51
|
Naeimi R, Najafi R, Molaei P, Amini R, Pecic S. Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol 2022; 936:175350. [DOI: 10.1016/j.ejphar.2022.175350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
|
52
|
Yang J, Lin J, Chen X, Rong L, Shen M, Wang Y, Xie J. Mesona chinensis polysaccharide/zein nanoparticles to improve the bioaccesibility and in vitro bioactivities of curcumin. Carbohydr Polym 2022; 295:119875. [DOI: 10.1016/j.carbpol.2022.119875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
|
53
|
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS NANO 2022; 16:15627-15652. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological barriers are essential physiological protective systems and obstacles to drug delivery. Nanoparticles (NPs) can access the paracellular route of biological barriers, either causing adverse health impacts on humans or producing therapeutic opportunities. This Review introduces the structural and functional influences of NPs on the key components that govern the paracellular route, mainly tight junctions, adherens junctions, and cytoskeletons. Furthermore, we evaluate their interaction mechanisms and address the influencing factors that determine the ability of NPs to open the paracellular route, which provides a better knowledge of how NPs can open the paracellular route in a safer and more controllable way. Finally, we summarize limitations in the research models and methodologies of the existing research in the field and provide future research direction. This Review demonstrates the in-depth causes for the reversible opening or destruction of the integrity of barriers generated by NPs; more importantly, it contributes insights into the design of NP-based medications to boost paracellular drug delivery efficiency.
Collapse
Affiliation(s)
- Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhenjun Zhu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruolan Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Manjin Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
54
|
Internalization study of nanosized zeolite crystals in human glioblastoma cells. Colloids Surf B Biointerfaces 2022; 218:112732. [DOI: 10.1016/j.colsurfb.2022.112732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
55
|
Hernández-Parra H, Cortés H, Avalos-Fuentes JA, Del Prado-Audelo M, Florán B, Leyva-Gómez G, Sharifi-Rad J, Cho WC. Repositioning of drugs for Parkinson's disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnology 2022; 20:413. [PMID: 36109747 PMCID: PMC9479294 DOI: 10.1186/s12951-022-01612-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) significantly affects patients' quality of life and represents a high economic burden for health systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication alternatives, reducing research time and costs compared to the traditional drug development strategy. This review aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed, Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors "Parkinson's disease" and "drug repositioning" or "drug repurposing". We identified 28 drugs as potential candidates, and six of them were found in repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential. Finally, current advances in the use of NPs for Parkinson's disease are cited.
Collapse
Affiliation(s)
- Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, 14380 Ciudad de México, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
56
|
Hou Z, Meng R, Chen G, Lai T, Qing R, Hao S, Deng J, Wang B. Distinct accumulation of nanoplastics in human intestinal organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155811. [PMID: 35597345 DOI: 10.1016/j.scitotenv.2022.155811] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Plastic particles, especially nanoplastics, represent an emerging concern of threat to human health, oral uptake is an important pathway for the plastic particles ingestion by human. While their fate and adverse effects in animal gastrointestinal tract are increasingly investigated, knowledge about their uptake and toxicity in human intestine is still limited. Here, by exposing human intestinal organoids to polystyrene nanoplastics (PS-NPs, ~50 nm in size) with concentrations of 10 and 100 μg/mL, we present evidence of their distinct accumulation in various type cells in intestinal organoids, then causing the cell apoptosis and inflammatory response. Our results further revealed that the effective inhibition of PS-NPs accumulation in secretive cells through co-exposure to a clathrin-mediated endocytosis inhibitor (chlorpromazine), and proved the essential role of active endocytosis in the PS-NPs uptaking into enterocyte cells. Our work not only elucidated the potential uptake and toxicity of PS-NPs in human intestinal cells and the underlying mechanism, but also provide a potential therapeutic approach to relieve the toxicity of PS-NPs to human through the endocytosis inhibition.
Collapse
Affiliation(s)
- Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ganghua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Tangmin Lai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Rui Qing
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
57
|
Sánchez A, Rodríguez-Viso P, Domene A, Orozco H, Vélez D, Devesa V. Dietary microplastics: Occurrence, exposure and health implications. ENVIRONMENTAL RESEARCH 2022; 212:113150. [PMID: 35341751 DOI: 10.1016/j.envres.2022.113150] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The increasing use of plastic materials generates an enormous amount of waste. In the aquatic environment, a significant part of this waste is present in the form of microplastics (MPs)- particles with a diameter of between 0.1 μm and 5 mm. The arrival of these small plastics in the food chain has been recently documented. MPs have been reported in fishery products, drinking water and sea salt among other foods. Their intestinal absorption is considered limited due to their size, however, they contain a mixture of chemicals intentionally added during their manufacture, which could cross the intestinal barrier. Currently there are not enough data to allow an accurate assessment of the risk associated with dietary exposure to MPs. The lack of robust methodologies is undoubtedly one of the main problems. There is limited information on occurrence in dietary sources (drinking water and food), human intake, toxicokinetics and long term toxicity of these contaminants. The present review describes the studies published so far and points to the need for improved knowledge in order to have a more accurate view of the problems posed by MPs.
Collapse
Affiliation(s)
- Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Helena Orozco
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
58
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
59
|
Cong VT, Houng JL, Kavallaris M, Chen X, Tilley RD, Gooding JJ. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells? Chem Soc Rev 2022; 51:7531-7559. [PMID: 35938511 DOI: 10.1039/d1cs00707f] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways.
Collapse
Affiliation(s)
- Vu Thanh Cong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacinta L Houng
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, China
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
60
|
Singh A, Yadagiri G, Javaid A, Sharma KK, Verma A, Singh OP, Sundar S, Mudavath SL. Hijacking the intrinsic vitamin B 12 pathway for the oral delivery of nanoparticles, resulting in enhanced in vivo anti-leishmanial activity. Biomater Sci 2022; 10:5669-5688. [PMID: 36017751 DOI: 10.1039/d2bm00979j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-functionalized vitamin B12 (VB12) biocompatible nanoparticles exploit the well-characterized uptake pathway of VB12, shielding it from enzymatic degradation and inadequate absorption. In this perspective, subsequent to escalated mucus interaction and diffusion analysis, the nanoparticles were investigated by immunostaining with the anti-CD320 antibody, and their internalization mechanisms were examined by selectively blocking specific uptake processes. It was observed that their internalization occurred via an energy-dependent clathrin-mediated mechanism, simultaneously highlighting their remarkable ability to bypass the P-glycoprotein efflux. In particular, the synthesized nanoparticles were evaluated for their cytocompatibility by analyzing cellular proliferation, membrane viscoelasticity, and fluidity by fluorescence recovery after photobleaching and oxidative-stress detection, making them well-suited for successful translation to a clinical setup. Our previous in vitro antileishmanial results were paramount for their further in vivo and toxicity analysis, demonstrating their targeted therapeutic efficiency. The augmented surface hydrophilicity, which is attributed to VB12, and monomerization of amphotericin B in the lipid core strengthened the oral bioavailability and stability of the nanoparticles, as evidenced by the fluorescence resonance energy transfer analysis.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Aaqib Javaid
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Krishna Kumar Sharma
- Department of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Anurag Verma
- Department of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
61
|
Gu Y, Du Y, Jiang L, Tang X, Li A, Zhao Y, Lang Y, Liu X, Liu J. αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma. J Nanobiotechnology 2022; 20:384. [PMID: 35999612 PMCID: PMC9400227 DOI: 10.1186/s12951-022-01597-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Melanoma is the most malignant skin tumor and is difficult to cure with the alternative treatments of chemotherapy, biotherapy, and immunotherapy. Our previous study showed that triptolide (TP) exhibited powerful tumoricidal activity against melanoma. However, the clinical potential of TP is plagued by its poor aqueous solubility, short half-life, and biotoxicity. Therefore, developing an ideal vehicle to efficiently load TP and achieving targeted delivery to melanoma is a prospective approach for making full use of its antitumor efficacy. Results We applied exosome (Exo) derived from human umbilical cord mesenchymal stromal cells (hUCMSCs) and engineered them exogenously with a cyclic peptide, arginine-glycine-aspartate (cRGD), to encapsulate TP to establish a bionic-targeted drug delivery system (cRGD-Exo/TP), achieving synergism and toxicity reduction. The average size of cRGD-Exo/TP was 157.34 ± 6.21 nm, with a high drug loading of 10.76 ± 1.21%. The in vitro antitumor results showed that the designed Exo delivery platform could be effectively taken up by targeted cells and performed significantly in antiproliferation, anti-invasion, and proapoptotic activities in A375 cells via the caspase cascade and mitochondrial pathways and cell cycle alteration. Furthermore, the biodistribution and pharmacokinetics results demonstrated that cRGD-Exo/TP possessed superior tumor targetability and prolonged the half-life of TP. Notably, cRGD-Exo/TP significantly inhibited tumor growth and extended survival time with negligible systemic toxicity in tumor-bearing mice. Conclusion The results indicated that the functionalized Exo platform provides a promising strategy for targeted therapy of malignant melanoma. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01597-1.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pharmacy, Children's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yitian Lang
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, SAR, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
62
|
Antioxidant Effect of Nanoparticles Composed of Zein and Orange (Citrus sinensis) Extract Obtained by Ultrasound-Assisted Extraction. MATERIALS 2022; 15:ma15144838. [PMID: 35888305 PMCID: PMC9320882 DOI: 10.3390/ma15144838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
In the present research, an orange extract (OE) was obtained and encapsulated in a zein matrix for its subsequent physicochemical characterization and evaluation of its antioxidant capacity. The OE consists of phenolic compounds and flavonoids extracted from orange peel (Citrus sinensis) by ultrasound-assisted extraction (UAE). The results obtained by dynamic light scattering (DLS) and scanning electron microscopy (SEM) indicated that zein nanoparticles with orange extract (NpZOE) presented a nanometric size and spherical shape, presenting a hydrodynamic diameter of 159.26 ± 5.96 nm. Furthermore, ζ-potential evolution and Fourier transform infrared spectroscopy (FTIR) techniques were used to evaluate the interaction between zein and OE. Regarding antioxidant activity, ABTS and DPPH assays indicated no significant differences at high concentrations of orange peel extract and NpZOE; however, NpZOE was more effective at low concentrations. Although this indicates that ultrasonication as an extraction method effectively obtains the phenolic compounds present in orange peels, the nanoprecipitation method under the conditions used allowed us to obtain particles in the nanometric range with positive ζ-potential. On the other hand, the antioxidant capacity analysis indicated a high antioxidant capacity of both OE and the NpZOE. This study presents the possibility of obtaining orange extracts by ultrasound and coupling them to zein-based nanoparticulate systems to be applied as biomedical materials functionalized with antioxidant substances of pharmaceutical utility.
