51
|
Micro solid-phase extraction for the analysis of per- and polyfluoroalkyl substances in environmental waters. J Chromatogr A 2019; 1604:460495. [DOI: 10.1016/j.chroma.2019.460495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023]
|
52
|
Gong X, Yang C, Hong Y, Chung ACK, Cai Z. PFOA and PFOS promote diabetic renal injury in vitro by impairing the metabolisms of amino acids and purines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:72-86. [PMID: 31029902 DOI: 10.1016/j.scitotenv.2019.04.208] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Environmental pollutants, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are common surfactants in various consumer products. Epidemiological studies have demonstrated the association of diabetic kidney diseases with PFOA and PFOS. However, mechanisms of metabolic alterations involved are still unclear. METHODS Considering their involvement of glomerular hemodynamics, rat mesangial cells (MCs) are used as an in vitro model of diabetic kidney diseases for exposure to PFOS/PFOA under diabetic condition. Non-targeted metabolomics studies based on liquid chromatography-high resolution mass spectrometry were conducted to determine how PFOA/PFOS promoted fibrotic and proinflammatory responses in the MCs under diabetic condition. RESULTS Exposure of PFOA/PFOS (10 μM) increased oxidative stress and the levels of fibrotic and proinflammatory markers in MCs under diabetic condition. We demonstrated for the first time that PFOA and PFOS altered amino acid biosynthesis, citrate cycle, and purine metabolism in MCs under diabetic condition. Compared with diabetic condition, the exposure of PFOA and PFOS under diabetic condition more significantly altered the levels of 13 intracellular metabolites, including L-tyrosine, L-phenylalanine, L-arginine, L-tryptophan, AMP, ADP, UMP, inosine, and hypoxanthine, which have been reported to be related to kidney injury. In addition, PFOA/PFOS treatment significantly altered the expression levels of key enzymes involved in these metabolisms. Treatment with L-tyrosine, L-phenylalanine, L-arginine, and L-tryptophan reduced the levels of fibrotic and inflammatory markers induced by PFOA/PFOS. CONCLUSION Our results suggest that under diabetic condition, exposure of PFOA or PFOS aggravated diabetic kidney injury in vitro by impairing metabolisms of amino acids and purines to induce more fibrosis and inflammation in MCs.
Collapse
Affiliation(s)
- Xun Gong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Arthur C K Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
53
|
Lu H, Zhang H, Gao J, Li Z, Bao S, Chen X, Wang Y, Ge R, Ye L. Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:206-215. [PMID: 30999198 DOI: 10.1016/j.envpol.2019.03.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 05/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic (PFOS) are two perfluorinated chemical products widely existing in the environment. Evidence suggested that PFOA might relate to male reproductive dysfunction in rats and humans. PFOA exposure inhibited the function of Leydig cells. However, it is still unknown whether PFOA affects stem Leydig cells (SLCs). In the present study, we examined the effects of a short-term exposure to PFOA on Leydig cell regeneration and also explored the possible mechanism involved. Thirty-six adult Sprague-Dawley rats were randomly divided into three groups and intraperitoneally injected with a single dose of 75 mg/kg ethane dimethyl sulfonate (EDS) to eliminate all Leydig cells. From post-EDS day 7, the 3 group rats received 0, 25 or 50 mg/kg/day PFOA (n = 12 per group) for 9 consecutive days. Exposure to PFOA significantly decreased serum testosterone levels by day 21 and day 56 post-EDS treatment. Also, the expression levels of Leydig cell specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Hsd11b1 and Cyp17a1) and their protein levels were all down-regulated. PFOA exposure may also affect proliferation of SLCs or their progeny since the numbers of PCNA-positive Leydig cells were reduced by post-EDS day 21. These in vivo observations were also confirmed by in vitro studies where the effects of PFOA were tested by culture of seminiferous tubules. In summary, PFOA exposure inhibits the development of Leydig cells, possibly by affecting both the proliferation and differentiation of SLCs or their progeny.
