Denaturation and Preferential Interactions of an RNA Tetraloop with Urea. J Phys Chem B 2017; 121:3734-3746. [PMID: 28181434 DOI: 10.1021/acs.jpcb.6b10767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urea is an important organic cosolute with implications in maintaining osmotic stress in cells and differentially stabilizing ensembles of folded biomolecules. We report an equilibrium study of urea-induced denaturation of a hyperstable RNA tetraloop through unbiased replica exchange molecular dynamics. We find that, in addition to destabilizing the folded state, urea smooths the RNA free energy landscape by destabilizing specific configurations, and forming favorable interactions with RNA nucleobases. A linear concentration-dependence of the free energy (m-value) is observed, in agreement with the results of other RNA hairpins and proteins. Additionally, analysis of the hydrogen-bonding and stacking interactions within RNA primarily show temperature-dependence, while interactions between RNA and urea primarily show concentration-dependence. Our findings provide valuable insight into the effects of urea on RNA folding and describe the thermodynamics of a basic RNA hairpin as a function of solution chemistry.
Collapse
Affiliation(s)
- Jacob C Miner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States.,Center for Nonlinear Studies, CNLS, MS B258, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Angel E García
- Center for Nonlinear Studies, CNLS, MS B258, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
94
|
Kitazawa S, Fossat MJ, McCallum SA, Garcia AE, Royer CA. NMR and Computation Reveal a Pressure-Sensitive Folded Conformation of Trp-Cage. J Phys Chem B 2017; 121:1258-1267. [DOI: 10.1021/acs.jpcb.6b11810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soichiro Kitazawa
- Biological
Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Martin J. Fossat
- Biological
Sciences, Rensselaer Polytechnic Institute, Troy, New York
- Laboratoire Charles
Coulomb UMR 5221 CNRS-UM, Montpellier, France
| | - Scott A. McCallum
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Angel E. Garcia
- Department
of Physics, Rensselaer Polytechnic Institute, Troy, New York
| | | |
Collapse
|
95
|
|
96
|
Gao M, Arns L, Winter R. Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Loana Arns
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
97
|
Gao M, Arns L, Winter R. Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angew Chem Int Ed Engl 2017; 56:2302-2306. [PMID: 28102930 DOI: 10.1002/anie.201611843] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 12/31/2022]
Abstract
Folding of ribonucleic acids (RNAs) is driven by several factors, such as base pairing and stacking, chain entropy, and ion-mediated electrostatics, which have been studied in great detail. However, the power of background molecules in the cellular milieu is often neglected. Herein, we study the effect of common osmolytes on the folding equilibrium of a hairpin-structured RNA and, using pressure perturbation, provide novel thermodynamic and volumetric insights into the modulation mechanism. The presence of TMAO causes an increased thermal stability and a more positive volume change for the helix-to-coil transition, whereas urea destabilizes the hairpin and leads to an increased expansibility of the unfolded state. Further, we find a strong interplay between water, salt, and osmolyte in driving the thermodynamics and defining the temperature and pressure stability limit of the RNA. Our results support a universal working mechanism of TMAO and urea to (de)stabilize proteins and the RNA.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Loana Arns
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
98
|
Smolin N, Voloshin VP, Anikeenko AV, Geiger A, Winter R, Medvedev NN. TMAO and urea in the hydration shell of the protein SNase. Phys Chem Chem Phys 2017; 19:6345-6357. [DOI: 10.1039/c6cp07903b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed all-atom MD simulations of the protein SNase in aqueous solution and in the presence of two major osmolytes, trimethylamine-N-oxide (TMAO) and urea, as cosolvents at various concentrations and compositions and at different pressures and temperatures.
Collapse
Affiliation(s)
- Nikolai Smolin
- Department of Cell and Molecular Physiology
- Loyola University Chicago
- Maywood
- USA
| | | | - Alexey V. Anikeenko
- Institute of Chemical Kinetics and Combustion
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Alfons Geiger
- Physikalische Chemie
- Fakultät für Chemie und Chemische Biologie
- Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - Roland Winter
- Physikalische Chemie
- Fakultät für Chemie und Chemische Biologie
- Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - Nikolai N. Medvedev
- Institute of Chemical Kinetics and Combustion
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
99
|
Ghosh S, Dey S, Patel M, Chakrabarti R. Can an ammonium-based room temperature ionic liquid counteract the urea-induced denaturation of a small peptide? Phys Chem Chem Phys 2017; 19:7772-7787. [DOI: 10.1039/c6cp08842b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The folding/unfolding equilibrium of proteins in aqueous medium can be altered by adding small organic molecules generally termed as co-solvents.
Collapse
Affiliation(s)
- Soumadwip Ghosh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai – 400076
- India
| | - Souvik Dey
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai – 400076
- India
| | - Mahendra Patel
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai – 400076
- India
| | - Rajarshi Chakrabarti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai – 400076
- India
| |
Collapse
|
100
|
Agieienko V, Horinek D, Buchner R. Hydration and self-aggregation of a neutral cosolute from dielectric relaxation spectroscopy and MD simulations: the case of 1,3-dimethylurea. Phys Chem Chem Phys 2017; 19:219-230. [DOI: 10.1039/c6cp07407c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1,3-Dimethylurea irrotationally binds 1–2H2O molecules close to its carbonyl and impedes dynamics of ca. 40 H2O molecules by methyl substituents.
Collapse
Affiliation(s)
- Vira Agieienko
- Department of Physical Chemistry
- Kazan Federal University
- 420008 Kazan
- Russia
- Department of Inorganic Chemistry
| | - Dominik Horinek
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- D-93040 Regensburg
- Germany
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- D-93040 Regensburg
- Germany
| |
Collapse
|