51
|
Smith JW, Chen Q. Liquid-phase electron microscopy imaging of cellular and biomolecular systems. J Mater Chem B 2020; 8:8490-8506. [DOI: 10.1039/d0tb01300e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-phase electron microscopy, a new method for real-time nanoscopic imaging in liquid, makes it possible to study cells or biomolecules with a singular combination of spatial and temporal resolution. We review the state of the art in biological research in this growing and promising field.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
- Department of Chemistry
- University of Illinois at Urbana–Champaign
| |
Collapse
|
52
|
Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its applications. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191204. [PMID: 32218950 PMCID: PMC7029903 DOI: 10.1098/rsos.191204] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Transmission electron microscopy (TEM) has long been an essential tool for understanding the structure of materials. Over the past couple of decades, this venerable technique has undergone a number of revolutions, such as the development of aberration correction for atomic level imaging, the realization of cryogenic TEM for imaging biological specimens, and new instrumentation permitting the observation of dynamic systems in situ. Research in the latter has rapidly accelerated in recent years, based on a silicon-chip architecture that permits a versatile array of experiments to be performed under the high vacuum of the TEM. Of particular interest is using these silicon chips to enclose fluids safely inside the TEM, allowing us to observe liquid dynamics at the nanoscale. In situ imaging of liquid phase reactions under TEM can greatly enhance our understanding of fundamental processes in fields from electrochemistry to cell biology. Here, we review how in situ TEM experiments of liquids can be performed, with a particular focus on microchip-encapsulated liquid cell TEM. We will cover the basics of the technique, and its strengths and weaknesses with respect to related in situ TEM methods for characterizing liquid systems. We will show how this technique has provided unique insights into nanomaterial synthesis and manipulation, battery science and biological cells. A discussion on the main challenges of the technique, and potential means to mitigate and overcome them, will also be presented.
Collapse
|
53
|
Bharda AV, Jung HS. Liquid electron microscopy: then, now and future. Appl Microsc 2019; 49:9. [PMID: 33580443 PMCID: PMC7809579 DOI: 10.1186/s42649-019-0011-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
Contemporary microscopic imaging at near-atomic resolution of diverse embodiments in liquid environment has gained keen interest. In particular, Electron Microscopy (EM) can provide comprehensive framework on the structural and functional characterization of samples in liquid phase. In the past few decades, liquid based electron microscopic modalities have developed tremendously to provide insights into various backgrounds like biological, chemical, nanoparticle and material researches. It serves to be a promising analytical tool in deciphering unique insights from solvated systems. Here, the basics of liquid electron microscopy with few examples of its applications are summarized in brief. The technical developments made so far and its preference over other approaches is shortly presented. Finally, the experimental limitations and an outlook on the future technical advancement for liquid EM have been discussed.
Collapse
Affiliation(s)
- Anahita Vispi Bharda
- Division of Chemistry and Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hyun Suk Jung
- Division of Chemistry and Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea.
| |
Collapse
|
54
|
Sung J, Choi BK, Kim B, Kim BH, Kim J, Lee D, Kim S, Kang K, Hyeon T, Park J. Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM. J Am Chem Soc 2019; 141:18395-18399. [PMID: 31644272 DOI: 10.1021/jacs.9b09508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Defining the redox activity of different surface facets of ceria nanocrystals is important for designing an efficient catalyst. Especially in liquid-phase reactions, where surface interactions are complicated, direct investigation in a native environment is required to understand the facet-dependent redox properties. Using liquid cell TEM, we herein observed the etching of ceria-based nanocrystals under the control of redox-governing factors. Direct nanoscale observation reveals facet-dependent etching kinetics, thus identifying the specific facet ({100} for reduction and {111} for oxidation) that governs the overall etching under different chemical conditions. Under each redox condition, the contribution of the predominant facet increases as the etching reactivity increases.
Collapse
Affiliation(s)
- Jongbaek Sung
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byunghoon Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,Department of Materials Science and Engineering, and Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Joodeok Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Donghoon Lee
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sungin Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kisuk Kang
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,Department of Materials Science and Engineering, and Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea.,Institute of Engineering Research, College of Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
55
|
Kashin AS, Ananikov VP. Monitoring chemical reactions in liquid media using electron microscopy. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0133-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
56
|
Yu X, Arey B, Chatterjee S, Chun J. Improving in situ liquid SEM imaging of particles. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiao‐Ying Yu
- Energy and Environment DirectoratePacific Northwest National Laboratory Richland WA 99354 USA
| | - Bruce Arey
- Energy and Environment DirectoratePacific Northwest National Laboratory Richland WA 99354 USA
| | - Sayandev Chatterjee
- Energy and Environment DirectoratePacific Northwest National Laboratory Richland WA 99354 USA
| | - Jaehun Chun
- Physical and Computational Sciences DirectoratePacific Northwest National Laboratory Richland WA 99354 USA
| |
Collapse
|
57
|
Keskin S, Kunnas P, de Jonge N. Liquid-Phase Electron Microscopy with Controllable Liquid Thickness. NANO LETTERS 2019; 19:4608-4613. [PMID: 31244240 DOI: 10.1021/acs.nanolett.9b01576] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid-phase electron microscopy (LPEM) is capable of imaging nanostructures and processes in a liquid environment. The spatial resolution achieved with LPEM critically depends on the thickness of the liquid layer surrounding the object of interest. An excessively thick liquid results in broadening of the electron beam and a high background signal that decreases the resolution and contrast of the object in an image. The liquid thickness in a standard liquid cell, consisting of two liquid enclosing membranes separated by spacers, is mainly defined by the deformation of the SiN membrane windows toward the vacuum side, and the effective thickness may differ from the spacer height. Here, we present a method involving a pressure controller setup to balance the pressure difference over the membrane windows, thus manipulating the shape profiles of the used silicon nitride membrane windows. Electron energy loss spectroscopy (EELS) measurements to determine the liquid thickness showed that it is possible to control the thickness precisely during an LPEM experiment by regulating the interior pressure of the liquid cell. We demonstrated atomic resolution on gold nanoparticles and the phase contrast using silica nanoparticles in liquid with controlled thickness.
Collapse
Affiliation(s)
- Sercan Keskin
- INM - Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
| | - Peter Kunnas
- INM - Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
- Department of Physics , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
58
|
Fu J, Qiao Y, Song H, Xu Z, Tu J, Ba L, Lu Z. Advanced transferring of large-area freestanding graphene films by using fullerenes. NANOTECHNOLOGY 2019; 30:26LT01. [PMID: 30836332 DOI: 10.1088/1361-6528/ab0cab] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Freestanding graphene films are desired to be widely applied in biosensor fabrication due to their distinctive physical properties and improved performance. Chemical vapor deposition has been developed to efficiently fabricate large-area graphene. However, some of the fabricated graphene films might break or be contaminated in the current transferring step using polymers. A stable and high-quality transfer method is needed. Herein, we report on an advanced transfer method of large-area graphene film which uses fullerene as a supporting substrate. Unlike polymers, which are commonly eliminated by being dissolved in an organic solution, fullerene can be easily removed by evaporation in a vacuum because it has a different heat stability to graphene. By using the improved transferring method, the percentage of integrated freestanding films after transferring was increased from 60.7% to 93.4%. The vacuum is beneficial in terms of keeping the brittle freestanding films intact. Graphene films transferred using fullerene showed an advanced flatness and a simplicial elementary composition in comparison to those transferred using polymers. Even through there is trace residue, this stable allotrope of graphene is considered to have almost no impact on biomolecule sensing. These advantages make the fullerene transferring method an attractive candidate for fabricating large-area freestanding graphene films, especially for using in the field of biochemistry analysis and biosensors.