Collapse
Affiliation(s)
- Hemin Lu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huishan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Gao
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Zhaohui Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Suhao Bao
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Renshan Ge
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
54
|
Di Nisio A, Sabovic I, Valente U, Tescari S, Rocca MS, Guidolin D, Dall'Acqua S, Acquasaliente L, Pozzi N, Plebani M, Garolla A, Foresta C. Endocrine Disruption of Androgenic Activity by Perfluoroalkyl Substances: Clinical and Experimental Evidence. J Clin Endocrinol Metab 2019; 104:1259-1271. [PMID: 30403786 DOI: 10.1210/jc.2018-01855] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Considerable attention has been paid to perfluoroalkyl compounds (PFCs) because of their worldwide presence in humans, wildlife, and environment. A wide variety of toxicological effects is well supported in animals, including testicular toxicity and male infertility. For these reasons, the understanding of epidemiological associations and of the molecular mechanisms involved in the endocrine-disrupting properties of PFCs on human reproductive health is a major concern. OBJECTIVE To investigate the relationship between PFC exposure and male reproductive health. DESIGN This study was performed within a screening protocol to evaluate male reproductive health in high schools. PATIENTS This is a cross-sectional study on 212 exposed males from the Veneto region, one of the four areas worldwide heavily polluted with PFCs, and 171 nonexposed controls. MAIN OUTCOME MEASURES Anthropometrics, seminal parameters, and sex hormones were measured in young males from exposed areas compared with age-matched controls. We also performed biochemical studies in established experimental models. RESULTS We found that increased levels of PFCs in plasma and seminal fluid positively correlate with circulating testosterone (T) and with a reduction of semen quality, testicular volume, penile length, and anogenital distance. Experimental evidence points toward an antagonistic action of perfluorooctanoic acid on the binding of T to androgen receptor (AR) in a gene reporter assay, a competition assay on an AR-coated surface plasmon resonance chip, and an AR nuclear translocation assay. DISCUSSION This study documents that PFCs have a substantial impact on human health as they interfere with hormonal pathways, potentially leading to male infertility.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Iva Sabovic
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Umberto Valente
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Simone Tescari
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Maria Santa Rocca
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Diego Guidolin
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical Science, University of Padova, Padova, Italy
| | - Laura Acquasaliente
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Mario Plebani
- Department of Medicine, Laboratory Medicine, University of Padova, Padova, Italy
| | - Andrea Garolla
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| |
Collapse
|
55
|
Di Nisio A, Foresta C. Water and soil pollution as determinant of water and food quality/contamination and its impact on male fertility. Reprod Biol Endocrinol 2019; 17:4. [PMID: 30611299 PMCID: PMC6321708 DOI: 10.1186/s12958-018-0449-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past two decades, public health has focused on the identification of environmental chemical factors that are able to adversely affect hormonal function, known as endocrine disruptors (EDs). EDs mimic naturally occurring hormones like estrogens and androgens which can in turn interfere with the endocrine system. As a consequence, EDs affect human reproduction as well as post and pre-natal development. In fact, infants can be affected already at prenatal level due to maternal exposure to EDs. In particular, great attention has been given to those chemicals, or their metabolites, that have estrogenic properties or antagonistic effects on the activity of androgen or even inhibiting their production. These compounds have therefore the potential of interfering with important physiological processes, such as masculinization, morphological development of the urogenital system and secondary sexual traits. Animal and in vitro studies have supported the conclusion that endocrine-disrupting chemicals affect the hormone-dependent pathways responsible for male gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, epidemiological studies have reported an overall decline of male fertility and an increased incidence of diseases or congenital malformations of the male reproductive system. The majority of studies point towards an association between exposure to EDs and male and/or female reproductive system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants has yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Despite the lack of consistency in the results of so many studies investigating endocrine-disrupting properties of many different classes of chemicals, the overall conclusion points toward a positive association between exposure to EDs and reproductive system. Future studies should focus on a uniform systems to examine human populations with regard to the exposure to specific EDs and the direct effect on the reproductive system.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy.
| |
Collapse
|
56
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018. [PMID: 32625773 DOI: 10.2903/j.efsa.2018.5194">10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [10.2903/j.efsa.2018.5194','32625773', '10.1021/pr500228d')">Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
10.2903/j.efsa.2018.5194" />
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
57
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
58
|
Tian M, Huang Q, Wang H, Martin FL, Liu L, Zhang J, Shen H. Biphasic effects of perfluorooctanoic acid on steroidogenesis in mouse Leydig tumour cells. Reprod Toxicol 2018; 83:54-62. [PMID: 30508572 DOI: 10.1016/j.reprotox.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant, which may possess endocrine disrupting properties. Herein, we investigated the possible mechanism(s) of toxicity and steroidogenesis in mouse Leydig cells. MLTC-1 (mouse Leydig tumour cells) cells were exposed to 0, 50, 100 or 200 μM PFOA for 48 h to ascertain their effects on the nuclear (membrane) receptor responses, steroidogenesis pathway and related regulated gene expression and steroid hormone secretion profiles. Our results reveal that nuclear receptors PXR, SR-B1 and LHR are sensitive to PFOA exposure. PFOA can accumulate in mitochondria and alter cholesterol precursor (fatty acid) mitochondrial transport process-related gene expression and thus inhibit steroid hormone precursor (cholesterol) production. In particular, PFOA exhibits biphasic effects on testosterone and progesterone production at differing levels of exposure. These findings indicate the potential endocrine-related effects of PFOA on steroid hormone secretion in Leydig cells and point to a novel disruption model.