Collapse
|
63
|
Parvez S, Karole A, Mudavath SL. Fabrication, physicochemical characterization and In vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line. Colloids Surf B Biointerfaces 2022; 215:112520. [PMID: 35489319 DOI: 10.1016/j.colsurfb.2022.112520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Nerolidol is a sesquiterpene that occurs naturally and possesses a diverse set of biological characteristics including anticancer activity but has limited solubility, bioavailability, and fast hepatic metabolism. The goal of this study was to develop a nanocarrier system encapsulating a bioactive as well as to evaluate its efficacy in Human Colorectal Cell Line. Solid lipid nanoparticles were fabricated by the emulsion solvent evaporation method and determined the particle size, polydispersity index (PDI), zeta potential, % entrapment efficiency, scanning electron microscopy (SEM), transmission electron microscopy (TEM), drug-excipient interaction study of developed nanoparticles. MTT assay was used to assess the cytotoxicity of formulations in vitro. Nerolidol loaded solid lipid nanoparticles (NR-LNPs) have presented satisfactory properties: mean particles diameter of 159 ± 4.89 nm, PDI of 0.32 ± 0.01, the zeta potential value was found to be -10 ± 1.97 and % entrapment efficiency 71.3% ± 6.11. The formulations demonstrated enhanced biological activity due to enhanced solubility and stability of the bioactive after loading into a nanoformulation along with the better internalization inside the cells.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
64
|
Azagury A, Baptista C, Milovanovic K, Shin H, Morello P, Perez-Rogers J, Goldenshtein V, Nguyen T, Markel A, Rege S, Hojsak S, Perl A, Jones C, Fife M, Furtado S, Mathiowitz E. Biocoating-A Critical Step Governing the Oral Delivery of Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107559. [PMID: 35606684 PMCID: PMC9250634 DOI: 10.1002/smll.202107559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Decades of research into the topic of oral nanoparticle (NP) delivery has still not provided a clear consensus regarding which properties produce an effective oral drug delivery system. The surface properties-charge and bioadhesiveness-as well as in vitro and in vivo correlation seem to generate the greatest number of disagreements within the field. Herein, a mechanism underlying the in vivo behavior of NPs is proposed, which bridges the gaps between these disagreements. The mechanism relies on the idea of biocoating-the coating of NPs with mucus-which alters their surface properties, and ultimately their systemic uptake. Utilizing this mechanism, several coated NPs are tested in vitro, ex vivo, and in vivo, and biocoating is found to affect NPs size, zeta-potential, mucosal diffusion coefficient, the extent of aggregation, and in vivo/in vitro/ex vivo correlation. Based on these results, low molecular weight polylactic acid exhibits a 21-fold increase in mucosal diffusion coefficient after precoating as compared to uncoated particles, as well as 20% less aggregation, and about 30% uptake to the blood in vivo. These discoveries suggest that biocoating reduces negative NP charge which results in an enhanced mucosal diffusion rate, increased gastrointestinal retention time, and high systemic uptake.
Collapse
Affiliation(s)
- Aharon Azagury
- Noninvasive Biomimetic Drug Delivery Systems Lab, The Department of Chemical Engineering, Ariel Center for Applied Cancer Research (ACACR), Ariel University, Ramat HaGolan St 65, Ari'el, 40700000, Israel
| | - Cameron Baptista
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Kosta Milovanovic
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Hyeseon Shin
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Peter Morello
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - James Perez-Rogers
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Victoria Goldenshtein
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Travis Nguyen
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Arianna Markel
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Soham Rege
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Stephanie Hojsak
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Alexander Perl
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Carder Jones
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Megan Fife
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Stacia Furtado
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Edith Mathiowitz
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| |
Collapse
|
65
|
Cheng Y, Ren J, Fan S, Wu P, Cong W, Lin Y, Lan S, Song S, Shao B, Dai W, Wang X, Zhang H, Xu B, Li W, Yuan X, He B, Zhang Q. Nanoparticulates reduce tumor cell migration through affinity interactions with extracellular migrasomes and retraction fibers. NANOSCALE HORIZONS 2022; 7:779-789. [PMID: 35703339 DOI: 10.1039/d2nh00067a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nano-tumor interactions are fundamental for cancer nanotherapy, and the cross-talk of nanomedicines with the extracellular matrix (ECM) is increasingly considered essential. Here, we specifically investigate the nano-ECM interactivity using drug-free nanoparticulates (NPs) and highly metastatic cancer cells as models. We discover with surprise that NPs closely bind to specific types of ECM components, namely, retraction fibers (RFs) and migrasomes, which are located at the rear of tumor cells during their migration. This interaction is observed to alter cell morphology, limit cell motion range and change cell adhesion. Importantly, NPs are demonstrated to inhibit tumor cell removal in vitro, and their anti-metastasis potential is preliminarily confirmed in vivo. Mechanically, the NPs are found to coat and form a rigid shell on the surface of migrasomes and retraction fibers via interaction with lipid raft/caveolae substructures. In this way, NPs block the recognition, endocytosis and elimination of migrasomes by their surrounding tumor cells. Thereby, NPs interfere with the cell-ECM interaction and reduce the promotion effect of migrasomes on cell movement. Additionally, NPs trigger alteration of the expression of proteins related to cell-cell adhesion and cytoskeleton organization, which also restricts cell migration. In summary, all the findings here provide a potential target for anti-tumor metastasis nanomedicines.