Collapse
Affiliation(s)
- Jiye Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
59
|
Chee SW, Anand U, Bisht G, Tan SF, Mirsaidov U. Direct Observations of the Rotation and Translation of Anisotropic Nanoparticles Adsorbed at a Liquid-Solid Interface. NANO LETTERS 2019; 19:2871-2878. [PMID: 30932500 DOI: 10.1021/acs.nanolett.8b04962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We can learn about the interactions between nanoparticles (NPs) in solution and solid surfaces by tracking how they move. Here, we use liquid cell transmission electron microscopy (TEM) to follow directly the translation and rotation of Au nanobipyramids (NBPs) and nanorods (NRs) adsorbed onto a SiN x surface at a rate of 300 frames per second. This study is motivated by the enduring need for a detailed description of NP motion on this common surface in liquid cell TEM. We will show that NPs move intermittently on the time scales of milliseconds. First, they rotate in two ways: (1) rotation around the center of mass and (2) pivoted rotation at the tips. These rotations also lead to different modes of translation. A NP can move through small displacements in the direction roughly parallel to its body axis (shuffling) or with larger steps via multiple tip-pivoted rotations. Analysis of the trajectories indicates that both displacements and rotation angles follow heavy-tailed power law distributions, implying anomalous diffusion. The spatial and temporal resolution afforded by our approach also revealed differences between the different NPs. The 50 nm NRs and 100 nm NBPs moved with a combination of shuffles and rotation-mediated displacements after illumination by the electron beam. With increasing electron fluence, 50 nm NRs also started to move via desorption-mediated jumps. The 70 nm NRs did not exhibit translational motion and only made small rotations. These results describe how NP dynamics evolve under the electron beam and how intermittent pinning and release at specific adsorption sites on the solid surface control NP motion at the liquid-solid interface. We also discuss the effect of SiN x surface treatment on NP motion, demonstrating how our approach can provide broader insights into interfacial transport.
Collapse
Affiliation(s)
- See Wee Chee
- Department of Physics , National University of Singapore , Singapore 117551
- Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546
| | - Utkarsh Anand
- Department of Physics , National University of Singapore , Singapore 117551
- Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546
| | - Geeta Bisht
- Department of Physics , National University of Singapore , Singapore 117551
- Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
| | - Shu Fen Tan
- Department of Physics , National University of Singapore , Singapore 117551
- Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
| | - Utkur Mirsaidov
- Department of Physics , National University of Singapore , Singapore 117551
- Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546
- NUSNNI-NanoCore, Faculty of Engineering , National University of Singapore , Singapore 117581
- Department of Materials Science and Engineering , National University of Singapore , Singapore 117575
| |
Collapse
|
60
|
Ghodsi SM, Anand S, Shahbazian-Yassar R, Shokuhfar T, Megaridis CM. In Situ Study of Molecular Structure of Water and Ice Entrapped in Graphene Nanovessels. ACS NANO 2019; 13:4677-4685. [PMID: 30908009 DOI: 10.1021/acsnano.9b00914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water is ubiquitous in natural systems, ranging from the vast oceans to the nanocapillaries in the earth crust or cellular organelles. In bulk or in intimate contact with solid surfaces, water molecules arrange themselves according to their hydrogen (H) bonding, which critically affects their short- and long-range molecular structures. Formation of H-bonds among water molecules designates the energy levels of certain nonbonding molecular orbitals of water, which are quantifiable by spectroscopic techniques. While the molecular architecture of water in nanoenclosures is of particular interest to both science and industry, it requires fine spectroscopic probes with nanometer spatial resolution and sub-eV energy sensitivity. Graphene liquid cells (GLCs), which feature opposing closely spaced sheets of hydrophobic graphene, facilitate high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) measurements of attoliter water volumes encapsulated tightly in the GLC nanovessels. We perform in situ TEM and EELS analysis of water encased in thin GLCs exposed to room and cryogenic temperatures to examine the nanoscale arrangement of the contained water molecules. Simultaneous quantification of GLC thickness leads to the conclusion that H-bonding strengthens under increased water confinement. The present results demonstrate the feasibility of nanoscale chemical characterization of aqueous fluids trapped in GLC nanovessels and offer insights on water molecule arrangement under high-confinement conditions.
Collapse
Affiliation(s)
- Seyed Mohammadreza Ghodsi
- Department of Bioengineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Sushant Anand
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Tolou Shokuhfar
- Department of Bioengineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Constantine M Megaridis
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| |
Collapse
|
61
|
Luo B, Kim A, Smith JW, Ou Z, Wu Z, Kim J, Chen Q. Hierarchical self-assembly of 3D lattices from polydisperse anisometric colloids. Nat Commun 2019; 10:1815. [PMID: 31000717 PMCID: PMC6472373 DOI: 10.1038/s41467-019-09787-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023] Open
Abstract
Colloids are mainly divided into two types defined by size. Micron-scale colloids are widely used as model systems to study phase transitions, while nanoparticles have physicochemical properties unique to their size. Here we study a promising yet underexplored third type: anisometric colloids, which integrate micrometer and nanometer dimensions into the same particle. We show that our prototypical system of anisometric silver plates with a high polydispersity assemble, unexpectedly, into an ordered, three-dimensional lattice. Real-time imaging and interaction modeling elucidate the crucial role of anisometry, which directs hierarchical assembly into secondary building blocks-columns-which are sufficiently monodisperse for further ordering. Ionic strength and plate tip morphology control the shape of the columns, and therefore the final lattice structures (hexagonal versus honeycomb). Our joint experiment-modeling study demonstrates potentials of encoding unconventional assembly in anisometric colloids, which can likely introduce properties and phase behaviors inaccessible to micron- or nanometer-scale colloids.
Collapse
Affiliation(s)
- Binbin Luo
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Ahyoung Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - John W Smith
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Zixuan Wu
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Juyeong Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
62
|
Yang J, Choi MK, Sheng Y, Jung J, Bustillo K, Chen T, Lee SW, Ercius P, Kim JH, Warner JH, Chan EM, Zheng H. MoS 2 Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS 2 Transfer. NANO LETTERS 2019; 19:1788-1795. [PMID: 30741548 DOI: 10.1021/acs.nanolett.8b04821] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two dimensional (2D) materials have found various applications because of their unique physical properties. For example, graphene has been used as the electron transparent membrane for liquid cell transmission electron microscopy (TEM) due to its high mechanical strength and flexibility, single-atom thickness, chemical inertness, etc. Here, we report using 2D MoS2 as a functional substrate as well as the membrane window for liquid cell TEM, which is enabled by our facile and polymer-free MoS2 transfer process. This provides the opportunity to investigate the growth of Pt nanocrystals on MoS2 substrates, which elucidates the formation mechanisms of such heterostructured 2D materials. We find that Pt nanocrystals formed in MoS2 liquid cells have a strong tendency to align their crystal lattice with that of MoS2, suggesting a van der Waals epitaxial relationship. Importantly, we can study its impact on the kinetics of the nanocrystal formation. The development of MoS2 liquid cells will allow further study of various liquid phenomena on MoS2, and the polymer-free MoS2 transfer process will be implemented in a wide range of applications.
Collapse
Affiliation(s)
- Jiwoong Yang
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Moon Kee Choi
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yuewen Sheng
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jaebong Jung
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Karen Bustillo
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tongxin Chen
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Seung-Wuk Lee
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Peter Ercius
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ji Hoon Kim
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Jamie H Warner
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Emory M Chan
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Haimei Zheng
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
63
|
He K, Shokuhfar T, Shahbazian-Yassar R. Imaging of soft materials using in situ liquid-cell transmission electron microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:103001. [PMID: 30524096 DOI: 10.1088/1361-648x/aaf616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This review summarizes the breakthroughs in the field of soft material characterization by in situ liquid-cell transmission electron microscopy (TEM). The focus of this review is mostly on soft biological species such as cells, bacteria, viruses, proteins and polymers. The comparison between the two main liquid-cell systems (silicon nitride membranes liquid cell and graphene liquid cell) is also discussed in terms of their spatial resolution and imaging/analytical capabilities. We have showcased how liquid-cell TEM can reveal the structural details of whole cells, enable the chemical probing of proteins, detect the structural conformation of viruses, and monitor the dynamics of polymerization. In addition, the challenges faced by decoupling electron beam effect on beam-sensitive soft materials are discussed. At the end, future perspectives of in situ liquid-cell TEM studies of soft materials are outlined.
