51
|
Eichenberger AP, van Gunsteren WF, Smith LJ. Structure of hen egg-white lysozyme solvated in TFE/water: a molecular dynamics simulation study based on NMR data. JOURNAL OF BIOMOLECULAR NMR 2013; 55:339-353. [PMID: 23494634 DOI: 10.1007/s10858-013-9717-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/17/2013] [Indexed: 06/01/2023]
Abstract
Various experimental studies of hen egg white lysozyme (HEWL) in water and TFE/water clearly indicate structural differences between the native state and TFE state of HEWL, e.g. the helical content of the protein in the TFE state is much higher than in the native state. However, the available detailed NMR studies were not sufficient to determine fully a structure of HEWL in the TFE state. Different molecular dynamics (MD) simulations, i.e. at room temperature, at increased temperature and using proton-proton distance restraints derived from NMR NOE data, have been used to generate configurational ensembles corresponding to the TFE state of HEWL. The configurational ensemble obtained at room temperature using atom-atom distance restraints measured for HEWL in TFE/water solution satisfies the experimental data and has the lowest protein energy. In this ensemble residues 50-58, which are part of the β-sheet in native HEWL, adopt fluctuating α-helical secondary structure.
Collapse
Affiliation(s)
- Andreas P Eichenberger
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, Zurich, Switzerland
| | | | | |
Collapse
|
52
|
Jia X, Zhang JZ, Mei Y. Assessing the accuracy of the general AMBER force field for 2,2,2-trifluoroethanol as solvent. J Mol Model 2013; 19:2355-61. [DOI: 10.1007/s00894-013-1776-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
53
|
Li M, Zhu L, Zhou CY, Sun S, Fan YJ, Zhuang ZM. Molecular characterization and expression of a novel big defensin (Sb-BDef1) from ark shell, Scapharca broughtonii. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1167-1173. [PMID: 23000749 DOI: 10.1016/j.fsi.2012.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Big defensins, endogenous cysteine-rich antimicrobial peptides (AMPs) with antimicrobial activity and immunomodulatory property, play crucial roles in host defense against various microbial pathogens. A novel big defensin (Sb-BDef1) of ark shell Scapharca broughtonii was identified by expressed sequence tag (EST) and RACE techniques. The Sb-BDef1 cDNA contained an open reading frame (ORF) of 336-bp encoding a polypeptide of 111 amino acids with a putative signal peptide of 21 amino acid residues, followed by a putative propeptide of 11 residues and a putative mature peptide of 79 residues. The mature peptide shared the common features of big defensins, including a high hydrophobic residues region (59%) in the N-terminus, a defensin domain in the C-terminus, which perfectly corresponds to the six conserved disulfide-bonded cysteine residues involved in the formation of the internal disulfide bridges (C1-C5, C2-C4 and C3-C6) in all big defensins from mollusk, horseshoe crab and amphioxus. Quantitative real-time PCR analysis revealed that the expression of Sb-BDef1 transcript was detected in all the tissues examined from normal ark shells, and the temporal expression of Sb-BDef1 mRNA was remarkably up-regulated at 8, 16 h in hemocytes, and at 16, 24 h in hepatopancreas after Vibrio anguillarum-challenge, respectively. These results suggested that Sb-BDef1 was a constitutive and inducible acute-phase protein and should be involved in immune response of Gram-negative microbial infection in ark shell S. broughtonii.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | | | | | | | | | | |
Collapse
|
54
|
Tang H, Yin L, Lu H, Cheng J. Water-soluble poly(L-serine)s with elongated and charged side-chains: synthesis, conformations, and cell-penetrating properties. Biomacromolecules 2012; 13:2609-15. [PMID: 22853191 PMCID: PMC3555145 DOI: 10.1021/bm3009445] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Water-soluble poly(L-serine)s bearing long side-chain with terminal charge groups were synthesized via ring-opening polymerization of O-pentenyl-L-serine N-carboxyanhydride followed by thiol-ene reactions. These side-chain modified poly(L-serine)s adopt β-sheet conformation in aqueous solution with excellent stability against changes in pH and temperature. These water-soluble poly(L-serine) derivatives with charged side-chain functional groups and stable β-sheet conformations showed membrane-penetrating capabilities in different cell lines with low cytotoxicity.
Collapse
Affiliation(s)
- Haoyu Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Hua Lu
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
55
|
Anderson VL, Webb WW, Eliezer D. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation. Phys Biol 2012; 9:056005. [PMID: 22932003 DOI: 10.1088/1478-3975/9/5/056005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.
Collapse
Affiliation(s)
- V L Anderson
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
56
|
King JT, Arthur EJ, Brooks CL, Kubarych KJ. Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents. J Phys Chem B 2012; 116:5604-11. [PMID: 22530969 DOI: 10.1021/jp300835k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermodynamic driving forces for protein folding, association, and function are often determined by protein-water interactions. With a novel covalently bound labeling approach, we have used sensitive vibrational probes, site-selectively conjugated to two lysozyme variants-in conjunction with ultrafast two-dimensional infrared (2D-IR) spectroscopy-to investigate directly the protein-water interface. By probing alternatively a topologically flat, rigid domain and a flexible domain, we find direct experimental evidence for spatially heterogeneous hydration dynamics. The hydration environment around globular proteins can vary from exhibiting bulk-like hydration dynamics to dynamically constrained water, which results from stifled hydrogen bond switching dynamics near extended hydrophobic surfaces. Furthermore, we leverage preferential solvation exchange to demonstrate that the liberation of dynamically constrained water is a sufficient driving force for protein-surface association reactions. These results provide an intuitive picture of the dynamic aspects of hydrophobic hydration of proteins, illustrating an essential function of water in biological processes.
Collapse
Affiliation(s)
- John T King
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
57
|
Deciphering the molecular structure of cryptolepain in organic solvents. Biochimie 2012; 94:310-7. [DOI: 10.1016/j.biochi.2011.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
|
58
|
Blocquel D, Habchi J, Gruet A, Blangy S, Longhi S. Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies. ACTA ACUST UNITED AC 2012; 8:392-410. [DOI: 10.1039/c1mb05401e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Miller SE, Kallenbach NR, Arora PS. Reversible α-helix formation controlled by a hydrogen bond surrogate. Tetrahedron 2011; 68:4434-4437. [PMID: 23144512 DOI: 10.1016/j.tet.2011.12.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Strategically placed covalent linkages have been shown to stabilize helical conformations in short peptide sequences. Here we report the synthesis of a stabilized α-helix that utilizes an internal disulfide linkage. Structural analysis indicates that the dynamic nature of the disulfide bridge allows for the reversible formation of an α-helix through oxidation and reduction reactions.
Collapse
Affiliation(s)
- Stephen E Miller
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
60
|
Ndao M, Dutta K, Bromley KM, Lakshminarayanan R, Sun Z, Rewari G, Moradian-Oldak J, Evans JS. Probing the self-association, intermolecular contacts, and folding propensity of amelogenin. Protein Sci 2011; 20:724-34. [PMID: 21351181 DOI: 10.1002/pro.603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin.
