51
|
Liu C, Jin Y, Qi D, Ding X, Ren H, Wang H, Jiang J. Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chem Sci 2022; 13:7014-7020. [PMID: 35774155 PMCID: PMC9200113 DOI: 10.1039/d2sc01876d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Chiral recognition and discrimination is not only of significance in biological processes but also a powerful method to fabricate functional supramolecular materials. Herein, a pair of heterochiral porous organic cages (HPOC-1), out of four possible enantiomeric products, with mirror stereoisomeric crystal structures were cleanly prepared by condensation occurring in the exclusive combination of cyclohexanediamine and binaphthol-based tetraaldehyde enantiomers. Nuclear magnetic resonance and luminescence spectroscopy have been employed to monitor the assembly process of HPOC-1, revealing the clean formation of heterochiral organic cages due to the enantioselective recognition of (S,S)-binaphthol towards (R,R)-cyclohexanediamine derivatives and vice versa. Interestingly, HPOC-1 exhibits circularly polarized luminescence and enantioselective recognition of chiral substrates according to the circular dichroism spectral change. Theoretical simulations have been carried out, rationalizing both the enantioselective assembly and recognition of HPOC-1.
Collapse
Affiliation(s)
- Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Huimin Ren
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
52
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
53
|
El-Sayed ESM, Yuan YD, Zhao D, Yuan D. Zirconium Metal-Organic Cages: Synthesis and Applications. Acc Chem Res 2022; 55:1546-1560. [PMID: 35579616 DOI: 10.1021/acs.accounts.1c00654] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFor the last two decades, materials scientists have contributed to a growing library of porous crystalline materials. These synthetic materials are typically extended networks, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), or discrete materials like metal-organic cages (MOCs) and porous organic cages (POCs). Advanced porous materials have shown promise for various applications due to their modular nature and structural tunability. MOCs have recently garnered attention because of their molecularity that bestows them with many unique possibilities (e.g., solution-processability, structural diversity, and postsynthetic processability).MOCs are discrete molecular assemblies of organic ligands coordinated with either metal cations or metal oxide clusters of different nuclearities, resulting in architectures with inherent porosity. Notably, the molecular nature of MOCs endows them with easy solution-processability unattainable with traditional framework materials. To date, a number of stable MOCs have been reported, such as those based on Rh (Rh-O bond energy: 405 ± 42 kJ/mol), Fe (Fe-O bond energy: 407.0 ± 1.0 kJ/mol), Cr (Cr-O bond energy: 461 ± 8.7 kJ/mol), Ti (Ti-O bond energy: 666.5 ± 5.6 kJ/mol), and Zr (Zr-O bond energy: 766.1 ± 10.6 kJ/mol). Paddle-wheel MOCs have also shown great stability in aqueous environments due to their rigid backbones. The zirconium MOC (Zr-MOCs) family emerges as a class of very robust cages for which their high bond energy endows them with high hydrothermal stability.In 2013, we reported the first four zirconocene tetrahedrons assembled from trinuclear zirconium oxide clusters with ditopic or tritopic organic ligands. Since then, significant progress in the rational design of Zr-MOC has led to an assortment of structures dedicated to meaningful applications.In this Account, we highlight the recent progress in synthesizing Zr-MOCs and Zr-MOC-based higher dimensional frameworks and their applications dedicated in our laboratories and beyond. The general Zr-MOC synthetic strategy involves assembling Zr trinuclear clusters with organic ligands (rigid or flexible) containing various functional groups. This chemistry has afforded cages with structural versatility and active sites, e.g., amino groups, for postsynthetic modifications (PSMs). Since the extrinsic porosity of cage-based frameworks is relatively weak, the resulting frameworks are susceptible to structural rearrangement after solvent removal. To circumvent this limitation, increasing the hydrogen bond ratio and strength between interlinked cages and conducting in situ catalytic polymerizations have been reported to afford permanently porous structures amenable to host-guest reactions.To expand their potential applications, multifunctional Zr-MOCs are highly desired. Such multivariate MOCs can be attained by either employing the isoreticular expansion strategy to create MOCs with high surface areas or using mixed-ligand approaches to afford heterogeneous MOCs. In addition, amorphous MOCs, flexible organic ligands, new functionalities, and MOC-based extended networks are exciting new approaches to developing materials with structural versatility and enhanced characteristics. Thereby, we believe the stability and versatility of the Zr-MOC family hold great potential in expanding and addressing challenging applications.
Collapse
Affiliation(s)
- El-Sayed M El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road, West Fuzhou 350002, P.R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Yi Di Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road, West Fuzhou 350002, P.R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| |
Collapse
|
54
|
Delgado P, Martin-Romera JD, Perona C, Vismara R, Galli S, Maldonado CR, Carmona FJ, Padial NM, Navarro JAR. Zirconium Metal-Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26501-26506. [PMID: 35653699 PMCID: PMC9204697 DOI: 10.1021/acsami.2c06025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate nerve agents and pesticides are extremely toxic compounds because they result in acetylcholinesterase (AChE) inhibition and concomitant nerve system damage. Herein, we report the synthesis, structural characterization, and proof-of-concept utility of zirconium metal-organic polyhedra (Zr-MOPs) for organophosphate poisoning treatment. The results show the formation of robust tetrahedral cages [((n-butylCpZr)3(OH)3O)4L6]Cl6 (Zr-MOP-1; L = benzene-1,4-dicarboxylate, n-butylCp = n-butylcyclopentadienyl, Zr-MOP-10, and L = 4,4'-biphenyldicarboxylate) decorated with lipophilic alkyl residues and possessing accessible cavities of ∼9.8 and ∼10.7 Å inner diameters, respectively. These systems are able to both capture the organophosphate model compound diisopropylfluorophosphate (DIFP) and host and release the AChE reactivator drug pralidoxime (2-PAM). The resulting 2-PAM@Zr-MOP-1(0) host-guest assemblies feature a sustained delivery of 2-PAM under simulated biological conditions, with a concomitant reactivation of DIFP-inhibited AChE. Finally, 2-PAM@Zr-MOP systems have been incorporated into biocompatible phosphatidylcholine liposomes with the resulting assemblies being non-neurotoxic, as proven using neuroblastoma cell viability assays.
