51
|
Shrestha A, Mishra AK, Matoušek J, Steinbachová L, Potěšil D, Nath VS, Awasthi P, Kocábek T, Jakse J, Drábková LZ, Zdráhal Z, Honys D, Steger G. Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum. Int J Mol Sci 2020; 21:E8700. [PMID: 33218043 PMCID: PMC7698868 DOI: 10.3390/ijms21228700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.
Collapse
Affiliation(s)
- Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany;
| |
Collapse
|
52
|
Shapanis A, Lai C, Sommerlad M, Parkinson E, Healy E, Skipp P. Proteomic Profiling of Archived Tissue of Primary Melanoma Identifies Proteins Associated with Metastasis. Int J Mol Sci 2020; 21:ijms21218160. [PMID: 33142795 PMCID: PMC7663670 DOI: 10.3390/ijms21218160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Formalin-fixed paraffin embedded (FFPE) clinical tissues represent an abundant and unique resource for translational proteomic studies. In the US, melanoma is the 5th and 6th most common cancer in men and women, respectively, affecting over 230,000 people annually and metastasising in 5–15% of cases. Median survival time for distant metastatic melanoma is 6–9 months with a 5-year-survival of < 15%. In this study, 24 primary FFPE tumours which have metastasised (P-M) and 24 primary FFPE tumours which did not metastasise (P-NM) were subjected to proteomic profiling. In total, 2750 proteins were identified, of which 16 were significantly differentially expressed. Analysis of TCGA data demonstrated that expression of the genes encoding for 6 of these 16 proteins had a significant effect on survival in cutaneous melanoma. Pathway analysis of the proteomics data revealed mechanisms likely involved in the process of melanoma metastasis, including cytoskeleton rearrangement, extracellular changes and immune system alterations. A machine learning prediction model scoring an AUC of 0.922, based on these 16 differentially expressed proteins was able to accurately classify samples into P-M and P-NM. This study has identified potential biomarkers and key processes relating to melanoma metastasis using archived clinical samples, providing a basis for future studies in larger cohorts.
Collapse
Affiliation(s)
- Andrew Shapanis
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
| | - Chester Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.L.); (E.H.)
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Mathew Sommerlad
- Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
| | - Erika Parkinson
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.L.); (E.H.)
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
- Correspondence:
| |
Collapse
|
53
|
Tremblay TL, Hill JJ. Adding polyvinylpyrrolidone to low level protein samples significantly improves peptide recovery in FASP digests: An inexpensive and simple modification to the FASP protocol. J Proteomics 2020; 230:104000. [PMID: 33011348 DOI: 10.1016/j.jprot.2020.104000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022]
Abstract
Filter-aided sample preparation (FASP) remains a popular choice for proteomic sample preparation, particularly for its ability to produce a 'clean' peptide sample clear of large molecule contaminants. However, sample loss continues to be a problem particularly for sample inputs that contain less than ten micrograms of protein. Here, we describe that the simple addition of a polymer, polyvinylpyrrolidone-40 (PVP-40) to the protein sample prior to FASP digest significantly improves peptide recovery and identifications, especially with lower level sample inputs. PVP-FASP produces clean samples which required no additional sample clean-up prior to nanoLC-MS analysis. In addition, PVP-FASP is compatible with other FASP modifications, including the use of sodium deoxycholate (DOC) to improve trypsin digestion. SIGNIFICANCE: Simple modification to FASP procedure improves sample recovery during proteomic digests in SDS, improving peptide identifications and median peptide intensity.
Collapse
Affiliation(s)
- Tammy-Lynn Tremblay
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr., Ottawa, ON K1A 0R6, Canada
| | - Jennifer J Hill
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr., Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
54
|
Vainer ED, Kania-Almog J, Zatara G, Levin Y, Vainer GW. Novel Proteome Extraction Method Illustrates a Conserved Immunological Signature of MSI-H Colorectal Tumors. Mol Cell Proteomics 2020; 19:1619-1631. [PMID: 32641473 PMCID: PMC8015011 DOI: 10.1074/mcp.ra120.002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
Using a simple, environment friendly proteome extraction (TOP), we were able to optimize the analysis of clinical samples. Using our TOP method we analyzed a clinical cohort of microsatellite stable (MSS) and unstable (MSI-H) colorectal carcinoma (CRC). We identified a tumor cell specific, STAT1-centered, immune signature expressed by the MSI-H tumor cells. We then showed that long, but not short, exposure to Interferon-γ induces a similar signature in vitro We identified 10 different temporal protein expression patterns, classifying the Interferon-γ protein temporal regulation in CRC. Our data sheds light on the changes that tumor cells undergo under long-term immunological pressure in vivo, the importance of STAT proteins in specific biological scenarios. The data generated could help find novel clinical biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Elez D Vainer
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Juliane Kania-Almog
- Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ghadeer Zatara
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad W Vainer
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
55
|
Sigdel TK, Piehowski PD, Roy S, Liberto J, Hansen JR, Swensen AC, Zhao R, Zhu Y, Rashmi P, Schroeder A, Damm I, Sur S, Luo J, Yang Y, Qian WJ, Sarwal MM. Near-Single-Cell Proteomics Profiling of the Proximal Tubular and Glomerulus of the Normal Human Kidney. Front Med (Lausanne) 2020; 7:499. [PMID: 33072769 PMCID: PMC7533534 DOI: 10.3389/fmed.2020.00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/21/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular assessments at the single cell level can accelerate biological research by providing detailed assessments of cellular organization and tissue heterogeneity in both disease and health. The human kidney has complex multi-cellular states with varying functionality, much of which can now be completely harnessed with recent technological advances in tissue proteomics at a near single-cell level. We discuss the foundational steps in the first application of this mass spectrometry (MS) based proteomics method for analysis of sub-sections of the normal human kidney, as part of the Kidney Precision Medicine Project (KPMP). Using ~30-40 laser captured micro-dissected kidney cells, we identified more than 2,500 human proteins, with specificity to the proximal tubular (PT; n = 25 proteins) and glomerular (Glom; n = 67 proteins) regions of the kidney and their unique metabolic functions. This pilot study provides the roadmap for application of our near-single-cell proteomics workflow for analysis of other renal micro-compartments, on a larger scale, to unravel perturbations of renal sub-cellular function in the normal kidney as well as different etiologies of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Paul D. Piehowski
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Sudeshna Roy
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Juliane Liberto
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Joshua R. Hansen
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Adam C. Swensen
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Priyanka Rashmi
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew Schroeder
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Izabella Damm
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Swastika Sur
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Minnie M. Sarwal
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
56
|
Hernandez-Valladares M, Bruserud Ø, Selheim F. The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives. Int J Mol Sci 2020; 21:ijms21186830. [PMID: 32957646 PMCID: PMC7556012 DOI: 10.3390/ijms21186830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
With the current reproducibility of proteome preparation workflows along with the speed and sensitivity of the mass spectrometers, the transition of the mass spectrometry (MS)-based proteomics technology from biomarker discovery to clinical implementation is under appraisal in the biomedicine community. Therefore, this technology might be implemented soon to detect well-known biomarkers in cancers and other diseases. Acute myeloid leukemia (AML) is an aggressive heterogeneous malignancy that requires intensive treatment to cure the patient. Leukemia relapse is still a major challenge even for patients who have favorable genetic abnormalities. MS-based proteomics could be of great help to both describe the proteome changes of individual patients and identify biomarkers that might encourage specific treatments or clinical strategies. Herein, we will review the advances and availability of the MS-based proteomics strategies that could already be used in clinical proteomics. However, the heterogeneity of complex diseases as AML requires consensus to recognize AML biomarkers and to establish MS-based workflows that allow their unbiased identification and quantification. Although our literature review appears promising towards the utilization of MS-based proteomics in clinical AML in a near future, major efforts are required to validate AML biomarkers and agree on clinically approved workflows.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Computational Biology
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Mass Spectrometry/methods
- Prognosis
- Proteome/analysis
- Proteome/metabolism
- Proteomics/methods
- Robotics/instrumentation
- Robotics/methods
- Workflow
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| |
Collapse
|
57
|
Buczak K, Kirkpatrick JM, Truckenmueller F, Santinha D, Ferreira L, Roessler S, Singer S, Beck M, Ori A. Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nat Protoc 2020; 15:2956-2979. [PMID: 32737464 DOI: 10.1038/s41596-020-0356-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/14/2020] [Indexed: 01/09/2023]
Abstract
Bottom-up mass spectrometry-based proteomics relies on protein digestion and peptide purification. The application of such methods to broadly available clinical samples such as formalin-fixed and paraffin-embedded (FFPE) tissues requires reversal of chemical crosslinking and the removal of reagents that are incompatible with mass spectrometry. Here, we describe in detail a protocol that combines tissue disruption by ultrasonication, heat-induced antigen retrieval and two alternative methods for efficient detergent removal to enable quantitative proteomic analysis of limited amounts of FFPE material. To show the applicability of our approach, we used hepatocellular carcinoma (HCC) as a model system. By combining the described protocol with laser-capture microdissection, we were able to quantify the intra-tumor heterogeneity of a tumor specimen on the proteome level using a single slide with tissue of 10-µm thickness. We also demonstrate broader applicability to other tissues, including human gallbladder and heart. The procedure described in this protocol can be completed within 8 d.