Collapse
Affiliation(s)
- Moise Ndao
- Laboratory for Chemical Physics, New York University, New York, New York 10010, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Mehta G, Sen S, Suresha Kumara T. Can the conformational flexibility of cis-decalins be modulated through intramolecular O–H⋯O hydrogen bonding? Profiling the molecular and supramolecular attributes of designer cis-fused polycyclitols. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Verdegem D, Badillo A, Wieruszeski JM, Landrieu I, Leroy A, Bartenschlager R, Penin F, Lippens G, Hanoulle X. Domain 3 of NS5A protein from the hepatitis C virus has intrinsic alpha-helical propensity and is a substrate of cyclophilin A. J Biol Chem 2011; 286:20441-54. [PMID: 21489988 DOI: 10.1074/jbc.m110.182436] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonstructural protein 5A (NS5A) is essential for hepatitis C virus (HCV) replication and constitutes an attractive target for antiviral drug development. Although structural data for its in-plane membrane anchor and domain D1 are available, the structure of domains 2 (D2) and 3 (D3) remain poorly defined. We report here a comparative molecular characterization of the NS5A-D3 domains of the HCV JFH-1 (genotype 2a) and Con1 (genotype 1b) strains. Combining gel filtration, CD, and NMR spectroscopy analyses, we show that NS5A-D3 is natively unfolded. However, NS5A-D3 domains from both JFH-1 and Con1 strains exhibit a propensity to partially fold into an α-helix. NMR analysis identifies two putative α-helices, for which a molecular model could be obtained. The amphipathic nature of the first helix and its conservation in all genotypes suggest that it might correspond to a molecular recognition element and, as such, promote the interaction with relevant biological partner(s). Because mutations conferring resistance to cyclophilin inhibitors have been mapped into NS5A-D3, we also investigated the functional interaction between NS5A-D3 and cyclophilin A (CypA). CypA indeed interacts with NS5A-D3, and this interaction is completely abolished by cyclosporin A. NMR heteronuclear exchange experiments demonstrate that CypA has in vitro peptidyl-prolyl cis/trans-isomerase activity toward some, but not all, of the peptidyl-prolyl bonds in NS5A-D3. These studies lead to novel insights into the structural features of NS5A-D3 and its relationships with CypA.
Collapse
|
63
|
Vuluga D, Legros J, Crousse B, Slawin AMZ, Laurence C, Nicolet P, Bonnet-Delpon D. Influence of the Structure of Polyfluorinated Alcohols on Brønsted Acidity/Hydrogen-Bond Donor Ability and Consequences on the Promoter Effect. J Org Chem 2011; 76:1126-33. [DOI: 10.1021/jo1023816] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Vuluga
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| | - Julien Legros
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| | - Benoit Crousse
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| | - Alexandra M. Z. Slawin
- Molecular Structure Laboratory, School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Christian Laurence
- CEISAM CNRS UMR 6230, Faculté des Sciences et des Techniques, Univ. Nantes, 2 rue de la Houssinière, F-44322 Nantes, France
| | - Pierre Nicolet
- CEISAM CNRS UMR 6230, Faculté des Sciences et des Techniques, Univ. Nantes, 2 rue de la Houssinière, F-44322 Nantes, France
| | - Danièle Bonnet-Delpon
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
64
|
Filippov AV, Gröbner G, Antzutkin ON. Aggregation of amyloid Abeta((1-40)) peptide in perdeuterated 2,2,2-trifluoroethanol caused by ultrasound sonication. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:427-434. [PMID: 20474020 DOI: 10.1002/mrc.2596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ultrasound sonication of protein and peptide solutions is routinely used in biochemical, biophysical, pharmaceutical and medical sciences to facilitate and accelerate dissolution of macromolecules in both aqueous and organic solvents. However, the impact of ultrasound waves on folding/unfolding of treated proteins, in particular, on aggregation kinetics of amyloidogenic peptides and proteins is not understood. In this work, effects of ultrasound sonication on the misfolding and aggregation behavior of the Alzheimer's Abeta((1-40))-peptide is studied by pulsed-field gradient (PFG) spin-echo diffusion NMR and UV circular dichroism (CD) spectroscopy. Upon simple dissolution of Abeta((1-40)) in perdeuterated trifluoroethanol, CF(3)-CD(2)-OD (TFE-d(3)), the peptide is present in the solution as a stable monomer adopting alpha-helical secondary structural motifs. The self-diffusion coefficient of Abeta((1-40)) monomers in TFE-d(3) was measured as 1.35 x 10(-10) m(2) s(-1), reflecting its monomeric character. However, upon ultrasonic sonication for less than 5 min, considerable populations of Abeta molecules (ca 40%) form large aggregates as reflected in diffusion coefficients smaller than 4.0 x 10(-13) m(2) s(-1). Sonication for longer times (up to 40 min in total) effectively reduces the fraction of these aggregates in (1)H PFG NMR spectra to ca 25%. Additionally, absorption below 230 nm increased significantly upon sonication treatment, an observation, which also clearly confirms the ongoing aggregation process of Abeta((1-40)) in TFE-d(3). Surprisingly, upon ultrasound sonication only small changes in the peptide secondary structure were detected by CD: the peptide molecules mainly adopt alpha-helical motifs in both monomers and aggregates formed upon sonication.
Collapse
Affiliation(s)
- Andrei V Filippov
- Division of Chemical Engineering, Luleå University of Technology, Luleå SE-97187, Sweden.
| | | | | |
Collapse
|
65
|
Khodarahmi R, Soori H, Amani M. Study of cosolvent-induced alpha-chymotrypsin fibrillogenesis: does protein surface hydrophobicity trigger early stages of aggregation reaction? Protein J 2010; 28:349-61. [PMID: 19768527 DOI: 10.1007/s10930-009-9200-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in alpha-chymotrypsin-based experimental system.
Collapse
Affiliation(s)
- Reza Khodarahmi
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, P. O. Box 67145-1673, Kermanshah, Iran.
| | | | | |
Collapse
|
66
|
Ravichandr S, Kumaravel K, Rameshkuma G, AjithKumar T. Antimicrobial Peptides from the Marine Fishes. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rji.2010.146.156] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
67
|
Moreau RJ, Schubert CR, Nasr KA, Török M, Miller JS, Kennedy RJ, Kemp DS. Context-independent, temperature-dependent helical propensities for amino acid residues. J Am Chem Soc 2009; 131:13107-16. [PMID: 19702302 PMCID: PMC2770013 DOI: 10.1021/ja904271k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Assigned from data sets measured in water at 2, 25, and 60 degrees C containing (13)C=O NMR chemical shifts and [theta](222) ellipticities, helical propensities are reported for the 20 genetically coded amino acids, as well as for norvaline and norleucine. These have been introduced by chemical synthesis at central sites within length-optimized, spaced, solubilized Ala(19) hosts. The resulting polyalanine-derived, quantitative propensity sets express for each residue its temperature-dependent but context-independent tendency to forego a coil state and join a preexisting helical conformation. At 2 degrees C their rank ordering is: P << G < H < C, T, N < S < Y, F, W < V, D < K < Q < I < R, M < L < E < A; at 60 degrees C the rank becomes: H, P < G < C < R, K < T, Y, F < N, V < S < Q < W, D < I, M < E < A < L. The DeltaDeltaG values, kcal/mol, relative to alanine, for the cluster T, N, S, Y, F, W, V, D, Q, imply that at 2 degrees C all are strong breakers: DeltaDeltaG(mean) = +0.63 +/- 0.11, but at 60 degrees C their breaking tendencies are dramatically attenuated and converge toward the mean: DeltaDeltaG(mean) = +0.25 +/- 0.07. Accurate modeling of helix-rich proteins found in thermophiles, mesophiles, and organisms that flourish near 0 degrees C thus requires appropriately matched propensity sets. Comparisons are offered between the temperature-dependent propensity assignments of this study and those previously assigned by the Scheraga group; the special problems that attend propensity assignments for charged residues are illustrated by lysine guest data; and comparisons of errors in helicity assignments from shifts and ellipticity data show that the former provide superior precision and accuracy.
Collapse
Affiliation(s)
- Robert J Moreau
- Department of Chemistry, Room 6-433, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Molecular thermodynamics of trifluoroethanol-induced helix formation: analysis of the solvation structure and free energy by the 3D-RISM theory. Interdiscip Sci 2009; 1:156-60. [PMID: 20640830 DOI: 10.1007/s12539-009-0037-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 10/20/2022]
Abstract
It has been shown that trifluoroethanol (TFE) induces helical structure in peptides and proteins. The molecular mechanism is, however, still not completely elucidated. In this study, the TFE effects on the solvation structure and on the free energy change associated with the helix-coil transition of a polypeptide are analyzed by using the three-dimensional reference interaction site model (3D-RISM) molecular theory of solvation. The theoretical result shows that TFE preferentially solvates at low concentrations around 30 vol% both for the helix and coil structures. However, the characteristic preferential solvation is not as significant in the TFE-induced helix stabilization as generally considered. It is also found that the overall energy contributes to the free energy difference more substantially than the solvation entropy.