Collapse
Affiliation(s)
- Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhejiang Zhoushan, 316021, China
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
59
|
Zhang H, Zhou X, Sheng N, Cui R, Cui Q, Guo H, Guo Y, Sun Y, Dai J. Subchronic Hepatotoxicity Effects of 6:2 Chlorinated Polyfluorinated Ether Sulfonate (6:2 Cl-PFESA), a Novel Perfluorooctanesulfonate (PFOS) Alternative, on Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12809-12818. [PMID: 30256107 DOI: 10.1021/acs.est.8b04368] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The compound 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an alternative to perfluorooctanesulfonate (PFOS) in the metal-plating industry, has been widely detected in various environmental matrices. However, its hepatotoxicity has yet to be clarified. Here, male mice were exposed to 0.04, 0.2, or 1 mg/kg/day of 6:2 Cl-PFESA for 56 days. Results demonstrated that relative liver weight increased significantly in the 0.2 and 1 mg/kg/day 6:2 Cl-PFESA groups, whereas liver lipid accumulation increased in all 6:2 Cl-PFESA groups. Serum enzyme activities of alanine transaminase and alkaline phosphatase were increased. Serum triglycerides and low-density lipoprotein cholesterol both increased, whereas serum total cholesterol and high-density lipoprotein cholesterol decreased following 6:2 Cl-PFESA exposure. A total of 264 differentially expressed proteins (127 up-regulated and 137 down-regulated), mainly involved in lipid metabolism, xenobiotic metabolism, and ribosome biogenesis, were identified by quantitative proteomics. Bioinformatics analysis highlighted the de-regulation of PPAR and PXR, which may contribute to the hepatotoxicity of 6:2 Cl-PFESA. Additionally, 6:2 Cl-PFESA induced both cell apoptosis and proliferation in the mouse liver. Compared to the overt toxicity of PFOS, 6:2 Cl-PFESA exhibited more-serious hepatotoxicity. Thus, caution should be exercised in the application of 6:2 Cl-PFESA as a replacement alternative to PFOS in industrial areas.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiujuan Zhou
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
60
|
Steves AN, Turry A, Gill B, Clarkson-Townsend D, Bradner JM, Bachli I, Caudle WM, Miller GW, Chan AWS, Easley CA. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model. Syst Biol Reprod Med 2018; 64:225-239. [PMID: 29911897 DOI: 10.1080/19396368.2018.1481465] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. ABBREVIATIONS CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.
Collapse
Affiliation(s)
- Alyse N Steves
- a Genetics and Molecular Biology Program , Laney Graduate School, Emory University , Atlanta , GA , USA
| | - Adam Turry
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - Brittany Gill
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | | | - Joshua M Bradner
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Ian Bachli
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - W Michael Caudle
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Gary W Miller
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Anthony W S Chan
- e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA.,f Department of Human Genetics , Emory University , Atlanta , GA , USA
| | - Charles A Easley
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA.,e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA
| |
Collapse
|
61
|
Kumar KK, Devi BU, Neeraja P. Molecular activities and ligand-binding specificities of StAR-related lipid transfer domains: exploring integrated in silico methods and ensemble-docking approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:483-501. [PMID: 29688061 DOI: 10.1080/1062936x.2018.1462847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
In this study, cholesterol biotransformation gene-set of human steroidogenic acute regulatory protein-related lipid transfer (START) domains were evaluated from high-throughput gene screening approaches. It was shown that STARD1, STARD3 and STARD4 proteins are better effective transporters of cholesterol than STARD5 and STARD6 domains. Docking studies show a strong agreement with gene ontology enrichment data. According to both complementary strategies, it was found that only STARD1, STARD3 and STARD4 are potentially involved in cholesterol biotransformation in mitochondria through Ω1-loop of C-terminal α4-helical domain. Ensemble docking assessment for a set of selected chemicals of protein-chemical networks has shown possible binding probabilities with START domains. Among those, reproductive toxicity evoked drugs (mifepristone), insecticides (rotenone), tobacco pulmonary carcinogens (benzo(a)pyrene) and endocrine disruptor chemicals (EDCs) including perfluorooctanesulfonic acid (PFOS) and aflatoxin B1 (AFB1) potentially bound with novel hotspot residues of the α4-helical domain. Compound representation space and clustering approaches reveal that the START proteins show more sensitivity with these lead scaffolds, so they could provide probable barrier assets in cholesterol and steroidogenic acute regulatory (StAR) binding and leads adverse consequences in steroidogenesis. These findings indicate potential START domains and their binding levels with toxic chemicals; sorted viewpoints could be useful as a promising way to identify chemicals with related steroidogenisis impacts on human health.
Collapse
Affiliation(s)
- K Kranthi Kumar
- a Department of Zoology , Sri Venkateswara University , Tirupati , 517502 - A.P . India
| | - B Uma Devi
- a Department of Zoology , Sri Venkateswara University , Tirupati , 517502 - A.P . India
| | - P Neeraja
- a Department of Zoology , Sri Venkateswara University , Tirupati , 517502 - A.P . India
| |
Collapse
|
62
|
Foresta C, Tescari S, Di Nisio A. Impact of perfluorochemicals on human health and reproduction: a male's perspective. J Endocrinol Invest 2018; 41:639-645. [PMID: 29147953 DOI: 10.1007/s40618-017-0790-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 01/29/2023]
Abstract
Perfluoroalkyl compounds (PFCs) are a class of organic molecules used in industry and consumer products. PFCs are non-biodegradable and bioaccumulate in the environment and for these reasons they have been a major subject of research regarding their toxicity, environmental fate, and sources of human exposure, since they have been shown to induce severe health consequences, such as neonatal mortality, neurotoxicity and immunotoxicity. The aim of this review is to explore the existing knowledge of the interplay between PFCs exposure and human health, with a focus on male reproductive health, given the emerging gender differences in PFCs clearance and their interaction with sex hormones receptors. A comprehensive PUBMED search was performed using relevant key terms for PFCs and male fertility. Different degrees of evidence suggest an impairment of semen parameters and sex hormones in relation to PFCs exposure. These preliminary results point towards a sex-dependent pharmacodynamics and clearance, with males having a much higher tendency to accumulation. Moreover, because of the widespread environmental occurrence of these chemicals, along with their ability to cross the placental barrier, exposure of the foetus to these compounds is inevitable. This is of concern because foetal development of the male reproductive organs may be disturbed by exposure to exogenous factors. These findings clearly suggest an antiandrogenic potential of PFCs and a link between endocrine disruptors and disorders of male health.