Collapse
Affiliation(s)
- Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junji Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shumin Fan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peiyao Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenshu Cong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxing Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shaojie Lan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Siyang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bin Shao
- Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing 100142, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
66
|
Shriram RG, Moin A, Alotaibi HF, Khafagy ES, Al Saqr A, Abu Lila AS, Charyulu RN. Phytosomes as a Plausible Nano-Delivery System for Enhanced Oral Bioavailability and Improved Hepatoprotective Activity of Silymarin. Pharmaceuticals (Basel) 2022; 15:ph15070790. [PMID: 35890088 PMCID: PMC9318442 DOI: 10.3390/ph15070790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Silymarin, a phyto-constituent derived from the plant Silybum marianum, has been widely acknowledged for its hepatoprotective activities. Nevertheless, its clinical utility is adversely hampered by its poor water-solubility and its limited oral bioavailability. The aim of this study was to investigate the efficacy of phospholipid-based phytosomes for enhancing the oral bioavailability of silymarin. The phytosomes were prepared using the solvent evaporation technique and were optimized using a full factorial design. The optimized silymarin phytosomal formulation was then characterized for particle size, surface morphology, aqueous solubility, and in vitro drug release. Furthermore, in vivo antioxidant activity, hepatoprotective activity and oral bioavailability of the optimized formula were investigated in a rat model. The prepared silymarin phytosomes were discrete particles with a porous, nearly smooth surface and were 218.4 ± 2.54 nm in diameter. In addition, the optimized silymarin phytosomal formulation showed a significant improvement in aqueous solubility (~360 µg/mL) compared to pure silymarin and manifested a higher rate and extent of silymarin release from the optimized formula in dissolution studies. The in vivo assessment studies revealed that the optimized silymarin phytosomal formulation efficiently exerted a hepatoprotective effect in a CCl4-induced hepatotoxicity rat model via restoring the normal levels of antioxidant enzymes and ameliorating cellular abnormalities caused by CCl4-intoxication. Most notably, as compared to pure silymarin, the optimized silymarin phytosomal formulation significantly improved silymarin oral bioavailability, as indicated by a 6-fold increase in the systemic bioavailability. Collectively, phytosomes might represent a plausible phospholipid-based nanocarrier for improving the oral bioavailability of phyto-constituents with poor aqueous solubility.
Collapse
Affiliation(s)
- Ravi Gundadka Shriram
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdul Rahman University, Riyadh 11671, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (E.-S.K.); (A.A.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (E.-S.K.); (A.A.S.)
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (R.N.C.)
| | - Rompicherla Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore 575018, Karnataka, India;
- Correspondence: (A.S.A.L.); (R.N.C.)
| |
Collapse
|
67
|
Chung TW, Wu TY, Siah ZY, Liu DZ. Antioxidative NAC-Loaded Silk Nanoparticles with Opening Mucosal Tight Junctions for Nasal Drug Delivery: An In Vitro and In Vivo Study. Pharmaceutics 2022; 14:pharmaceutics14061288. [PMID: 35745861 PMCID: PMC9229699 DOI: 10.3390/pharmaceutics14061288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Using nasal routes to deliver drugs to the brain using multifunctional nanoparticles (NPs) to bypass the blood–brain barrier (BBB) might enhance the delivery efficacy. Anti-oxidative N-Acetyl-L-cysteine (NAC)-loaded silk fibroin (SF/NAC) NPs are produced, characterized and studied as a potential delivery vehicle for NAC delivered to the brain via nasal for both in vitro and in vivo studies. The NPs are not cytotoxic to RPMI 2650 cells, mucosal model cells, at a concentration of 6000 μg/mL. The anti-oxidative activities of SF/NAC NPs are demonstrated by high H2O2 scavenge capacities of the NPs and shown by mitochondrial superoxide (MitoSOX) immunostaining of human mesenchymal stem cells. Tight junctions in RPMI 2650 cells are opened after 30 min of incubation with SF/NAC NPs, which are demonstrated by measuring the decrease in trans-epithelial electrical resistance (TEER) values and discreteness in ZO-1 stains. The cellular uptake of SF/NAC NPs by RPMI 2650 cells is significantly greater than that for SF NPs and increased with increasing incubation time. In an in vivo imaging study (IVIS) using rats shows that the amount of NAC that is delivered to the brain by SF/NAC NPs increased by 1.40–2.60 times and NAC is retained longer in the nasal cavity than NAC solutions in a 2-h study.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
- Correspondence:
| | - Ting-Ya Wu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Zheng-Yu Siah
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Der-Zen Liu
- Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
68
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
69
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
70
|
Yan D, Zhang H, Xu X, Ren C, Han C, Li Z. Theranostic nanosystem with supramolecular self-assembly for enhanced reactive oxygen species-mediated apoptosis guided by dual-modality tumor imaging. Pharmacol Res 2022; 180:106241. [DOI: 10.1016/j.phrs.2022.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
71
|
Dellali KZ, Dellali M, Raţă DM, Cadinoiu AN, Atanase LI, Popa M, Spataru MC, Solcan C. Assessment of Physicochemical and In Vivo Biological Properties of Polymeric Nanocapsules Based on Chitosan and Poly( N-vinyl pyrrolidone- alt-itaconic anhydride). Polymers (Basel) 2022; 14:polym14091811. [PMID: 35566980 PMCID: PMC9104533 DOI: 10.3390/polym14091811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Drug delivery is an important field of nanomedicine, and its aim is to deliver specific active substances to a precise site of action in order to produce a desired pharmacological effect. In the present study nanocapsules were obtained by a process of interfacial condensation between chitosan (dissolved in the aqueous phase) and poly(N-vinyl pyrrolidone-alt-itaconic anhydride), a highly reactive copolymer capable of easily opening the anhydride ring under the action of amine groups of chitosan. The formed amide bonds led to the formation of a hydrogel membrane. The morphology of the obtained nanocapsules, their behavior in aqueous solution of physiological pH, and their ability to encapsulate and release a model drug can be modulated by the parameters of the synthesis process, such as the molar ratio between functional groups of polymers and the ratio of the phases in which the polymers are solubilized. Although a priori both polymers are biocompatible, this paper reports the results of a very detailed in vivo study conducted on experimental animals which have received the obtained nanocapsules by three administration routes—intraperitoneal, subcutaneous, and oral. The organs taken from the animals’ kidney, liver, spleen, and lung and analyzed histologically demonstrated the ability of nanocapsules to stimulate the monocytic macrophage system without producing inflammatory changes. Moreover, their in vivo behavior has been shown to depend not only on the route of administration but also on the interaction with the cells of the organs with which they come into contact. The results clearly argue the biocompatibility of nanocapsules and hence the possibility of their safe use in biomedical applications.
Collapse
Affiliation(s)
- Kheira Zanoune Dellali
- Faculty of Technology, University Hassiba Benbouali, BP 151, Chlef 02000, Algeria; (K.Z.D.); (M.D.)
| | - Mohammed Dellali
- Faculty of Technology, University Hassiba Benbouali, BP 151, Chlef 02000, Algeria; (K.Z.D.); (M.D.)
| | - Delia Mihaela Raţă
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
- Correspondence: (D.M.R.); (L.I.A.); (M.P.)
| | - Anca Niculina Cadinoiu
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
- Correspondence: (D.M.R.); (L.I.A.); (M.P.)
| | - Marcel Popa
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei Street, No. 54, 050094 Bucharest, Romania
- Correspondence: (D.M.R.); (L.I.A.); (M.P.)
| | - Mihaela-Claudia Spataru
- Public Health Departament, Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, Mihail Sadoveanu Alley, No. 8, 700489 Iasi, Romania; (M.-C.S.); (C.S.)
| | - Carmen Solcan
- Public Health Departament, Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, Mihail Sadoveanu Alley, No. 8, 700489 Iasi, Romania; (M.-C.S.); (C.S.)
| |
Collapse
|
72
|
Self-emulsifying Transparent Nanoemulsion to Improve 9'-cis-Bixin Photo Stability in Aqueous Solution by Tween 20 and Lecithin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
73
|
Md S, Alhakamy NA, Sharma P, Ansari MS, Gorain B. Nanocarrier-based co-delivery approaches of chemotherapeutics with natural P-glycoprotein inhibitors in the improvement of multidrug resistance cancer therapy. J Drug Target 2022; 30:801-818. [DOI: 10.1080/1061186x.2022.2069782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priyanka Sharma
- Center for Innovation in Personalized Medicine, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
74
|
Singh A, Yadagiri G, Negi M, Kushwaha AK, Singh OP, Sundar S, Mudavath SL. Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. Int J Biol Macromol 2022; 204:373-385. [PMID: 35149096 DOI: 10.1016/j.ijbiomac.2022.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022]
Abstract
Herein, carboxymethyl chitosan (CMC) grafted lipid nanoformulations were facilely prepared by thin-film hydration method as a highly efficient biocompatible anti-leishmanial carrier encapsulating amphotericin B (AmB). Nanoformulations were characterized for their physicochemical characteristics wherein TEM analysis confirmed the spherical structure, whereas FTIR analysis revealed the conjugation of CMC onto nanoformulations and confirmed the free state of AmB. Furthermore, the wettability study confirmed the presence of CMC on the surface of nanoformulations attributed to the enhanced hydrophilicity. Surface hydrophilicity additionally contributes towards consistent mucin retention ability for up to 6 h, superior mucoadhesiveness, and hence enhanced bioavailability. The proposed nanoformulations with high encapsulation and drug loading properties displayed controlled drug release in the physiological microenvironment. In vitro, antileishmanial results showed an astounding 97% inhibition in amastigote growth. Additionally, in vivo studies showed that treatment with nanoformulations significantly reduced the liver parasitic burden (93.5%) without causing any toxicity when given orally.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Manorma Negi
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Anurag Kumar Kushwaha
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
75
|
Li H, Yang YG, Sun T. Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Front Bioeng Biotechnol 2022; 10:889291. [PMID: 35464732 PMCID: PMC9019755 DOI: 10.3389/fbioe.2022.889291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune disease is a chronic inflammatory disease caused by disorders of immune regulation. Antigen-specific immunotherapy has the potential to inhibit the autoreactivity of inflammatory T cells and induce antigen-specific immune suppression without impairing normal immune function, offering an ideal strategy for autoimmune disease treatment. Tolerogenic dendritic cells (Tol DCs) with immunoregulatory functions play important roles in inducing immune tolerance. However, the effective generation of tolerogenic DCs in vivo remains a great challenge. The application of nanoparticle-based drug delivery systems in autoimmune disease treatment can increase the efficiency of inducing antigen-specific tolerance in vivo. In this review, we discuss multiple nanoparticles, with a focus on their potential in treatment of autoimmune diseases. We also discuss how the physical properties of nanoparticles influence their therapeutic efficacy.