Collapse
Affiliation(s)
- Pedro Delgado
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Javier D. Martin-Romera
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Cristina Perona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Rebecca Vismara
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell‘Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Simona Galli
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell‘Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Carmen R. Maldonado
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Francisco J. Carmona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Natalia M. Padial
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 València, Spain
| | - Jorge A. R. Navarro
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
55
|
Cheng L, Guo Q, Zhao K, Li YM, Ren H, Ji CY, Li W. AuPd Alloys and Chiral Proline Dual-Functionalized NH2-UiO-66 Catalysts for Tandem Oxidation/Asymmetric Aldol Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Li SC, Cai LX, Hong M, Chen Q, Sun QF. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shao-Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qihui Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qing-Fu Sun
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
57
|
Abstract
Supramolecular metal–organic cages, a class of molecular containers formed via coordination-driven self-assembly, have attracted sustained attention for their applications in catalysis, due to their structural aesthetics and unique properties. Their inherent confined cavity is considered to be analogous to the binding pocket of enzymes, and the facile tunability of building blocks offers a diverse platform for enzyme mimics to promote organic reactions. This minireview covers the recent progress of supramolecular metal–organic coordination cages for boosting organic reactions as reaction vessels or catalysts. The developments in the utilizations of the metal–organic cages for accelerating the organic reactions, improving the selectivity of the reactions are summarized. In addition, recent developments and successes in tandem or cascade reactions promoted by supramolecular metal–organic cages are discussed.
Collapse
|
58
|
Xu C, Lin Q, Shan C, Han X, Wang H, Wang H, Zhang W, Chen Z, Guo C, Xie Y, Yu X, Song B, Song H, Wojtas L, Li X. Metallo‐Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Xu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Quanjie Lin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xin Han
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Hao Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Yinghao Xie
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Heng Song
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| |
Collapse
|
59
|
Hou B, Gu X, Gan H, Zheng H, Zhu Y, Wang X, Su Z. Face-Directed Construction of a Metal-Organic Isohedral Tetrahedron for the Highly Efficient Capture of Environmentally Toxic Oxoanions and Iodine. Inorg Chem 2022; 61:7103-7110. [PMID: 35482439 DOI: 10.1021/acs.inorgchem.2c00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geometric analysis has been guiding the design and construction of metal-organic polyhedra. Here, a series of isohedral tetrahedra ZrIT-1 and -2 and VIT-1 and -2 were synthesized by a one-pot method relying on trivalent molecular building blocks. Structural analysis shows that the isohedral tetrahedra constructed with {V6(SO4)(CO2)3} have three different sets of prism lengths, while those constructed with {Zr3O(CO2)3} have two different sets of prism lengths. Comparison of two types of polyhedra reveals that the different sizes and coordination flexibilities of the two MBBs result in different cavity volumes. The environmentally toxic oxoanion trapping ability of ZrIT-1 was explored due to its structural stability and cation cage properties. The results show that ZrIT-1 can capture permanganate and dichromate anions in water with high efficiency and selectivity. Notably, the permanganate adsorption capacity can reach ∼276.6 mg/g, which exceeds those of most metal-organic framework materials. In addition, the adsorption and desorption of iodine showed that ZrIT-1 has a reversible adsorption capacity for iodine.
Collapse
Affiliation(s)
- Baoshan Hou
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoyan Gu
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Hongmei Gan
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Haiyan Zheng
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Ying Zhu
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
60
|
Lu YL, Song JQ, Qin YH, Guo J, Huang YH, Zhang XD, Pan M, Su CY. A Redox-Active Supramolecular Fe 4L 6 Cage Based on Organic Vertices with Acid-Base-Dependent Charge Tunability for Dehydrogenation Catalysis. J Am Chem Soc 2022; 144:8778-8788. [PMID: 35507479 DOI: 10.1021/jacs.2c02692] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular cage chemistry is of lasting interest because, as artificial blueprints of natural enzymes, the self-assembled cage structures not only provide substrate-hosting biomimetic environments but also can integrate active sites in the confined nanospaces for function synergism. Herein, we demonstrate a vertex-directed organic-clip chelation assembly strategy to construct a metal-organic cage Fe4L68+ (MOC-63) incorporating 12 imidazole proton donor-acceptor motifs and four redox-active Fe centers in an octahedral coordination nanospace. Different from regular supramolecular cages assembled with coordination metal vertices, MOC-63 comprises six ditopic organic-clip ligands as vertices and four tris-chelating Fe(N∩N)3 moieties as faces, thus improving its acid, base, and redox robustness by virtue of cage-stabilized dynamics in solution. Improved dehydrogenation catalysis of 1,2,3,4-tetrahydroquinoline derivatives is accomplished by MOC-63 owing to a supramolecular cage effect that synergizes multiple Fe centers and radical species to expedite intermediate conversion of the multistep reactions in a cage-confined nanospace. The acid-base buffering imidazole motifs play a vital role in modulating the total charge state to resist pH variation and tune the solubility among varied solvents, thereby enhancing reaction acceleration in acidic conditions and rendering a facile recycling catalytic process.
Collapse
Affiliation(s)
- Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Qi Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Han Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
61
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
62
|
Sainaba AB, Venkateswarulu M, Bhandari P, Arachchige KSA, Clegg JK, Mukherjee PS. An Adaptable Water-Soluble Molecular Boat for Selective Separation of Phenanthrene from Isomeric Anthracene. J Am Chem Soc 2022; 144:7504-7513. [PMID: 35436087 DOI: 10.1021/jacs.2c02540] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Anthracene crude oil is a common source of phenanthrene for its industrial use. The isolation of phenanthrene from this source is a challenging task due to very similar physical properties to its isomer anthracene. We report here a water-soluble Pd(II) molecular boat (MB1) with unusual structural topology that was obtained by assembling a flexible tetrapyridyl donor (L) with a cis-Pd(II) acceptor. The flexible backbone of the boat enabled it to breathe in the presence of a guest optimizing the fit within the cavity. The boat binds phenanthrene more strongly than anthracene, which enabled separation of phenanthrene with an >98% purity from an equimolar mixture of the two isomers using MB1 as an extracting agent. MB1 represents a unique example of a coordination receptor suitable for selective aqueous extraction of phenanthrene from anthracene with reusability of several cycles.