Collapse
Affiliation(s)
- Kun He
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | | | | |
Collapse
|
64
|
Cepeda-Pérez E, de Jonge N. Dynamics of gold nanoparticle clusters observed with liquid-phase electron microscopy. Micron 2019; 117:68-75. [DOI: 10.1016/j.micron.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 01/06/2023]
|
65
|
Yang J, Koo J, Kim S, Jeon S, Choi BK, Kwon S, Kim J, Kim BH, Lee WC, Lee WB, Lee H, Hyeon T, Ercius P, Park J. Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy. J Am Chem Soc 2019; 141:763-768. [DOI: 10.1021/jacs.8b11972] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiwoong Yang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jahyun Koo
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Seulwoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Jeon
- Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggido 15588, Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Joodeok Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Chul Lee
- Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggido 15588, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
66
|
Kim QH, Shin D, Park J, Weitz DA, Jhe W. Initial growth dynamics of 10 nm nanobubbles in the graphene liquid cell. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe unexpected long lifetime of nanobubble against the large Laplace pressure is one of the important issues in nanobubble research and a few models have been proposed to explain it. Most studies, however, have been focused on the observation of relatively large nanobubbles over 100 nm and are limited to the equilibrium state phenomena. The study on the sub-100 nm sized nanobubble is still lacking due to the limitation of imaging methods which overcomes the optical resolution limit. Here, we demonstrate the observation of growth dynamics of 10 nm nanobubbles confined in the graphene liquid cell using transmission electron microscopy (TEM). We modified the classical diffusion theory by considering the finite size of the confined system of graphene liquid cell (GLC), successfully describing the temporal growth of nanobubble. Our study shows that the growth of nanobubble is determined by the gas oversaturation, which is affected by the size of GLC.
Collapse
|
67
|
Park Y, Shin S, Jin H, Park J, Hong Y, Choi J, Jung B, Song H, Seo D. Single-Molecule Rotation for EGFR Conformational Dynamics in Live Cells. J Am Chem Soc 2018; 140:15161-15165. [DOI: 10.1021/jacs.8b09037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Youngchan Park
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sangwon Shin
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Hyeonggyu Jin
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Jiseong Park
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Yeonki Hong
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Jaemin Choi
- School of Undergraduate Studies, DGIST, Daegu 42988, Republic of Korea
| | - Byunghyuck Jung
- School of Undergraduate Studies, DGIST, Daegu 42988, Republic of Korea
| | - Hyunjoon Song
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Daeha Seo
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
68
|
Yang J, Alam SB, Yu L, Chan E, Zheng H. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy. Micron 2018; 116:22-29. [PMID: 30265880 DOI: 10.1016/j.micron.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Recent advances in graphene liquid cells for in situ transmission electron microscopy (TEM) have opened many opportunities for the study of materials transformations and chemical reactions in liquids with high spatial resolution. However, the behavior of thin liquids encapsulated in a graphene liquid cell has not been fully understood. Here, we report real time TEM imaging of the nanoscale dynamic behavior of liquids in graphene nanocapillaries. Our observations reveal that the interfaces between liquid and gas bubble can fluctuate, leading to the generation of liquid nanodroplets near the interfaces. Liquid nanodroplets often show irregular shape with dynamic changes of their configuration under the electron beam. We consider that the dynamic motion of liquid-gas interfaces might be introduced by the electrostatic energy from transiently charged interfaces. We find that improving the wettability of graphene liquid cells by ultraviolet-ozone treatment can significantly modify the dynamic motion of the encapsulated liquids. Our study provides valuable information of the interactions between liquid and graphene under the electron beam, and it also offers key insights on the nanoscale fluid dynamics in confined spaces.
Collapse
Affiliation(s)
- Jiwoong Yang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Sardar B Alam
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Lei Yu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States
| | - Emory Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
69
|
Wang H, Nagamanasa KH, Kim YJ, Kwon OH, Granick S. Longer-Lasting Electron-Based Microscopy of Single Molecules in Aqueous Medium. ACS NANO 2018; 12:8572-8578. [PMID: 30019893 DOI: 10.1021/acsnano.8b04190] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Use of electron-based microscopy in aqueous media has been held back because aqueous samples tend to suffer from water radiolysis and other chemical degradation caused by the high energy of incident electrons. Here we show that aqueous liquid pockets in graphene liquid cells at room temperature display significantly improved stability when using deuterated water, D2O. Reporting transmission electron microscopy (TEM) experiments based on common imaging conditions, we conclude that use of D2O outperforms adding radical scavengers to H2O regardless of imaging details; it increases the lifetime of dissolved organic macromolecules by a factor of 2-5, and it delays by even longer the appearance of radiolysis-induced bubbles, by a factor of time up to 10. We quantify statistically the consequences of minimizing the electron voltage and dose and conclude that the D2O environment increases sample longevity without noticeable sacrifice of contrast that is critical for direct imaging of weakly scattering organic macromolecules and biomolecules.
Collapse
Affiliation(s)
- Huan Wang
- IBS Center for Soft and Living Matter , Ulsan 44919 , South Korea
| | | | - Ye-Jin Kim
- IBS Center for Soft and Living Matter , Ulsan 44919 , South Korea
- Department of Chemistry , UNIST , Ulsan 44919 , South Korea
| | - Oh-Hoon Kwon
- IBS Center for Soft and Living Matter , Ulsan 44919 , South Korea
- Department of Chemistry , UNIST , Ulsan 44919 , South Korea
| | - Steve Granick
- IBS Center for Soft and Living Matter , Ulsan 44919 , South Korea
- Department of Chemistry , UNIST , Ulsan 44919 , South Korea
- Department of Physics , UNIST , Ulsan 44919 , South Korea
| |
Collapse
|
70
|
Cai Z, Zhang Y. Hydrophobicity-driven unfolding of Trp-cage encapsulated between graphene sheets. Colloids Surf B Biointerfaces 2018; 168:103-108. [PMID: 29627125 DOI: 10.1016/j.colsurfb.2018.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/17/2022]
Abstract
Understanding the interaction between proteins and graphene not only helps elucidate the behaviors of proteins in confined geometries, but is also imperative to the development of a plethora of graphene-based biotechnologies, such as the graphene liquid cell transmission electron microscopy. To discuss the overall geometrical-thermal effects on proteins, we performed molecular dynamics simulations of hydrated Trp-cage miniprotein sandwiched between two graphene sheets and in the bulk environment at the temperatures below and above its unfolding temperature. The structural fluctuations of Trp-cage were characterized using the backbone root mean square displacement and the radius of gyration, from which the free energy landscape of Trp-cage was further constructed. We observed that at both temperatures the confined protein became adsorbed to the graphene surfaces and exhibited unfolded structures. Residue-specific analyses clearly showed the preference for the graphene to interact with the hydrophobic regions of Trp-cage. These results suggested that the conformation space accessible to the protein results from the competition between the thermodynamic driving forces and the geometrical restraints. While confinement usually tends to restrict the conformation of proteins by volume exclusion, it may also induce the unfolding of proteins by hydrophobic interactions.
