51
|
|
52
|
Voss TC, Demarco IA, Booker CF, Day RN. Functional interactions with Pit-1 reorganize co-repressor complexes in the living cell nucleus. J Cell Sci 2005; 118:3277-88. [PMID: 16030140 PMCID: PMC2910337 DOI: 10.1242/jcs.02450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The co-repressor proteins SMRT and NCoR concentrate in specific subnuclear compartments and function with DNA-binding factors to inhibit transcription. To provide detailed mechanistic understanding of these activities, this study tested the hypothesis that functional interactions with transcription factors, such as the pituitary-gland-specific Pit-1 homeodomain protein, direct the subnuclear organization and activity of co-repressor complexes. Both SMRT and NCoR repressed Pit-1-dependent transcription, and NCoR was co-immunoprecipitated with Pit-1. Immunofluorescence experiments confirmed that endogenous NCoR is concentrated in small focal bodies and that incremental increases in fluorescent-protein-tagged NCoR expression lead to progressive increases in the size of these structures. In pituitary cells, the endogenous NCoR localized with endogenous Pit-1 and the co-expression of a fluorescent-protein-labeled Pit-1 redistributed both NCoR and SMRT into diffuse nucleoplasmic compartments that also contained histone deacetylase and chromatin. Automated image-analysis methods were applied to cell populations to characterize the reorganization of co-repressor proteins by Pit-1 and mutation analysis showed that Pit-1 DNA-binding activity was necessary for the reorganization of co-repressor proteins. These data support the hypothesis that spherical foci serve as co-repressor storage compartments, whereas Pit-1/co-repressor complexes interact with target genes in more widely dispersed subnuclear domains. The redistribution of co-repressor complexes by Pit-1 might represent an important mechanism by which transcription factors direct changes in cell-specific gene expression.
Collapse
|
53
|
Zakrzewska A, Schnell PO, Striet JB, Hui A, Robbins JR, Petrovic M, Conforti L, Gozal D, Wathelet MG, Czyzyk-Krzeska MF. Hypoxia-activated metabolic pathway stimulates phosphorylation of p300 and CBP in oxygen-sensitive cells. J Neurochem 2005; 94:1288-96. [PMID: 16000154 PMCID: PMC1411962 DOI: 10.1111/j.1471-4159.2005.03293.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription co-activators and histone acetyltransferases, p300 and cyclic AMP responsive element-binding protein-binding protein (CBP), participate in hypoxic activation of hypoxia-inducible genes. Here, we show that exposure of PC12 and cells to 1-10% oxygen results in hyperphosphorylation of p300/CBP. This response is fast, long lasting and specific for hypoxia, but not for hypoxia-mimicking agents such as desferioxamine or Co2+ ions. It is also cell-type specific and occurs in pheochromocytoma PC12 cells and the carotid body of rats but not in hepatoblastoma cells. The p300 hyperphosphorylation specifically depends on the release of intracellular calcium from inositol 1,4,5-triphosphate (IP3)-sensitive stores. However, it is not inhibited by pharmacological inhibitors of any of the kinases traditionally known to be directly or indirectly calcium regulated. On the other hand, p300 hyperphosphorylation is inhibited by several different inhibitors of the glucose metabolic pathway from generation of NADH by glyceraldehyde 3-phosphate dehydrogenase, through the transfer of NADH through the glycerol phosphate shuttle to ubiquinone and complex III of the mitochondrial respiratory chain. Inhibition of IP3-sensitive calcium stores decreases generation of ATP, and this inhibition is significantly stronger in hypoxia than in normoxia. We propose that the NADH glycerol phosphate shuttle participates in generating a pool of ATP that serves either as a co-factor or a modulator of the kinases involved in the phosphorylation of p300/CBP during hypoxia.