Collapse
Affiliation(s)
- He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- Department of Rehabilitation Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
76
|
Parvez S, Karole A, Mudavath SL. Transport mechanism of hydroxy-propyl-beta-cyclodextrin modified solid lipid nanoparticles across human epithelial cells for the oral absorption of antileishmanial drugs. Biochim Biophys Acta Gen Subj 2022; 1866:130157. [DOI: 10.1016/j.bbagen.2022.130157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
77
|
Woythe L, Madhikar P, Feiner-Gracia N, Storm C, Albertazzi L. A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density. ACS NANO 2022; 16:3785-3796. [PMID: 35274534 PMCID: PMC8945370 DOI: 10.1021/acsnano.1c08277] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.
Collapse
Affiliation(s)
- Laura Woythe
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, Eindhoven 5612AZ, The Netherlands
| | - Pranav Madhikar
- Department
of Applied Physics, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands
| | - Natalia Feiner-Gracia
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, Eindhoven 5612AZ, The Netherlands
| | - Cornelis Storm
- Department
of Applied Physics, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
- E-mail:
| |
Collapse
|
78
|
Zhou W, He X, Wang J, He S, Xie C, Fan Q, Pu K. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation. Biomacromolecules 2022; 23:1490-1504. [PMID: 35286085 DOI: 10.1021/acs.biomac.2c00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy that stimulates the body's own immune system to kill cancer cells has emerged as a promising cancer therapeutic method. However, some types of cancer exhibited a low response rate to immunotherapy, and the high risk of immune-related side effects has been aroused during immunotherapy, which greatly restrict its broad applications in cancer therapy. Phototherapy that uses external light to trigger the therapeutic process holds advantages including high selectivity and efficiency, and low side effects. Recently, it has been proven to be able to stimulate immune response in the tumor region by inducing immunogenic cell death (ICD), the process of which was termed photo-immunotherapy, dramatically improving therapeutic specificity over conventional immunotherapy in several aspects. Among numerous optical materials for photo-immunotherapy, semiconducting polymer nanoparticles (SPNs) have gained more and more attention owing to their excellent optical properties and good biocompatibility. In this review, we summarize recent developments of SPNs for immunotherapy and imaging of immunoactivation. Different therapeutic modalities triggered by SPNs including photo-immunotherapy and photo-immunometabolic therapy are first introduced. Then, applications of SPNs for real-time monitoring immunoactivation are discussed. Finally, the conclusion and future perspectives of this research field are given.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinghui Wang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
79
|
Chaikhumwang P, Madapong A, Saeng-Chuto K, Nilubol D, Tantituvanont A. Intranasal delivery of inactivated PRRSV loaded cationic nanoparticles coupled with enterotoxin subunit B induces PRRSV-specific immune responses in pigs. Sci Rep 2022; 12:3725. [PMID: 35260663 PMCID: PMC8904483 DOI: 10.1038/s41598-022-07680-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to evaluate the induction of systemic and mucosal immune responses and protective efficacy following the intranasal administration of inactivated porcine reproductive and respiratory syndrome virus (PRRSV) loaded in polylactic acid (PLA) nanoparticles coupled with heat-labile enterotoxin subunit B (LTB) and dimethyldioctadecylammonium bromide (DDA). Here, 42- to 3-week-old PRRSV-free pigs were randomly allocated into 7 groups of 6 pigs each. Two groups represented the negative (nonvaccinated pigs/nonchallenged pigs, NoVacNoChal) and challenge (nonvaccinated/challenged, NoVacChal) controls. The pigs in the other 5 groups, namely, PLA nanoparticles/challenged (blank NPs), LTB-DDA coupled with PLA nanoparticles/challenged (adjuvant-blank NPs), PLA nanoparticles-encapsulating inactivated PRRSV/challenged (KNPs), LTB-DDA coupled with PLA nanoparticles loaded with inactivated PRRSV/challenged pigs (adjuvant-KNPs) and inactivated PRRSV/challenged pigs (inactivated PRRSV), were intranasally vaccinated with previously described vaccines at 0, 7 and 14 days post-vaccination (DPV). Serum and nasal swab samples were collected weekly and assayed by ELISA to detect the presence of IgG and IgA, respectively. Viral neutralizing titer (VNT) in sera, IFN-γ-producing cells and IL-10 secretion in stimulated peripheral blood mononuclear cells (PBMCs) were also measured. The pigs were intranasally challenged with PRRSV-2 at 28 DPV and necropsied at 35 DPV, and then macro- and microscopic lung lesions were evaluated. The results demonstrated that following vaccination, adjuvant-KNP-vaccinated pigs had significantly higher levels of IFN-γ-producing cells, VNT and IgG in sera, and IgA in nasal swab samples and significantly lower IL-10 levels than the other vaccinated groups. Following challenge, the adjuvant-KNP-vaccinated pigs had significantly lower PRRSV RNA and macro- and microscopic lung lesions than the other vaccinated groups. In conclusion, the results of the study demonstrated that adjuvant-KNPs are effective in eliciting immune responses against PRRSV and protecting against PRRSV infections over KNPs and inactivated PRRSV and can be used as an adjuvant for intranasal PRRSV vaccines.
Collapse
Affiliation(s)
- Puwich Chaikhumwang
- Division of Pharmaceutical Sciences, Department of Pharmaceutical Care, Faculty of Pharmaceutical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Adthakorn Madapong
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kepalee Saeng-Chuto
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
80
|
Janardhanam LSL, Bandi SP, Venuganti VVK. Functionalized LbL Film for Localized Delivery of STAT3 siRNA and Oxaliplatin Combination to Treat Colon Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10030-10046. [PMID: 35170934 DOI: 10.1021/acsami.1c22166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of the study was to develop and evaluate the efficacy of a functionalized layer-by-layer (LbL) assembled film entrapped with oxaliplatin (OX) and signal transducer and activator of transcription 3 (STAT3) siRNA in the localized treatment of colon cancer. The LbL film was prepared by the sequential layering of chitosan (CS) and alginate to attain desired physical and mechanical properties. The film was functionalized by coating folic acid-conjugated CS on one side. On the other side, polycaprolactone was coated as a backing layer to provide directional drug release. OX was entrapped within the layers of the film, while STAT3 siRNA was complexed with CS to form nanoparticles before entrapment in the LbL film. The CS-siRNA nanoparticles were taken up by the colon carcinoma, Caco-2 cells within 3 h and provided concentration-dependent reduction in STAT3 protein expression. The functionalized LbL film (F-LbL film) selectively adhered to the colon cancer tissue in the mice model, whereas the nonfunctionalized film adhered to the normal colon tissue. The combination of OX and STAT3 siRNA provided significantly greater tumor regression, survival rate, and STAT3 protein suppression after localized delivery through oral administration compared with intravenous administration. Taken together, the F-LbL film can selectively bind to colon tumors for localized delivery of drugs to treat colon cancer.