Collapse
Affiliation(s)
- Zhikun Cai
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Zhang
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
71
|
Li W, Tierce NT, Bekyarova E, Bardeen CJ. Protection of Molecular Microcrystals by Encapsulation under Single-Layer Graphene. ACS OMEGA 2018; 3:8129-8134. [PMID: 31458949 PMCID: PMC6644355 DOI: 10.1021/acsomega.8b00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/21/2018] [Indexed: 05/09/2023]
Abstract
Microcrystals composed of the conjugated organic molecule perylene can be encapsulated beneath single-layer graphene using mild conditions. Scanning electron and atomic force microscopy images show that the graphene exists as a conformal coating on top of the crystal. Raman spectroscopy indicates that the graphene is only slightly perturbed by the underlying crystal, probably due to strain. The graphene layer provides complete protection from a variety of solvents and prevents sublimation of the crystal at elevated temperatures. Time-resolved photoluminescence measurements do not detect any quenching of the perylene emission by the graphene layer, although nonradiative energy transfer within a few nanometers of the crystal-graphene interface cannot be ruled out. The ability to encapsulate samples on a substrate under a graphene monolayer may provide a new way to access and interact with the organic crystal under ambient conditions.
Collapse
Affiliation(s)
- Wangxiang Li
- Department
of Chemistry, University of California, 501 Big Springs Road, Riverside, California 92521, United States
- Center
for Nanoscale Science and Engineering, University
of California, 900 University
Avenue, Riverside, California 92521, United States
| | - Nathan T. Tierce
- Department
of Chemistry, University of California, 501 Big Springs Road, Riverside, California 92521, United States
| | - Elena Bekyarova
- Department
of Chemistry, University of California, 501 Big Springs Road, Riverside, California 92521, United States
- Center
for Nanoscale Science and Engineering, University
of California, 900 University
Avenue, Riverside, California 92521, United States
- E-mail: (E.B.)
| | - Christopher J. Bardeen
- Department
of Chemistry, University of California, 501 Big Springs Road, Riverside, California 92521, United States
- E-mail: (C.J.B.)
| |
Collapse
|
72
|
Sutter P, Zhang B, Sutter E. Radiation damage during in situ electron microscopy of DNA-mediated nanoparticle assemblies in solution. NANOSCALE 2018; 10:12674-12682. [PMID: 29946623 DOI: 10.1039/c8nr04087g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligonucleotide-nanoparticle conjugates, also called programmable atom equivalents, carry promise as building blocks for self-assembled colloidal crystals, reconfigurable or stimuli responsive functional materials, as well as bio-inspired hierarchical architectures in wet environments. In situ studies of the DNA-mediated self-assembly of nanoparticles have so far been limited to reciprocal space techniques. Liquid-cell electron microscopy could enable imaging such systems with high resolution in their native environment but to realize this potential, radiation damage to the oligonucleotide linkages needs to be understood and conditions for damage-free electron microscopy identified. Here, we analyze in situ observations of DNA-linked two-dimensional nanoparticle arrays, along with control experiments for different oligonucleotide configurations, to identify the mechanisms of radiation damage for ordered superlattices of DNA-nanoparticle conjugates. In a biological context, the results point to new avenues for studying direct and indirect radiation effects for small ensembles of DNA in solution by tracking conjugated nanoparticles. By establishing low-dose conditions suitable for extended in situ imaging of programmable atom equivalents, our work paves the way for real-space observations of DNA-mediated self-assembly processes.
Collapse
Affiliation(s)
- Peter Sutter
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
73
|
Wang J, Kattel S, Wang Z, Chen JG, Liu CJ. L-Phenylalanine-Templated Platinum Catalyst with Enhanced Performance for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21321-21327. [PMID: 29856210 DOI: 10.1021/acsami.8b04578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pt-based materials are the most efficient catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells. However, fabrication of active and stable Pt catalysts still remains challenging. In this work, Pt-l-phenylalanine (Pt-LPHE) films, with highly dispersed Pt nanoparticles (NPs) featuring predominately (111) facets, have been prepared via a room-temperature electron reduction method. Loading Pt-LPHE onto carbon support produces a novel nanomaterial (Pt-AL/C), resulting in a simultaneous loading of highly dispersed Pt NPs and N doping. Density functional theory calculations demonstrate that the N dopants stabilize the Pt NPs and reduce the *O/*OH binding energies on the Pt NPs. As a result, the Pt-AL/C nanomaterial shows significantly enhanced ORR activity and stability over commercial Pt/C after 10 000 cycle stability tests. This work provides a novel eco-friendly and energy-neutral approach for preparing metal NPs with controllable structures and sizes.
Collapse
Affiliation(s)
- Jiajun Wang
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Shyam Kattel
- Department of Chemical Engineering , Columbia University , 500 W. 120th Street , New York , New York 10027 , United States
- Chemistry Division , Brookhaven National Laboratory , Upton, New York 11973 , United States
| | - Zongyuan Wang
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Jingguang G Chen
- Department of Chemical Engineering , Columbia University , 500 W. 120th Street , New York , New York 10027 , United States
| | - Chang-Jun Liu
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| |
Collapse
|
74
|
Du JS, Chen PC, Meckes B, Kluender EJ, Xie Z, Dravid VP, Mirkin CA. Windowless Observation of Evaporation-Induced Coarsening of Au-Pt Nanoparticles in Polymer Nanoreactors. J Am Chem Soc 2018; 140:7213-7221. [PMID: 29856627 PMCID: PMC8243569 DOI: 10.1021/jacs.8b03105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The interactions between nanoparticles and solvents play a critical role in the formation of complex, metastable nanostructures. However, direct observation of such interactions with high spatial and temporal resolution is challenging with conventional liquid-cell transmission electron microscopy (TEM) experiments. Here, a windowless system consisting of polymer nanoreactors deposited via scanning probe block copolymer lithography (SPBCL) on an amorphous carbon film is used to investigate the coarsening of ultrafine (1-3 nm) Au-Pt bimetallic nanoparticles as a function of solvent evaporation. In such reactors, homogeneous Au-Pt nanoparticles are synthesized from metal-ion precursors in situ under electron irradiation. The nonuniform evaporation of the thin polymer film not only concentrates the nanoparticles but also accelerates the coalescence kinetics at the receding polymer edges. Qualitative analysis of the particle forces influencing coalescence suggests that capillary dragging by the polymer edges plays a significant role in accelerating this process. Taken together, this work (1) provides fundamental insight into the role of solvents in the chemistry and coarsening behavior of nanoparticles during the synthesis of polyelemental nanostructures, (2) provides insight into how particles form via the SPBCL process, and (3) shows how SPBCL-generated domes, instead of liquid cells, can be used to study nanoparticle formation. More generally, it shows why conventional models of particle coarsening, which do not take into account solvent evaporation, cannot be used to describe what is occurring in thin film, liquid-based syntheses of nanostructures.
Collapse
Affiliation(s)
- Jingshan S. Du
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Peng-Cheng Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian Meckes
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Edward J. Kluender
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhuang Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
75
|
Textor M, de Jonge N. Strategies for Preparing Graphene Liquid Cells for Transmission Electron Microscopy. NANO LETTERS 2018; 18:3313-3321. [PMID: 29799208 DOI: 10.1021/acs.nanolett.8b01366] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A graphene liquid cell for transmission electron microscopy (TEM) uses one or two graphene sheets to separate the liquid from the vacuum in the microscope. In principle, graphene is an excellent material for such an application because it allows the highest possible spatial resolution, provides a flexible covering foil, and effectively protects the liquid from evaporating. Examples in open literature have demonstrated atomic-resolution TEM using small liquid pockets and the coverage of whole biological cells with graphene sheets. A total of three different basic types of liquid cells are discerned: (i) one graphene sheet is used to cover a liquid sample supported by a thin membrane of another material (for example, silicon nitride, SiN), (ii) two graphene sheets pressed together leaving liquid pockets with graphene at both sides, and (iii) a spacer material with liquid pockets covered at both sides by graphene. A total of four different process flows are available for liquid cell assembly, but there is not yet a consensus on the best routes, and a number of variations exist. The key step is the transfer of graphene to a liquid sample, which is complicated by practical issues that arise from imperfections in the graphene sheets, such as cracks. This review provides an overview of these different approaches to assembling graphene liquid cells and discusses the main obstacles and ideas to overcome them with the prospect of developing the nanoscale technology needed for graphene liquid cells so that they become available on a routine basis for electron microscopy in liquid. It also provides guidance in selecting the appropriate type of graphene liquid cell and the best assembly method for a specific experiment.