Collapse
Affiliation(s)
- Arppitha Baby Sainaba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
63
|
Xue W, Ronson TK, Lu Z, Nitschke JR. Solvent Drives Switching between Λ and Δ Metal Center Stereochemistry of M 8L 6 Cubic Cages. J Am Chem Soc 2022; 144:6136-6142. [PMID: 35364808 PMCID: PMC9098163 DOI: 10.1021/jacs.2c00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
An
enantiopure ligand with four bidentate metal-binding sites and
four (S)-carbon stereocenters self-assembles with
octahedral ZnII or CoII to produce O-symmetric M8L6 coordination cages. The Λ-
or Δ-handedness of the metal centers forming the corners of
these cages is determined by the solvent environment: the same (S)-ligand produces one diastereomer, (S)24-Λ8-M8L6, in
acetonitrile but another with opposite metal-center handedness, (S)24-Δ8-M8L6, in nitromethane. Van ’t Hoff analysis revealed the Δ
stereochemical configuration to be entropically favored but enthalpically
disfavored, consistent with a loosening of the coordination sphere
and an increase in conformational freedom following Λ-to-Δ
transition. The binding of 4,4′-dipyridyl naphthalenediimide
and tetrapyridyl Zn-porphyrin guests did not interfere with the solvent-driven
stereoselectivity of self-assembly, suggesting applications where
either a Λ- or Δ-handed framework may enable chiral separations
or catalysis.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Zifei Lu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
64
|
Duan YH, Zhu XZ, Zhang Q, Yang Y. Molecular Enantiopure Homometallic Zn14L24 Cubic Cages with Luminescence Properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
65
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
66
|
|
67
|
Huang H, Liu ZY, Li SB, Zhu J, Jiang BX, Zhang YT. Amino-functionalized Zr (IV) metal-organic polyhedron as water-stable catalyst for the photocatalytic degradation of tetracycline. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
68
|
Bao SJ, Xu ZM, Yu TC, Song YL, Wang H, Niu Z, Li X, Abrahams BF, Braunstein P, Lang JP. Flexible Vertex Engineers the Controlled Assembly of Distorted Supramolecular Tetrahedral and Octahedral Cages. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9819343. [PMID: 35282470 PMCID: PMC8897743 DOI: 10.34133/2022/9819343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022]
Abstract
Designing and building unique cage assemblies attract increasing interest from supramolecular chemists but remain synthetically challenging. Herein, we propose the use of a flexible vertex with adjustable angles to selectively form highly distorted tetrahedral and octahedral cages, for the first time, in which the flexible vertex forms from the synergistic effect of coordination and covalent interactions. The inherent interligand angle of the vertex can be modulated by guest anions present, which allows for the fine-tuning of different cage geometries. Furthermore, the reversible structural transformation between tetrahedral and octahedral cages was achieved by anion exchange monitored by mass spectrometric technique, the smaller anions favoring tetrahedral cages, while the larger anions supporting octahedral cages. Additionally, the KBr-based cage thin films exhibited prominent enhancement of their third-order NLO responses in two or three orders of magnitude compared to those obtained for their corresponding solutions. This work not only provides a new methodology to build irregular polyhedral structures in a controlled and tunable way but also provides access to new kinds of promising functional optical materials.
Collapse
Affiliation(s)
- Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tian-Chen Yu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Ying-Lin Song
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | | | - Pierre Braunstein
- Université de Strasbourg-CNRS, Institut de Chimie (UMR 7177 CNRS), 4 Rue Blaise Pascal CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
69
|
Hu SJ, Guo XQ, Zhou LP, Yan DN, Cheng PM, Cai LX, Li XZ, Sun QF. Guest-Driven Self-Assembly and Chiral Induction of Photofunctional Lanthanide Tetrahedral Cages. J Am Chem Soc 2022; 144:4244-4253. [PMID: 35195993 DOI: 10.1021/jacs.2c00760] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chiral luminescent lanthanide-organic cages have many potential applications in enantioselective recognition, sensing, and asymmetric catalysis. However, due to the paucity of structures and their limited cavities, host-guest chemistry with lanthanide-organic cages has remained elusive so far. Herein, we report a guest-driven self-assembly and chiral induction approach for the construction of otherwise inaccessible Ln4L4-type (Ln = lanthanide ions, i.e., EuIII, TbIII; L = ligand) tetrahedral hosts. Single crystal analyses on a series of host-guest complexes reveal remarkable guest-adaptive cavity breathing on the tetrahedral cages, reflecting the advantage of the variation tolerance on coordination geometry of the f-elements. Meanwhile, noncovalent confinement of pyrene within the lanthanide cage not only leads to diminishment of its excimer emission but also facilitates guest to host energy transfer, opening up a new sensitization window for the lanthanide luminescence on the cage. Moreover, stereoselective self-assembly of either Λ4- or Δ4- type Eu4L4 cages has been realized via chiral induction with R/S-BINOL or R/S-SPOL templates, as confirmed by NMR, circular dichroism (CD), and circularly polarized luminescence (CPL) with high dissymmetry factors (glum) up to ±0.125.
Collapse
Affiliation(s)
- Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
70
|
Dong J, Pan Y, Yang K, Yuan YD, Wee V, Xu S, Wang Y, Jiang J, Liu B, Zhao D. Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS NANO 2022; 16:2355-2368. [PMID: 35084185 DOI: 10.1021/acsnano.1c08605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous organic cages (POCs) have many advantages, including superior microenvironments, good monodispersity, and shape homogeneity, excellent molecular solubility, high chemical stability, and intriguing host-guest chemistry. These properties enable POCs to overcome the limitations of extended porous networks such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). However, the applications of POCs in bioimaging remain limited due to the problems associated with their rigid and hydrophobic structures, thus leading to strong aggregation-caused quenching (ACQ) in aqueous biological media. To address this challenge, we report the preparation of aggregation-induced emission (AIE)-active POCs capable of stimuli responsiveness for enhanced bioimaging. We rationally design a hydrophilic, structurally flexible tetraphenylethylene (TPE)-based POC that is almost entirely soluble in aqueous solutions. This POC's conformationally flexible superstructure allows the dynamic rotation of the TPE-based phenyl rings, thus endowing impressive AIE characteristics for responses to environmental changes such as temperature and viscosity. We employ these notable features in the bioimaging of living cells and obtain good performance, demonstrating that the present AIE-active POCs are suitable candidates for further biological applications.