Collapse
Affiliation(s)
- Leela Sai Lokesh Janardhanam
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana State, India
| | - Sony Priyanka Bandi
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana State, India
| | | |
Collapse
|
81
|
Delon L, Gibson R, Prestidge C, Thierry B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J Control Release 2022; 343:584-599. [PMID: 35149142 DOI: 10.1016/j.jconrel.2022.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Micro- and nano-scale particulate formulations are widely investigated towards improving the oral bioavailability of both biologics and drugs with low solubility and/or low intestinal permeability. Particulate formulations harnessing physiological intestinal transport pathways have recently yielded remarkably high oral bioavailabilities, illustrating the need for better understanding the specific pathways underpinning particle small intestinal absorption and the relative role of intestinal cells. Mechanistic knowledge has been hampered by the well acknowledged limitations of current in vitro, in vivo and ex vivo models relevant to the human intestinal physiology and the lack of standardization in studies reporting absorption data. Here we review the relevant literature and critically discusses absorption pathways with a focus on the role of specific intestinal epithelial and immune cells. We conclude that while Microfold (M) cells are a valid target for oral vaccines, enterocytes play a greater role in the systemic bioavailability of orally administrated particulate formulations, particularly within the sub-micron size range. We also comment on less-reported mechanisms such as paracellular permeability of particles, persorption due to cell damage and uptake by migratory immune cells.
Collapse
Affiliation(s)
- Ludivine Delon
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Rachel Gibson
- Australia School of Allied Health Science and Practice, University of Adelaide, South Australia 5005, Australia
| | - Clive Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
82
|
Co-assembly of foxtail millet prolamin-lecithin/alginate sodium in citric acid-potassium phosphate buffer for delivery of quercetin. Food Chem 2022; 381:132268. [PMID: 35121326 DOI: 10.1016/j.foodchem.2022.132268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
Foxtail millet nanoparticles with smaller mean size at ∼130 nm and narrower polydispersity index at ∼0.05 were prepared in citric acid-potassium phosphate buffer (pH 8.0). Through lecithin (Lec)/sodium alginate (Alg) coating, a hydrophobic FP core, a Lec monolayer, and a hydrophilic Alg shell were formed spontaneously. Dissociation experiment revealed that electrostatic interaction and hydrogen bonding were main driving forces for the formation and maintenance of stable FP-Lec/Alg NPs. In addition, Lec/Alg coated NPs exerted an important role in sustaining the controlled release of the encapsulated quercetin under simulated gastrointestinal tract conditions. Cellular uptake test exhibited that FP-Lec-Alg NPs cold enter epithelial cells in a time-dependent manner, showing the maximum uptake efficiency were 22% and 24%, respectively, after 2 h of incubation. About 220 nm NPs can be recovered by adding 10% (w/v) sucrose. FP-Lec-Alg NPs were found to be promising delivery materials to deliver quercetin and improve its bioavailability.
Collapse
|
83
|
Le TS, Takahashi M, Isozumi N, Miyazato A, Hiratsuka Y, Matsumura K, Taguchi T, Maenosono S. Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles. ACS NANO 2022; 16:885-896. [PMID: 34978188 DOI: 10.1021/acsnano.1c08474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and efficient isolation of intact lysosomes is necessary to study their functions and metabolites by proteomic analysis. We developed a swift and robust nanoparticle-based magnetic separation method in which magnetic-plasmonic hybrid nanoparticles (MPNPs) conjugated with amino dextran (aDxt) were targeted to the lumen of lysosomes via the endocytosis pathway. For well-directed magnetic separation of the lysosomes, it is important to trace the intracellular trafficking of the aDxt-conjugated MPNPs (aDxt-MPNPs) in the endocytosis pathway. Therefore, we analyzed the intracellular transport process of the aDxt-MPNPs by investigating the time-dependent colocalization of plasmonic scattering of aDxt-MPNPs and immunostained marker proteins of organelles using the threshold Manders' colocalization coefficient (Rt). Detailed analysis of time variations of Rt for early and late endosomes and lysosomes allowed us to derive the transport kinetics of aDxt-MPNPs in a cell. After confirming the incubation time required for sufficient accumulation of aDxt-MPNPs in lysosomes, the lysosomes were magnetically isolated as intact as possible. By varying the elapsed time from homogenization to complete isolation of lysosomes (tdelay) and temperature (T), the influences of tdelay and T on the protein composition of the lysosomes were investigated by polyacrylamide gel electrophoresis and amino acid analysis. We found that the intactness of lysosomes could become impaired quite quickly, and to isolate lysosomes as intact as possible with high purity, tdelay = 30 min and T = 4 °C were optimal settings.
Collapse
Affiliation(s)
- The Son Le
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mari Takahashi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Akio Miyazato
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuichi Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tomohiko Taguchi
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aoba, Sendai Aoba-ku, Miyagi 980-8578, Japan
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
84
|
Luo X, Liu J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103971. [PMID: 34796699 PMCID: PMC8787435 DOI: 10.1002/advs.202103971] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Indexed: 05/07/2023]
Abstract
In the past decade, ultrasmall luminescent metal nanoparticles (ULMNPs, d < 3 nm) have achieved rapid progress in addressing many challenges in the healthcare field because of their excellent physicochemical properties and biological behaviors. With the sharp shrinking size of large plasmonic metal nanoparticles (PMNPs), the contributions from the surface characteristics increase significantly, which brings both opportunities and challenges in the application-driven surface engineering of ULMNPs toward advanced biological applications. Here, the systematic advancements in the biological applications of ULMNPs from bioimaging to theranostics are summarized with emphasis on the versatile surface engineering strategies in the regulation of biological targeting and imaging performance. The efforts in the surface functionalization strategies of ULMNPs for enhanced disease targeting abilities are first discussed. Thereafter, self-assembly strategies of ULMNPs for fabricating multifunctional nanostructures for multimodal imaging and nanomedicine are discussed. Further, surface engineering strategies of ratiometric ULMNPs to enhance the imaging stability to address the imaging challenges in complicated bioenvironments are summarized. Finally, the phototoxicity of ULMNPs and future perspectives are also reviewed, which are expected to provide a fundamental understanding of the physicochemical properties and biological behaviors of ULMNPs to accelerate their future clinical applications in healthcare.
Collapse
Affiliation(s)
- Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
85
|
Seniwal B, Thipe VC, Singh S, Fonseca TCF, Freitas de Freitas L. Recent Advances in Brachytherapy Using Radioactive Nanoparticles: An Alternative to Seed-Based Brachytherapy. Front Oncol 2021; 11:766407. [PMID: 34900715 PMCID: PMC8651618 DOI: 10.3389/fonc.2021.766407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Interstitial brachytherapy (BT) is generally used for the treatment of well-confined solid tumors. One example of this is in the treatment of prostate tumors by permanent placement of radioactive seeds within the prostate gland, where low doses of radiation are delivered for several months. However, successful implementation of this technique is hampered due to several posttreatment adverse effects or symptoms and operational and logistical complications associated with it. Recently, with the advancements in nanotechnology, radioactive nanoparticles (radio-NPs) functionalized with tumor-specific biomolecules, injected intratumorally, have been reported as an alternative to seed-based BT. Successful treatment of solid tumors using radio-NPs has been reported in several preclinical studies, on both mice and canine models. In this article, we review the recent advancements in the synthesis and use of radio-NPs as a substitute to seed-based BT. Here, we discuss the limitations of current seed-based BT and advantages of radio-NPs for BT applications. Recent progress on the types of radio-NPs, their features, synthesis methods, and delivery techniques are discussed. The last part of the review focuses on the currently used dosimetry protocols and studies on the dosimetry of nanobrachytherapy applications using radio-NPs. The current challenges and future research directions on the role of radio-NPs in BT treatments are also discussed.
Collapse
Affiliation(s)
- Baljeet Seniwal
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec), Axe Médecine Régénératrice, Québec, QC, Canada
| | - Velaphi C Thipe
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear (IPEN-CNEN), Cidade Universitária, São Paulo, Brazil.,Department of Radiology, Institute of Green Nanotechnology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sukhvir Singh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Telma C F Fonseca
- Departamento de Engenharia Nuclear-Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Freitas de Freitas
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear (IPEN-CNEN), Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
86
|
Ribovski L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021; 13:2045. [PMID: 34959326 PMCID: PMC8705716 DOI: 10.3390/pharmaceutics13122045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Safe and reliable entry to the brain is essential for successful diagnosis and treatment of diseases, but it still poses major challenges. As a result, many therapeutic approaches to treating disorders associated with the central nervous system (CNS) still only show limited success. Nano-sized systems are being explored as drug carriers and show great improvements in the delivery of many therapeutics. The systemic delivery of nanoparticles (NPs) or nanocarriers (NCs) to the brain involves reaching the neurovascular unit (NVU), being transported across the blood-brain barrier, (BBB) and accumulating in the brain. Each of these steps can benefit from specifically controlled properties of NPs. Here, we discuss how brain delivery by NPs can benefit from careful design of the NP properties. Properties such as size, charge, shape, and ligand functionalization are commonly addressed in the literature; however, properties such as ligand density, linker length, avidity, protein corona, and stiffness are insufficiently discussed. This is unfortunate since they present great value against multiple barriers encountered by the NPs before reaching the brain, particularly the BBB. We further highlight important examples utilizing targeting ligands and how functionalization parameters, e.g., ligand density and ligand properties, can affect the success of the nano-based delivery system.