Collapse
Affiliation(s)
- Katarzyna Buczak
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Biozentrum, University of Basel, Basel, Switzerland
| | - Joanna M Kirkpatrick
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Deolinda Santinha
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
58
|
Bouchal P, Schubert OT, Faktor J, Capkova L, Imrichova H, Zoufalova K, Paralova V, Hrstka R, Liu Y, Ebhardt HA, Budinska E, Nenutil R, Aebersold R. Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep 2020; 28:832-843.e7. [PMID: 31315058 PMCID: PMC6656695 DOI: 10.1016/j.celrep.2019.06.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 01/10/2023] Open
Abstract
Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotype-based classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of disease-regulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification. Proteotyping of 96 breast tumors by SWATH mass spectrometry Three key proteins for breast tumor classification Varying degrees of heterogeneity within conventional breast cancer subtypes Generally modest correlation between protein and transcript levels in tumor tissue
Collapse
Affiliation(s)
- Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Olga T Schubert
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lenka Capkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Imrichova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Karolina Zoufalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vendula Paralova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Yansheng Liu
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
| | - Holger Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Eva Budinska
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rudolf Nenutil
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
59
|
Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M, Bell T, Zhang H, Han G, Lorence E, Badillo M, Zhou S, Sun Y, Di Francesco ME, Feng N, Haun R, Lan R, Mackintosh SG, Mao X, Song X, Zhang J, Pham LV, Lorenzi PL, Marszalek J, Heffernan T, Draetta G, Jones P, Futreal A, Nomie K, Wang L, Wang M. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci Transl Med 2020; 11:11/491/eaau1167. [PMID: 31068440 DOI: 10.1126/scitranslmed.aau1167] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/02/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
Metabolic reprogramming is linked to cancer cell growth and proliferation, metastasis, and therapeutic resistance in a multitude of cancers. Targeting dysregulated metabolic pathways to overcome resistance, an urgent clinical need in all relapsed/refractory cancers, remains difficult. Through genomic analyses of clinical specimens, we show that metabolic reprogramming toward oxidative phosphorylation (OXPHOS) and glutaminolysis is associated with therapeutic resistance to the Bruton's tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma (MCL), a B cell lymphoma subtype with poor clinical outcomes. Inhibition of OXPHOS with a clinically applicable small molecule, IACS-010759, which targets complex I of the mitochondrial electron transport chain, results in marked growth inhibition in vitro and in vivo in ibrutinib-resistant patient-derived cancer models. This work suggests that targeting metabolic pathways to subvert therapeutic resistance is a clinically viable approach to treat highly refractory malignancies.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaojun Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Guo
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Makhdum Ahmed
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taylor Bell
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Zhang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Lorence
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Badillo
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shouhao Zhou
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuting Sun
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ningping Feng
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Randy Haun
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Renny Lan
- Department of Biochemistry and Molecular Biology and Proteomics Core Facility, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology and Proteomics Core Facility, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xizeng Mao
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan V Pham
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Proteomics and Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Marszalek
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tim Heffernan
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio Draetta
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip Jones
- Institute for Applied Cancer Science and Center for Co-Clinical Trials, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krystle Nomie
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
60
|
Eggeling F, Hoffmann F. Microdissection—An Essential Prerequisite for Spatial Cancer Omics. Proteomics 2020; 20:e2000077. [DOI: 10.1002/pmic.202000077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ferdinand Eggeling
- Department of OtorhinolaryngologyMALDI Imaging and Core Unit Proteome AnalysisDFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL)Jena University Hospital Am Klinikum 1 Jena 07747 Germany
| | - Franziska Hoffmann
- Department of OtorhinolaryngologyMALDI Imaging and Core Unit Proteome AnalysisDFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL)Jena University Hospital Am Klinikum 1 Jena 07747 Germany
| |
Collapse
|
61
|
López E, Marinaro F, de Pedro MDLÁ, Sánchez-Margallo FM, Gómez-Serrano M, Ponath V, Pogge von Strandmann E, Jorge I, Vázquez J, Fernández-Pereira LM, Crisóstomo V, Álvarez V, Casado JG. The Immunomodulatory Signature of Extracellular Vesicles From Cardiosphere-Derived Cells: A Proteomic and miRNA Profiling. Front Cell Dev Biol 2020; 8:321. [PMID: 32582685 PMCID: PMC7295954 DOI: 10.3389/fcell.2020.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental data demonstrated that the regenerative potential and immunomodulatory capacity of cardiosphere-derived cells (CDCs) is mediated by paracrine mechanisms. In this process, extracellular vesicles derived from CDCs (EV-CDCs) are key mediators of their therapeutic effect. Considering the future applicability of these vesicles in human diseases, an accurate preclinical-to-clinical translation is needed, as well as an exhaustive molecular characterization of animal-derived therapeutic products. Based on that, the main goal of this study was to perform a comprehensive characterization of proteins and miRNAs in extracellular vesicles from porcine CDCs as a clinically relevant animal model. The analysis was performed by identification and quantification of proteins and miRNA expression profiles. Our results revealed the presence of clusters of immune-related and cardiac-related molecular biomarkers in EV-CDCs. Additionally, considering that priming stem cells with inflammatory stimuli may increase the therapeutic potential of released vesicles, here we studied the dynamic changes that occur in the extracellular vesicles from IFNγ-primed CDCs. These analyses detected statistically significant changes in several miRNAs and proteins. Notably, the increase in interleukin 6 (IL6) protein, as well as the increase in mir-125b (that targets IL6 receptor) was especially relevant. These results suggest a potential involvement of EV-CDCs in the regulation of the IL6/IL6R axis, with implications in inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Verónica Crisóstomo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
62
|
Marinaro F, Macías-García B, Sánchez-Margallo FM, Blázquez R, Álvarez V, Matilla E, Hernández N, Gómez-Serrano M, Jorge I, Vázquez J, González-Fernández L, Pericuesta E, Gutiérrez-Adán A, Casado JG. Extracellular vesicles derived from endometrial human mesenchymal stem cells enhance embryo yield and quality in an aged murine model†. Biol Reprod 2020; 100:1180-1192. [PMID: 30596891 DOI: 10.1093/biolre/ioy263] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022] Open
Abstract
Advanced age is a risk factor undermining women's fertility. Hence, the optimization of assisted reproduction techniques is an interdisciplinary challenge that requires the improvement of in vitro culture systems. Here, we hypothesize that supplementation of embryo culture medium with extracellular vesicles from endometrial-derived mesenchymal stem cells (EV-endMSCs) may have a positive impact on the embryo competence of aged oocytes. In this work, 24 weeks old B6D2 female mice were used as egg donors and in vitro fertilization assays were performed using males from the same strain (8-12 weeks); the presumptive zygotes were incubated in the presence of 0, 10, 20, 40, or 80 μg/ml of EV-endMSCs. The results from the proteomic analysis of EV-endMSCs and the classification by Reactome pathways allowed us to identify proteins closely related with the fertilization process. Moreover, in our aged murine model, the supplementation of the embryo culture medium with EV-endMSCs improved the developmental competence of the embryos as well as the total blastomere count. Finally, gene expression analysis of murine blastocysts showed significant changes on core genes related to cellular response to oxidative stress, metabolism, placentation, and trophectoderm/inner cell mass formation. In summary, we demonstrate that EV-endMSCs increase the quality of the embryos, and according to proteomic and genomic analysis, presumably by modulating the expression of antioxidant enzymes and promoting pluripotent activity. Therefore, EV-endMSCs could be a valuable tool in human assisted reproduction improving the developmental competence of aged oocytes and increasing the odds of implantation and subsequent delivery.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre (JUMISC), Cáceres, Spain
| | - Beatriz Macías-García
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre (JUMISC), Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre (JUMISC), Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre (JUMISC), Cáceres, Spain
| | - Elvira Matilla
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Nuria Hernández
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lauro González-Fernández
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | | | | | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre (JUMISC), Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
63
|
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 2020; 17:17. [PMID: 32489335 PMCID: PMC7247207 DOI: 10.1186/s12014-020-09283-w] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spectrometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are highlighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to complement genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical proteomics' integral position in cancer research, but also accelerate the shift towards becoming a regular component of routine analysis and clinical practice.