Collapse
Affiliation(s)
- Jinqiao Dong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Pan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Kuiwei Yang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yi Di Yuan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Vanessa Wee
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yuxiang Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianwen Jiang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
71
|
Zhou S, Zhang Z, Bai D, Li J, Cui X, Xu ZJ, Tang Y, Tang X, Liu W. A Discrete 3d-4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorg Chem 2022; 61:4009-4017. [PMID: 35188386 DOI: 10.1021/acs.inorgchem.1c03729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exploration and development of coordination nanocages can provide an approach to control chemical reactions beyond the bounds of the flask, which has aroused great interest due to their significant applications in the field of molecular recognition, supramolecular catalysis, and molecular self-assembly. Herein, we take the advantage of a semirigid and nonsymmetric bridging ligand (H5L) with rich metal-chelating sites to construct an unusual and discrete 3d-4f metallacage, [Zn2Er4(H2L)4(NO3)Cl2(H2O)]·NO3·xCH3OH·yH2O (Zn2Er4). The 3d-4f Zn2Er4 cage possesses a quadruple-stranded structure, and all of the ligands wrap around an open spherical cavity within the core. The self-assembly of the unique cage not only ensures the structural stability of the Zn2Er4 cage as a nanoreactor in solution but also makes the bimetallic lanthanide cluster units active sites that are exposed in the medium-sized cavity. It is important to note that the Zn2Er4 cage as a homogeneous catalyst has been successfully applied to catalyze three-component aza-Darzens reactions of formaldehyde, anilines, and α-diazo esters without another additive under mild conditions, displaying better catalytic activity, higher specificity, short reaction time, and low catalyst loadings. A possible mechanism for this three-component aza-Darzens reaction catalyzed by the Zn2Er4 cage has been proposed. These experimental results have demonstrated the great potential of the discrete 3d-4f metallacage as a host nanoreactor for the development of supramolecular or molecular catalysis.
Collapse
Affiliation(s)
- Shengbin Zhou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhichao Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongjie Bai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingzhe Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiang Cui
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, People's Republic of China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
72
|
Yu X, Guo C, Lu S, Chen Z, Wang H, Li X. Terpyridine-Based 3D Discrete Metallosupramolecular Architectures. Macromol Rapid Commun 2022; 43:e2200004. [PMID: 35167147 DOI: 10.1002/marc.202200004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Terpyridine (tpy)-based 3D discrete metallosupramolecular architectures, which are often inspired by polyhedral geometry and the biological structures found in nature, have drawn significant attention from the community of metallosupramolecular chemistry. Because of the linear tpy-M(II)-tpy connectivity, the creation of sophisticated 3D metallosupramolecules based on tpy remains a formidable synthetic challenge. Nevertheless, with recent advancement in ligand design and self-assembly, diverse 3D metallosupramolecular polyhedrons, such as Platonic solids, Archimedean solids, prims as well as Johnson solids, have been constructed and their potential applications have been explored. This review summarizes the progress on tpy-based discrete 3D metallosupramolecules, aiming to shed more light on the design and construction of novel discrete architectures with molecular-level precision through coordination-driven self-assembly.
Collapse
Affiliation(s)
- Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
73
|
Luo Y, Ying SW, Li SJ, Li LK, Li HY, Asad M, Zang SQ, Mak TCW. Photo/Electrochromic Dual Responsive Behavior of a Cage-like Zr(IV)-Viologen Metal-Organic Polyhedron (MOP). Inorg Chem 2022; 61:2813-2823. [PMID: 35113540 DOI: 10.1021/acs.inorgchem.1c03203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stable stimulus-responsive materials are highly desirable due to their widespread potential applications and growing demand in recent decades. Despite the fact that viologen derivatives have long been known as excellent photochromic and electrochromic materials, the development of stable viologen-based multifunctional smart materials with short coloration times remains an exciting topic. To obtain photochromic and electrochromic dual responsive materials, embedding the viologen ligand into a robust metal oxide cluster to increase its stability and sensitivity is an effective strategy. Herein, a viologen-based metal-organic polyhedron (MOP) {[Zr6L3(μ3-O)2(μ2-OH)6Cp6]·8Cl·CH3OH·DMF} [Zr-MOP-1; H2L·2Cl = 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium dichloride, and Cp = η5-C5H5] was successfully prepared and characterized. It consists of trinuclear Zr-oxygen secondary building units and exhibits reversible photochromic and electrochromic dual responsive behaviors. As expected, the designed robust viologen-based nanocage with a V2E3 (V = vertex, and E = edge) topology can maintain its stability and rapid photo/electrochromic behaviors with an obvious reversible change in color from purple (brown) to green, mainly due to the enclosed cluster structure and the abundant free viologen radicals that originate from the effective Cl → N and O → N electron transfers. Spectroelectrochemistry and theoretical calculations of this Zr-MOP were also performed to verify the chromic mechanism.
Collapse
Affiliation(s)
- Yun Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Si-Wei Ying
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shi-Jun Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Muhammad Asad
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
74
|
Environmental Modulation of Chiral Prolinamide Catalysts for Stereodivergent Conjugate Addition. J Catal 2022; 406:126-133. [PMID: 35087258 PMCID: PMC8788998 DOI: 10.1016/j.jcat.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synthetic chiral catalysts generally rely on proximal functional groups or ligands for chiral induction. Enzymes often employ environmental chirality to achieve stereoselectivity. Environmentally controlled catalysis has benefits such as size and shape selectivity but is underexplored by chemists. We here report molecularly imprinted nanoparticles (MINPs) that utilized their environmental chirality to either augment or reverse the intrinsic selectivity of a chiral prolinamide cofactor. The latter ability allowed the catalyst to produce products otherwise disfavored in the conjugate addition of aldehyde to nitroalkene. The catalysis occurred in water at room temperature and afforded γ-nitroaldehydes with excellent yields (up to 94%) and ee (>90% in most cases). Up to 25:1 syn/anti and 1:6 syn/anti ratios were achieved through a combination of catalyst-derived and environmentally enabled selectivity. The high enantioselectivity of the MINP also made it possible for racemic catalysts to perform asymmetric catalysis, with up to 80% ee for the conjugate addition.