Collapse
Affiliation(s)
- Martin Textor
- INM, Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
| | - Niels de Jonge
- INM, Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
- Department of Physics , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
76
|
Hauwiller MR, Ondry JC, Alivisatos AP. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching. J Vis Exp 2018:57665. [PMID: 29863683 PMCID: PMC6101270 DOI: 10.3791/57665] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.
Collapse
Affiliation(s)
| | - Justin C Ondry
- Department of Chemistry, University of California-Berkeley
| | - A Paul Alivisatos
- Department of Chemistry, University of California-Berkeley; Department of Material Science and Engineering, University of California-Berkeley; Kavli Energy NanoScience Institute; Materials Sciences Division, Lawrence Berkeley National Laboratory;
| |
Collapse
|
77
|
Vats N, Rauschenbach S, Sigle W, Sen S, Abb S, Portz A, Dürr M, Burghard M, van Aken PA, Kern K. Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam deposition. NANOSCALE 2018; 10:4952-4961. [PMID: 29485651 DOI: 10.1039/c8nr00402a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) has enabled atomically resolved imaging of molecules adsorbed on low-dimensional materials like carbon nanotubes, graphene oxide and few-layer-graphene. However, conventional methods for depositing molecules onto such supports lack selectivity and specificity. Here, we describe the chemically selective preparation and deposition of molecules-like polyoxometalate (POM) anions [PW12O40]3- using electrospray ion-beam deposition (ES-IBD) along with high-resolution TEM imaging. This approach provides access to sub-monolayer coatings of intact molecules on freestanding graphene, which enables their atomically resolved ex situ characterization by low-voltage AC-HRTEM. The capability to tune the deposition parameters in either soft or reactive landing mode, combined with the well-defined high-vacuum deposition conditions, renders the ES-IBD based method advantageous over alternative methods such as drop-casting. Furthermore, it might be expanded towards depositing and imaging large and nonvolatile molecules with complex structures.
Collapse
Affiliation(s)
- N Vats
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Towards optimization of experimental parameters for studying Li-O 2 battery discharge products in TEM using in situ EELS. Ultramicroscopy 2018; 188:52-58. [PMID: 29554486 DOI: 10.1016/j.ultramic.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 11/24/2022]
Abstract
The key to understanding the performance of Li-O2 batteries is to study the chemical and structural properties of their discharge product(s) at the nanometer scale. Using TEM for this purpose poses challenges due to the sensitivity of samples to air and electron beams. This paper describes our use of in situ EELS to evaluate experimental procedures to reduce electron-beam degradation and presents methods to deal with air sensitivity. Our results show that Li2O2 decomposition is dependent on the total dose and is approximately 4-5 times more pronounced at 80 than at 200 kV. We also demonstrate the benefits of using low-dose-rate STEM. We show further that a "graphene cell", which encapsulates the sample within graphene sheets, can protect the sample against air and e-beam damage.
Collapse
|
79
|
Kelly D, Zhou M, Clark N, Hamer MJ, Lewis EA, Rakowski AM, Haigh SJ, Gorbachev RV. Nanometer Resolution Elemental Mapping in Graphene-Based TEM Liquid Cells. NANO LETTERS 2018; 18:1168-1174. [PMID: 29323499 PMCID: PMC5821409 DOI: 10.1021/acs.nanolett.7b04713] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Indexed: 05/26/2023]
Abstract
We demonstrate a new design of graphene liquid cell consisting of a thin lithographically patterned hexagonal boron nitride crystal encapsulated on both sides with graphene windows. The ultrathin window liquid cells produced have precisely controlled volumes and thicknesses and are robust to repeated vacuum cycling. This technology enables exciting new opportunities for liquid cell studies, providing a reliable platform for high resolution transmission electron microscope imaging and spectral mapping. The presence of water was confirmed using electron energy loss spectroscopy (EELS) via the detection of the oxygen K-edge and measuring the thickness of full and empty cells. We demonstrate the imaging capabilities of these liquid cells by tracking the dynamic motion and interactions of small metal nanoparticles with diameters of 0.5-5 nm. We further present an order of magnitude improvement in the analytical capabilities compared to previous liquid cell data with 1 nm spatial resolution elemental mapping achievable for liquid encapsulated bimetallic nanoparticles using energy dispersive X-ray spectroscopy (EDXS).
Collapse
Affiliation(s)
- Daniel
J. Kelly
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Mingwei Zhou
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Nick Clark
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Matthew J. Hamer
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Edward A. Lewis
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Alexander M. Rakowski
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Sarah J. Haigh
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Roman V. Gorbachev
- School of Materials, School of Physics and Astronomy, and National Graphene
Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| |
Collapse
|
80
|
Xavier PL, Chandrasekaran AR. DNA-based construction at the nanoscale: emerging trends and applications. NANOTECHNOLOGY 2018; 29:062001. [PMID: 29232197 DOI: 10.1088/1361-6528/aaa120] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The field of structural DNA nanotechnology has evolved remarkably-from the creation of artificial immobile junctions to the recent DNA-protein hybrid nanoscale shapes-in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.
Collapse
Affiliation(s)
- P Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY) and Department of Physics, University of Hamburg, D-22607 Hamburg, Germany. Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | | |
Collapse
|
81
|
Tripathi AM, Su WN, Hwang BJ. In situ analytical techniques for battery interface analysis. Chem Soc Rev 2018; 47:736-851. [DOI: 10.1039/c7cs00180k] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interface is a key to high performance and safe lithium-ion batteries or lithium batteries.
Collapse
Affiliation(s)
- Alok M. Tripathi
- Nano-electrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Taiwan
| | - Wei-Nien Su
- Nano-electrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Taiwan
| | - Bing Joe Hwang
- Nano-electrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Taiwan
| |
Collapse
|
82
|
Kim BH, Yang J, Lee D, Choi BK, Hyeon T, Park J. Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703316. [PMID: 29178589 DOI: 10.1002/adma.201703316] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 05/26/2023]
Abstract
For the past few decades, nanoparticles of various sizes, shapes, and compositions have been synthesized and utilized in many different applications. However, due to a lack of analytical tools that can characterize structural changes at the nanoscale level, many of their growth and transformation processes are not yet well understood. The recently developed technique of liquid-phase transmission electron microscopy (TEM) has gained much attention as a new tool to directly observe chemical reactions that occur in solution. Due to its high spatial and temporal resolution, this technique is widely employed to reveal fundamental mechanisms of nanoparticle growth and transformation. Here, the technical developments for liquid-phase TEM together with their application to the study of solution-phase nanoparticle chemistry are summarized. Two types of liquid cells that can be used in the high-vacuum conditions required by TEM are discussed, followed by recent in situ TEM studies of chemical reactions of colloidal nanoparticles. New findings on the growth mechanism, transformation, and motion of nanoparticles are subsequently discussed in detail.
Collapse
Affiliation(s)
- Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwoong Yang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghoon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
83
|
Cheong JY, Chang JH, Kim SJ, Kim C, Seo HK, Shin JW, Yuk JM, Lee JY, Kim ID. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:1107-1115. [PMID: 29219802 DOI: 10.1017/s1431927617012739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.
Collapse
Affiliation(s)
- Jun Young Cheong
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| | - Joon Ha Chang
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| | - Sung Joo Kim
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| | - Chanhoon Kim
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| | - Hyeon Kook Seo
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| | - Jae Won Shin
- 2Center for Nanomaterials and Chemical Reactions,Institute for Basic Science (IBS),Daejeon,305-701,Republic of Korea
| | - Jong Min Yuk
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| | - Jeong Yong Lee
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| | - Il-Doo Kim
- 1Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,335 Science Road,Daejeon,305-701,Republic of Korea
| |
Collapse
|
84
|
Abstract
Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.