Collapse
|
69
|
Teixeira PCN, de Souza CAM, de Freitas MS, Foguel D, Caffarena ER, Alves LA. Predictions suggesting a participation of beta-sheet configuration in the M2 domain of the P2X(7) receptor: a novel conformation? Biophys J 2009; 96:951-63. [PMID: 19186133 DOI: 10.1016/j.bpj.2008.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/15/2008] [Indexed: 11/18/2022] Open
Abstract
Scanning experiments have shown that the putative TM2 domain of the P2X(7) receptor (P2X(7)R) lines the ionic pore. However, none has identified an alpha-helix structure, the paradigmatic secondary structure of ion channels in mammalian cells. In addition, some researchers have suggested a beta-sheet conformation in the TM2 domain of P2X(2). These data led us to investigate a new architecture within the P2X receptor family. P2X(7)R is considered an intriguing receptor because its activation induces nonselective large pore formation, in contrast to the majority of other ionic channel proteins in mammals. This receptor has two states: a low-conductance channel (approximately 10 pS) and a large pore (> 400 pS). To our knowledge, one fundamental question remains unanswered: Are the P2X(7)R channel and the pore itself the same entity or are they different structures? There are no structural data to help solve this question. Thus, we investigated the hydrophobic M2 domain with the aim of predicting the fitted position and the secondary structure of the TM2 segment from human P2X(7)R (hP2X(7)R). We provide evidence for a beta-sheet conformation, using bioinformatics algorithms and molecular-dynamics simulation in conjunction with circular dichroism in different environments and Fourier transform infrared spectroscopy. In summary, our study suggests the possibility that a segment composed of residues from part of the M2 domain and part of the putative TM2 segment of P2X(7)R is partially folded in a beta-sheet conformation, and may play an important role in channel/pore formation associated with P2X(7)R activation. It is important to note that most nonselective large pores have a transmembrane beta-sheet conformation. Thus, this study may lead to a paradigmatic change in the P2X(7)R field and/or raise new questions about this issue.
Collapse
|
70
|
Rezaei-Ghaleh N, Amininasab M, Nemat-Gorgani M. Conformational changes of alpha-chymotrypsin in a fibrillation-promoting condition: a molecular dynamics study. Biophys J 2008; 95:4139-47. [PMID: 18658209 PMCID: PMC2567952 DOI: 10.1529/biophysj.108.132407] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/07/2008] [Indexed: 11/18/2022] Open
Abstract
Amyloid nanofibril formation appears to be a generic property of polypeptide chains. alpha-Chymotrypsin (aCT) was recently driven toward amyloid-like aggregation by the addition of trifluoroethanol (TFE) at intermediate concentrations. In this study we employed a molecular dynamics simulation to investigate the early events in TFE-induced conformational changes of aCT that precede amyloid formation, and compared the results of the simulation with previous experiments. TFE molecules were found to rapidly replace the water molecules closely associated with the protein surface. The gyration radius, together with total and hydrophobic solvent-accessible surface areas of aCT, was significantly increased. In accord with the experimental observations, the extended beta-conformation of backbone was increased. The secondary structural elements of aCT in water and TFE/water mixture showed a reasonable fit, whereas significant deviations were observed for several loops. These alterations originated largely from main-chain rotations at glycine residues. The catalytic active site and S1 binding pocket of the enzyme were also distorted in the TFE/water mixture. The obtained results are suggested to provide more insights into the conformational properties of the amyloid aggregation-prone protein species. Possible mechanisms of TFE-induced alterations in the conformation and dynamics of the protein structure are also discussed.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- Institute of Biochemistry and Biophysics, Department of Cell and Molecular Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
71
|
Evans JS. “Tuning in” to Mollusk Shell Nacre- and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganic−Organic Composites. Chem Rev 2008; 108:4455-62. [DOI: 10.1021/cr078251e] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John Spencer Evans
- Laboratory for Chemical Physics, Center for Biomolecular Materials Spectroscopy, New York University, 345 E. 24th Street, Room 1007, New York, New York, 10010
| |
Collapse
|
72
|
Dynamic charge interactions create surprising rigidity in the ER/K alpha-helical protein motif. Proc Natl Acad Sci U S A 2008; 105:13356-61. [PMID: 18768817 DOI: 10.1073/pnas.0806256105] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein alpha-helices are ubiquitous secondary structural elements, seldom considered to be stable without tertiary contacts. However, amino acid sequences in proteins that are based on alternating repeats of four glutamic acid (E) residues and four positively charged residues, a combination of arginine (R) and lysine (K), have been shown to form stable alpha-helices in a few proteins, in the absence of tertiary interactions. Here, we find that this ER/K motif is more prevalent than previously reported, being represented in proteins of diverse function from archaea to humans. By using molecular dynamics (MD) simulations, we characterize a dynamic pattern of side-chain interactions that extends along the backbone of ER/K alpha-helices. A simplified model predicts that side-chain interactions alone contribute substantial bending rigidity (0.5 pN/nm) to ER/K alpha-helices. Results of small-angle x-ray scattering (SAXS) and single-molecule optical-trap analyses are consistent with the high bending rigidity predicted by our model. Thus, the ER/K alpha-helix is an isolated secondary structural element that can efficiently span long distances in proteins, making it a promising tool in designing synthetic proteins. We propose that the significant rigidity of the ER/K alpha-helix can help regulate protein function, as a force transducer between protein subdomains.
Collapse
|
73
|
Holley M, Eginton C, Schaefer D, Brown LR. Characterization of amyloidogenesis of hen egg lysozyme in concentrated ethanol solution. Biochem Biophys Res Commun 2008; 373:164-8. [DOI: 10.1016/j.bbrc.2008.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
74
|
Collino S, Evans JS. Molecular specifications of a mineral modulation sequence derived from the aragonite-promoting protein n16. Biomacromolecules 2008; 9:1909-18. [PMID: 18558739 DOI: 10.1021/bm8001599] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the nacre layer of the mollusk, proteins play an important role in regulating the morphology and lattice structure of calcium carbonate minerals. However, this process remains elusive due to the fact that we do not understand how protein sequences control the structure and morphology of biominerals. To take us a step further in this direction, we report the molecular structure of a 30 AA N-terminal mineral interactive sequence (n16N) of the aragonite-promoting protein, n16, and contrast these findings to those previously reported for two "calcite-blocker" nacre-associated sequences, AP7N and AP24N. We find that n16N is conformationally labile and adopts a random-coil conformation that possesses short, dispersed extended beta-strand segments that are located at the A1-Y2, K5-Y9, Y11-I14, and D21-N25 sequence blocks. Like AP7N and AP24N, Ca(II) ion interactions with n16N alter chain dynamics and local structure, and n16N is adsorbed onto calcite crystals and cannot easily be displaced via differential washing techniques. Furthermore, all three sequences have planar surface regions that could serve as putative sites for mineral interactions or ion cluster formation. However, what sets n16N apart from AP7N and AP24N are different folding propensities as well as unique molecular surface features and amino acid composition. n16N has a more condensed structure that, in the presence of TFE, folds into a beta-strand. This contrasts with the more open structures of AP7N and AP24N that are induced by TFE to fold into alpha-helices. Mapping of the n16N molecular surface reveals significant cationic regions and diffuse anionic charge, which contrasts with the small anionic "pocket" regions of AP7N/AP24N. Finally, n16N has 50% fewer sites for mineral surface- or ion cluster-associated water interactions compared to AP7N and AP24N. Overall, the structure of n16N is "tuned" to a different function within the in vitro mineralization scheme. The different features found in AP7N, AP24N, and n16N could be exploited for engineering polypeptides that recognize and bind to different surface features of inorganic crystalline solids.