Collapse
Affiliation(s)
- Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
64
|
Zhou M, Uwugiaren N, Williams SM, Moore RJ, Zhao R, Goodlett D, Dapic I, Paša-Tolić L, Zhu Y. Sensitive Top-Down Proteomics Analysis of a Low Number of Mammalian Cells Using a Nanodroplet Sample Processing Platform. Anal Chem 2020; 92:7087-7095. [PMID: 32374172 DOI: 10.1021/acs.analchem.0c00467] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Top-down proteomics is a powerful tool for characterizing genetic variations and post-translational modifications at intact protein level. However, one significant technical gap of top-down proteomics is the inability to analyze a low amount of biological samples, which limits its access to isolated rare cells, fine needle aspiration biopsies, and tissue substructures. Herein, we developed an ultrasensitive top-down platform by incorporating a microfluidic sample preparation system, termed nanoPOTS (nanodroplet processing in one pot for trace samples), into a top-down proteomic workflow. A unique combination of a nonionic detergent dodecyl-β-d-maltopyranoside (DDM) with urea as protein extraction buffer significantly improved both protein extraction efficiency and sample recovery. We hypothesize that the DDM detergent improves protein recovery by efficiently reducing nonspecific adsorption of intact proteins on container surfaces, while urea serves as a strong denaturant to disrupt noncovalent complexes and release intact proteins for downstream analysis. The nanoPOTS-based top-down platform reproducibly and quantitatively identified ∼170 to ∼620 proteoforms from ∼70 to ∼770 HeLa cells containing ∼10 to ∼115 ng of total protein. A variety of post-translational modifications including acetylation, myristoylation, and iron binding were identified using only less than 800 cells. We anticipate the nanoPOTS top-down proteomics platform will be broadly applicable in biomedical research, particularly where clinical specimens are not available in amounts amenable to standard workflows.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland.,Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
65
|
Janacova L, Faktor J, Capkova L, Paralova V, Pospisilova A, Podhorec J, Ebhardt HA, Hrstka R, Nenutil R, Aebersold R, Bouchal P. SWATH-MS Analysis of FFPE Tissues Identifies Stathmin as a Potential Marker of Endometrial Cancer in Patients Exposed to Tamoxifen. J Proteome Res 2020; 19:2617-2630. [PMID: 32343582 DOI: 10.1021/acs.jproteome.0c00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A specific form of endometrial cancer (EC) can develop in breast cancer patients previously treated with tamoxifen (ET), an antagonist of estrogen receptor (ER) that inhibits proliferation of ER positive breast cancer. ET tumors have a different phenotype than endometrial tumors, which typically develop de novo without previous exposure to tamoxifen (EN). Here we aimed to identify specific protein markers that could serve as specific molecular targets in either phenotype. A set of total 45 formalin-fixed paraffin-embedded (FFPE) endometrial tumor tissues and adjacent myometrium tissue samples were analyzed using LC-MS/MS in SWATH-MS mode. We found that calcyphosin (CAPS) levels were elevated in EN tumors compared to ET tumors. The higher CAPS level in EC tissue invading to myometrium supports its relationship to EC aggressiveness. Further, stathmin (STMN1) levels were found significantly elevated in ET versus EN tumors and significantly associated with patient survival. This finding connects elevated levels of this cell cycle regulating, proliferation-associated protein with tamoxifen exposure. In summary, using SWATH-MS we show that CAPS and STMN1 should be recognized as clinicopathologically different EC markers of which STMN1 is specifically connected with a previous tamoxifen exposition.
Collapse
Affiliation(s)
- Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Lenka Capkova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Vendula Paralova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Anna Pospisilova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Podhorec
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Holger Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute for Technology (ETH) Zurich, Zurich, Switzerland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Rudolf Nenutil
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute for Technology (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
66
|
Matoušek J, Steinbachová L, Drábková LZ, Kocábek T, Potěšil D, Mishra AK, Honys D, Steger G. Elimination of Viroids from Tobacco Pollen Involves a Decrease in Propagation Rate and an Increase of the Degradation Processes. Int J Mol Sci 2020; 21:E3029. [PMID: 32344786 PMCID: PMC7216239 DOI: 10.3390/ijms21083029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
67
|
Zhang Z, Dubiak KM, Huber PW, Dovichi NJ. Miniaturized Filter-Aided Sample Preparation (MICRO-FASP) Method for High Throughput, Ultrasensitive Proteomics Sample Preparation Reveals Proteome Asymmetry in Xenopus laevis Embryos. Anal Chem 2020; 92:5554-5560. [PMID: 32125139 PMCID: PMC7931810 DOI: 10.1021/acs.analchem.0c00470] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a miniaturized filter aided sample preparation method (micro-FASP) for low-loss preparation of submicrogram proteomic samples. The method employs a filter with ∼0.1 mm2 surface area, reduces the total volume of reagents to <10 μL, and requires only two sample transfer steps. The method was used to generate 25 883 unique peptides and 3069 protein groups from 1000 MCF-7 cells (∼100 ng protein content), and 13 367 peptides and 1895 protein groups were identified from 100 MCF-7 cells (∼10 ng protein content). Single blastomeres from Xenopus laevis embryos at the 50-cell stage (∼200 ng yolk free protein/blastomere) generated 20 943 unique peptides and 2597 protein groups; the proteomic profile clearly differentiated left and right blastomeres and provides strong support for models in which this asymmetry is established early in the embryo. The parallel processing of 12 samples demonstrates reproducible label free quantitation of 1 μg protein homogenates.
Collapse
Affiliation(s)
- Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Kyle M. Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
68
|
Lombard-Banek C, Schiel JE. Mass Spectrometry Advances and Perspectives for the Characterization of Emerging Adoptive Cell Therapies. Molecules 2020; 25:E1396. [PMID: 32204371 PMCID: PMC7144572 DOI: 10.3390/molecules25061396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy is an emerging anti-cancer modality, whereby the patient's own immune cells are engineered to express T-cell receptor (TCR) or chimeric antigen receptor (CAR). CAR-T cell therapies have advanced the furthest, with recent approvals of two treatments by the Food and Drug Administration of Kymriah (trisagenlecleucel) and Yescarta (axicabtagene ciloleucel). Recent developments in proteomic analysis by mass spectrometry (MS) make this technology uniquely suited to enable the comprehensive identification and quantification of the relevant biochemical architecture of CAR-T cell therapies and fulfill current unmet needs for CAR-T product knowledge. These advances include improved sample preparation methods, enhanced separation technologies, and extension of MS-based proteomic to single cells. Innovative technologies such as proteomic analysis of raw material quality attributes (MQA) and final product quality attributes (PQA) may provide insights that could ultimately fuel development strategies and lead to broad implementation.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - John E. Schiel
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| |
Collapse
|
69
|
Fíla J, Klodová B, Potěšil D, Juříček M, Šesták P, Zdráhal Z, Honys D. The beta Subunit of Nascent Polypeptide Associated Complex Plays A Role in Flowers and Siliques Development of Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2065. [PMID: 32192231 PMCID: PMC7139743 DOI: 10.3390/ijms21062065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/06/2023] Open
Abstract
The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosomes. NAC function was widely described in yeast and several information are also available about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes encoding NACα subunit, and two genes encoding NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Both NACβ genes were characterized in more detail-the phenotype of the double homozygous mutant was complemented by a functional NACβ copy. Then, both NACβ genes were localized to nuclei and cytoplasm and their promoters were active in many organs (leaves, cauline leaves, flowers, pollen grains, and siliques together with seeds). Since flowers were the most affected organs by nacβ mutation, the flower buds' transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses, male gametophyte development, and photosynthesis.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Miloslav Juříček
- Station of Apple Breeding for Disease Resistance, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic;
| | - Petr Šesták
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| |
Collapse
|
70
|
Hata K, Izumi Y, Hara T, Matsumoto M, Bamba T. In-Line Sample Processing System with an Immobilized Trypsin-Packed Fused-Silica Capillary Tube for the Proteomic Analysis of a Small Number of Mammalian Cells. Anal Chem 2020; 92:2997-3005. [PMID: 31961143 DOI: 10.1021/acs.analchem.9b03993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Omics analysis at single-cell resolution has helped to demonstrate the shaping of cellular heterogeneity on the basis of the expression of various molecules. However, in-depth proteomic analysis of low-quantity samples has remained challenging because of difficulties associated with the measurement of large numbers of proteins by shotgun proteomics using nanoflow liquid chromatography tandem mass spectrometry (nano-LC/MS/MS). To meet such a demand, we developed a method called in-line sample preparation for efficient cellular proteomics (ISPEC) in which cells were captured, directly lysed, and digested with immobilized trypsin within fused-silica capillaries. ISPEC minimized sample loss during the sample preparation processes with a relatively small number of mammalian cells (<1000 cells) and improved the stability and efficiency of digestion by immobilized trypsin, compared to a conventional preparation method. Using our optimized ISPEC method with nano-LC/MS/MS analysis, we identified 1351, 351, and 60 proteins from 100 cells, 10 cells, and single cells, respectively. The linear response of the signal intensity of each peptide to the introduced cell number indicates the quantitative recovery of the proteome from a very small number of cells. Thus, our ISPEC strategy facilitates quantitative proteomic analysis of small cell populations.