Collapse
Affiliation(s)
- Hong-Gang Liao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; .,Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| |
Collapse
|
85
|
Yan Y, Li W, Král P. Enantioselective Molecular Transport in Multilayer Graphene Nanopores. NANO LETTERS 2017; 17:6742-6746. [PMID: 28972378 DOI: 10.1021/acs.nanolett.7b02846] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multilayer superstructures based on stacked layered nanomaterials offer the possibility to design three-dimensional (3D) nanopores with highly specific properties analogous to protein channels. In a layer-by-layer design and stacking, analogous to molecular printing, superstructures with lock-and-key molecular nesting and transport characteristics could be prepared. To examine this possibility, we use molecular dynamics simulations to study electric field-driven transport of ions through stacked porous graphene flakes. First, highly selective, tunable, and correlated passage rates of monovalent atomic ions through these superstructures are observed in dependence on the ion type, nanopore type, and relative position and dynamics of neighboring porous flakes. Next, enantioselective molecular transport of ionized l- and d-leucine is observed in graphene stacks with helical nanopores. The outlined approach provides a general scheme for synthesis of functional 3D superstructures.
Collapse
Affiliation(s)
- Youguo Yan
- College of Science, China University of Petroleum , Qingdao, Shandong, People's Republic of China , 102200
| | - Wen Li
- College of Science, China University of Petroleum , Qingdao, Shandong, People's Republic of China , 102200
| | | |
Collapse
|
86
|
Nagamanasa KH, Wang H, Granick S. Liquid-Cell Electron Microscopy of Adsorbed Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703555. [PMID: 28921693 DOI: 10.1002/adma.201703555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Individual macromolecules of polystyrene sulfonate and poly(ethylene oxide) are visualized with nanometer resolution using transmission electron microscopy (TEM) imaging of aqueous solutions with and without added salt, trapped in liquid pockets between creased graphene sheets. Successful imaging with 0.3 s per frame is enabled by the sluggish mobility of the adsorbed molecules. This study finds, validating others, that an advantage of this graphene liquid-cell approach is apparently to retard sample degradation from incident electrons, in addition to minimizing background scattering because graphene windows are atomically thin. Its new application here to polymers devoid of metal-ion labeling allows the projected sizes and conformational fluctuations of adsorbed molecules and adsorption-desorption events to be analyzed. Confirming the identification of the observed objects, this study reports statistical analysis of datasets of hundreds of images for times up to 100 s, with variation of the chemical makeup of the polymer, the molecular weight of the polymer, and the salt concentration. This observation of discrete polymer molecules in solution environment may be useful generally, as the findings are obtained using an ordinary TEM microscope, whose kind is available to many researchers routinely.
Collapse
Affiliation(s)
| | - Huan Wang
- IBS Center for Soft and Living Matter, UNIST, Ulsan, 689-798, South Korea
| | - Steve Granick
- IBS Center for Soft and Living Matter, UNIST, Ulsan, 689-798, South Korea
- Departments of Chemistry and Physics, UNIST, Ulsan, 689-798, South Korea
| |
Collapse
|
87
|
Imaging the polymerization of multivalent nanoparticles in solution. Nat Commun 2017; 8:761. [PMID: 28970557 PMCID: PMC5624893 DOI: 10.1038/s41467-017-00857-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Numerous mechanisms have been studied for chemical reactions to provide quantitative predictions on how atoms spatially arrange into molecules. In nanoscale colloidal systems, however, less is known about the physical rules governing their spatial organization, i.e., self-assembly, into functional materials. Here, we monitor real-time self-assembly dynamics at the single nanoparticle level, which reveal marked similarities to foundational principles of polymerization. Specifically, using the prototypical system of gold triangular nanoprisms, we show that colloidal self-assembly is analogous to polymerization in three aspects: ensemble growth statistics following models for step-growth polymerization, with nanoparticles as linkable “monomers”; bond angles determined by directional internanoparticle interactions; and product topology determined by the valency of monomeric units. Liquid-phase transmission electron microscopy imaging and theoretical modeling elucidate the nanometer-scale mechanisms for these polymer-like phenomena in nanoparticle systems. The results establish a quantitative conceptual framework for self-assembly dynamics that can aid in designing future nanoparticle-based materials. Few models exist that describe the spontaneous organization of colloids into materials. Here, the authors combine liquid-phase TEM and single particle tracking to observe the dynamics of gold nanoprisms, finding that nanoscale self-assembly can be understood within the framework of atomic polymerization.
Collapse
|
88
|
XIAO J, FORAY G, MASENELLI-VARLOT K. Analysis of liquid suspensions using scanning electron microscopy in transmission: estimation of the water film thickness using Monte-Carlo simulations. J Microsc 2017; 269:151-160. [DOI: 10.1111/jmi.12619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/07/2017] [Accepted: 07/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- J. XIAO
- INSA-Lyon, CNRS UMR 5510; Univ Lyon, MATEIS; F-69621 Villeurbanne France
| | - G. FORAY
- INSA-Lyon, CNRS UMR 5510; Univ Lyon, MATEIS; F-69621 Villeurbanne France
| | | |
Collapse
|
89
|
Ribeiro AR, Mukherjee A, Hu X, Shafien S, Ghodsi R, He K, Gemini-Piperni S, Wang C, Klie RF, Shokuhfar T, Shahbazian-Yassar R, Borojevic R, Rocha LA, Granjeiro JM. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy. NANOSCALE 2017; 9:10684-10693. [PMID: 28654127 DOI: 10.1039/c7nr02239e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.
Collapse
Affiliation(s)
- Ana R Ribeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Luo B, Smith JW, Ou Z, Chen Q. Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy. Acc Chem Res 2017; 50:1125-1133. [PMID: 28443654 DOI: 10.1021/acs.accounts.7b00048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For decades, one of the overarching objectives of self-assembly science has been to define the rules necessary to build functional, artificial materials with rich and adaptive phase behavior from the bottom-up. To this end, the computational and experimental efforts of chemists, physicists, materials scientists, and biologists alike have built a body of knowledge that spans both disciplines and length scales. Indeed, today control of self-assembly is extending even to supramolecular and molecular levels, where crystal engineering and design of porous materials are becoming exciting areas of exploration. Nevertheless, at least at the nanoscale, there are many stones yet to be turned. While recent breakthroughs in nanoparticle (NP) synthesis have amassed a vast library of nanoscale building blocks, NP-NP interactions in situ remain poorly quantified, in large part due to technical and theoretical impediments. While increasingly many applications for self-assembled architectures are being demonstrated, it remains difficult to predict-and therefore engineer-the pathways by which these structures form. Here, we describe how investigations using liquid-phase transmission electron microscopy (TEM) have begun to play a role in pursuing some of these long-standing questions of fundamental and far-reaching interest. Liquid-phase TEM is unique in its ability to resolve the motions and trajectories of single NPs in solution, making it a powerful tool for studying the dynamics of NP self-assembly. Since 2012, liquid-phase TEM has been used to investigate the self-assembly behavior of a variety of simple, metallic NPs. In this Account, however, we focus on our work with anisotropic NPs, which we show to have very different self-assembly behavior, and especially on how analysis methods we and others in the field are developing can be used to convert their motions and trajectories revealed by liquid-phase TEM into quantitative understanding of underlying interactions and dynamics. In general, liquid-phase TEM studies may help bridge enduring gaps in the understanding and control of self-assembly at the nanoscale. For one, quantification of NP-NP interactions and self-assembly dynamics will inform both computational and statistical mechanical models used to describe nanoscale phenomena. Such understanding will also lay the groundwork for establishing new and generalizable thermodynamic and kinetic design rules for NP self-assembly. Synergies with NP synthesis will enable investigations of building blocks with novel, perhaps even evolving or active behavior. Moreover, in the long run, we foresee the possibility of applying the guidelines and models of fundamental nanoscale interactions which are uncovered under liquid-phase TEM to biological and biomimetic systems at similar dimensions.