Collapse
Affiliation(s)
- Sebastiano Collino
- Laboratory for Chemical Physics, Center for Biomolecular Materials Spectroscopy, New York University, 345 East 24th Street, Room 1007, New York, New York 10010, USA
| | | |
Collapse
|
75
|
Chapman R, Kulp JL, Patgiri A, Kallenbach NR, Bracken C, Arora PS. Trapping a folding intermediate of the alpha-helix: stabilization of the pi-helix. Biochemistry 2008; 47:4189-95. [PMID: 18335996 DOI: 10.1021/bi800136m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design, synthesis, and characterization of a short peptide trapped in a pi-helix configuration. This high-energy conformation was nucleated by a preorganized pi-turn, which was obtained by replacing an N-terminal intramolecular main chain i and i + 5 hydrogen bond with a carbon-carbon bond. Our studies highlight the nucleation parameter as a key factor contributing to the relative instability of the pi-helix and allow us to estimate fundamental helix-coil transition parameters for this conformation.
Collapse
Affiliation(s)
- Ross Chapman
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
76
|
Collino S, Kim IW, Evans JS. Identification and structural characterization of an unusual RING-like sequence within an extracellular biomineralization protein, AP7. Biochemistry 2008; 47:3745-55. [PMID: 18298090 DOI: 10.1021/bi701949p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RING or Really Interesting New Gene represents a family of eukaryotic sequences that bind Zn (II) ions and participate in intracellular processes involving protein-protein interaction. Although found in over 400 different proteins, very little is known regarding the structure-function properties of these domains because of the aggregation problems associated with RING sequences. To augment this data set, we report an unusual 36 AA C-terminal sequence of an extracellular matrix mollusk shell protein, AP7, that exhibits partial homology to the RING family. This Cys, His-containing sequence, termed AP7C, binds Zn (II) and other multivalent ions, but does not utilize a tetracoordinate complexation scheme for binding such as that found in Zn (II) finger polypeptides. Moreover, unlike Zn (II) finger and RING domains, this 36 AA can fold into a relatively stable structure in the absence of Zn (II). This folded structure consists of three short helical segments (A, B, and C), with segments A and B separated by a 4 AA type I beta-turn region and segments B and C separated by a 7 AA loop-like region. Interestingly, the putative RING-like region, -RRPFHECALCYSI-, experiences slow conformational exchange between two structural states in solution, most likely in response to imido ring interconversion at P8 and P21. Poisson-Boltzmann solvation calculations reveal that the AP7C molecular surface possesses a cationic region near its N-terminus, which lies adjacent to the 30 AA mineral modification domain in the AP7 protein. Given that the AP7C sequence does not influence mineralization, it is probable that this cationic pseudo-RING region is utilized by the AP7 protein for other tasks such as protein-protein interaction within the mollusk shell matrix.
Collapse
Affiliation(s)
- Sebastiano Collino
- Laboratory for Chemical Physics, Center for Biomolecular Materials Spectroscopy, New York University, 345 E. 24th Street, Room 1007, New York, New York 10010, USA
| | | | | |
Collapse
|
77
|
Grace CRR, Cervini L, Gulyas J, Rivier J, Riek R. Astressin-amide and astressin-acid are structurally different in dimethylsulfoxide. Biopolymers 2007; 87:196-205. [PMID: 17657708 DOI: 10.1002/bip.20818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The C-terminally amidated CRF antagonist astressin binds to CRF-R1 or CRF-R2 receptors with low nanomolar affinity while the corresponding astressin-acid has >100 times less affinity. To understand the role of the amide group in binding, the conformations of astressin-amide and astressin-acid were studied in DMSO using NMR techniques. The 3D NMR structures show that the backbones of both analogs prefer an alpha-helical conformation, with a small kink around Gln(26). However, astressin-amide has a well-defined helical structure from Leu(27) to Ile(41) and a conformation very similar to the bioactive conformation reported by our group (Grace et al., Proc Natl Acad Sci USA 2007, 104, 4858-4863). In contrast, astressin-acid has an irregular helical conformation from Arg(35) onward, including a rearrangement of the side chains in that region. This structural difference highlights the crucial role of the C-terminal amidation for stabilization of astressin's bioactive conformation.
Collapse
Affiliation(s)
- Christy Rani R Grace
- Structural Biology Laboratory, The Salk Institute for Biological Studies, LA Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
78
|
Guiffo-Soh G, Hernández B, Coïc YM, Boukhalfa-Heniche FZ, Ghomi M. Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. II. Role of KLLL Repeats To Induce Helical Conformations in Minimalist LK-Peptides. J Phys Chem B 2007; 111:12563-72. [DOI: 10.1021/jp074264k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guy Guiffo-Soh
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Belén Hernández
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Yves-Marie Coïc
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Fatima-Zohra Boukhalfa-Heniche
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Mahmoud Ghomi
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|
79
|
Abstract
It has been suggested that aggregation of fluorinated alcohols in water solutions is involved with the abilities of these alcohols to provoke conformational changes in peptides and proteins. The extent of fluoroalcohol aggregation depends on the degree of fluorination: hexafluoroisopropanol (HFIP) is more extensively aggregated than is TFE. We previously described a study of the interactions of HFIP with the peptide Trp-cage and provided evidence for the formation of long-lived complexes between this fluoroalcohol and the peptide. In the present work, we have examined the interactions of the less-fluorinated TFE with Trp-cage, in order to probe the role of fluoroalcohol aggregation in the phenomena observed. Intermolecular (1)H{(19)F} nuclear Overhauser effects arising from interactions of TFE with the hydrogens of the peptide in a solution containing 42% TFE were determined at sample temperatures from 5 to 45 degrees C. It is shown that the folded state of the peptide under these conditions is essentially the same as that observed in water and in 30% HFIP-water. The observed peptide-solvent NOEs indicate formation of complexes of Trp-cage with TFE that persist for times of the order of 1 ns. The interactions leading to complexes with TFE are somewhat weaker than those involved in complex formation with HFIP. There are no indications that the aggregation of fluoroalcohol is a necessary concomitant of the interactions of TFE or HFIP with Trp-cage. Rather, the stronger and more long-lived interactions of HFIP with Trp-cage appear to be primarily the result of the greater hydrogen-bonding ability and hydrophobicity of this fluoroalcohol.
Collapse
Affiliation(s)
- Chiradip Chatterjee
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
80
|
Tanizaki S, Clifford J, Connelly BD, Feig M. Conformational sampling of peptides in cellular environments. Biophys J 2007; 94:747-59. [PMID: 17905846 PMCID: PMC2186233 DOI: 10.1529/biophysj.107.116236] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological systems provide a complex environment that can be understood in terms of its dielectric properties. High concentrations of macromolecules and cosolvents effectively reduce the dielectric constant of cellular environments, thereby affecting the conformational sampling of biomolecules. To examine this effect in more detail, the conformational preference of alanine dipeptide, poly-alanine, and melittin in different dielectric environments is studied with computer simulations based on recently developed generalized Born methodology. Results from these simulations suggest that extended conformations are favored over alpha-helical conformations at the dipeptide level at and below dielectric constants of 5-10. Furthermore, lower-dielectric environments begin to significantly stabilize helical structures in poly-alanine at epsilon = 20. In the more complex peptide melittin, different dielectric environments shift the equilibrium between two main conformations: a nearly fully extended helix that is most stable in low dielectrics and a compact, V-shaped conformation consisting of two helices that is preferred in higher dielectric environments. An additional conformation is only found to be significantly populated at intermediate dielectric constants. Good agreement with previous studies of different peptides in specific, less-polar solvent environments, suggest that helix stabilization and shifts in conformational preferences in such environments are primarily due to a reduced dielectric environment rather than specific molecular details. The findings presented here make predictions of how peptide sampling may be altered in dense cellular environments with reduced dielectric response.