Collapse
Affiliation(s)
| | | | | | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences , Niigata University , 1-757, Asahimachi-dori , Niigata , 951-8510 , Japan
| | | |
Collapse
|
71
|
Marchione DM, Ilieva I, Devins K, Sharpe D, Pappin DJ, Garcia BA, Wilson JP, Wojcik JB. HYPERsol: High-Quality Data from Archival FFPE Tissue for Clinical Proteomics. J Proteome Res 2020; 19:973-983. [PMID: 31935107 DOI: 10.1021/acs.jproteome.9b00686] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Massive formalin-fixed, paraffin-embedded (FFPE) tissue archives exist worldwide, representing an invaluable resource for clinical proteomics research. However, current protocols for FFPE proteomics lack standardization, efficiency, reproducibility, and scalability. Here we present high-yield protein extraction and recovery by direct solubilization (HYPERsol), an optimized workflow using ultrasonication and S-Trap sample processing that enables proteome coverage and quantification from FFPE samples comparable to that achieved from flash-frozen tissue (average R = 0.936). When applied to archival samples, HYPERsol resulted in high-quality data from FFPE specimens in storage for up to 17 years, and may enable the discovery of new immunohistochemical markers.
Collapse
Affiliation(s)
- Dylan M Marchione
- Epigenetics Institute, Department of Biochemistry & Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Ilyana Ilieva
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kyle Devins
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Danielle Sharpe
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory , Cold Spring Harbor , New York 11724 , United States.,ProtiFi, LLC , Huntington , New York 11743 , United States
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry & Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - John P Wilson
- ProtiFi, LLC , Huntington , New York 11743 , United States
| | - John B Wojcik
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
72
|
Piehowski PD, Zhu Y, Bramer LM, Stratton KG, Zhao R, Orton DJ, Moore RJ, Yuan J, Mitchell HD, Gao Y, Webb-Robertson BJM, Dey SK, Kelly RT, Burnum-Johnson KE. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat Commun 2020; 11:8. [PMID: 31911630 PMCID: PMC6946663 DOI: 10.1038/s41467-019-13858-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
Biological tissues exhibit complex spatial heterogeneity that directs the functions of multicellular organisms. Quantifying protein expression is essential for elucidating processes within complex biological assemblies. Imaging mass spectrometry (IMS) is a powerful emerging tool for mapping the spatial distribution of metabolites and lipids across tissue surfaces, but technical challenges have limited the application of IMS to the analysis of proteomes. Methods for probing the spatial distribution of the proteome have generally relied on the use of labels and/or antibodies, which limits multiplexing and requires a priori knowledge of protein targets. Past efforts to make spatially resolved proteome measurements across tissues have had limited spatial resolution and proteome coverage and have relied on manual workflows. Here, we demonstrate an automated approach to imaging that utilizes label-free nanoproteomics to analyze tissue voxels, generating quantitative cell-type-specific images for >2000 proteins with 100-µm spatial resolution across mouse uterine tissue sections preparing for blastocyst implantation. Imaging mass spectrometry is a powerful emerging tool for mapping the spatial distribution of biomolecules across tissue surfaces. Here the authors showcase an automated technology for deep proteome imaging that utilizes ultrasensitive microfluidics and a mass spectrometry workflow to analyze tissue voxels, generating quantitative cell-type-specific images.
Collapse
Affiliation(s)
- Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ying Zhu
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M Bramer
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kelly G Stratton
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jia Yuan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hugh D Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Sudhansu K Dey
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ryan T Kelly
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA. .,Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
73
|
Prieto DA, Blonder J. Tissue sample preparation for proteomic analysis. PROTEOMIC AND METABOLOMIC APPROACHES TO BIOMARKER DISCOVERY 2020:39-52. [DOI: 10.1016/b978-0-12-818607-7.00003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
74
|
Abstract
Detection of secreted proteins and peptides during pollen tube guidance has been impeded due to lack of techniques to capture the pollen tube secretome without contamination from the female secreted proteins. Here we present a protocol to detect tobacco pollen tube secreted proteins, semi-in vivo pollen tube secretome assay (SIV-PS), following pollen tube crosstalk with the female reproductive tissues. This method combines the advantages of in vivo pollen tube-pistil interaction and filter-aided sample preparation (FASP) techniques to obtain an in-depth proteome coverage. The SIV-PS method is rapid, efficient, inexpensive, does not require specialized equipment or expertise, and provides a snapshot of the ongoing molecular interplay. We show that the secretome obtained is of greater purity (<1.4% ADH activities) and that pollen tubes are physiologically and cytologically unaffected. A compendium of quality controls is described and a rough guide on downstream bioinformatics analysis is outlined. The SIV-PS method is applicable to all studies of protein secretion using pollen tube as a model and can be easily adapted to other flowering species with modification. The overall duration for this protocol is approximately 8 hours spanning 4 days (an average of 2 h/day per two workers) excluding microscopy and LC-MS/MS analysis.
Collapse
|
75
|
Alarcón H, Bonzon-Kulichenko E, Peinado R, Lim F, Vázquez J, Rodríguez A. Generation of a lentiviral vector system to efficiently express bioactive recombinant human prolactin hormones. Mol Cell Endocrinol 2020; 499:110605. [PMID: 31580897 DOI: 10.1016/j.mce.2019.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
The contribution of the pleiotropic hormone Prolactin (PRL) to several physiological and pathological processes is still unknown. To clarify the role of PRL in these processes during the last decade, different human PRL antagonists have been produced to either partially or fully block the wild type hormone activity. In this work, we have cloned these wild type and antagonist sequences in lentivectors (LV) to express them as recombinant self-processing polypeptides by employing a P2A sequence (hPRL-P2A-GFP). We show that these LVs can efficiently transduce and express the hPRL proteins in different cell types and that the P2A sequence does not affect their activities. Additionally, we have tested their activities in paracrine and autocrine cell culture experiments. Our results demonstrate that these recombinant hPRL-P2A proteins are bioactive in both paracrine and autocrine modes, highlighting the potential usefulness of these hPRL-containing LVs for determining the contribution of hPRL to different biological processes.
Collapse
Affiliation(s)
- Hernán Alarcón
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Elena Bonzon-Kulichenko
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28029, Spain
| | - Rocío Peinado
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28029, Spain
| | - Antonio Rodríguez
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain.
| |
Collapse
|
76
|
Winczura K, Domanski M, LaCava J. Affinity Proteomic Analysis of the Human Exosome and Its Cofactor Complexes. Methods Mol Biol 2020; 2062:291-325. [PMID: 31768983 DOI: 10.1007/978-1-4939-9822-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans, the RNA exosome consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by additional components. Several cofactor complexes also interact with the exosome-these enable the recruitment of, and specify the activity upon, diverse substrates. Affinity capture coupled with mass spectrometry has proven to be an effective means to identify the compositions of RNA exosomes and their cofactor complexes: here, we describe a general experimental strategy for proteomic characterization of macromolecular complexes, applied to the exosome and an affiliated adapter protein, ZC3H18.