Collapse
Affiliation(s)
| | | | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.R.); (N.M.H.)
| |
Collapse
|
87
|
Hamelmann NM, Paats JWD, Paulusse JMJ. Cytosolic Delivery of Single-Chain Polymer Nanoparticles. ACS Macro Lett 2021; 10:1443-1449. [PMID: 35549017 DOI: 10.1021/acsmacrolett.1c00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytosolic delivery of therapeutic agents is key to improving their efficacy, as the therapeutics are primarily active in specific organelles. Single-chain polymer nanoparticles (SCNPs) are a promising nanocarrier platform in biomedical applications due to their unique size range of 5-20 nm, modularity, and ease of functionalization. However, cytosolic delivery of SCNPs remains challenging. Here, we report the synthesis of active ester-functional SCNPs of approximately 10 nm via intramolecular thiol-Michael addition cross-linking and their functionalization with increasing amounts of tertiary amines 0 to 60 mol % to obtain SCNPs with increasing positive surface charges. No significant cytotoxicity was detected in bEND.3 cells for the SCNPs, except when SCNPs with high amounts of tertiary amines were incubated over prolonged periods of time at high concentrations. Cellular uptake of the SCNPs was analyzed, presenting different uptake behavior depending on the degree of functionalization. Confocal microscopy revealed successful cytosolic delivery of SCNPs with high degrees of functionalization (45%, 60%), while SCNPs with low amounts (0% to 30%) of tertiary amines showed high degrees of colocalization with lysosomes. This work presents a strategy to direct the intracellular location of SCNPs by controlled surface modification to improve intracellular targeting for biomedical applications.
Collapse
Affiliation(s)
- Naomi M. Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jan-Willem D. Paats
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
88
|
Wright L, Joyce P, Barnes TJ, Prestidge CA. Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomater Sci Eng 2021. [PMID: 34784462 DOI: 10.1021/acsbiomaterials.1c00814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gastrointestinal mucus layer plays a significant role in maintaining gut homeostasis and health, offering protective capacities against the absorption of harmful pathogens as well as commensal gut bacteria and buffering stomach acid to protect the underlying epithelium. Despite this, the mucus barrier is often overlooked during preclinical pharmaceutical development and may pose a significant absorption barrier to high molecular weight or lipophilic drug species. The complex chemical and physical nature of the dynamic mucus layer has proven problematic to reliably replicate in a laboratory setting, leading to the development of multiple mucus models with varying complexity and predictive capacity. This, coupled with the wide range of analysis methods available, has led to a plethora of possible approaches to quantifying mucus permeation; however, the field remains significantly under-represented in biomedical research. For this reason, the development of a concise collation of the available approaches to mucus permeation is essential. In this review, we explore widely utilized mucus mimics ranging in complexity from simple mucin solutions to native mucus preparations for their predictive capacity in mucus permeation analysis. Furthermore, we highlight the diverse range of laboratory-based models available for the analysis of mucus interaction and permeability with a specific focus on in vitro, ex vivo, and in situ models. Finally, we highlight the predictive capacity of these models in correlation with in vivo pharmacokinetic data. This review provides a comprehensive and critical overview of the available technologies to analyze mucus permeation, facilitating the efficient selection of appropriate tools for further advancement in oral drug delivery.
Collapse
Affiliation(s)
- Leah Wright
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, North Terrace, University of South Australia, Adelaide, 5001, Australia
| | - Paul Joyce
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, North Terrace, University of South Australia, Adelaide, 5001, Australia
| | - Timothy J Barnes
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia
| | - Clive A Prestidge
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, North Terrace, University of South Australia, Adelaide, 5001, Australia
| |
Collapse
|
89
|
Cao P, Wang J, Sun B, Rewatkar P, Popat A, Fu C, Peng H, Xu ZP, Li L. Enhanced Mucosal Transport of Polysaccharide-Calcium Phosphate Nanocomposites for Oral Vaccination. ACS APPLIED BIO MATERIALS 2021; 4:7865-7878. [PMID: 35006768 DOI: 10.1021/acsabm.1c00798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral vaccine has attracted much interest, as it can stimulate both mucosal and systemic immunity with noninvasive and good patient compliance. However, the oral vaccine efficiency is strongly constrained by the low absorption of antigens in the small intestine due to the mucosal barriers. Physicochemical characteristics of nanoparticles (NPs) have strong effects on antigen mucosal penetration, helping to improve immune response. However, surface functions of NPs on mucosal transportation have not been clearly understood. In this work, we elaborately investigated how the surface characteristics of mucoadhesive chitosan and its derivant act on oral antigen absorption and immune response. Core-shell chitosan- and o-carboxymethyl chitosan-coated calcium phosphate (CaP) nanocomposites have been fabricated to investigate the surface property effect on protein antigen delivery using the oral route. The interaction between polymer-coated CaP NPs and the intestinal mucosal layer was studied using mucin absorption, NP diffusion through the mucus layer, NP permeability across the epithelium monolayer, and their cellular uptake by antigen presenting cells in detail. Ex vivo mucosa distribution and in vivo oral immunization of polymer-coated CaP nanocomposites were further examined to demonstrate that the surface property of NPs affects CaP diffusion and penetration through the mucosal layer. As expected, OVA orally delivered by polymer-coated CaP nanocomposites improved the response of mucosal immunity compared to antigen OVA itself in vivo.
Collapse
Affiliation(s)
- Pei Cao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.,Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
90
|
Pedrino M, Brassolatti P, Maragno Fattori AC, Bianchi J, de Almeida Rodolpho JM, de Godoy KF, Assis M, Longo E, Nogueira Zambone Pinto Rossi K, Speglich C, de Freitas Anibal F. Analysis of cytotoxicity and genotoxicity in a short-term dependent manner induced by a new titanium dioxide nanoparticle in murine fibroblast cells. Toxicol Mech Methods 2021; 32:213-223. [PMID: 34645367 DOI: 10.1080/15376516.2021.1994075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The extensive use of titanium dioxide nanoparticles (TiO2 NPs) in cosmetics, food, personal care products, and industries brought concerns about their possible harmful effects. Nowadays it has become important to assess TiO2 NPs toxic effects as a way to understand their primary risks. In the cellular environment, after cell uptake, TiO2 NPs were described to induce reactive oxygen species (ROS) production, unbalance oxidative state, and activate apoptosis in several cell lines. Therefore, we aimed to evaluate the cytotoxicity and genotoxicity of a new TiO2 NP surface-functionalized with sodium carboxylic ligands in a murine fibroblast cell line (LA-9). TEM and DLS analyses were performed to define nanoparticle physicochemical characteristics. We evaluated the metabolic activity and LDH released after 24 h exposition to determine cytotoxic effects. Also, we evaluated DNA damage, intracellular reactive oxygen species (ROS) production, and apoptosis induction after 24 h exposure. The TiO2 NP impaired the cell membrane integrity at 1000 μg/mL, induced intracellular ROS production and late apoptosis at 24 h. The genotoxic effects were observed at all conditions tested at 24 h. Indeed, in fibroblasts exposed at 100 μg/mL was observed early apoptosis cells. The intracellular ROS content was increased in a dose-dependent manner. Thus, short-term exposure to TiO2 NP promoted cytotoxicity, genotoxicity and activated apoptosis pathways based on the potential role of oxygen species in the fibroblasts cell line.