Collapse
Affiliation(s)
- Binbin Luo
- Department
of Materials Science and Engineering, ‡Frederick Seitz Materials Research
Laboratory, and §Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - John W. Smith
- Department
of Materials Science and Engineering, ‡Frederick Seitz Materials Research
Laboratory, and §Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Zihao Ou
- Department
of Materials Science and Engineering, ‡Frederick Seitz Materials Research
Laboratory, and §Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department
of Materials Science and Engineering, ‡Frederick Seitz Materials Research
Laboratory, and §Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
91
|
Nappini S, Matruglio A, Naumenko D, Dal Zilio S, Bondino F, Lazzarino M, Magnano E. Graphene nanobubbles on TiO 2 for in-operando electron spectroscopy of liquid-phase chemistry. NANOSCALE 2017; 9:4456-4466. [PMID: 28304018 DOI: 10.1039/c6nr09061c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Absorption Spectroscopy (XAS) provide unique knowledge on the electronic structure and chemical properties of materials. Unfortunately this information is scarce when investigating solid/liquid interfaces and chemical or photochemical reactions under ambient conditions because of the short electron inelastic mean free path (IMFP) that requires a vacuum environment, which poses serious limitation on the application of XPS and XAS to samples present in the atmosphere or in the presence of a solvent. One promising approach is the use of graphene (Gr) windows transparent to both photons and electrons. This paper proposes an innovative system based on sealed Gr nanobubbles (GNBs) on a titanium dioxide TiO2 (100) rutile single crystal filled with the solution of interest during the fabrication stage. The GNBs were successfully employed to follow in-operando the thermal-induced reduction of FeCl3 to FeCl2 in aqueous solution. The electronic states of chlorine, iron and oxygen were obtained through a combination of electron spectroscopy methods (XPS and XAS) in different phases of the process. The interaction of various components in solution with solid surfaces constituting the cell was obtained, also highlighting the formation of a covalent C-Cl bond in the Gr structure. For the easiness of GNB fabrication and straightforward extension to a large variety of solutions, we envisage a broad application of the proposed approach to investigate in detail electronic mechanisms that regulate liquid/solid electron transfer in catalytic and energy conversion related applications.
Collapse
Affiliation(s)
- S Nappini
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy.
| | - A Matruglio
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy. and University of Trieste, Graduate School of Nanotechnology, Piazzale Europa 1, 34127 Trieste, Italy
| | - D Naumenko
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy.
| | - S Dal Zilio
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy.
| | - F Bondino
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy.
| | - M Lazzarino
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy.
| | - E Magnano
- IOM-CNR, Laboratorio TASC, S.S. 14-km 163.5, 34149 Basovizza, Trieste, Italy. and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
| |
Collapse
|
92
|
Pang J, Mendes RG, Wrobel PS, Wlodarski MD, Ta HQ, Zhao L, Giebeler L, Trzebicka B, Gemming T, Fu L, Liu Z, Eckert J, Bachmatiuk A, Rümmeli MH. Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO x by Chemical Vapor Deposition. ACS NANO 2017; 11:1946-1956. [PMID: 28117971 DOI: 10.1021/acsnano.6b08069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To synthesize graphene by chemical vapor deposition (CVD) both in large area and with uniform layer number directly over Si/SiOx has proven challenging. The use of catalytically active metal substrates, in particular Cu, has shown far greater success and therefore is popular. That said, for electronics applications it requires a transfer procedure, which tends to damage and contaminate the graphene. Thus, the direct fabrication of uniform graphene on Si/SiOx remains attractive. Here we show a facile confinement CVD approach in which we simply "sandwich" two Si wafers with their oxide faces in contact to form uniform monolayer graphene. A thorough examination of the material reveals it comprises faceted grains despite initially nucleating as round islands. Upon clustering, they facet to minimize their energy. This behavior leads to faceting in polygons, as the system aims to ideally form hexagons, the lowest energy form, much like the hexagonal cells in a beehive, which requires the minimum wax. This process also leads to a near minimal total grain boundary length per unit area. This fact, along with the high graphene quality, is reflected in its electrical performance, which is highly comparable with graphene formed over other substrates, including Cu. In addition, the graphene growth is self-terminating. Our CVD approach is easily scalable and will make graphene formation directly on Si wafers competitive against that from metal substrates, which suffer from transfer. Moreover, this CVD route should be applicable for the direct synthesis of other 2D materials and their van der Waals heterostructures.
Collapse
Affiliation(s)
- Jinbo Pang
- IFW-Dresden , Helmholtz Strasse 20, D-01171 Dresden, Germany
| | - Rafael G Mendes
- IFW-Dresden , Helmholtz Strasse 20, D-01171 Dresden, Germany
| | - Pawel S Wrobel
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , ul. M. Curie-Sklodowskiej 34, Zabrze, PL-41-819 Zabrze, Poland
| | - Michal D Wlodarski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , ul. M. Curie-Sklodowskiej 34, Zabrze, PL-41-819 Zabrze, Poland
| | - Huy Quang Ta
- IFW-Dresden , Helmholtz Strasse 20, D-01171 Dresden, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , ul. M. Curie-Sklodowskiej 34, Zabrze, PL-41-819 Zabrze, Poland
| | | | - Lars Giebeler
- IFW-Dresden , Helmholtz Strasse 20, D-01171 Dresden, Germany
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , ul. M. Curie-Sklodowskiej 34, Zabrze, PL-41-819 Zabrze, Poland
| | - Thomas Gemming
- IFW-Dresden , Helmholtz Strasse 20, D-01171 Dresden, Germany
| | - Lei Fu
- College of Chemistry and Molecular Science, Wuhan University , Wuhan, 430072, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Juergen Eckert
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences , Jahnstraße 12, A-8700 Leoben, Austria
- Department Materials Physics, Montanuniversität Leoben , Jahnstraße 12, A-8700 Leoben, Austria
| | - Alicja Bachmatiuk
- IFW-Dresden , Helmholtz Strasse 20, D-01171 Dresden, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , ul. M. Curie-Sklodowskiej 34, Zabrze, PL-41-819 Zabrze, Poland
| | - Mark H Rümmeli
- IFW-Dresden , Helmholtz Strasse 20, D-01171 Dresden, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , ul. M. Curie-Sklodowskiej 34, Zabrze, PL-41-819 Zabrze, Poland
| |
Collapse
|
93
|
Hermannsdörfer J, de Jonge N. Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy. J Vis Exp 2017. [PMID: 28190028 PMCID: PMC5407709 DOI: 10.3791/54943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline.
Collapse
Affiliation(s)
| | - Niels de Jonge
- INM-Leibniz Institute for New Materials; Department of Physics, University of Saarland;
| |
Collapse
|
94
|
Abstract
We characterize the porosity of hydrogels by imaging the displacement trajectories of embedded tracer particles. This offers the possibility of characterizing the size and projected shape of individual pores as well as direct, real-space maps of heterogeneous porosity and its distribution. The scheme shows that when fluorescent spherical particles treated to avoid specific adsorption are loaded into the gel, their displacement trajectories from Brownian motion report on the size and projected shape in which the pore resides, convoluted by the particle size. Of special interest is how pores and their distribution respond to stimuli. These ideas are validated in agarose gels loaded with latex particles stabilized by adsorbed bovine serum albumin. Gels heated from room temperature produced an increasingly more monodisperse pore size distribution because increasing temperature preferentially enlarges smaller pores, but this was irreversible upon cooling, and shearing agarose gels beyond the yield point destroyed larger pores preferably. The method is considered to be generalizable beyond the agarose system presented here as proof of concept.