Collapse
Affiliation(s)
- C Foresta
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, Università degli Studi di Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| | - S Tescari
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, Università degli Studi di Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Medicine of Human Reproduction, Università degli Studi di Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
63
|
Corticosteroid-binding globulin, induced in testicular Leydig cells by perfluorooctanoic acid, promotes steroid hormone synthesis. Arch Toxicol 2018; 92:2013-2025. [DOI: 10.1007/s00204-018-2207-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022]
|
64
|
Kranthi Kumar K, Uma Devi B, Neeraja P. Integration of in silico approaches to determination of endocrine-disrupting perfluorinated chemicals binding potency with steroidogenic acute regulatory protein. Biochem Biophys Res Commun 2017; 491:1007-1014. [PMID: 28780348 DOI: 10.1016/j.bbrc.2017.07.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/27/2023]
Abstract
A myriad of perfluorinated compounds (PFCs) have the ability to interfere with steroidogenic acute regulatory (StAR) protein. Consequently, PFCs breaches cholesterol biotransformation in mitochondria and cause fatal consequences in steroidogenesis, however, these were poorly characterized. In the present study, we have evaluated toxic potencies, nuclear mediated probabilities and interaction profiles with StAR of PFCs using computational system biology tools. Toxicity endpoints revealed that PFCs contain high carcinogenicity, developmental toxicity, skin sensitization effects with low mutagenic activity. Consensus qualitative nuclear receptor agonist models show higher probability rates towards ER and PPAR-γ receptor than AR and AhR models were observed. To poise the subtle fluctuations of actual predictions, balanced accuracy and MCC were computed, and they signify perfect correlation ranges in all models. Screening studies resulting protein-ligand interaction profiles showed that residues Asn148, Asn150, Glu169, Ala171, Arg182, Phe184, Arg188, Trp241, Thr263 and Phe267 were identified as novel hotspots, participated in halogen bonds, H-bonds, atomic π-stacking, π-cation interactions and salt-bridges formation. Thus, the additional bonds contribute conformer stability that holds the protein structure at flexible state, so that PFCs acts as a barrier to cholesterol binding. From docking outcomes, representation space was created, that specifies high and medium StAR binders were occupied in toxic endpoints space with active concern. PFCs restrain molecular features and mitochondrial membrane disruption functions were revealed by efficient toxicogenomics studies. These data indicate toxicity and StAR protein binding levels of PFCs, sorted pinpoints could be useful in a promising way to know the other environmental pollutants and health risks.
Collapse
Affiliation(s)
- K Kranthi Kumar
- Department of Zoology, Sri Venkateswara University, Tirupati, 517502, A.P., India
| | - B Uma Devi
- Department of Zoology, Sri Venkateswara University, Tirupati, 517502, A.P., India
| | - P Neeraja
- Department of Zoology, Sri Venkateswara University, Tirupati, 517502, A.P., India.
| |
Collapse
|
65
|
Khezri A, Lindeman B, Krogenæs AK, Berntsen HF, Zimmer KE, Ropstad E. Maternal exposure to a mixture of persistent organic pollutants (POPs) affects testis histology, epididymal sperm count and induces sperm DNA fragmentation in mice. Toxicol Appl Pharmacol 2017. [PMID: 28645691 DOI: 10.1016/j.taap.2017.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent organic pollutants (POPs) are widespread throughout the environment and some are suspected to induce reproductive toxicity. As animals and humans are exposed to complex mixtures of POPs, it is reasonable to assess how such mixtures could interact with the reproductive system. Our aim is to investigate how maternal exposure to a mixture of 29 different persistent organic pollutants, formulated to mimic the relative POP levels in the food basket of the Scandinavian population, could alter reproductive endpoints. Female mice were exposed via feed from weaning, during pregnancy and lactation in 3 exposure groups (control (C), low (L) and high (H)). Testicular morphometric endpoints, epididymal sperm concentration and sperm DNA integrity were assessed in adult male offspring. We found that the number of tubules, proportion of tubule compartments and epididymal sperm concentration significantly decreased in both POP exposed groups. Epididymal sperm from both POP exposed groups showed increased DNA fragmentation. It is concluded that maternal exposure to a defined POP mixture relevant to human exposure can affect testicular development, sperm production and sperm chromatin integrity.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Birgitte Lindeman
- Department of Toxicology and Risk, Norwegian Institute of Public Health, Pb 4404, 0403 Oslo, Norway.
| | - Anette K Krogenæs
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Hanne F Berntsen
- Norwegian National Institute of Occupational Health, Pb. 8149 Dep, 0033 Oslo, Norway.