Collapse
|
75
|
Zheng A, Zhao T, Jin X, Miao W, Duan P. Circularly polarized luminescent porous crystalline nanomaterials. NANOSCALE 2022; 14:1123-1135. [PMID: 35018958 DOI: 10.1039/d1nr07069j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circularly polarized luminescence (CPL)-active materials have attracted exclusive attention because of their wide potential applications in low-power-consumption displays, encrypted information storage, chiroptical sensors, and so on. However, there is always a trade-off between the luminescence dissymmetry factor (glum) and luminescence quantum yield, which are two critical parameters. Therefore, developing materials with both large glum values and high luminescence efficiency is a key issue for constructing high-efficiency CPL materials. To date, chiral porous crystalline nanomaterials (PCNMs) including metal-organic frameworks (MOFs), porous organic-cages (POCs), metal-organic cages (MOCs), and supramolecular organic frameworks (SOFs), have shown excellent potential for solving this problem and achieving functional CPL-active materials. In this review, we will summarize several approaches for fabricating CPL-active PCNMs, such as direct synthesis, chirality induction, and symmetry breaking. Furthermore, with flexibly tunable structures and comprehensive host-guest chemistry, modulation and amplification of CPL can be achieved in these PCNMs. We would like to provide insight and perspective that PCNMs can act as an efficient platform in the CPL research field.
Collapse
Affiliation(s)
- Anyi Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Wangen Miao
- School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
76
|
Zhang D, Gan Q, Plajer AJ, Lavendomme R, Ronson TK, Lu Z, Jensen JD, Laursen BW, Nitschke JR. Templation and Concentration Drive Conversion Between a Fe II12L 12 Pseudoicosahedron, a Fe II4L 4 Tetrahedron, and a Fe II2L 3 Helicate. J Am Chem Soc 2022; 144:1106-1112. [PMID: 35014803 PMCID: PMC9097479 DOI: 10.1021/jacs.1c11536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/30/2022]
Abstract
We report the construction of three structurally distinct self-assembled architectures: FeII12L12 pseudoicosahedron 1, FeII2L3 helicate 2, and FeII4L4 tetrahedron 3, formed from a single triazatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedron 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedron 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB11H12- or B12F122- template.
Collapse
Affiliation(s)
- Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, People’s Republic
of China
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Quan Gan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Hubei Key
Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Alex J. Plajer
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Oxford Chemistry, Chemical Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Roy Lavendomme
- COMOC—Center
for Ordered Materials, Organometallics and Catalysis, Department of
Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Zifei Lu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Jesper D. Jensen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Bo W. Laursen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
77
|
Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci 2022; 13:633-656. [PMID: 35173928 PMCID: PMC8769063 DOI: 10.1039/d1sc03561d] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
One basic principle regulating self-assembly is associated with the asymmetry of constituent building blocks or packing models. Using asymmetry to manipulate molecular-level devices and hierarchical functional materials is a promising topic in materials sciences and supramolecular chemistry. Here, exemplified by recent major achievements in chiral hierarchical self-assembly, we show how chirality may be utilized in the design, construction and evolution of highly ordered and complex chiral nanostructures. We focus on how unique functions can be developed by the exploitation of chiral nanostructures instead of single basic units. Our perspective on the future prospects of chiral nanostructures via the hierarchical self-assembly strategy is also discussed.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
78
|
Yan MJ, Huang SL, Yang GY. Dual-AIEgens in one organoplatinum(II) metallaprism: photoluminescence exploration. Dalton Trans 2022; 51:842-846. [PMID: 34988570 DOI: 10.1039/d1dt03919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two sets of cis-trans isostructural metallaprisms were constructed from the controlling linkage of a Pt-corner, and a linear and quadrilateral AIE ligand. The combination of two AIEgens of TPE and the Pt-corner into one system endows these isomers with interesting AIE functions.
Collapse
Affiliation(s)
- Ming-Jie Yan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
79
|
Uhrmacher F, Elbert SM, Rominger F, Mastalerz M. Synthesis of Large [2+3] Salicylimine Cages with Embedded Metal‐Salphen Units. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Uhrmacher
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
80
|
Hang X, Wang S, Pang H, Xu Q. A coordination cage hosting ultrafine and highly catalytically active gold nanoparticles. Chem Sci 2022; 13:461-468. [PMID: 35126978 PMCID: PMC8729796 DOI: 10.1039/d1sc05407d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Ultrafine metal nanoparticles (MNPs) with size <2 nm are of great interest due to their superior catalytic capabilities. Herein, we report the size-controlled synthesis of gold nanoparticles (Au NPs) by using a thiacalixarene-based coordination cage CIAC-108 as a confined host or stabilizer. The Au NPs encapsulated within the cavity of CIAC-108 (Au@CIAC-108) show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108 (Au/CIAC-108). The cage-embedded Au NPs can be used as a homogeneous catalyst in a mixture of methanol and dichloromethane while as a heterogeneous catalyst in methanol. The homogeneous catalyst Au@CIAC-108-homo exhibits significantly enhanced catalytic activities toward nitroarene reduction and organic dye decomposition, as compared with its larger counterpart Au/CIAC-108-homo and its heterogeneous counterpart Au@CIAC-108-hetero. More importantly, the as-prepared Au@CIAC-108-homo possesses remarkable stability and durability. The size-controlled synthesis of Au NPs was achieved by using a coordination cage CIAC-108 as a support. The Au NPs encapsulated within the cavity of CIAC-108 show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108.![]()
Collapse
Affiliation(s)
- Xinxin Hang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China
| | - Shentang Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University Chongqing 400715 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China
| | - Qiang Xu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China .,Department of Materials Science and Engineering, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech) Shenzhen 518055 P. R. China.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
81
|
Liu ZY, Tong RM, Chen X, Zhang YT. Amino-functionalized zr-based metal-organic tetrahedron for adsorptive removal of sulfonamide antibiotic in aqueous phase. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
83
|
Ma FX, Mi FQ, Sun MJ, Huang T, Wang ZA, Zhang T, Cao R. A highly stable Zn 9-pyrazolate metal–organic framework with metallosalen ligands as a carbon dioxide cycloaddition catalyst. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01555a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-dimensional (3D) metal–organic framework constructed from unprecedented Zn9O2(OH)2(pyz)12 (pyz = pyrazolate) clusters and Ni(salen)-derived linkers was reported.