Collapse
Affiliation(s)
- Kinga Winczura
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, AV, The Netherlands.
| |
Collapse
|
77
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
78
|
Zeman M, Bárdy P, Vrbovská V, Roudnický P, Zdráhal Z, Růžičková V, Doškař J, Pantůček R. New Genus Fibralongavirus in Siphoviridae Phages of Staphylococcus pseudintermedius. Viruses 2019; 11:E1143. [PMID: 31835553 PMCID: PMC6950010 DOI: 10.3390/v11121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages of the significant veterinary pathogen Staphylococcus pseudintermedius are rarely described morphologically and genomically in detail, and mostly include phages of the Siphoviridae family. There is currently no taxonomical classification for phages of this bacterial species. Here we describe a new phage designated vB_SpsS_QT1, which is related to phage 2638A originally described as a Staphylococcus aureus phage. Propagating strain S. aureus 2854 of the latter was reclassified by rpoB gene sequencing as S. pseudintermedius 2854 in this work. Both phages have a narrow but different host range determined on 54 strains. Morphologically, both of them belong to the family Siphoviridae, share the B1 morphotype, and differ from other staphylococcal phage genera by a single long fibre at the terminus of the tail. The complete genome of phage vB_SpsS_QT1 was sequenced with the IonTorrent platform and expertly annotated. Its linear genome with cohesive ends is 43,029 bp long and encodes 60 predicted genes with the typical modular structure of staphylococcal siphophages. A global alignment found the genomes of vB_SpsS_QT1 and 2638A to share 84% nucleotide identity, but they have no significant similarity of nucleotide sequences with other phage genomes available in public databases. Based on the morphological, phylogenetic, and genomic analyses, a novel genus Fibralongavirus in the family Siphoviridae is described with phage species vB_SpsS_QT1 and 2638A.
Collapse
Affiliation(s)
- Michal Zeman
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavol Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Veronika Vrbovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vladislava Růžičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
79
|
Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy. Cell Rep 2019; 23:3685-3697.e4. [PMID: 29925008 DOI: 10.1016/j.celrep.2018.05.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications hugely increase the functional diversity of proteomes. Recent algorithms based on ultratolerant database searching are forging a path to unbiased analysis of peptide modifications by shotgun mass spectrometry. However, these approaches identify only one-half of the modified forms potentially detectable and do not map the modified residue. Moreover, tools for the quantitative analysis of peptide modifications are currently lacking. Here, we present a suite of algorithms that allows comprehensive identification of detectable modifications, pinpoints the modified residues, and enables their quantitative analysis through an integrated statistical model. These developments were used to characterize the impact of mitochondrial heteroplasmy on the proteome and on the modified peptidome in several tissues from 12-week-old mice. Our results reveal that heteroplasmy mainly affects cardiac tissue, inducing oxidative damage to proteins of the oxidative phosphorylation system, and provide a molecular mechanism explaining the structural and functional alterations produced in heart mitochondria.
Collapse
|
80
|
Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Drago F, Forte S, Gimeno JP, Begard S, Colin M, Vizioli J, Sautière PE, Salzet M, Lefebvre C. Isolation of microglia-derived extracellular vesicles: towards miRNA signatures and neuroprotection. J Nanobiotechnology 2019; 17:119. [PMID: 31801555 PMCID: PMC6894150 DOI: 10.1186/s12951-019-0551-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
The functional preservation of the central nervous system (CNS) is based on the neuronal plasticity and survival. In this context, the neuroinflammatory state plays a key role and involves the microglial cells, the CNS-resident macrophages. In order to better understand the microglial contribution to the neuroprotection, microglia-derived extracellular vesicles (EVs) were isolated and molecularly characterized to be then studied in neurite outgrowth assays. The EVs, mainly composed of exosomes and microparticles, are an important cell-to-cell communication process as they exhibit different types of mediators (proteins, lipids, nucleic acids) to recipient cells. The medicinal leech CNS was initially used as an interesting model of microglia/neuron crosstalk due to their easy collection for primary cultures. After the microglia-derived EV isolation following successive methods, we developed their large-scale and non-targeted proteomic analysis to (i) detect as many EV protein markers as possible, (ii) better understand the biologically active proteins in EVs and (iii) evaluate the resulting protein signatures in EV-activated neurons. The EV functional properties were also evaluated in neurite outgrowth assays on rat primary neurons and the RNAseq analysis of the microglia-derived EVs was performed to propose the most representative miRNAs in microglia-derived EVs. This strategy allowed validating the EV isolation, identify major biological pathways in EVs and corroborate the regenerative process in EV-activated neurons. In parallel, six different miRNAs were originally identified in microglia-derived EVs including 3 which were only known in plants until now. The analysis of the neuronal proteins under the microglial EV activation suggested possible miRNA-dependent regulation mechanisms. Taken together, this combination of methodologies showed the leech microglial EVs as neuroprotective cargos across species and contributed to propose original EV-associated miRNAs whose functions will have to be evaluated in the EV-dependent dialog between microglia and neurons.
Collapse
Affiliation(s)
- Quentin Lemaire
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Antonella Raffo-Romero
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Tanina Arab
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Christelle Van Camp
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Francesco Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - Jean-Pascal Gimeno
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Séverine Begard
- Centre de Recherche Jean-Pierre AUBERT (JPArc), INSERM U1172, Université de Lille, 59000, Lille, France
| | - Morvane Colin
- Centre de Recherche Jean-Pierre AUBERT (JPArc), INSERM U1172, Université de Lille, 59000, Lille, France
| | - Jacopo Vizioli
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Pierre-Eric Sautière
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Michel Salzet
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Christophe Lefebvre
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France.
| |
Collapse
|
81
|
Wagner R, Ayoub L, Kahnamoui S, Li H, Patel D, Liu D, Del Bigio MR, Stefanovici C, Lacher M, Keijzer R. Establishment of a biobank for human lung tissues of congenital diaphragmatic hernia and congenital pulmonary airway malformation. J Pediatr Surg 2019; 54:2439-2442. [PMID: 31130348 DOI: 10.1016/j.jpedsurg.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Human tissue samples are an invaluable and little available source of information for translational studies of congenital lung diseases such as Congenital Diaphragmatic Hernia (CDH) or Congenital Pulmonary Airway Malformation (CPAM). PURPOSE We aimed to establish a human lung tissue biobank of CDH and CPAM patients together with age-matched controls, coupled with a clinical database. METHODS Pathology records from autopsies or surgical specimens for CDH and CPAM cases between 1980 and 2017 were reviewed. For surviving individuals, clinical patient data was obtained from corresponding pediatric surgery reports. Formalin-fixed, paraffin-embedded tissues of patients and age-matched controls were systematically stored for further translational studies. RNA integrity was determined on selected CDH blocks. RESULTS A total of 16 CDH and 18 CPAM and age-matched control lung tissue blocks were included in our biobank. Ages ranged from 22 to 41 weeks of gestation (GA) in CDH (33.9 ± 6.35 weeks) and 26 weeks (GA) and 12 years in CPAM (2.3 ± 3.7 y). RNA isolation from CDH and control blocks yielded good RNA quality (OD 260/280 ratio: 2.01-2.09, OD 260/230 ratio: 2.04-2.09). CONCLUSION We established a unique human biobank for CDH and CPAM tissues. The combination with clinical patient data will allow us to design future translational studies to improve our understanding of the disease pathogenesis of these congenital malformations.
Collapse
Affiliation(s)
- Richard Wagner
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Lojine Ayoub
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada
| | - Henry Li
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada
| | - Daywin Patel
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada
| | - Daisy Liu
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, and Shared Services Manitoba, Winnipeg, MB, Canada
| | - Camelia Stefanovici
- Department of Pathology, University of Manitoba, and Shared Services Manitoba, Winnipeg, MB, Canada
| | - Martin Lacher
- Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada.