Collapse
Affiliation(s)
- Lingxiang Jiang
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510632, China
| | - Steve Granick
- IBS Center for Soft and Living Matter and UNIST, Ulsan 689-798, South Korea
| |
Collapse
|
95
|
Cho H, Jones MR, Nguyen SC, Hauwiller MR, Zettl A, Alivisatos AP. The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens. NANO LETTERS 2017; 17:414-420. [PMID: 28026186 DOI: 10.1021/acs.nanolett.6b04383] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the key challenges facing liquid-phase transmission electron microscopy (TEM) of biological specimens has been the damaging effects of electron beam irradiation. The strongly ionizing electron beam is known to induce radiolysis of surrounding water molecules, leading to the formation of reactive radical species. In this study, we employ DNA-assembled Au nanoparticle superlattices (DNA-AuNP superlattices) as a model system to demonstrate that graphene and its derivatives can be used to mitigate electron beam-induced damage. We can image DNA-AuNP superlattices in their native saline environment when the liquid cell window material is graphene, but not when it is silicon nitride. In the latter case, initial dissociation of assembled AuNPs was followed by their random aggregation and etching. Using graphene-coated silicon nitride windows, we were able to replicate the observation of stable DNA-AuNP superlattices achieved with graphene liquid cells. We then carried out a correlative Raman spectroscopy and TEM study to compare the effect of electron beam irradiation on graphene with and without the presence of water and found that graphene reacts with the products of water radiolysis. We attribute the protective effect of graphene to its ability to efficiently scavenge reactive radical species, especially the hydroxyl radicals which are known to cause DNA strand breaks. We confirmed this by showing that stable DNA-AuNP assemblies can be imaged in silicon nitride liquid cells when graphene oxide and graphene quantum dots, which have also recently been reported as efficient radical scavengers, are added directly to the solution. We anticipate that our study will open up more opportunities for studying biological specimens using liquid-phase TEM with the use of graphene and its derivatives as biocompatible radical scavengers to alleviate the effects of radiation damage.
Collapse
Affiliation(s)
- Hoduk Cho
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Matthew R Jones
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Son C Nguyen
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Matthew R Hauwiller
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Alex Zettl
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Department of Physics, University of California , Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute , Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute , Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| |
Collapse
|
96
|
Kim G, Kim M, Hyun C, Hong S, Ma KY, Shin HS, Lim H. Hexagonal Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of Surface-Enhanced Raman Spectroscopy. ACS NANO 2016; 10:11156-11162. [PMID: 28024355 DOI: 10.1021/acsnano.6b06153] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on an insulating two-dimensional material, hexagonal boron nitride (h-BN), which can be used as an effective wrapping layer for surface-enhanced Raman spectroscopy (SERS) substrates. This material exhibits outstanding characteristics such as its crystallinity, impermeability, and thermal conductance. Improved SERS sensitivity is confirmed for Au substrates wrapped with h-BN, the mechanism of which is investigated via h-BN thickness-dependent experiments combined with theoretical simulations. The investigations reveal that a stronger electromagnetic field can be generated at the narrowed gap of the h-BN surface, which results in higher Raman sensitivity. Moreover, the h-BN-wrapped Au substrate shows extraordinary stability against photothermal and oxidative damages. We also describe its capability to detect specific chemicals that are difficult to analyze using conventional SERS substrates. We believe that this concept of using an h-BN insulating layer to protect metallic or plasmonic materials will be widely used not only in the field of SERS but also in the broader study of plasmonic and optoelectronic devices.
Collapse
Affiliation(s)
| | | | | | - Seokmo Hong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) , UNIST-gil 50, Ulsan 44919, Republic of Korea
| | | | - Hyeon Suk Shin
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) , UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Hyunseob Lim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) , UNIST-gil 50, Ulsan 44919, Republic of Korea
| |
Collapse
|
97
|
Leonard DN, Hellmann R. Exploring dynamic surface processes during silicate mineral (wollastonite) dissolution with liquid cell TEM. J Microsc 2016; 265:358-371. [PMID: 27918627 DOI: 10.1111/jmi.12509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/02/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
Abstract
Most liquid cell transmission electron microscopy (LC TEM) studies focus on nanoparticles or nanowires, in large part because the preparation and study of materials in this size range is straightforward. By contrast, this is not true for samples in the micrometre size range, in large part because of the difficulties associated with sample preparation starting from a 'bulk' material. There are also many advantages inherent to the study of micrometre-sized samples compared to their nanometre-sized counterparts. Here, we present a liquid cell transmission electron study that employed an innovative sample preparation technique using focused ion beam (FIB) milling to fabricate micrometre-sized electron transparent lamellae that were then welded to the liquid cell substrate. This technique, for which we have described in detail all of the fabrication steps, allows for samples having dimensions of several square micrometres to be observed by TEM in situ in a liquid. We applied this technique to test whether we could observe and measure in situ dissolution of a crystalline material called wollastonite, a calcium silicate mineral. More specifically, this study was used to observe and record surface dynamics associated with step and terrace edge movement, which are ultimately linked to the overall rate of dissolution. The wollastonite lamella underwent chemical reactions in pure deionized water at ambient temperature in a liquid cell with a 5-μm-spacer thickness. The movement of surface steps and terraces was measured periodically over a period of almost 5 h. Quite unexpectedly, the one-dimensional rates of retreat of these surface features were not constant, but changed over time. In addition, there were noticeable quantitative differences in retreat rates as a function crystallographic orientation, indicating that surface retreat is anisotropic. Several bulk rates of dissolution were also determined (1.6-4.2 • 10-7 mol m-2 s-1 ) using the rates of retreat of representative terraces and steps, and were found to be within one order of magnitude of dissolution rates in the literature based on aqueous chemistry data.
Collapse
Affiliation(s)
- D N Leonard
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A
| | - R Hellmann
- ISTerre (Institute for Earth Sciences), Université Grenoble Alpes, Grenoble, France.,ISTerre, CNRS-UMR, 5275, Grenoble, France
| |
Collapse
|
98
|
Kim J, Jones MR, Ou Z, Chen Q. In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices. ACS NANO 2016; 10:9801-9808. [PMID: 27723304 DOI: 10.1021/acsnano.6b05270] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We use liquid-phase transmission electron microscopy (LP-TEM) to characterize the structure and dynamics of a solution-phase superlattice assembled from gold nanoprisms at the single particle level. The lamellar structure of the superlattice, determined by a balance of interprism interactions, is maintained and resolved under low-dose imaging conditions typically reserved for biomolecular imaging. In this dose range, we capture dynamic structural changes in the superlattice in real time, where contraction and smaller steady-state lattice constants are observed at higher electron dose rates. Quantitative analysis of the contraction mechanism based on a combination of direct LP-TEM imaging, ensemble small-angle X-ray scattering, and theoretical modeling allows us to elucidate: (1) the superlattice contraction in LP-TEM results from the screening of electrostatic repulsion due to as much as a 6-fold increase in the effective ionic strength in the solution upon electron beam illumination; and (2) the lattice constant serves as a means to understand the mechanism of the in situ interaction modulation and precisely calibrate electron dose rates with the effective ionic strength of the system. These results demonstrate that low-dose LP-TEM is a powerful tool for obtaining structural and kinetic properties of nanoassemblies in liquid conditions that closely resemble real experiments. We anticipate that this technique will be especially advantageous for those structures with heterogeneity or disorder that cannot be easily probed by ensemble methods and will provide important insight that will aid in the rational design of sophisticated reconfigurable nanomaterials.
Collapse
Affiliation(s)
| | - Matthew R Jones
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | |
Collapse
|
99
|
Ye X, Jones MR, Frechette LB, Chen Q, Powers AS, Ercius P, Dunn G, Rotskoff GM, Nguyen SC, Adiga VP, Zettl A, Rabani E, Geissler PL, Alivisatos AP. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 2016; 354:874-877. [DOI: 10.1126/science.aah4434] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023]
|
100
|
Wu J, Shan H, Chen W, Gu X, Tao P, Song C, Shang W, Deng T. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9686-9712. [PMID: 27628711 DOI: 10.1002/adma.201602519] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/10/2016] [Indexed: 05/26/2023]
Abstract
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Xin Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| |
Collapse
|