Collapse
Affiliation(s)
- Seiichiro Tanizaki
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Jacob Clifford
- Department of Physics, Michigan State University, East Lansing, Michigan
| | - Brian D. Connelly
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan
- Department of Chemistry, Michigan State University, East Lansing, Michigan
- Address reprint requests to Michael Feig, Tel.: 517-432-7439; Fax: 517-353-9334.
| |
Collapse
|
81
|
Lakshminarayanan R, Fan D, Du C, Moradian-Oldak J. The role of secondary structure in the entropically driven amelogenin self-assembly. Biophys J 2007; 93:3664-74. [PMID: 17704165 PMCID: PMC2072069 DOI: 10.1529/biophysj.107.113936] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amelogenin, the major extracellular enamel matrix protein, plays critical roles in controlling enamel mineralization. This generally hydrophobic protein self-assembles to form nanosphere structures under certain solution conditions. To gain clearer insight into the mechanisms of amelogenin self-assembly, we first investigated the occurrences of secondary structures within its sequence. By applying isothermal titration calorimetry (ITC), we determined the thermodynamic parameters associated with protein-protein interactions and with conformational changes during self-assembly. The recombinant porcine full length (rP172) and a truncated amelogenin lacking the hydrophilic C-terminal (rP148) were used. Circular dichroism (CD) measurements performed at low concentrations (<5 microM) revealed the presence of the polyproline-type II (PPII) conformation in both amelogenins in addition to alpha-helix and unordered conformations. Structural transition from PPII/unordered to beta-sheet was observed for both proteins at higher concentrations (>62.5 microM) and upon self-assembly. ITC measurements indicated that the self-assembly of rP172 and rP148 is entropically driven (+DeltaS(A)) and energetically favorable (-DeltaG(A)). The magnitude of enthalpy (DeltaH(A)) and entropy changes of assembly (DeltaS(A)) were smaller for rP148 than rP172, whereas the Gibbs free energy change of assembly (DeltaG(A)) was not significantly different. It was found that rP172 had higher PPII content than rP148, and the monomer-multimer equilibrium for rP172 was observed in a narrower protein concentration range when compared to rP148. The large positive enthalpy and entropy changes in both cases are attributed to the release of ordered water molecules and the associated entropy gain (due to the hydrophobic effect). These findings suggest that PPII conformation plays an important role in amelogenin self-assembly and that rP172 assembly is more favorable than rP148. The data are direct evidence for the notion that hydrophobic interactions are the main driving force for amelogenin self-assembly.
Collapse
Affiliation(s)
- Rajamani Lakshminarayanan
- University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
82
|
Wang D, Chen K, Kulp Iii JL, Arora PS. Evaluation of biologically relevant short alpha-helices stabilized by a main-chain hydrogen-bond surrogate. J Am Chem Soc 2007; 128:9248-56. [PMID: 16834399 PMCID: PMC1828873 DOI: 10.1021/ja062710w] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported the design and synthesis of a new class of artificial alpha-helices in which an N-terminal main-chain hydrogen bond is replaced by a carbon-carbon bond derived from a ring-closing metathesis reaction [Chapman, R. N.; Dimartino, G.; Arora, P. S. J. Am. Chem. Soc. 2004, 126, 12252-12253]. Our initial study utilized an alanine-rich sequence; in the present manuscript we evaluate the potential of this method for the synthesis of very short (10 residues) alpha-helices representing two different biologically relevant alpha-helical domains. We extensively characterized these two sets of artificial helices by NMR and circular dichroism spectroscopies and find that the hydrogen-bond surrogate approach can afford well-defined short alpha-helical structures from sequences that do not spontaneously form alpha-helical conformations.
Collapse
Affiliation(s)
- Deyun Wang
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | |
Collapse
|
83
|
Rezaei-Ghaleh N, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M. Effect of polyamines on the structure, thermal stability and 2,2,2-trifluoroethanol-induced aggregation of alpha-chymotrypsin. Int J Biol Macromol 2007; 41:597-604. [PMID: 17850860 DOI: 10.1016/j.ijbiomac.2007.07.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 07/29/2007] [Accepted: 07/30/2007] [Indexed: 11/27/2022]
Abstract
Naturally occurring polyamines are known to interact with a variety of biomolecules and critically involve in some important physiological processes. They have also been shown to influence protein aggregation in vitro in some cases. The aim of the present study was to investigate how polyamines may influence the structure and thermal stability of alpha-chymotrypsin and modulate alcohol-induced aggregation of this protein. Various techniques, including turbidity measurements, tensiometry, DSC, intrinsic fluorescence and far- and near-UV circular dichroism spectroscopy were used to examine the effect of putrescine and spermidine on alpha-chymotrypsin. While slight changes in the secondary and tertiary structure of the protein was observed, a clear stabilizing effect against its thermal unfolding was achieved. Moreover, the polyamines were found to inhibit TFE-induced aggregation at 32% TFE and promote formation of non-native alpha-helices in the protein structure. Based on the observed increase in surface tension induced by polyamines, it is suggested that their effects on enhancing thermal stability and alcohol-induced alpha-helices formation may be due to their kosmotropic properties.
Collapse
|
84
|
Mukherjee S, Chowdhury P, Gai F. Tuning the cooperativity of the helix-coil transition by aqueous reverse micelles. J Phys Chem B 2007; 110:11615-9. [PMID: 16800453 DOI: 10.1021/jp062362k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show in this letter that the thermodynamic properties of helical peptides can be tuned by varying the degrees of backbone hydration. The latter was achieved by solubilizing peptides in the water pool of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles with different water contents or w0 values. Far-UV circular dichroism measurements on a series of alanine-rich peptides indicate that the helicity of shorter peptides is significantly increased in AOT reverse micelles at low w0 values, as compared to the corresponding helical content in buffer. This result therefore corroborates the previous simulation studies suggesting that desolvation of backbone CO and NH groups increases the stability of monomeric helices. In addition, it was found that the thermal unfolding transition of these peptides can either be very noncooperative or very cooperative, depending on w0 and peptide chain length. A simple model, which considers the heterogeneous distribution of the water molecules inside the polar core of AOT reverse micelles as well as the geometric confinement effect exerted on the peptide by the reverse micelles, was used to interpret these results.
Collapse
|
85
|
Vinyard DJ, Richter MM. Enhanced Electrogenerated Chemiluminescence in the Presence of Fluorinated Alcohols. Anal Chem 2007; 79:6404-9. [PMID: 17602674 DOI: 10.1021/ac071028x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The electrochemistry, UV-vis absorption, photoluminescence (PL), and coreactant electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (where bpy=2,2'-bipyridine) have been obtained in a series of hydroxylic solvents. The solvents included fluorinated and nonfluorinated alcohols and alcohol/water mixtures. Tri-n-propylamine was used as the oxidative-reductive ECL coreactant. Blue shifts of up to 30 nm in PL emission wavelength maximums are observed compared to a Ru(bpy)3(2+)/H2O standard due to interactions of the polar excited state (i.e., *Ru(bpy)3(2+)) with the solvent media. For example, Ru(bpy)3(2+) in water has an emission maximum of 599 nm while in the more polar hexafluoropropanol and trifluoroethanol it is 562 and 571 nm, respectively. ECL spectra are similar to PL spectra, indicating the same excited state is formed in both experiments. The difference between the electrochemically reversible oxidation (Ru(bpy)3(2+/3+)) and first reduction (Ru(bpy)2(2+/1+)) correlates well with the energy gap observed in the luminescence experiments. Although the ECL is linear in all solvents with [Ru(bpy)3(2+)] ranging from 100 to 0.1 nm, little correlation between the polarity of the solvent and the ECL efficiency (phiecl=number of photons per redox event) was observed. However, dramatic increases in phiecl ranging from 6- to 270-fold were seen in mixed alcohol/water solutions.