| |
Collapse
|
82
|
Yang Z, Shen X, Chen D, Sun L. Improved Nanoflow RPLC-CZE-MS/MS System with High Peak Capacity and Sensitivity for Nanogram Bottom-up Proteomics. J Proteome Res 2019; 18:4046-4054. [PMID: 31610113 DOI: 10.1021/acs.jproteome.9b00545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Novel mass spectrometry (MS)-based proteomic tools with extremely high sensitivity and high peak capacity are required for comprehensive characterization of protein molecules in mass-limited samples. We reported a nanoRPLC-CZE-MS/MS system for deep bottom-up proteomics of low micrograms of human cell samples in previous work. In this work, we improved the sensitivity of the nanoRPLC-CZE-MS/MS system drastically via employing bovine serum albumin (BSA)-treated sample vials, improving the nanoRPLC fraction collection procedure, and using a short capillary for fast CZE separation. The improved nanoRPLC-CZE produced a peak capacity of 8500 for peptide separation. The improved system identified 6500 proteins from a MCF7 proteome digest starting with only 500 ng of peptides using a Q-Exactive HF mass spectrometer. The system produced a comparable number of protein identifications (IDs) to our previous system and the two-dimensional (2D) nanoRPLC-MS/MS system developed by Mann's group with 10-fold and 4-fold less sample consumption, respectively. We coupled the single-spot solid phase sample preparation (SP3) method to the improved nanoRPLC-CZE-MS/MS for bottom-up proteomics of 5000 HEK293T cells, resulting in 3689 protein IDs with the consumption of a peptide amount that corresponded to only roughly 1000 cells.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Xiaojing Shen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Daoyang Chen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Liangliang Sun
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|
83
|
Amarnani A, Capri JR, Souda P, Elashoff DA, Lopez IA, Whitelegge JP, Singh RR. Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2019; 12:104-112. [PMID: 32431480 PMCID: PMC7236785 DOI: 10.35248/0974-276x.12.19.503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Investigations in human disease pathogenesis have been hampered due to paucity of access to fresh-frozen tissues (FFT) for use in global, data-driven methodologies. As an alternative, formalin-fixed, paraffin-embedded (FFPE) tissues are readily available in pathology banks. However, the use of formalin for fixation can lead to the loss of proteins that appear during inflammation, thus introducing an inherent sample bias. To address this, we compared FF and FFPE tissue proteomics to determine whether FFPE-tissue can be used effectively in inflammatory diseases. METHODS Adjacent kidney slices from lupus nephritic mice were processed as FFPE or FFTs. Their tissue lysates were run together using proteomics workflow involving filter-aided sample preparation, in-solution dimethyl isotope labeling, StageTip fractionation, and nano-LC MS/MS through an Orbitrap XL MS. RESULTS We report a >97% concordance in protein identification between adjacent FFPE and FFTs in murine lupus nephritic kidneys. Specifically, proteins representing pathways, namely, 'systemic lupus erythematosus', 'interferon-α', 'TGF-β', and 'extracellular matrix', were reproducibly quantified between FFPE and FFTs. However, 12%-29% proteins were quantified differently in FFPE compared to FFTs, but the differences were consistent across experiments. In particular, certain proteins represented in pathways, including 'inflammatory response' and 'innate immune system' were quantified less in FFPE than in FFTs. In a pilot study of human FFPE tissues, we identified proteins relevant to pathogenesis in lupus nephritic kidney biopsies compared to control kidneys. CONCLUSION This is the first report of lupus nephritis kidney proteomics using FFPE tissue. We concluded that archived FFPE tissues can be reliably used for proteomic analyses in inflammatory diseases, with a caveat that certain proteins related to immunity and inflammation may be quantified less in FFPE than in FFTs.
Collapse
Affiliation(s)
- Abhimanyu Amarnani
- Department of Head and Neck Surgery, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine/Rheumatology, UCLA, Los Angeles, CA 90095, USA
| | - Joseph R. Capri
- The Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, USA
| | - Puneet Souda
- The Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, USA
| | - David A. Elashoff
- Department of Medicine/Statistics Core, UCLA, Los Angeles, CA 90095, USA
| | - Ivan A. Lopez
- Department of Head and Neck Surgery, UCLA, Los Angeles, CA 90095, USA
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, USA
| | - Ram R. Singh
- Department of Medicine/Rheumatology, UCLA, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
84
|
Carvalho LB, Capelo-Martínez JL, Lodeiro C, Wiśniewski JR, Santos HM. Snap-heated freeze-free preservation and processing of the urine proteome using the combination of stabilizor-based technology and filter aided sample preparation. Anal Chim Acta 2019; 1076:82-90. [DOI: 10.1016/j.aca.2019.05.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
85
|
Rougeot J, Chrispijn ND, Aben M, Elurbe DM, Andralojc KM, Murphy PJ, Jansen PWTC, Vermeulen M, Cairns BR, Kamminga LM. Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan. Development 2019; 146:dev.178590. [PMID: 31488564 PMCID: PMC6803366 DOI: 10.1242/dev.178590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that are important regulators of cell fate during embryonic development. Among them, Ezh2 is responsible for catalyzing the epigenetic repressive mark H3K27me3 and is essential for animal development. The ability of zebrafish embryos lacking both maternal and zygotic ezh2 to form a normal body plan provides a unique model for comprehensively studying Ezh2 function during early development in vertebrates. By using a multi-omics approach, we found that Ezh2 is required for the deposition of H3K27me3 and is essential for proper recruitment of Polycomb group protein Rnf2. However, despite the complete absence of PcG-associated epigenetic mark and proteins, only minor changes in H3K4me3 deposition and gene and protein expression occur. These changes were mainly due to local dysregulation of transcription factors outside their normal expression boundaries. Altogether, our results in zebrafish show that Polycomb-mediated gene repression is important immediately after the body plan is formed to maintain spatially restricted expression profiles of transcription factors, and we highlight the differences that exist in the timing of PcG protein action between vertebrate species. Summary: Our unique zebrafish model of a maternal and zygotic mutant for the Polycomb group gene ezh2 reveals major conserved and divergent mechanisms in epigenetic gene repression during vertebrate development.
Collapse
Affiliation(s)
- Julien Rougeot
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands .,Radboud University Medical Center, Department of Molecular Biology, Nijmegen 6525 GA, The Netherlands
| | - Naomi D Chrispijn
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Marco Aben
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands.,Radboud University Medical Center, Department of Molecular Biology, Nijmegen 6525 GA, The Netherlands
| | - Dei M Elurbe
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands.,Radboud University Medical Center, Department of Molecular Biology, Nijmegen 6525 GA, The Netherlands
| | - Karolina M Andralojc
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Patrick J Murphy
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,Wilmot Cancer Institute, Rochester Center for Biomedical Informatics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Pascal W T C Jansen
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Nijmegen 6525 GA, The Netherlands
| | - Michiel Vermeulen
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Nijmegen 6525 GA, The Netherlands
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Leonie M Kamminga
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands .,Radboud University Medical Center, Department of Molecular Biology, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
86
|
Liu S, Xu F, Yin Y, Zhang J, Wang F, Li Y, Xu P. LysargiNase enhances protein identification on the basis of trypsin on formalin-fixed paraffin-embedded samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1381-1389. [PMID: 31066118 DOI: 10.1002/rcm.8479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Formalin-Fixed Paraffin-Embedded (FFPE) samples are valuable for proteomic studies of disease. However, the crosslink among proteins, protein vs nucleic acid, and other covalent chemical modifications like methylation introduced by formaldehyde can interfere with trypsin digestion in proteomics studies. LysargiNase was reported to have a better full-cleavage rate at methylation and b ion coverage than trypsin. The contribution of LysargiNase in the proteomic study of FFPE samples was assessed and compared with trypsin in this study for the first time to facilitate proteomic research on FFPE samples. METHODS The FFPE proteins were extracted with an "antigen retrieval" method. Digestion parameters were optimized by visualization of the digests on the tricine gel by silver staining. Then the FFPE proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and cut into 16 gel bands and in-gel digested by trypsin and LysargiNase, respectively. Peptides were desalted with Stage-Tips and separated via liquid chromatography. Electrospray ionization was conducted and peptide mass was measured in the LTQ Orbitrap Velos in the data-dependent mode. RESULTS High concentrations of enzyme facilitate the digestion efficiency of FFPE samples. A total of 32,294 peptides and 3445 proteins were identified with LysargiNase and trypsin combined in two replicates. LysargiNase increased peptide identification by 18.9% and protein identification by 13.4% on the basis of trypsin. Consistently, LysargiNase increased C-terminal peptide identification by 47.7%. Moreover, LysargiNase showed better full-cleavage rate (49.3%) at methylated sites than trypsin (23.9%). LysargiNase and trypsin combined can improve the b-ion coverage by 50% on FFPE samples. CONCLUSIONS FFPE samples can be more efficiently digested at high concentrations of LysargiNase and trypsin. LysargiNase can better digest methylated peptides and improve the proteome identification by 13.4% and the b-ion coverage by 50% on the basis of trypsin in FFPE samples.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Feng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanan Yin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Junling Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
- Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
87
|
Channaveerappa D, Ngounou Wetie AG, Darie CC. Bottlenecks in Proteomics: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:753-769. [PMID: 31347083 DOI: 10.1007/978-3-030-15950-4_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mass spectrometry (MS) is the core for advanced methods in proteomic experiments. When effectively used, proteomics may provide extensive information about proteins and their post-translational modifications, as well as their interaction partners. However, there are also many problems that one can encounter during a proteomic experiment, including, but not limited to sample preparation, sample fractionation, sample analysis, data analysis & interpretation and biological significance. Here we discuss some of the problems that researchers should be aware of when performing a proteomic experiment.