Collapse
Affiliation(s)
- Fa-Xue Ma
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fu-Qi Mi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Meng-Jiao Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-An Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Teng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
84
|
Li Y, Dong J, Gong W, Tang X, Liu Y, Cui Y, Liu Y. Artificial Biomolecular Channels: Enantioselective Transmembrane Transport of Amino Acids Mediated by Homochiral Zirconium Metal-Organic Cages. J Am Chem Soc 2021; 143:20939-20951. [PMID: 34851640 DOI: 10.1021/jacs.1c09992] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural transport channels (or carriers), such as aquaporins, are a distinct type of biomacromolecule capable of highly effective transmembrane transport of water or ions. Such behavior is routine for biology but has proved difficult to achieve in synthetic systems. Perhaps most significantly, the enantioselective transmembrane transport of biomolecules is an especially challenging problem both for chemists and for natural systems. Herein, a group of homochiral zirconium metal-organic cages with four triangular opening windows have been proposed as artificial biomolecular channels for enantioselective transmembrane transport of natural amino acids. These structurally well-defined coordination cages are assembled from six synthetically accessible BINOL-derived chiral ligands as spacers and four n-Bu3-Cp3Zr3 clusters as vertices, forming tetrahedral-shaped architectures that feature an intrinsically chiral cavity decorated with an array of specifically positioned binding sites mediated from phenol to phenyl ether to crown ether groups. Fascinatingly, the transformation of single-molecule chirality to global supramolecular chirality within the space-restricted chiral microenvironments accompanies unprecedented chiral amplification, leading to the enantiospecific recognition of amino acids. By virtue of the highly structural stability and excellent biocompatibility, the orientation-independent cages can be molecularly embedded into lipid membranes, biomimetically serving as single-molecular chiral channels for polar-residue amino acids, with the properties that cage-1 featuring hydroxyl groups preferentially transports the l-asparagine, whereas cage-2 attaching crown ether groups spontaneously favor transporting d-arginine. We therefore develop a new type of self-assembled system that can potentially mimic the functions of transmembrane proteins in nature, which is a realistic candidate for further biomedical applications.
Collapse
Affiliation(s)
- Yingguo Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhao Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
85
|
Yan LL, Yao LY, Ng M, Yam VWW. Stimuli-Responsive and Structure-Adaptive Three-Dimensional Gold(I) Cluster Cages Constructed via "De-aurophilic" Interaction Strategy. J Am Chem Soc 2021; 143:19008-19017. [PMID: 34732047 DOI: 10.1021/jacs.1c07971] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembly of three-dimensional (3D) metallosupramolecular cages has drawn increasing attention for their potential to interconvert between different architectures due to the dynamic and reversible features of the coordination bond. These supramolecular transformations can provide unique approaches for the construction of stimuli-responsive supramolecular model systems to mimic biological transformation processes. While gold(I) clusters have attracted much interest due to their propensity to exhibit aurophilic interactions, the construction of 3D gold(I) cluster cages has remained a challenging and daunting task. Here, we proposed a "de-aurophilic" interaction strategy, which involves the prevention of aurophilic interaction formation between the basic [(μ3-S)Au3]+ units, to construct 3D gold(I) cluster cages. Through the judicious design of diphosphine ligands, an unprecedented class of gold(I) cluster cages with adaptive structures has been constructed. These gold(I) cluster cages are found to show intriguing stimuli-responsive structure transformation and interconversion. This work not only provides a strategy for the design and construction of novel 3D supramolecular cages based on cluster nodes but also offers a paradigm to study the stimuli-responsive structural interconversion between the unique structures of these gold(I) cluster cages.
Collapse
Affiliation(s)
- Liang-Liang Yan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Liao-Yuan Yao
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| |
Collapse
|
86
|
Dong J, Liu Y, Cui Y. Artificial Metal-Peptide Assemblies: Bioinspired Assembly of Peptides and Metals through Space and across Length Scales. J Am Chem Soc 2021; 143:17316-17336. [PMID: 34618443 DOI: 10.1021/jacs.1c08487] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The exploration of chiral crystalline porous materials, such as metal-organic complexes (MOCs) or metal-organic frameworks (MOFs), has been one of the most exciting recent developments in materials science owing to their widespread applications in enantiospecific processes. However, achieving specific tight-affinity binding and remarkable enantioselectivity toward important biomolecules is still challenging. Perhaps most critically, the lack of adaptability, compatibility, and processability in these materials severely impedes practical applications in chemical engineering and biological technology. In this Perspective, artificial metal-peptide assemblies (MPAs), which are achieved by the assembly of peptides and metals with nanometer-sized cavities or pores, is a new development that could address the current bottlenecks of chiral porous materials. Bioinspired assembly of pore-forming MPAs is not foreign to biological systems and has granted scientists an unprecedented level of control over the chiral recognition sites, conformational flexibility, cavity sizes, and hydrophilic segments through ultrafine-tuning of peptide-derived linkers. We will specifically discuss exemplary MPAs including structurally well-defined metal-peptide complexes and highly crystalline metal-peptide frameworks. With insights from these structures, the peptide assembly and folding by the closer cooperation of metal coordination and noncovalent interactions can create adaptable protein-like nanocavities undergoing a myriad of conformational variations that is reminiscent of enzymatic pockets. We also consider challenges to advancing the field, where the deployment of side-chain groups and manipulation of amino acid sequences are more likely to access the programmable, genetically encodable peptide-mediated porous materials, thus contributing to the enhanced enantioselective recognition as well as enabling key biochemical processes in next-generation versatile biomimetic materials.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
87
|
Tang X, Jiang H, Si Y, Rampal N, Gong W, Cheng C, Kang X, Fairen-Jimenez D, Cui Y, Liu Y. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
88
|
Kaya Z, Bentouhami E, Pelzer K, Armspach D. Cavity-shaped ligands for asymmetric metal catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
89
|
Lin HY, Zhou LY, Xu L. Photocatalysis in Supramolecular Fluorescent Metallacycles and Metallacages. Chem Asian J 2021; 16:3805-3816. [PMID: 34529337 DOI: 10.1002/asia.202100942] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Indexed: 11/08/2022]
Abstract
The utilization of photocatalytic techniques for achieving light-to-fuel conversion is a promising way to ease the shortage of energy and degradation of the ecological environment. Fluorescent metallacycles and metallacages have drawn considerable attention and have been used in widespread fields due to easy preparation and their abundant functionality including photocatalysis. This review covers recent advances in photocatalysis in discrete supramolecular fluorescent metallacycles and metallacages. The developments in the utilization of the metallacycles skeletons and the effect of fluorescence-resonance energy transfer for photocatalysis are discussed. Furthermore, the use of the ligands decorated by organic chromophores or redox metal sites in metallacages as photocatalysts and their ability to encapsulate appropriate catalytic cofactors for photocatalysis are summarized. For the sake of brevity, macrocycles and cages with inorganic coordination complexes such as ruthenium complexes and iridium complexes are not included in this minireview.