Collapse
Affiliation(s)
- David J Vinyard
- Department of Chemistry, Missouri State University, Springfield, Missouri 65897, USA
| | | |
Collapse
|
86
|
Akitake B, Spelbrink REJ, Anishkin A, Killian JA, de Kruijff B, Sukharev S. 2,2,2-Trifluoroethanol changes the transition kinetics and subunit interactions in the small bacterial mechanosensitive channel MscS. Biophys J 2007; 92:2771-84. [PMID: 17277184 PMCID: PMC1831691 DOI: 10.1529/biophysj.106.098715] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
2,2,2-Trifluoroethanol (TFE), a low-dielectric solvent, has recently been used as a promising tool to probe the strength of intersubunit interactions in membrane proteins. An analysis of inner membrane proteins of Escherichia coli has identified several SDS-resistant protein complexes that separate into subunits upon exposure to TFE. One of these was the homo-heptameric stretch-activated mechanosensitive channel of small conductance (MscS), a ubiquitous component of the bacterial turgor-regulation system. Here we show that a substantial fraction of MscS retains its oligomeric state in cold lithium-dodecyl-sulfate gel electrophoresis. Exposure of MscS complexes to 10-15 vol % TFE in native membranes or nonionic detergent micelles before lithium-dodecyl-sulfate electrophoresis results in a complete dissociation into monomers, suggesting that at these concentrations TFE by itself disrupts or critically compromises intersubunit interactions. Patch-clamp analysis of giant E. coli spheroplasts expressing MscS shows that exposure to TFE in lower concentrations (0.5-5.0 vol %) causes leftward shifts of the dose-response curves when applied extracellularly, and rightward shifts when added from the cytoplasmic side. In the latter case, TFE increases the rate of tension-dependent inactivation and lengthens the process of recovery to the resting state. MscS responses to pressure ramps of different speeds indicate that in the presence of TFE most channels reside in the resting state and only at tensions near the activation threshold does TFE dramatically speed up inactivation. The effect of TFE is reversible as normal channel activity returns 15-30 min after a TFE washout. We interpret the observed midpoint shifts in terms of asymmetric partitioning of TFE into the membrane and distortion of the bilayer lateral pressure profile. We also relate the increased rate of inactivation and subunit separation with the capacity of TFE to perturb buried interhelical contacts in proteins and discuss these effects in the framework of the proposed gating mechanism of MscS.
Collapse
Affiliation(s)
- Bradley Akitake
- Department of Biology, University of Maryland, College Park, Maryland
| | | | | | | | | | | |
Collapse
|
87
|
Higuchi M, Ushiba K, Kawaguchi M. Structural control of peptide-coated gold nanoparticle assemblies by the conformational transition of surface peptides. J Colloid Interface Sci 2007; 308:356-63. [PMID: 17270198 DOI: 10.1016/j.jcis.2006.12.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 11/28/2006] [Accepted: 12/27/2006] [Indexed: 11/29/2022]
Abstract
Gold nanoparticles having peptide chains on the surfaces have been prepared yb ring-opening polymerization of gamma-methyl L-glutamate N-carboxyanhydride with fixed amino groups on the nanoparticle surface as an initiator. The number of peptide chains on the surface was adjusted to ca. 2 molecules per gold nanoparticle by controlling the number of fixed amino groups on the surface. The peptide chains on the surface were partially saponified to obtain poly(gamma-methyl L-glutamate-co-L-glutamic acid) with 28 mol% of glutamic acid residues. The number-average molecular weight of the peptide was 73,000. We described structural control of the peptide-coated gold nanoparticle assembly by conformational transition of the surface peptides. In deionized water, the peptide chains on the nanoparticle took a random coil conformation, and the individual nanoparticles existed in dispersed globular species. On the other hand, the peptide chains on the nanoparticle took an alpha-helical conformation in trifluoroethanol. Under this condition, the alpha-helical peptide chains on distinct gold nanoparticles connected the nanoparticles to form a fibril assembly owing to the dipole-dipole interaction between the surface peptide chains. The morphology of the peptide-coated gold nanoparticle assembly could be controlled by the conformational transition of surface peptides, which was attended by solution composition changes.
Collapse
Affiliation(s)
- Masahiro Higuchi
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimanakayama-Cho, Tsu, Mie 514-8507, Japan.
| | | | | |
Collapse
|
88
|
Invernizzi G, Grandori R. Detection of the equilibrium folding intermediate of beta-lactoglobulin in the presence of trifluoroethanol by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1049-52. [PMID: 17310468 DOI: 10.1002/rcm.2940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nano-electrospray ionization mass spectrometry (nano-ESI-MS) was used to monitor the effect of trifluoroethanol (TFE) on the conformational properties of beta-lactoglobulin (BLG). TFE stabilizes protein secondary structure, particularly alpha-helices. However, it also acts as a denaturant above critical concentrations. In the case of BLG, TFE at low concentrations is known to induce formation of an equilibrium intermediate that contains non-native helical structure. Such an intermediate is thought to form also under physiological conditions, playing a role in BLG folding in vivo by preventing aggregation. This well-characterized system was chosen in order to test species distributions obtained by nano-ESI-MS. BLG spectra at increasing concentrations of TFE at pH 2 indicate transient accumulation of a conformer whose charge-state distribution (CSD) falls between that of the native and that of the denatured protein, indicating that the TFE-induced, partially folded form can be selectively monitored by this technique. The condition of its maximum accumulation corresponds to 16% TFE, in excellent agreement with results from solution experiments. In contrast, titrations with methanol or acetonitrile (ACN) reveal apparent two-state transitions from native to fully unfolded BLG. At 10% TFE, the protein appears to be still fully folded at room temperature but, if unfolding is elicited by the combination with other denaturing agents, e.g. heat or low concentrations of ACN, it proceeds via formation of the intermediate. Thus, TFE can also induce formation of the BLG intermediate in synergism with generic denaturing agents. This study indicates good agreement between ESI-MS and other biophysical methods monitoring protein conformational transitions in the presence of TFE.
Collapse
Affiliation(s)
- Gaetano Invernizzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
89
|
Zondlo SC, Lee AE, Zondlo NJ. Determinants of specificity of MDM2 for the activation domains of p53 and p65: proline27 disrupts the MDM2-binding motif of p53. Biochemistry 2006; 45:11945-57. [PMID: 17002294 DOI: 10.1021/bi060309g] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transcriptional activation and repression via the transcription factors p53 and p65 are mediated by hydrophobic short linear motifs (FXX phi phi) in their activation domains (ADs). To understand the molecular basis for specificity in binding to disparate biological targets, a series of chimeric peptides was synthesized, with sequences derived from the ADs of p53, which binds both the general transcriptional machinery and the repressor protein MDM2, and p65, which is reported to bind the general transcriptional machinery but not MDM2. The FXX phi phi motifs of p53 and p65 differ by only two residues, whereas the flanking sequences have no sequence identity. The affinities of the chimeric peptides to MDM2(25-117) and hTAF(II)31(1-140) were determined. Specificity for binding MDM2 via FXX phi phi motifs derives almost entirely from Trp23 of p53, with a 3.0 kcal mol(-1) loss of binding energy when Trp23 is changed to p65-derived Leu. The identity of the N-terminal flanking sequence did not significantly affect binding to MDM2. In contrast, replacement of the C-terminal sequence of p53 with that of p65 increased the affinity of the chimera for MDM2 by 1.1 kcal mol(-1), contrary to expectations. Replacement of the highly conserved residue Pro27 of p53 with Ser from p65 resulted in a 2.3 kcal mol(-1) improvement in binding to MDM2, generating a ligand (p53-P27S) (Kd = 4.7 nM) that exhibits the highest MDM2 affinity observed for a genetically encodable ligand. The basis for the increased affinity of p53-P27S over p53 was examined by circular dichroism and nuclear magnetic resonance. Pro27 disrupts the recognition alpha-helix of p53, with p53-P27S significantly more alpha-helical than p53.