| | - Karin E Zimmer
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| |
Collapse
|
66
|
Lu Y, Wang J, Guo X, Yan S, Dai J. Perfluorooctanoic acid affects endocytosis involving clathrin light chain A and microRNA-133b-3p in mouse testes. Toxicol Appl Pharmacol 2017; 318:41-48. [PMID: 28126411 DOI: 10.1016/j.taap.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/01/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. Among its potential health hazards, testicular toxicity is of major concern. To explore the potential effect of miRNA on post-translational regulation after PFOA exposure, changes in miRNAs were detected via miRNA array. Seventeen miRNAs were differentially expressed (eight upregulated, nine downregulated) in male mouse testes after exposure to 5mg/kg/d of PFOA for 28d (>1.5-fold and P<0.05 compared with the control). Eight of these miRNAs were further selected for TaqMan qPCR analysis. Proteomic profile analysis indicated that many changed proteins after PFOA treatment, including intersectin 1 (ITSN1), serine protease inhibitor A3K (Serpina3k), and apolipoprotein a1 (APOA1), were involved in endocytosis and blood-testis barrier (BTB) processes. These changes were further verified by immunohistochemical and Western blot analyses. Endocytosis-related genes were selected for qPCR analysis, with many found to be significantly changed after PFOA treatment, including epidermal growth factor receptor pathway substrate 8 (Eps8), Eps15, cortactin, cofilin, espin, vinculin, and zyxin. We further predicted the potential interaction between changed miRNAs and proteins, which indicated that miRNAs might play a role in the post-translational regulation of gene expression after PFOA treatment in mouse testes. Among them, miR-133b-3p/clathrin light chain A (CLTA) was selected and verified in vitro by transfection and luciferase activity assay. Results showed that PFOA exposure affects endocytosis in mouse testes and that CLTA is a potential target of miR-133b-3p.
Collapse
Affiliation(s)
- Yin Lu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Shengmin Yan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
67
|
Yuan Y, Ge S, Lv Z, Wu M, Kuang H, Yang B, Yang J, Wu L, Zou W, Zhang D. Attenuation of perfluorooctanoic acid-induced testicular oxidative stress and apoptosis by quercetin in mice. RSC Adv 2017. [DOI: 10.1039/c7ra09036f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quercetin treatment attenuated PFOA-induced oxidative stress and apoptosis in the testes of mice.
Collapse
|
68
|
Abe T, Takahashi M, Kano M, Amaike Y, Ishii C, Maeda K, Kudoh Y, Morishita T, Hosaka T, Sasaki T, Kodama S, Matsuzawa A, Kojima H, Yoshinari K. Activation of nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid. Arch Toxicol 2016; 91:2365-2374. [DOI: 10.1007/s00204-016-1888-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
|
69
|
Huang Q, Luo L, Alamdar A, Zhang J, Liu L, Tian M, Eqani SAMAS, Shen H. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity. Sci Rep 2016; 6:32518. [PMID: 27585557 PMCID: PMC5009432 DOI: 10.1038/srep32518] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
Collapse
Affiliation(s)
- Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, PR China
| | - Lianzhong Luo
- Department of Pharmacy, Xiamen Medical College, Xiamen 361008, PR China
| | - Ambreen Alamdar
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
70
|
Lu Y, Pan Y, Sheng N, Zhao AZ, Dai J. Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis. CHEMOSPHERE 2016; 158:143-53. [PMID: 27262104 DOI: 10.1016/j.chemosphere.2016.05.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/02/2016] [Accepted: 05/22/2016] [Indexed: 05/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a degradation-resistant compound with a carbon-fluorine bond. Although PFOA emissions have been reduced since 2000, it remains persistent in the environment. Several studies on laboratory animals indicate that PFOA exposure can impact male fertility. Here, adult male mice received either PFOA (1.25, 5 or 20 mg/kg/d) or an equal volume of water for 28 d consecutively. PFOA accumulated in the epididymis in a dose-dependent manner and resulted in reduced epididymis weight, lower levels of triglycerides (TG), cholesterol (CHO), and free fatty acids (FFA), and activated AKT/AMPK signaling in the epididymis. Altered polyunsaturated fatty acid (PUFA) compositions, such as a higher arachidonic acid:linoleic acid (AA:LA) ratio, concomitant with excessive oxidative stress, as demonstrated by increased malonaldehyde (MDA) and decreased glutathione peroxidase (GSH-Px) in the epididymis, were observed in epididymis tissue following treatment with PFOA. These results indicate that the epididymis is a potential target of PFOA. Oxidative stress and PUFA alteration might help explain the sperm injury and male reproductive dysfunction induced by PFOA exposure.