Collapse
Affiliation(s)
- Matheus Pedrino
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, Brazil
| | - Patrícia Brassolatti
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, Brazil
| | | | - Jaqueline Bianchi
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Marcelo Assis
- Center of Development of Functional Materials (CDMF), Federal University of São Carlos, São Carlos, Brazil
| | - Elson Longo
- Center of Development of Functional Materials (CDMF), Federal University of São Carlos, São Carlos, Brazil
| | | | - Carlos Speglich
- Leopoldo Américo Miguez Mello Research Center (CENPES), Rio de Janeiro, Brazil
| | | |
Collapse
|
91
|
Popova T, Dymova MA, Koroleva LS, Zakharova OD, Lisitskiy VA, Raskolupova VI, Sycheva T, Taskaev S, Silnikov VN, Godovikova TS. Homocystamide Conjugates of Human Serum Albumin as a Platform to Prepare Bimodal Multidrug Delivery Systems for Boron Neutron Capture Therapy. Molecules 2021; 26:molecules26216537. [PMID: 34770947 PMCID: PMC8586956 DOI: 10.3390/molecules26216537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy is a unique form of adjuvant cancer therapy for various malignancies including malignant gliomas. The conjugation of boron compounds and human serum albumin (HSA)-a carrier protein with a long plasma half-life-is expected to extend systemic circulation of the boron compounds and increase their accumulation in human glioma cells. We report on the synthesis of fluorophore-labeled homocystamide conjugates of human serum albumin and their use in thiol-'click' chemistry to prepare novel multimodal boronated albumin-based theranostic agents, which could be accumulated in tumor cells. The novelty of this work involves the development of the synthesis methodology of albumin conjugates for the imaging-guided boron neutron capture therapy combination. Herein, we suggest using thenoyltrifluoroacetone as a part of an anticancer theranostic construct: approximately 5.4 molecules of thenoyltrifluoroacetone were bound to each albumin. Along with its beneficial properties as a chemotherapeutic agent, thenoyltrifluoroacetone is a promising magnetic resonance imaging agent. The conjugation of bimodal HSA with undecahydro-closo-dodecaborate only slightly reduced human glioma cell line viability in the absence of irradiation (~30 μM of boronated albumin) but allowed for neutron capture and decreased tumor cell survival under epithermal neutron flux. The simultaneous presence of undecahydro-closo-dodecaborate and labeled amino acid residues (fluorophore dye and fluorine atoms) in the obtained HSA conjugate makes it a promising candidate for the combination imaging-guided boron neutron capture therapy.
Collapse
Affiliation(s)
- Tatyana Popova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maya A Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Ludmila S Koroleva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir A Lisitskiy
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Valeria I Raskolupova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei Taskaev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
92
|
Navarro-Barreda D, Bedrina B, Galindo F, Miravet JF. Glutathione-responsive molecular nanoparticles from a dianionic bolaamphiphile and their use as carriers for targeted delivery. J Colloid Interface Sci 2021; 608:2009-2017. [PMID: 34752979 DOI: 10.1016/j.jcis.2021.10.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
The formation in aqueous media of molecular nanoparticles from a bolaamphiphile (SucIleCsa) incorporating a disulfide moiety is described. The particles can be loaded efficiently with the lipophilic mitochondrial marker DiOC6(3), quenching its fluorescence, which is recovered upon reductive particle disassembly. DiOC6(3) transport into human colorectal adenocarcinoma cells (HT-29) is demonstrated using flow cytometry and confocal scanning fluorescence microscopy. A significant increase in intracellular fluorescence is observed when the cells are stimulated to produce glutathione (GSH). These new molecular nanoparticles can be considered a theranostic tool that simultaneously achieves targeted delivery of lipophilic substances and signals high levels of GSH.
Collapse
Affiliation(s)
- Diego Navarro-Barreda
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain
| | - Begoña Bedrina
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain
| | - Francisco Galindo
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain.
| | - Juan F Miravet
- Department of Inorganic and Organic Chemistry, Universitat Jaume, 12071 Castelló de la Plana, Spain.
| |
Collapse
|
93
|
Sommi P, Vitali A, Coniglio S, Callegari D, Barbieri S, Casu A, Falqui A, Vigano’ L, Vigani B, Ferrari F, Anselmi-Tamburini U. Microvilli Adhesion: An Alternative Route for Nanoparticle Cell Internalization. ACS NANO 2021; 15:15803-15814. [PMID: 34585565 PMCID: PMC8552441 DOI: 10.1021/acsnano.1c03151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/24/2021] [Indexed: 05/31/2023]
Abstract
The cellular uptake of nanoparticles (NPs) represents a critical step in nanomedicine and a crucial point for understanding the interaction of nanomaterials with biological systems. No specific mechanism of uptake has been identified so far, as the NPs are generally incorporated by the cells through one of the few well-known endocytotic mechanisms. Here, an alternative internalization route mediated by microvilli adhesion is demonstrated. This microvillus-mediated adhesion (MMA) has been observed using ceria and magnetite NPs with a dimension of <40 nm functionalized with polyacrylic acid but not using NPs with a neutral or positive functionalization. Such an adhesion was not cell specific, as it was demonstrated in three different cell lines. MMA was also reduced by modifications of the microvillus lipid rafts, obtained by depleting cholesterol and altering synthesis of sphingolipids. We found a direct relationship between MAA, cell cycle, and density of microvilli. The evidence suggests that MMA differs from the commonly described uptake mechanisms and might represent an interesting alternative approach for selective NP delivery.
Collapse
Affiliation(s)
- Patrizia Sommi
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Agostina Vitali
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Stefania Coniglio
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | - Sofia Barbieri
- Department
of Physics, University of Pavia, 27100 Pavia, Italy
| | - Alberto Casu
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Andrea Falqui
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Lorenzo Vigano’
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vigani
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Franca Ferrari
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
94
|
Yadav RD, Chaudhary A. Nano-bio surface interactions, cellular internalisation in cancer cells and e-data portals of nanomaterials: A review. IET Nanobiotechnol 2021; 15:519-531. [PMID: 34694743 PMCID: PMC8675851 DOI: 10.1049/nbt2.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Nanomaterials (NMs) have abundant applications in areas such as electronics, energy, environment industries, biosensors, nano devices, theranostic platforms, etc. Nanoparticles can increase the solubility and stability of drug-loaded materials, enhance their internalisation, protect them from initial destruction in the biological system, and lengthen their circulation time. The biological interaction of proteins present in the body fluid with NMs can change the activity and natural surface properties of NMs. The size and charge of NMs, properties of the coated and uncoated NMs, nature of proteins, cellular interactions direct their internalisation pathway in the cellular system. Thus, the present review emphasises the impact of coated, uncoated NMs, size and charge, nature of proteins on nano-bio surface interactions and on internalisation with specific focus on cancer cells. The increased activity of NPs may also result in toxicity on health and environment, thus emphasis should be given to assess the toxicity of NMs in the medical field. The e-data sharing portals of NMs have also been discussed in this review that will be helpful in providing the information about the chemical, physical, biological properties and toxicity of NMs.
Collapse
Affiliation(s)
- Ram Dhan Yadav
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Abha Chaudhary
- Department of Chemistry, Government Post Graduate College, Ambala Cantt, Haryana, India
| |
Collapse
|
95
|
Mahmoudian M, Maleki Dizaj S, Salatin S, Löbenberg R, Saadat M, Islambulchilar Z, Valizadeh H, Zakeri-Milani P. Oral delivery of solid lipid nanoparticles: underlining the physicochemical characteristics and physiological condition affecting the lipolysis rate. Expert Opin Drug Deliv 2021; 18:1707-1722. [PMID: 34553650 DOI: 10.1080/17425247.2021.1982891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lipid-based nano-drug delivery systems (LBNDDSs) have gained widespread attention in oral drug delivery due to their tunable and versatile properties such as biocompatibility and biodegradability, which makes them promising delivery systems for a variety of therapeutics. Currently, different types of LBNDDSs including liposomes, micelles, nanoemulsions, and solid lipid nanoparticles (SLNs) are developed for drug delivery applications. SLNs can be used as a controlled drug delivery system for oral delivery applications. However, its lipidic context makes that susceptible to lipolysis. The lipolysis rate of SLNs is affected by many factors that raise many questions for developing a more efficient delivery system. AREAS COVERED In the present work, we highlighted different factors affecting the digestion rate/level of SLNs in the gastrointestinal tract. This paper can be most useful for those researchers who are keen to develop a properly controlled drug delivery system based on SLNs for oral delivery applications. EXPERT OPINION SLNs can be used as a controlled drug delivery system for oral delivery applications. However, its lipidic context makes that susceptible to lipolysis. The lipolysis rate of SLNs is affected by many factors that raise many questions for developing a more efficient delivery system.