Collapse
Affiliation(s)
- Susan Carr Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
90
|
Rezaei-Ghaleh N, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M. Role of electrostatic interactions in 2,2,2-trifluoroethanol-induced structural changes and aggregation of alpha-chymotrypsin. Arch Biochem Biophys 2006; 457:160-9. [PMID: 17141725 DOI: 10.1016/j.abb.2006.10.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/23/2006] [Accepted: 10/26/2006] [Indexed: 11/27/2022]
Abstract
It has been recently demonstrated that alpha-chymotrypsin (CT) can be driven toward amyloid aggregation by addition of 2,2,2-trifluoroethanol (TFE), at intermediate concentrations. In the present article, the process of TFE-induced CT aggregation was investigated in more detailed kinetic terms where the effects of medium conditions, such as temperature, presence of kosmotropic and chaotropic salts, pH and chemical modification of lysine residues were examined. Various techniques, including light scattering, fluorescence and circular dichroism spectroscopy, were used to follow and characterize this process. The kinetics of aggregation was found to obey a second-order reaction with respect to protein concentration. The aggregation-prone A-state and aggregation-deficient TFE- or T-state of CT were found to be induced at lower TFE concentrations in the presence of salts. Use of acidic and alkaline conditions and lysine modification also promoted the formation of the T-state. Results presented suggest a role for electrostatic interactions in the aggregation process.
Collapse
|
91
|
Schuh MD, Baldwin MC. Alpha-helix formation in melittin and beta-lactoglobulin A induced by fluorinated dialcohols. J Phys Chem B 2006; 110:10903-9. [PMID: 16771343 PMCID: PMC2579965 DOI: 10.1021/jp056124l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive study of the effect of fluorinated alcohols on protein conformations, notably the induction of alpha-helix formation, is important because of its wide range of applications. Circular dichroism (CD) was used to show that the enhancement of helix induction in beta-lactoglobulin A and melittin by the fluorinated diols 2,2,3,3-tetrafluoro-1,4-butanediol (TFBD), 2,2,3,3,4,4-hexafluoro-1,6-pentanediol (HFPD), and 2,2,3,3,4,4,5,5-octafluoro-1,6-hexanediol (OFHD) increases in the order TFBD < HFPD < OFHD. For fluorinated diols and monoalcohols the effectiveness of helix induction was found to increase exponentially with increasing number of fluorine atoms per alcohol molecule, and OFHD was found to be more effective than any previously reported fluorinated alcohol. Formation of standard micelles was ruled out as the cause of the enhanced helix induction by the fluorinated diols. The negligible red-edge excitation shift in the fluorescence of melittin indicated that the fluorinated diol/water solvent shell surrounding the tryptophan chromophore is less immobilized than are molecules in a lamellar vesicle.
Collapse
Affiliation(s)
- Merlyn D Schuh
- Department of Chemistry, P.O. Box 7120, Davidson College, Davidson, North Carolina 28035-7120, USA.
| | | |
Collapse
|
92
|
Hernández B, Boukhalfa-Heniche FZ, Seksek O, Coïc YM, Ghomi M. Secondary conformation of short lysine- and leucine-rich peptides assessed by optical spectroscopies: effect of chain length, concentration, solvent, and time. Biopolymers 2006; 81:8-19. [PMID: 16134172 DOI: 10.1002/bip.20366] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Solution secondary structures of three synthetic cationic peptides, currently used in antisense oligonucleotide delivery into living cells, have been analyzed by means of circular dichroism (CD) and Raman scattering in different buffers as a function of concentration and time. All three peptides are of minimalist conception, i.e., formed by only two types of amino acids (leucine: L and lysine: K). Two of these peptides contain 15 aminoacids: N(ter)- KLLKLLLKLLLKLLK (L(10)K(5)), N(ter)-KLKLKLKLKLKLKLK (L(7)K(8)), and the third one has only 9 residues: N(ter)-KLKLKLKLK (L(4)K(5)). The conformational behavior of the 15-mers in pure water differs considerably one from another. Although both of them are initially disordered in the 50-350 microM range, L(10)K(5) gradually undergoes a disordered to alpha-helix transition for molecular concentrations above 100 microM. In all other solvents used, L(10)K(5) adopts a stable alpha-helical conformation. In methanol and methanol/Tris mixture, nonnative alpha-helices can be induced in both KL-alternating peptides, i.e., L(7)K(8) and L(4)K(5). However, in major cases and with a time delay depending on peptide concentration, beta-like structures can be gradually formed in both solutions. In PBS and methanol/PBS mixture, the tendency for L(7)K(8) and L(4)K(5) is to form structures belonging to beta-family. A discussion has been undertaken on the effect of counterions as well as their nature in the stabilization of ordered structures in both KL-alternating peptides.
Collapse
Affiliation(s)
- Belén Hernández
- UMR CNRS 7033, BioMoCeTi, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
93
|
Nastri F, Lombardi A, Morelli G, Maglio O, D'Auria G, Pedone C, Pavone V. Hemoprotein Models Based on a Covalent Helix-Heme-Helix Sandwich: 1. Design, Synthesis, and Characterization. Chemistry 2006. [DOI: 10.1002/chem.19970030305] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
94
|
Lisowski M, Olczak J, Zabrocki J. Circular dichroic properties of the tyrosine residues in tetrazole analogues of opioid peptides. J Pept Sci 2006; 12:297-302. [PMID: 16180245 DOI: 10.1002/psc.723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CD studies on tetrazole analogues of opioid peptides show that peptides sharing the same N-terminal sequence, H-TyrPsi[CN(4)]Gly-, give very large Cotton effects of the Tyr side chain in the near-UV region. CD spectra of five such peptides: H-TyrPsi[CN(4)]Gly-Gly-Phe-Leu-OH (I), H-TyrPsi[CN(4)]Gly-Phe-Pro-Gly-Pro-Ile-NH(2) (II), H-TyrPsi[CN(4)]Gly-Phe-Pro-NH(2) (III), H-TyrPsi[CN(4)]Gly-Phe-Gly-Tyr-Pro-Ser-NH(2) (IV), and H-TyrPsi[CN(4)]Gly-Phe-Asp-Val-Val-Gly-NH(2) (V), and two others for comparison: H-Tyr-GlyPsi[CN(4)]Gly-Phe-Leu-OH (VI) and H-TyrPsi[CN(4)]Ala-Phe-Gly-Tyr-Pro-Ser-NH(2) (VII), were measured in methanol, 2,2,2-trifluoroethanol, and water at different pH values. The spectra show that the conformations of the Tyr(1) residue in peptides I-V are very similar in all solvents used but differ distinctly from those observed for VI and VII. Strong Tyr bands in the aromatic region result probably from the rigid structure of the common N-terminal part of peptides I-V. These bands are weaker for IV, which maybe due to the presence of a second Tyr residue in that peptide, giving an opposite contribution to the CD spectrum as that arising from Tyr1. It seems that the rigid structure of the N-terminal part of I-V results from the interaction of the Tyr(1) side chain and the tetrazole ring. The CD bands of the Tyr residues of VI and VII are much smaller than those of I-V in all solvents, except VII in trifluoroethanol (TFE) where Tyr bands comparable in intensity to those of I-V are observed. This spectral property may derive from the same sign contribution of both Tyr residues of VII to the CD spectrum.
Collapse
|
95
|
Abbate S, Barlati S, Colombi M, Fornili SL, Francescato P, Gangemi F, Lebon F, Longhi G, Manitto P, Recca T, Speranza G, Zoppi N. Study of conformational properties of a biologically active peptide of fibronectin by circular dichroism, NMR and molecular dynamics simulation. Phys Chem Chem Phys 2006; 8:4668-77. [PMID: 17047765 DOI: 10.1039/b604807b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism (CD), and NMR spectra have been recorded and molecular dynamics (MD) simulations have been performed in water and water-trifluoroethanol (TFE) mixed solvent for a synthetic biologically active 13-amino-acid fragment of human fibronectin and two related peptides. The CD results are interpreted on the basis of statistical analyses of MD trajectories and of ensuing calculations of CD spectra based on Schellman's matrix method. It is observed that the peptide conformation is quite variable in water and loses its mobility with the addition of TFE. (1)H-NOE data were found to be consistent with the most abundant calculated conformation.