Collapse
Affiliation(s)
- Yin Lu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Allan Z Zhao
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
71
|
Zhang H, Cui R, Guo X, Hu J, Dai J. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:18-28. [PMID: 27045622 DOI: 10.1016/j.jhazmat.2016.03.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 05/27/2023]
Abstract
Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50μM PFOA for 48h and 96h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50-100μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200-400μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Jiayue Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
72
|
Giari L, Vincenzi F, Badini S, Guerranti C, Dezfuli BS, Fano EA, Castaldelli G. Common carp Cyprinus carpio responses to sub-chronic exposure to perfluorooctanoic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15321-15330. [PMID: 27107988 DOI: 10.1007/s11356-016-6706-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an important and diffuse perfluorinated alkylated substance, but knowledge of the toxicological effects of this endocrine disrupter in fish is limited. Adult common carp Cyprinus carpio, L. were exposed to 200 ng/l (a concentration reported in impacted aquatic ecosystems) and 2 mg/l PFOA solutions in a flow-through system for 56 days to determine tissue accumulation and histological alterations of the primary target organs. PFOA was extracted from blood, gill, liver, muscle, kidney, gonad, and brain by an ion-pairing liquid extraction procedure and quantified using high performance liquid chromatography with electrospray ionization tandem mass spectrometry. The limit of detection (LOD) was 0.4 ng/g wet weight (ww). PFOA was not detectable in unexposed fish or in fish exposed to 200 ng/l, but was >LOD in most samples of carp exposed to 2 mg/l. Mean PFOA concentration ranged from 0.5 to 65 ng/g ww, depending on the tissue, with highest levels in the blood and liver. There were no significant differences in condition factor, hepato-somatic index, or gonado-somatic index among the fish of the three groups. Histological, histochemical, and immunohistochemical staining was performed on sections of liver and gonad. Occurrence of atretic oocytes and a paucity of spermatozoa were documented in carp treated with 2 mg/l PFOA. Exposed fish did not show gross hepatic anomalies, but there was enhancement of hepatocytes in proliferation (positive to anti-PCNA antibody) compared to controls.
Collapse
Affiliation(s)
- Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy.
| | - Fabio Vincenzi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| | - Simone Badini
- Department of Physical, Earth and Environmental Sciences, University of Siena, St. P.A. Mattioli 4, 53100, Siena, Italy
| | - Cristiana Guerranti
- Department of Physical, Earth and Environmental Sciences, University of Siena, St. P.A. Mattioli 4, 53100, Siena, Italy
- BRC Bioscience Research Center, St. Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy
| | - Bahram S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| | - Elisa A Fano
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
73
|
Akinjo OO, Gant TW, Marczylo EL. Perturbation of epigenetic processes by doxorubicin in the mouse testis. Toxicol Res (Camb) 2016; 5:1229-1243. [PMID: 30090428 DOI: 10.1039/c6tx00078a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes play a major role in normal mammalian development, particularly during gametogenesis and early embryogenesis. Thus, perturbation of epigenetic processes in the testis by xenobiotics could have a major impact on testicular function and fertility, and potentially affect the development and health of subsequent generations. There has been substantial research into the epigenetic toxicity of environmental exposures over the last decade. However, few studies have focussed on pharmaceutical drugs, which due to the nature of their use are typically found at much higher concentrations within exposed individuals than environmental chemicals. Here, we investigated genome-wide changes in testicular mRNA transcription, microRNA expression and DNA methylation to assess the contribution of epigenetic mechanisms to the testicular toxicity induced by doxorubicin (DOX) as a representative, widely used and well-characterised anti-cancer drug. We demonstrated that DOX is able to induce transcriptional, microRNA and DNA methylation changes, which perturb pathways involved in stress/cell death and survival and testicular function and lead to germ cell loss and reproductive organ damage. This identified potential novel mechanisms of DOX-induced testicular toxicity for further focussed investigations. Such work is required to fully assess the role of epigenetics in toxicity, determine whether single and/or multigenerational epigenetic toxicity is a real public health concern, and begin to develop and incorporate relevant epigenetic endpoints into regulatory toxicology.
Collapse
Affiliation(s)
- Oluwajoba O Akinjo
- Toxicology Department , CRCE , PHE , Chilton , Oxfordshire OX11 0RQ , UK .
| | - Timothy W Gant
- Toxicology Department , CRCE , PHE , Chilton , Oxfordshire OX11 0RQ , UK .
| | - Emma L Marczylo
- Toxicology Department , CRCE , PHE , Chilton , Oxfordshire OX11 0RQ , UK .
| |
Collapse
|
74
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
75
|
Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach. Sci Rep 2016; 6:23963. [PMID: 27032815 PMCID: PMC4817033 DOI: 10.1038/srep23963] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/15/2016] [Indexed: 12/16/2022] Open
Abstract
Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.