Collapse
Affiliation(s)
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maryam Saadat
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
96
|
Wu Y, Cao S, Alam MNA, Raabe M, Michel-Souzy S, Wang Z, Wagner M, Ermakova A, Cornelissen JJLM, Weil T. Fluorescent nanodiamonds encapsulated by Cowpea Chlorotic Mottle Virus (CCMV) proteins for intracellular 3D-trajectory analysis. J Mater Chem B 2021; 9:5621-5627. [PMID: 34184014 PMCID: PMC8292973 DOI: 10.1039/d1tb00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023]
Abstract
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-magnetic properties of the coated NDs as well as the secondary structure of CPs adsorbed on the surface of NDs. In addition, the ND-CP shows excellent biocompatibility both in vitro and in vivo. Long-term 3D trajectories of the ND-CP with fine spatiotemporal resolutions are recorded; their intracellular motions are analyzed by different models, and the diffusion coefficients are calculated. The ND-CP with its brilliant optical properties and stability under physiological conditions provides us with a new tool to advance the understanding of cell biology, e.g., endocytosis, exocytosis, and active transport processes in living cells as well as intracellular dynamic parameters.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China and Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Md Noor A Alam
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Sandra Michel-Souzy
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg 85579, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Anna Ermakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
97
|
Varma S, Dey S, S P D. Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting Their Fate. Curr Pharm Biotechnol 2021; 23:679-706. [PMID: 34264182 DOI: 10.2174/1389201022666210714145356] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Efficient and controlled internalization of NPs into the cells depends on their physicochemical properties and dynamics of the plasma membrane. NPs-cell interaction is a complex process that decides the fate of NPs internalization through different endocytosis pathways. OBJECTIVE The aim of this review is to highlight the physicochemical properties of synthesized nanoparticles (NPs) and their interaction with the cellular-dynamics and pathways like phagocytosis, pinocytosis, macropinocytosis, clathrin, and caveolae-mediated endocytosis and the involvement of effector proteins domain such as clathrin, AP2, caveolin, Arf6, Cdc42, dynamin and cell surface receptors during the endocytosis process of NPs. METHOD An electronic search was performed to explore the focused reviews and research articles on types of endocytosis and physicochemical properties of nanoparticles and their impact on cellular internalizations. The search was limited to peer-reviewed journals in the PubMed database. RESULTS This article discusses in detail how different types of NPs and their physicochemical properties such as size, shape, aspect ratio, surface charge, hydrophobicity, elasticity, stiffness, corona formation, surface functionalization changes the pattern of endocytosis in the presence of different pharmacological blockers. Some external forces like a magnetic field, electric field, and ultrasound exploit the cell membrane dynamics to permeabilize them for efficient internalization with respect to fundamental principles of membrane bending and pore formation. CONCLUSION This review will be useful to attract and guide the audience to understand the endocytosis mechanism and their pattern with respect to physicochemical properties of NPs to improve their efficacy and targeting to achieve the impactful outcome in drug-delivery and theranostics applications.
Collapse
Affiliation(s)
- Sameer Varma
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| | - Smita Dey
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| | - Dhanabal S P
- Department of Pharmacognosy & Phytopharmacy, JSS Academy of Higher Education & Research- JSS College of Pharmacy, Ooty-643001, Tamil Nadu, India
| |
Collapse
|
98
|
Abstract
OBJECTIVE The burden of the management of problematic skin wounds characterised by a compromised skin barrier is growing rapidly. Almost six million patients are affected in the US alone, with an estimated market of $25 billion annually. There is an urgent requirement for efficient mechanism-based treatments and more efficacious drug delivery systems. Novel strategies are needed for faster healing by reducing infection, moisturising the wound, stimulating the healing mechanisms, speeding up wound closure and reducing scar formation. METHODS A systematic review of qualitative studies was conducted on the recent perspectives of nanotechnology in burn wounds management. Pubmed, Scopus, EMBASE, CINAHL and PsychINFO databases were all systematically searched. Authors independently rated the reporting of the qualitative studies included. A comprehensive literature search was conducted covering various resources up to 2018-2019. Traditional techniques aim to simply cover the wound without playing any active role in wound healing. However, nanotechnology-based solutions are being used to create multipurpose biomaterials, not only for regeneration and repair, but also for on-demand delivery of specific molecules. The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. CONCLUSION Nanotechnology-based therapy is in the forefront of next-generation therapy that is able to advance wound healing of hard-to-heal wounds. In this review, we will highlight the developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment. Herein we will explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.
Collapse
Affiliation(s)
- Ruan Na
- Orthopedics Department, Affiliated Tongji Hospital of Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Tian Wei
- Department of Biomedical Engineering
| |
Collapse
|
99
|
González-Fernández C, Díaz Baños FG, Esteban MÁ, Cuesta A. Functionalized Nanoplastics (NPs) Increase the Toxicity of Metals in Fish Cell Lines. Int J Mol Sci 2021; 22:ijms22137141. [PMID: 34281191 PMCID: PMC8268098 DOI: 10.3390/ijms22137141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoplastics (NPs) are one of the most abundant environment-threatening nanomaterials on the market. The objective of this study was to determine in vitro if functionalized NPs are cytotoxic by themselves or increase the toxicity of metals. For that, we used 50 nm polystyrene nanoparticles with distinct surface functionalization (pristine, PS-Plain; carboxylic, PS-COOH; and amino PS-NH2) alone or combined with the metals arsenic (As) and methylmercury (MeHg), which possess an environmental risk to marine life. As test model, we chose a brain-derived cell line (SaB-1) from gilthead seabream (Sparus aurata), one of the most commercial fish species in the Mediterranean. First, only the PS-NH2 NPs were toxic to SaB-1 cells. NPs seem to be internalized into the cells but they showed little alteration in the transcription of genes related to oxidative stress (nrf2, cat, gr, gsta), cellular protection against metals (mta) or apoptosis (bcl2, bax). However, NPs, mainly PS-COOH and PS-NH2, significantly increased the toxicity of both metals. Since the coexistence of NPs and other pollutants in the aquatic environment is inevitable, our results reveal that the combined effect of NPs with the rest of pollutants deserves more attention.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.G.-F.); (M.Á.E.)
| | - Francisco Guillermo Díaz Baños
- Department of Physical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.G.-F.); (M.Á.E.)
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.G.-F.); (M.Á.E.)
- Correspondence:
| |
Collapse
|
100
|
Lin YC, Shih CP, Chen HC, Chou YL, Sytwu HK, Fang MC, Lin YY, Kuo CY, Su HH, Hung CL, Chen HK, Wang CH. Ultrasound Microbubble-Facilitated Inner Ear Delivery of Gold Nanoparticles Involves Transient Disruption of the Tight Junction Barrier in the Round Window Membrane. Front Pharmacol 2021; 12:689032. [PMID: 34262458 PMCID: PMC8273281 DOI: 10.3389/fphar.2021.689032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
The application of ultrasound microbubbles (USMBs) enhances the permeability of the round window membrane (RWM) and improves drug delivery to the inner ear. In this study, we investigated the efficiency of USMB-aided delivery of chitosan-coated gold nanoparticles (CS-AuNPs) and the mechanism of USMB-mediated enhancement of RMW permeability. We exposed mouse inner ears to USMBs at an intensity of 2 W/cm2 and then filled the tympanic bulla with CS-AuNPs or fluorescein isothiocyanate-decorated CS-AuNPs (FITC-CS-AuNPs). The membrane uptake of FITC-CS-AuNPs and their depth of permeation into the three-layer structure of the RWM, with or without prior USMB treatment, were visualized by z-stack confocal laser scanning microscopy. Ultrastructural changes in the RWM due to USMB-mediated cavitation appeared as sunburn-like peeling and various degrees of depression in the RWM surface, with pore-like openings forming in the outer epithelium. This disruption of the outer epithelium was paralleled by a transient reduction in tight junction (TJ)-associated protein levels in the RWM and an enhanced delivery of FITC-CS-AuNPs into the RWM. Without prior USMB exposure, the treatment with CS-AuNPs also caused a noticeable reduction in TJ proteins of the RWM. Our findings indicated that the combined treatment with USMBs and CS-AuNPs represents a promising and efficient drug and gene delivery vehicle for a trans-RWM approach for inner ear therapy. The outer epithelial layer of the RWM plays a decisive role in controlling the transmembrane transport of substances such as CS-AuNPs following the administration of USMBs. Most importantly, the enhanced permeation of AuNPs involved the transient disruption of the TJ-created paracellular barrier in the outer epithelium of the RWM.
Collapse
Affiliation(s)
- Yi-Chun Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Liang Chou
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Cho Fang
- Laboratory Animal Center, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Yung Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Han Su
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lien Hung
- Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Chih-Hung Wang
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|