Collapse
Affiliation(s)
- Hong-Yu Lin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Le-Yong Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
90
|
Tang X, Li Z, Liu H, Qu H, Gao W, Dong X, Zhang S, Wang X, Sue ACH, Yang L, Tan K, Tian Z, Cao X. Hollow and highly diastereoselective face-rotating polyhedra constructed through rationally engineered facial units. Chem Sci 2021; 12:11730-11734. [PMID: 34659708 PMCID: PMC8442696 DOI: 10.1039/d1sc03428f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular face-rotating polyhedra (FRP) exhibit complex stereochemistry, rendering it challenging to manipulate their assembly in a stereoselective manner. In our previous work, stereocontrolled FRP were gained at the cost of losing the confined inner space, which hampers their host–guest interactions and potential applications. Through a rational design approach, herein we demonstrate the successful construction of hollow FRP with high diastereoselectivity. Whereas the [4 + 4] imine condensation of meta-formyl substituted C3h-symmetric TAT-m and C3-symmetric Tri-NH2 led to the formation of all feasible FRP-12 diastereoisomers; the para-substituted constitutional isomer, TAT-p, exclusively assembled into a pair of homo-directional enantiomeric FRP-13-CCCC/AAAA with a cavity size larger than 600 Å3. Detailed structural characterizations and theoretical investigations revealed the thermodynamic landscape of FRP assembly can be effectively shaped by modulating the van der Waals repulsive forces among the facial building blocks. Our work provided a novel strategy towards stereospecific assembly of pure organic cages, opening up new opportunities for further applications of these chiral materials. The rationally engineered facial units, TAT-m and TAT-p, resulted in distinct diastereoselectivity of face-rotating polyhedra (FRP).![]()
Collapse
Affiliation(s)
- Xiao Tang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhihao Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Haoliang Liu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Wenbin Gao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xue Dong
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Shilin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Andrew C-H Sue
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Kai Tan
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
91
|
Li K, Wu K, Fan YZ, Guo J, Lu YL, Wang YF, Maurin G, Su CY. Acidic open-cage solution containing basic cage-confined nanospaces for multipurpose catalysis. Natl Sci Rev 2021; 9:nwab155. [PMID: 35663244 PMCID: PMC9155638 DOI: 10.1093/nsr/nwab155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022] Open
Abstract
The nanoscale chemical spaces inherent in porous organic/coordination cages or solid/liquid materials have been continuously explored for their nanoconfinement effect on selective adsorption and reaction of small gas or organic molecules. Herein, we aim to rationalize the unconventional chemical reactivities motivated by the cage-confined nanospaces in aqueous solutions, where the robust yet permeable nanospaces defined by the open cages facilitate dynamic guest exchange and unusual chemical reactions. The high positive charges on [(Pd/Pt)6(RuL3)8]28+ nanocages drive imidazole–proton equilibrium to display a significantly perturbed pKa shift, creating cage-defined nanospaces in solution with distinct intrinsic basicity and extrinsic acidity. The supramolecular cage effect plays pivotal roles in elaborating robust solution nanospaces, controlling ingress-and-egress molecular processes through open-cage portals and endowing nanocages with transition-state stabilization, amphoteric reactivities and the phase transfer of insoluble molecules, thus promoting chemical transformations in unconventional ways. Consequently, a wide range of application of cage-confined catalysis with anomalous reactivities may be expected based on this kind of open-cage solution medium, which combines cage nanocavity, solution heterogeneity and liquid-phase fluidity to benefit various potential mass transfer and molecular process options.
Collapse
Affiliation(s)
| | | | | | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan-Fan Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, Centre National de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier 34095, France
| | | |
Collapse
|
92
|
Fan X, Yuan L, Zhang J, Zhang L. Phenol-triggered supramolecular transformation of titanium–oxo cluster based coordination capsules. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
93
|
Mouarrawis V, Bobylev EO, Bruin B, Reek JNH. Controlling the Activity of a Caged Cobalt‐Porphyrin‐Catalyst in Cyclopropanation Reactions with Peripheral Cage Substituents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Valentinos Mouarrawis
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Eduard O. Bobylev
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
94
|
Pei WY, Lu BB, Yang J, Wang T, Ma JF. Two new calix[4]resorcinarene-based coordination cages adjusted by metal ions for the Knoevenagel condensation reaction. Dalton Trans 2021; 50:9942-9948. [PMID: 34225357 DOI: 10.1039/d1dt01139a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new calix[4]resorcinarene-based coordination cages, namely, [Zn4(TPC4R)(PDC)4]·2DMF·6H2O (1-Zn) and [In11(TPC4R)2(PDC)16(μ2-OH)2(H2O)2]·[(CH3)2NH2]·8DMF·20H2O·EtOH (2-In), have been synthesized via solvothermal reactions (TPC4R = tetra(2-(4H-pyrazol-3-yl)pyridine)calix[4]resorcinarene, H2PDC = 3,5-pyridinedicarboxylic acid, DMF = N,N'-dimethylformamide). By carefully tuning different metal ions, two structurally different cages 1-Zn and 2-In were achieved. The former shows a bowl-shaped structure, while the latter features a dumbbell-like structure. After activation, they exhibited unsaturated Zn(ii) or In(iii) Lewis acid sites and the free nitrogen Lewis base sites of the PDC2-. Therefore, they were employed as catalysts for the Knoevenagel condensation reaction in the absence of a solvent. Particularly, 1-Zn featured high structural stability and enhanced the catalytic activity.