Collapse
|
76
|
Liu W, Xu C, Sun X, Kuang H, Kuang X, Zou W, Yang B, Wu L, Liu F, Zou T, Zhang D. Grape seed proanthocyanidin extract protects against perfluorooctanoic acid-induced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice. Toxicol Res (Camb) 2016; 5:224-234. [PMID: 30090339 PMCID: PMC6062257 DOI: 10.1039/c5tx00260e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/22/2015] [Indexed: 01/06/2023] Open
Abstract
Grape seed proanthocyanidin extract (GSPE) is a rich source of proanthocyanidins with multiple biological activities and potential health benefits. In the present study, we investigated the protective effect of GSPE against liver injury caused by perfluorooctanoic acid (PFOA) in mice and its possible mechanisms of action. Simultaneous treatment with GSPE for 14 consecutive days attenuated the functional and morphological changes in the liver of PFOA-exposed mice. Furthermore, simultaneous supplementation of GSPE reduced the production of inflammatory cytokines IL-6 and TNF-α, increased the expression of Nrf2 and its target antioxidant genes superoxide dismutase and catalase, and decreased the production of malondialdehyde and hydrogen peroxide in the liver of mice exposed to PFOA. Moreover, GSPE supplementation up-regulated the expression of anti-apoptotic protein Bcl-2 and down-regulated the expression of pro-apoptotic proteins p53 and Bax, with a decreased activity of caspase-3 in the liver of PFOA-treated mice. These findings suggest that GSPE ameliorates PFOA-induced inflammatory response, oxidative stress and apoptosis in the liver of mice.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Changshui Xu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Xi Sun
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Haibin Kuang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Xiaodong Kuang
- Department of Pathology , Medical College of Nanchang University , Nanchang 330006 , PR China
| | - Weiying Zou
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Bei Yang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Lei Wu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Fangming Liu
- Office of Academic Affairs , Medical College of Nanchang University , Nanchang 330006 , PR China
| | - Ting Zou
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Dalei Zhang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| |
Collapse
|
77
|
Yan J, Zhang H, Liu Y, Zhao F, Zhu S, Xie C, Tang TS, Guo C. Germline deletion of huntingtin causes male infertility and arrested spermiogenesis in mice. J Cell Sci 2015; 129:492-501. [PMID: 26659666 DOI: 10.1242/jcs.173666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023] Open
Abstract
Human Huntingtin (HTT), a Huntington's disease gene, is highly expressed in the mammalian brain and testis. Simultaneous knockout of mouse Huntingtin (Htt) in brain and testis impairs male fertility, providing evidence for a link between Htt and spermatogenesis; however, the underlying mechanism remains unclear. To understand better the function of Htt in spermatogenesis, we restricted the genetic deletion specifically to the germ cells using the Cre/loxP site-specific recombination strategy and found that the resulting mice manifested smaller testes, azoospermia and complete male infertility. Meiotic chromosome spread experiments showed that the process of meiosis was normal in the absence of Htt. Notably, we found that Htt-deficient round spermatids did not progress beyond step 3 during the post-meiotic phase, when round spermatids differentiate into mature spermatozoa. Using an iTRAQ-based quantitative proteomic assay, we found that knockout of Htt significantly altered the testis protein profile. The differentially expressed proteins exhibited a remarkable enrichment for proteins involved in translation regulation and DNA packaging, suggesting that Htt might play a role in spermatogenesis by regulating translation and DNA packaging in the testis.
Collapse
Affiliation(s)
- Jinting Yan
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feilong Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengmei Xie
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
78
|
Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, Chen J, Qiao R, Xie P. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol 2015; 19:pyv100. [PMID: 26364272 PMCID: PMC4772275 DOI: 10.1093/ijnp/pyv100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/31/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While stressful events are recognized as an important cause of major depressive disorder, some individuals exposed to life stressors maintain normal psychological functioning. The molecular mechanism(s) underlying this phenomenon remain unclear. Abnormal transmission and plasticity of hippocampal synapses have been implied to play a key role in the pathoetiology of major depressive disorder. METHODS A chronic mild stress protocol was applied to separate susceptible and unsusceptible rat subpopulations. Proteomic analysis using an isobaric tag for relative and absolute quantitation coupled with tandem mass spectrometry was performed to identify differential proteins in enriched hippocampal synaptic junction preparations. RESULTS A total of 4318 proteins were quantified, and 89 membrane proteins were present in differential amounts. Of these, SynaptomeDB identified 81 (91%) having a synapse-specific localization. The unbiased profiles identified several candidate proteins within the synaptic junction that may be associated with stress vulnerability or insusceptibility. Subsequent functional categorization revealed that protein systems particularly involved in membrane trafficking at the synaptic active zone exhibited a positive strain as potential molecular adaptations in the unsusceptible rats. Moreover, through STRING and immunoblotting analysis, membrane-associated GTP-bound Rab3a and Munc18-1 appear to coregulate syntaxin-1/SNAP25/VAMP2 assembly at the hippocampal presynaptic active zone of unsusceptible rats, facilitating SNARE-mediated membrane fusion and neurotransmitter release, and may be part of a stress-protection mechanism in actively maintaining an emotional homeostasis. CONCLUSIONS The present results support the concept that there is a range of potential protein adaptations in the hippocampal synaptic active zone of unsusceptible rats, revealing new investigative targets that may contribute to a better understanding of stress insusceptibility.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Zhao Liu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jia Yu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Xin Han
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Songhua Fan
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Weihua Shao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jianjun Chen
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Rui Qiao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Peng Xie
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie).