Collapse
Affiliation(s)
- Devika Channaveerappa
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Armand G Ngounou Wetie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| |
Collapse
|
88
|
Humenik F, Cizkova D, Cikos S, Luptakova L, Madari A, Mudronova D, Kuricova M, Farbakova J, Spirkova A, Petrovova E, Cente M, Mojzisova Z, Aboulouard S, Murgoci AN, Fournier I, Salzet M. Canine Bone Marrow-derived Mesenchymal Stem Cells: Genomics, Proteomics and Functional Analyses of Paracrine Factors. Mol Cell Proteomics 2019; 18:1824-1835. [PMID: 31285283 PMCID: PMC6731083 DOI: 10.1074/mcp.ra119.001507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Adult stem cells have become prominent candidates for treating various diseases in veterinary practice. The main goal of our study was therefore to provide a comprehensive study of canine bone marrow-derived mesenchymal stem cells (BMMSC) and conditioned media, isolated from healthy adult dogs of different breeds. Under well-defined standardized isolation protocols, the multipotent differentiation and specific surface markers of BMMSC were supplemented with their gene expression, proteomic profile, and their biological function. The presented data confirm that canine BMMSC express important genes for differentiation toward osteo-, chondro-, and tendo-genic directions, but also genes associated with angiogenic, neurotrophic, and immunomodulatory properties. Furthermore, using proteome profiling, we identify for the first time the dynamic release of various bioactive molecules, such as transcription and translation factors and osteogenic, growth, angiogenic, and neurotrophic factors from canine BMMSC conditioned medium. Importantly, the relevant genes were linked to their proteins as detected in the conditioned medium and further associated with angiogenic activity in chorioallantoic membrane (CAM) assay. In this way, we show that the canine BMMSC release a variety of bioactive molecules, revealing a strong paracrine component that may possess therapeutic potential in various pathologies. However, extensive experimental or preclinical trials testing canine sources need to be performed in order to better understand their paracrine action, which may lead to novel therapeutic strategies in veterinary medicine.
Collapse
Affiliation(s)
- Filip Humenik
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Dasa Cizkova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia; §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 10, Slovakia; ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France.
| | - Stefan Cikos
- ‖Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, Košice 04001, Slovakia
| | - Lenka Luptakova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Aladar Madari
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Dagmar Mudronova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Maria Kuricova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Jana Farbakova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Alexandra Spirkova
- ‖Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, Košice 04001, Slovakia
| | - Eva Petrovova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Martin Cente
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 10, Slovakia
| | - Zuzana Mojzisova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Soulaimane Aboulouard
- ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Adriana-Natalia Murgoci
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 10, Slovakia; ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Isabelle Fournier
- ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France.
| |
Collapse
|
89
|
Wiśniewski JR. Filter Aided Sample Preparation - A tutorial. Anal Chim Acta 2019; 1090:23-30. [PMID: 31655642 DOI: 10.1016/j.aca.2019.08.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Filter Aided Sample Preparation (FASP) is a widely used protein processing technique in "bottom-up" proteomics. Its popularity reflects the key features of the method: its applicability to a variety of sample types and the high quality of the released peptides. Successful application of FASP requires optimized properties of sample lysate and its amount, use of ultrafiltration units with membranes having large molecular mass cut-offs and well selected conditions for protein digestion. In contrast to the majority of sample preparation methods, FASP allows digestion of proteins with a variety of enzymes and a straightforward monitoring of protein-to-peptide conversion. A unique feature of FASP is the possibility to cleave proteins in a consecutive way using several proteases and to separate peptide fractions. Understanding principles of the method gives guidance in applying FASP to different types of samples in optimization of conditions of the FASP-workflow.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
90
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
91
|
Coscia F, Lengyel E, Duraiswamy J, Ashcroft B, Bassani-Sternberg M, Wierer M, Johnson A, Wroblewski K, Montag A, Yamada SD, López-Méndez B, Nilsson J, Mund A, Mann M, Curtis M. Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer. Cell 2019; 175:159-170.e16. [PMID: 30241606 DOI: 10.1016/j.cell.2018.08.065] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Most high-grade serous ovarian cancer (HGSOC) patients develop resistance to platinum-based chemotherapy and recur, but 15% remain disease free over a decade. To discover drivers of long-term survival, we quantitatively analyzed the proteomes of platinum-resistant and -sensitive HGSOC patients from minute amounts of formalin-fixed, paraffin-embedded tumors. This revealed cancer/testis antigen 45 (CT45) as an independent prognostic factor associated with a doubling of disease-free survival in advanced-stage HGSOC. Phospho- and interaction proteomics tied CT45 to DNA damage pathways through direct interaction with the PP4 phosphatase complex. In vitro, CT45 regulated PP4 activity, and its high expression led to increased DNA damage and platinum sensitivity. CT45-derived HLA class I peptides, identified by immunopeptidomics, activate patient-derived cytotoxic T cells and promote tumor cell killing. This study highlights the power of clinical cancer proteomics to identify targets for chemo- and immunotherapy and illuminate their biological roles.
Collapse
Affiliation(s)
- Fabian Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | | - Bradley Ashcroft
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Michal Bassani-Sternberg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alyssa Johnson
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anthony Montag
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - S Diane Yamada
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Mund
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Marion Curtis
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
92
|
Wu X, Siehnel RJ, Garudathri J, Staudinger BJ, Hisert KB, Ozer EA, Hauser AR, Eng JK, Manoil C, Singh PK, Bruce JE. In Vivo Proteome of Pseudomonas aeruginosa in Airways of Cystic Fibrosis Patients. J Proteome Res 2019; 18:2601-2612. [PMID: 31060355 DOI: 10.1021/acs.jproteome.9b00122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method that relies on differential centrifugation and detergent treatment to enrich for bacteria to improve identification of PA proteome with CF sputum samples. Using two nonredundant peptides as a cutoff, a total of 1304 PA proteins were identified directly from CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.
Collapse
|
93
|
Zhang Y, Chen J, Wang Y, Wang D, Cong W, Lai BS, Zhao Y. Multilayer network analysis of miRNA and protein expression profiles in breast cancer patients. PLoS One 2019; 14:e0202311. [PMID: 30946749 PMCID: PMC6448837 DOI: 10.1371/journal.pone.0202311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
MiRNAs and proteins play important roles in different stages of breast tumor development and serve as biomarkers for the early diagnosis of breast cancer. A new algorithm that combines machine learning algorithms and multilayer complex network analysis is hereby proposed to explore the potential diagnostic values of miRNAs and proteins. XGBoost and random forest algorithms were employed to screen the most important miRNAs and proteins. Maximal information coefficient was applied to assess intralayer and interlayer connection. A multilayer complex network was constructed to identify miRNAs and proteins that could serve as biomarkers for breast cancer. Proteins and miRNAs that are nodes in the network were subsequently categorized into two network layers considering their distinct functions. The betweenness centrality was used as the first measurement of the importance of the nodes within each single layer. The degree of the nodes was chosen as the second measurement to map their signalling pathways. By combining these two measurements into one score and comparing the difference of the same candidate between normal tissue and cancer tissue, this novel multilayer network analysis could be applied to successfully identify molecules associated with breast cancer.
Collapse
Affiliation(s)
- Yang Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Jiannan Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Yu Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Dehua Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Weihui Cong
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Bo Shiun Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Yi Zhao
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| |
Collapse
|
94
|
Chiva C, Pastor O, Trilla-Fuertes L, Gámez-Pozo A, Fresno Vara JÁ, Sabidó E. Isotopologue Multipoint Calibration for Proteomics Biomarker Quantification in Clinical Practice. Anal Chem 2019; 91:4934-4938. [DOI: 10.1021/acs.analchem.8b05802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cristina Chiva
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Olga Pastor
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | | | - Angelo Gámez-Pozo
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049, Madrid, Spain
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Eduard Sabidó
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| |
Collapse
|
95
|
Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Sci Rep 2019; 9:1469. [PMID: 30728416 PMCID: PMC6365588 DOI: 10.1038/s41598-018-37977-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Environmental stimuli often lead to heterogeneous cellular responses and transcriptional output. We developed single-cell RNA and Immunodetection (RAID) to allow combined analysis of the transcriptome and intracellular (phospho-)proteins from fixed single cells. RAID successfully recapitulated differentiation-state changes at the protein and mRNA level in human keratinocytes. Furthermore, we show that differentiated keratinocytes that retain high phosphorylated FAK levels, a feature associated with stem cells, also express a selection of stem cell associated transcripts. Our data demonstrates that RAID allows investigation of heterogeneous cellular responses to environmental signals at the mRNA and phospho-proteome level.