Collapse
Affiliation(s)
- Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Bing-Bing Lu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
95
|
Zhang L, Liu H, Yuan G, Han Y. Chiral Coordination Metallacycles/Metallacages for Enantioselective Recognition and Separation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liyan Zhang
- School of Chemistry and Chemical Engineering, Institute of Materials Science and Engineering, Anhui University of Technology Maanshan Anhui 243032 China
| | - Huiping Liu
- School of Chemistry and Chemical Engineering, Institute of Materials Science and Engineering, Anhui University of Technology Maanshan Anhui 243032 China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Institute of Materials Science and Engineering, Anhui University of Technology Maanshan Anhui 243032 China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710127 China
| |
Collapse
|
96
|
Chen ZY, Long ZH, Wang XZ, Zhou JY, Wang XS, Zhou XP, Li D. Cobalt-Based Metal-Organic Cages for Visible-Light-Driven Water Oxidation. Inorg Chem 2021; 60:10380-10386. [PMID: 34171190 DOI: 10.1021/acs.inorgchem.1c00907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water oxidation to molecular oxygen is indispensable but a challenge for splitting H2O. In this work, a series of Co-based metal-organic cages (MOCs) for photoinduced water oxidation were prepared. MOC-1 with both bis(μ-oxo) bridged dicobalt and Co-O (O from H2O) displays catalytic activity with an initial oxygen evolution rate of 80.4 mmol/g/h and a TOF of 7.49 × 10-3 s-1 in 10 min. In contrast, MOC-2 containing only Co-O (O from H2O) in the structure results in a lower oxygen evolution rate (40.8 mmol/g/h, 4.78 × 10-3 s-1), while the amount of oxygen evolved from the solution of MOC-4 without both active sites is undetectable. Isotope experiments with or without H218O as the reactant successfully demonstrate that the molecular oxygen was produced from water oxidation. Photophysical and electrochemical studies reveal that photoinduced water oxidation initializes via electron transfer from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, the cobalt active sites further donate electrons to the oxidized [Ru(bpy)3]3+ to drive water oxidation. This proof-of-concept study indicates that MOCs can work as potential efficient catalysts for photoinduced water oxidation.
Collapse
Affiliation(s)
- Zi-Ye Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zi-Hao Long
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jie-Yi Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xu-Sheng Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
97
|
|
98
|
Cheng L, Cao L, Ren H, Guo Q, Deng H, Li Y. Pd(II)-Metalated and l-Proline-Decorated Multivariate UiO-67 as Bifunctional Catalyst for Asymmetric Sequential Reactions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03719-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
99
|
Abd El Sater M, Mellah M, Dragoe D, Kolodziej E, Jaber N, Schulz E. Chiral Chromium Salen@rGO as Multipurpose and Recyclable Heterogeneous Catalyst. Chemistry 2021; 27:9454-9460. [PMID: 33856725 DOI: 10.1002/chem.202101003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/07/2022]
Abstract
The first immobilization of a pyrene-tagged chromium salen complex through π-π noncovalent interactions on reduced graphene oxide (rGO) is described. A very robust supported catalytic system is obtained to promote asymmetric catalysis in repeated cycles, without loss of activity or enantioselectivity. This specific behavior was demonstrated in two different catalytic reactions (up to ten reuses) promoted by chromium salen complexes, the cyclohexene oxide ring-opening reaction and the hetero-Diels-Alder cycloaddition between various aldehydes and Danishefsky's diene. Furthermore, the chiral chromium salen@rGO has been found to be compatible with a multi-substrate type use, in which the structure of the substrate involved is modified each time the catalyst is reused.
Collapse
Affiliation(s)
- Mariam Abd El Sater
- Equipe de Catalyse Moléculaire, Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, 91405, Orsay Cedex, France.,Laboratoire de Chimie Médicinale et des Produits Naturels, Université Libanaise, Faculté des Sciences (I) et PRASE-EDST, postcode is missing, Hadath, Beyrouth, Lebanon
| | - Mohamed Mellah
- Equipe de Catalyse Moléculaire, Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, 91405, Orsay Cedex, France
| | - Diana Dragoe
- Equipe de Catalyse Moléculaire, Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, 91405, Orsay Cedex, France
| | - Emilie Kolodziej
- Equipe de Catalyse Moléculaire, Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, 91405, Orsay Cedex, France
| | - Nada Jaber
- Laboratoire de Chimie Médicinale et des Produits Naturels, Université Libanaise, Faculté des Sciences (I) et PRASE-EDST, postcode is missing, Hadath, Beyrouth, Lebanon
| | - Emmanuelle Schulz
- Equipe de Catalyse Moléculaire, Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, 91405, Orsay Cedex, France
| |
Collapse
|
100
|
Jin Y, Jiang H, Tang X, Zhang W, Liu Y, Cui Y. Coordination-driven self-assembly of anthraquinone-based metal-organic cages for photocatalytic selective [2 + 2] cycloaddition. Dalton Trans 2021; 50:8533-8539. [PMID: 34075985 DOI: 10.1039/d1dt00652e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-promoted [2 + 2] cycloaddition provides a straightforward and efficient way to produce cyclobutanes, which are the core skeleton in commercial pharmaceuticals and fine chemicals. However, the control of the conformation to produce syn-head-to-head (syn-HH) cyclobutanes remains a grand challenge. In this work, we report the design and synthesis of anthraquinone-based metal-organic cages (MOCs) for the [2 + 2] photocycloaddition of chalcones to generate syn-HH cyclobutanes. Guided by the coordination-driven self-assembly strategy, one D2 and three D4h symmetric MOCs are constructed from anthraquinone-derived dicarboxylate linkers and 4-tert-butylsulfonylcalixarene capped tetrametallic clusters. The porous cages feature large hydrophobic cavities and photoactive anthraquinone units and are demonstrated to be efficient and recyclable photocatalysts for [2 + 2] cycloaddition of chalcones. The syn-HH diastereomers are obtained with up to 13 : 1 diastereomeric ratio (dr). The cage catalysts provide a well-defined confined space to accommodate the substrates, thus leading to enhanced selectivity relative to the free anthraquinone catalyst.
Collapse
Affiliation(s)
- Yao Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|