| |
Collapse
|
79
|
Liu W, Yang B, Wu L, Zou W, Pan X, Zou T, Liu F, Xia L, Wang X, Zhang D. Involvement of NRF2 in Perfluorooctanoic Acid-Induced Testicular Damage in Male Mice. Biol Reprod 2015; 93:41. [PMID: 26108789 DOI: 10.1095/biolreprod.115.128819] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/11/2015] [Indexed: 01/06/2023] Open
Abstract
Perfluorooctane acid (PFOA) is a hazardous environmental pollutant that has been reported to exert adverse effects on animal and human health. In this study, male mice were orally administered different concentrations of PFOA (2.5, 5, or 10 mg/kg/day) to evaluate the reproductive toxicity. Exposure to PFOA for 14 consecutive days obviously disrupted seminiferous tubules and reduced sperm count. The highest concentration of PFOA (10 mg/kg/day) caused growth retardation and diminished absolute testis weight. Furthermore, PFOA treatment significantly increased the generation of oxidative stress indicators malondialdehyde and hydrogen peroxide, decreased the expression of transcription factor NRF2, and inhibited the activities of antioxidant enzymes superoxide dismutase and catalase in the testis. Moreover, PFOA exposure up-regulated p-p53 and BAX expression and down-regulated BCL-2 expression in the testis. These results indicated that PFOA-induced male reproductive disorders might be involved in developmental impairment and inhibition of NRF2-mediated antioxidant response in the testis of mice.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Bei Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Lei Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Weiying Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | | | - Ting Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Fangming Liu
- Library, Nanchang University, Nanchang, PR China
| | - Liping Xia
- Library, Nanchang University, Nanchang, PR China
| | - Xiang Wang
- Library, Nanchang University, Nanchang, PR China
| | - Dalei Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| |
Collapse
|
80
|
Yan S, Zhang H, Zheng F, Sheng N, Guo X, Dai J. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice. Sci Rep 2015; 5:11029. [PMID: 26066376 PMCID: PMC4464286 DOI: 10.1038/srep11029] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/13/2015] [Indexed: 01/09/2023] Open
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.
Collapse
Affiliation(s)
- Shengmin Yan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Fei Zheng
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu 030801, P.R. China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
81
|
Perfluorooctanoic acid disrupts the blood-testis barrier and activates the TNFα/p38 MAPK signaling pathway in vivo and in vitro. Arch Toxicol 2015; 90:971-83. [PMID: 25743374 DOI: 10.1007/s00204-015-1492-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is correlated with male reproductive dysfunction in animals and humans, but the underlying mechanisms for this remain unknown. To explore the potential reproductive toxicity of PFOA, we studied blood-testis barrier (BTB) damage using in vivo and in vitro models. Male mice were gavage-administered PFOA (0-20 mg/kg/d) for 28 consecutive days, and breeding capacity and permeability of the Sertoli cell-based BTB were estimated. Primary Sertoli cells (SCs) were exposed to PFOA (0-500 μM) for 48 h, and transepithelial electrical resistance (TER) was assessed. Furthermore, BTB-associated protein expression, TNFα content, and phosphorylation and protein levels of the mitogen-activated protein kinase (MAPK) pathway were detected. An apparent decrease in mated and pregnant females per male mouse as well as litter weight was observed. Marked BTB damage was evidenced by increased red biotin fluorescence in the lumen tubular of the testes and the decrease in TER in SCs in vitro. The protein levels of claudin-11, connexin-43, N-cadherin, β-catenin, and occludin were significantly decreased in the testes and also in the SCs in vitro except for N-cadherin and β-catenin. TNFα content showed a dose-dependent increase in the testes and a dose- and time-dependent increase in the SCs, with the p-p38/p38 MAPK ratio also increasing in testes and SCs after PFOA exposure. Moreover, PFOA altered expressions of claudin-11, connexin-43, TNFα, and p-p38 MAPK were recovered 48 h after PFOA removal in the SCs. The SCs appeared to be target to PFOA, and the disruption of the BTB may be crucial to PFOA-induced reproductive dysfunction in mice.
Collapse
|
82
|
Hansmeier N, Chao TC, Herbstman JB, Goldman LR, Witter FR, Halden RU. Elucidating the molecular basis of adverse health effects from exposure to anthropogenic polyfluorinated compounds using toxicoproteomic approaches. J Proteome Res 2014; 14:51-8. [PMID: 25350270 DOI: 10.1021/pr500990w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Linear, short-chain polyfluorinated and perfluorinated alkyl compounds, often referred to as PFCs, have been in worldwide use as surfactants and polymer precursors for decades, and environmental dispersal of these highly persistent compounds represents a public health threat. Whereas ubiquitous low-level exposure to these compounds has been demonstrated in human populations from around the world, the exact mechanisms of toxicity and their toxic potency remain subject to investigation and scientific dispute. As with other environmental exposures, a major hurdle for gaining a better understanding of their human health impacts is the limited utility of cell culture and animal models serving as convenient, yet imperfect proxies to human physiology and disease. The present communication provides a brief overview of the current understanding of potential health effects of PFC exposure and examines how new toxicoproteomic methodologies can provide insight into the molecular mechanism of PFC exposure. Furthermore, we showcase an exemplary data set to illustrate how toxicoproteomic, population-wide studies might overcome limitations of animal models to more fully understand the metabolism and effects of PFCs and other environmental stressors where it matters most, in human populations experiencing real-world, chronic, low-level exposures.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Department of Biology, University of Osnabrück , Barbarastrasse 11, Osnabrück 49076, Germany
| | | | | | | | | | | |
Collapse
|