Collapse
|
96
|
Couvillion SP, Zhu Y, Nagy G, Adkins JN, Ansong C, Renslow RS, Piehowski PD, Ibrahim YM, Kelly RT, Metz TO. New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst 2019; 144:794-807. [PMID: 30507980 PMCID: PMC6349538 DOI: 10.1039/c8an01574k] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass-spectrometry based omics technologies - namely proteomics, metabolomics and lipidomics - have enabled the molecular level systems biology investigation of organisms in unprecedented detail. There has been increasing interest for gaining a thorough, functional understanding of the biological consequences associated with cellular heterogeneity in a wide variety of research areas such as developmental biology, precision medicine, cancer research and microbiome science. Recent advances in mass spectrometry (MS) instrumentation and sample handling strategies are quickly making comprehensive omics analyses of single cells feasible, but key breakthroughs are still required to push through remaining bottlenecks. In this review, we discuss the challenges faced by single cell MS-based omics analyses and highlight recent technological advances that collectively can contribute to comprehensive and high throughput omics analyses in single cells. We provide a vision of the potential of integrating pioneering technologies such as Structures for Lossless Ion Manipulations (SLIM) for improved sensitivity and resolution, novel peptide identification tactics and standards free metabolomics approaches for future applications in single cell analysis.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Prieto P, Jaén RI, Calle D, Gómez-Serrano M, Núñez E, Fernández-Velasco M, Martín-Sanz P, Alonso S, Vázquez J, Cerdán S, Peinado MÁ, Boscá L. Interplay between post-translational cyclooxygenase-2 modifications and the metabolic and proteomic profile in a colorectal cancer cohort. World J Gastroenterol 2019; 25:433-446. [PMID: 30700940 PMCID: PMC6350170 DOI: 10.3748/wjg.v25.i4.433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer death worldwide. It is broadly described that cyclooxygenase-2 (COX-2) is mainly overexpressed in CRC but less is known regarding post-translational modifications of this enzyme that may regulate its activity, intracellular localization and stability. Since metabolic and proteomic profile analysis is essential for cancer prognosis and diagnosis, our hypothesis is that the analysis of correlations between these specific parameters and COX-2 state in tumors of a high number of CRC patients could be useful for the understanding of the basis of this cancer in humans.
AIM To analyze COX-2 regulation in colorectal cancer and to perform a detailed analysis of their metabolic and proteomic profile.
METHODS Biopsies from both healthy and pathological colorectal tissues were taken under informed consent from patients during standard colonoscopy procedure in the University Hospital of Bellvitge (Barcelona, Spain) and Germans Trias i Pujol University Hospital (Campus Can Ruti) (Barcelona, Spain). Western blot analysis was used to determine COX-2 levels. Deglycosylation assays were performed in both cells and tumor samples incubating each sample with peptide N-glycosidase F (PNGase F). Prostaglandin E2 (PGE2) levels were determined using a specific ELISA. 1H high resolution magic angle spinning (HRMAS) analysis was performed using a Bruker AVIII 500 MHz spectrometer and proteomic analysis was performed in a nano-liquid chromatography-tandem mass spectrometer (nano LC-MS/MS) using a QExactive HF orbitrap MS.
RESULTS Our data show that COX-2 has a differential expression profile in tumor tissue of CRC patients vs the adjacent non-tumor area, which correspond to a glycosylated and less active state of the protein. This fact was associated to a lesser PGE2 production in tumors. These results were corroborated in vitro performing deglycosylation assays in HT29 cell line where COX-2 protein profile was modified after PNGase F incubation, showing higher PGE2 levels. Moreover, HRMAS analysis indicated that tumor tissue has altered metabolic features vs non-tumor counterparts, presenting increased levels of certain metabolites such as taurine and phosphocholine and lower levels of lactate. In proteomic experiments, we detected an enlarged number of proteins in tumors that are mainly implicated in basic biological functions like mitochondrial activity, DNA/RNA processing, vesicular trafficking, metabolism, cytoskeleton and splicing.
CONCLUSION In our colorectal cancer cohort, tumor tissue presents a differential COX-2 expression pattern with lower enzymatic activity that can be related to an altered metabolic and proteomic profile.
Collapse
Affiliation(s)
- Patricia Prieto
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Rafael I Jaén
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, Madrid 28007, Spain
| | - María Gómez-Serrano
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Estefanía Núñez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - María Fernández-Velasco
- Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPaz), Madrid 28046, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Sergio Alonso
- Programa de Medicina Predictiva y Personalizada del Cáncer (PMPPC), Fundación Instituto de investigación en ciencias de la salud Germans Trias i Pujol, Ctra Can Ruti, Badalona 08916, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Sebastián Cerdán
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
| | - Miguel Ángel Peinado
- Programa de Medicina Predictiva y Personalizada del Cáncer (PMPPC), Fundación Instituto de investigación en ciencias de la salud Germans Trias i Pujol, Ctra Can Ruti, Badalona 08916, Spain
| | - Lisardo Boscá
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| |
Collapse
|
98
|
Cole LM, Clench MR, Francese S. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:77-123. [PMID: 31236840 DOI: 10.1007/978-3-030-12298-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.
Collapse
Affiliation(s)
- L M Cole
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - M R Clench
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - S Francese
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
99
|
Shao X, Wang X, Guan S, Lin H, Yan G, Gao M, Deng C, Zhang X. Integrated Proteome Analysis Device for Fast Single-Cell Protein Profiling. Anal Chem 2018; 90:14003-14010. [PMID: 30375851 DOI: 10.1021/acs.analchem.8b03692] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our previous work, we have demonstrated an integrated proteome analysis device (iPAD-100) to analyze proteomes from 100 cells. (1) In this work, for the first time, a novel integrated device for single-cell analysis (iPAD-1) was developed to profile proteins in a single cell within 1 h. In the iPAD-1, a selected single cell was directly sucked into a 22 μm i.d. capillary. Then the cell lysis and protein digestion were simultaneously accomplished in the capillary in a 2 nL volume, which could prevent protein loss and excessive dilution. Digestion was accelerated by using elevated temperature with ultrasonication. The whole time of cell treatment was 30 min. After that, single-cell digest peptides were transferred into an LC column directly through a true zero dead volume union, to minimize protein transfer loss. A homemade 22 μm i.d. nano-LC packing column with 3 μm i.d. ESI tip was used in the device to achieve ultrasensitive detection. A 30 min elution program was applied to analysis of the single-cell proteome. Therefore, the total time needed for a single-cell analysis was only 1 h. In an analysis of 10 single HeLa cells, a maximum of 328 proteins were identified in one cell by using an Orbitrap Fusion Tribrid MS instrument, and the detection limit was estimated at around 1.7-170 zmol. Such a sensitivity of the iPAD-1 was ∼120-fold higher than that of our previously developed iPAD-100 system. (1) Prominent cellular heterogeneity in protein expressive profiling was observed. Furthermore, we roughly estimated the phases of the cell cycle of tested HeLa cells by the amount of core histone proteins.
Collapse
Affiliation(s)
- Xi Shao
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Xuantang Wang
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Sheng Guan
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Haizhu Lin
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Guoquan Yan
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| |
Collapse
|
100
|
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, Warscheid B, Zdráhal Z, Schneider A, Lukeš J, Hashimi H. The Diverged Trypanosome MICOS Complex as a Hub for Mitochondrial Cristae Shaping and Protein Import. Curr Biol 2018; 28:3393-3407.e5. [PMID: 30415698 DOI: 10.1016/j.cub.2018.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
The mitochondrial contact site and cristae organization system (MICOS) is a multiprotein complex responsible for cristae formation. Even though cristae are found in all mitochondria capable of oxidative phosphorylation, only Mic10 and Mic60 appear to be conserved throughout eukaryotes. The remaining 4 or 5 known MICOS subunits are specific to the supergroup Opisthokonta, which includes yeast and mammals that are the only organisms in which this complex has been analyzed experimentally. We have isolated the MICOS from Trypanosoma brucei, a member of the supergroup Excavata that is profoundly diverged from opisthokonts. We show that it is required for the maintenance of the unique discoidal cristae that typify excavates, such as euglenids and kinetoplastids, the latter of which include trypanosomes. The trypanosome MICOS consists of 9 subunits, most of which are essential for normal growth. Unlike in opisthokonts, it contains two distinct Mic10 orthologs and an unconventional putative Mic60 that lacks a mitofilin domain. Interestingly, one of the essential trypanosomatid-specific MICOS subunits called TbMic20 is a thioredoxin-like protein that appears to be involved in import of intermembrane space proteins, including respiratory chain complex assembly factors. This result points to trypanosome MICOS coordinating cristae shaping and population of its membrane with proteins involved in respiration, the latter via the catalytic activity of TbMic20. Thus, trypanosome MICOS allows us to define which of its features are conserved in all eukaryotes and decipher those that represent lineage-specific adaptations.
Collapse
Affiliation(s)
- Iosif Kaurov
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Bernd Schimanski
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Lawrence Rudy Cadena
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Jiří Heller
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Tomáš Bílý
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Claudia Eichenberger
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Hannah Bruce
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Silke Oeljeklaus
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|