Collapse
Affiliation(s)
- Sergio Abbate
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kulp JL, Shiba K, Evans JS. Probing the conformational features of a phage display polypeptide sequence directed against single-walled carbon nanohorn surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:11907-14. [PMID: 16316132 DOI: 10.1021/la050961x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Single-walled carbon nanohorns (SWNHs) are interesting carbon nanostructures that have applications to science and technology. Using M13 phage display technology, polypeptides directed again SWNHs surfaces have been created for a number of nanotechnology and pharmaceutical purposes, yet the molecular mechanism of polypeptide sequence interaction and binding to SWNHs surfaces is not known. Recently, we identified a linear 12-AA M13 phage pIII sequence, NH-12-5-2 (DYFSSPYYEQLF), that binds with high affinity to SWNHs surfaces. To probe the structure of this pIII tail polypeptide further, we investigated the conformation of a model peptide representing the 12 AA NH-12-5-2 sequence. At neutral pH, the NH-12-5-2 model polypeptide is conformationally labile and exhibits two-state conformational exchange involving the D1-S5 N-terminal segment. Simultaneous with this conformational exchange process is the observation that the P6 residue exhibits imido ring conformational variation. In the presence of the structure-stabilizing solvent, TFE, or at pH 2.5, both the exchange process and Pro ring motion phenomena disappear, indicating that the structure of this peptide sequence can be stabilized by extrinsic factors. Interestingly, we observe NMR parameters (ROEs, (3)J coupling constants) for NH-12-5-2 in 90% v/v TFE that are consistent with the presence of a partial helical structure, similar to what was observed at low pH in our earlier CD experiments. We conclude that the NH-12-5-2 model polypeptide sequence possesses an inherent conformational instability that involves the D1-S5 sequence segment and the P6 residue but that this instability can be offset by extrinsic factors (e.g., charge neutralization, imido ring interconversion, and hydrophobic-hydrophobic interactions). These nonbonding interactions may play a role in the recognition and binding of this phage sequence region to SWNHs surfaces.
Collapse
Affiliation(s)
- John L Kulp
- Laboratory for Chemical Physics, New York University, New York 10010, USA
| | | | | |
Collapse
|
97
|
Receveur-Bréchot V, Bourhis JM, Uversky VN, Canard B, Longhi S. Assessing protein disorder and induced folding. Proteins 2005; 62:24-45. [PMID: 16287116 DOI: 10.1002/prot.20750] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins (IDPs) defy the structure-function paradigm as they fulfill essential biological functions while lacking well-defined secondary and tertiary structures. Conformational and spectroscopic analyses showed that IDPs do not constitute a uniform family, and can be divided into subfamilies as a function of their residual structure content. Residual intramolecular interactions are thought to facilitate binding to a partner and then induced folding. Comprehensive information about experimental approaches to investigate structural disorder and induced folding is still scarce. We herein provide hints to readily recognize features typical of intrinsic disorder and review the principal techniques to assess structural disorder and induced folding. We describe their theoretical principles and discuss their respective advantages and limitations. Finally, we point out the necessity of using different approaches and show how information can be broadened by the use of multiples techniques.
Collapse
Affiliation(s)
- Véronique Receveur-Bréchot
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, Universités Aix-Marseille I et II, Campus de Luminy, Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
98
|
Elsässer C, Monien B, Haehnel W, Bittl R. Orientation of spin labels in de novo peptides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S26-33. [PMID: 16235214 DOI: 10.1002/mrc.1692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A series of de novo synthesised peptides including the artificial rigid paramagnetic amino acid TOAC at two positions with different distances from two to seven in the primary structure have been investigated by 9- and 94-GHz EPR spectroscopy under solid-state conditions. From simulations of the spectra of such two-spin systems, the distance and relative orientation of the paramagnetic centres can be deduced. This yields structural information on the peptides. A quantitative analysis of the spectra of individual peptides in different solvents as well as a qualitative analysis of the spectra of the peptide series shows that the peptides do not assume conformations corresponding to any of the common helical structures in proteins.
Collapse
Affiliation(s)
- Celine Elsässer
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
99
|
Liang L, Yao P, Jiang M. Structural Transformation of Apocytochrome c Induced by Alternating Copolymers of Maleic Acid and Alkene. Biomacromolecules 2005; 6:2748-55. [PMID: 16153115 DOI: 10.1021/bm050250d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apocytochrome c interacts with two copolymers: poly(isobutylene-alt-maleic acid) (PIMA) and poly(1-tetradecene-alt-maleic acid) (PTMA). The interaction leads to apocytochrome c, a conformational change from random coil to alpha-helical structure. The alpha-helix content is influenced by the copolymer concentration, the length of alkyl chain of the copolymers, and pH of the medium. The electrostatic attraction between the copolymer and protein is an indispensable factor for the folding of the protein at acid pH. The hydrophobic interaction is an important factor over the entire pH range, especially when both the copolymer and protein carry negative charges at alkaline pH. The electrostatic and hydrophobic attractions between the copolymer and protein exclude water molecules, promoting the formation of hydrogen bonds within the helical structure. On the other hand, the hydrogen bonds formed between the ionized carboxyl of the copolymer and the amide of the protein partly restrain the formation of hydrogen bonds within the helical structure when the copolymer concentration is higher at pH 6.5 and 10.5.
Collapse
Affiliation(s)
- Li Liang
- Department of Macromolecular Science and Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
100
|
Petrov JG, Andreeva TD, Kurth DG, Möhwald H. Negative Dipole Potentials of Uncharged Langmuir Monolayers Due to Fluorination of the Hydrophilic Heads. J Phys Chem B 2005; 109:14102-11. [PMID: 16852771 DOI: 10.1021/jp0515028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dipole potential, affecting the structure, functions, and interactions of biomembranes, lipid bilayers, and Langmuir monolayers, is positive toward the hydrocarbon moieties. We show that uncharged Langmuir monolayers of docosyl trifluoroethyl ether (DFEE) exhibit large negative dipole potentials, while the nonfluorinated docosyl ethyl ether (DEE) forms films with positive dipole potentials. Comparison of the Delta V values for these ethers with those of the previously studied(37-39) monolayers of trifluoroethyl ester (TFEB) and ethyl ester of behenic acid (EB) shows that the reversal of the sign of Delta V causes the same change Delta(Delta V) = -706 +/- 16 mV due to fluorination of heads. The Delta V values of both TFEB and EB films differ by -122 +/- 16 mV from those of DFEE and DEE monolayers, respectively, with the same density. Such quantitative coincidence points to a common mechanism of reversal of the sign of the dipole potential for the ether and ester films despite the different structure of their heads. The mechanical properties and phase behaviors of these monolayers show that both fluorinated heads are less hydrated, suggesting that the change of the sign of Delta V could, at least partially, be related to different hydration water structure. The same negative contribution of the carbonyl bond in both TFEB and EB films contrasts with the generally accepted positive contribution of the C(delta+)=O(delta-) bond in condensed Langmuir monolayers of fatty acids, their alcohol esters, glycerides, and phospholipids but concurs with the theoretical analysis of Delta V of stearic acid monolayers. Both results question the literature values of the molecular dipole moments of these substances calculated via summation of bonds and atomic group contributions. Mixed monolayers of DFEE and DEE show smooth monotonic variation of Delta V from +450 to -235 mV, indicating a way for adjustment of the sign and magnitude of the dipole potential at the membrane-water boundary and regulation of such membrane behaviors as binding and translocation rate of hydrophobic ions and ion-carriers, adsorption and penetration of amphiphilic peptides, polarization of hydration water, and short-range repulsion. The interaction of the hydrophobic ions tetraphenylboron TPhB- and tetraphenylphosphonium TPhP+ with DFEE and DEE monolayers qualitatively follows the theory of binding of such ions to lipid bilayers, but the shifts Delta(Delta V) from the values obtained on water are much smaller than those for DPPC monolayers. This difference seems to be due to the solid (polycrystalline) character of the DFEE and DEE films that hampers the penetration of TPhB- and TPhP+ in the monolayers and reduces the attractive interaction with the hydrophobic moiety. This conclusion orients the future synthesis of amphiphiles with fluorinated heads to those which could form liquid-expanded Langmuir monolayers.
Collapse
Affiliation(s)
- Jordan G Petrov
- Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Golm/Potsdam, Germany.
| | | | | | | |
Collapse
|