Collapse
Affiliation(s)
| | | | - Justin B. Striet
- Departments of Genome Science
- Molecular and Cellular Physiology and
| | - Anna Hui
- Departments of Genome Science
- Molecular and Cellular Physiology and
| | - Jennifer R. Robbins
- Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Ohio, USA
| | - Milan Petrovic
- Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Ohio, USA
| | - Laura Conforti
- Molecular and Cellular Physiology and
- Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Ohio, USA
| | - David Gozal
- Departments of Pediatrics, Pharmacology, and Toxicology, Kosair Children’s Hospital Research Institute, University of Louisville, Kentucky, USA
| | | | - Maria F. Czyzyk-Krzeska
- Departments of Genome Science
- Molecular and Cellular Physiology and
- Address correspondence and reprint requests to Maria F. Czyzyk-Krzeska, Department of Genome Science, University of Cincinnati, College of Medicine, 2180 E Galbraith Road., Cincinnati, OH 45267–0505, USA. E-mail:
| |
Collapse
|
54
|
Perissi V, Rosenfeld MG. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 2005; 6:542-54. [PMID: 15957004 DOI: 10.1038/nrm1680] [Citation(s) in RCA: 392] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors regulate many biologically important processes in development and homeostasis by their bimodal function as repressors and activators of gene transcription. A finely tuned modulation of the transcriptional activities of nuclear receptors is crucial for determining highly specific and diversified programmes of gene expression. Recent studies have provided insights into the molecular mechanisms that are required to switch between repression and activation functions, the combinatorial roles of the multiple cofactor complexes that are required for mediating transcriptional regulation, and the central question of how several different signalling pathways can be integrated at the nuclear level to achieve specific profiles of gene expression.
Collapse
Affiliation(s)
- Valentina Perissi
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | |
Collapse
|
55
|
Dattani MT. Novel insights into the aetiology and pathogenesis of hypopituitarism. HORMONE RESEARCH 2005; 62 Suppl 3:1-13. [PMID: 15539793 DOI: 10.1159/000080493] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances in our knowledge of pituitary development, acquired mainly from animal models, have enhanced our understanding of the aetiology of isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD), as well as several syndromic forms of growth hormone deficiency (GHD). A number of developmental genes known to be important for organ commitment and cell differentiation and proliferation (HESX1, LHX3, LHX4, PROP1 and PIT1) have been implicated in CPHD with or without other syndromic features. Phenotypes associated with these genetic mutations and their inheritance may be highly variable. Functional analyses of these mutations reveal valuable insights into the function of the proteins and hence into the effect of these mutations on phenotype. Novel insights have been gained into the mechanisms whereby these genes are associated with particular phenotypes as a result of murine transgenesis, e.g. type II autosomal dominant GHD. Mutations within known genes account for a small proportion of cases of IGHD and CPHD, suggesting the role of other as yet unidentified genetic and environmental factors. Hence, genetic testing will in the future have a greater role to play in understanding the mechanisms leading to particular hypopituitary phenotypes and also in predicting the evolution of these disorders. There is, however, no substitute for careful delineation of the phenotype prior to undertaking genetic studies.
Collapse
Affiliation(s)
- Mehul T Dattani
- Department of Paediatric Endocrinology, Institute of Child Health, London, UK.
| |
Collapse
|
56
|
Parker GE, West BE, Witzmann FA, Rhodes SJ. Serine/threonine/tyrosine phosphorylation of the LHX3 LIM-homeodomain transcription factor. J Cell Biochem 2005; 94:67-80. [PMID: 15517599 DOI: 10.1002/jcb.20287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
LHX3 is a LIM homeodomain transcription factor with essential roles in pituitary and motor neuron development in mammals. Patients with mutations in the LHX3 gene have combined pituitary hormone deficiency and other symptoms. In this study, we show that the LHX3 protein can be modified post-translationally by phosphorylation. LHX3 can serve as a substrate for protein kinase C and casein kinase II. Overexpression of these kinases reduces the transcriptional capacity of LHX3 to activate target genes. Following exposure of LHX3 to cellular kinases, mass spectrometry was used to map the phosphorylation of five amino acid residues within the human LHX3a isoform. Two phosphorylated residues (threonine 63 and serine 71) lie within the first LIM domain of the protein. Three other modified amino acids (tyrosine 227, serine 234, and serine 238) are located in the carboxyl terminus. Targeted replacement of these amino acids with non-modifiable residues significantly reduced the ability of LHX3 to activate both synthetic and pituitary hormone reporter genes. However, the amino acid replacements did not significantly affect the capability of LHX3 to interact with the NLI, PIT1, and MRG1 partner proteins, or its ability to bind to a high affinity DNA site. In conclusion, we have identified unique amino acids within LHX3 that are important for its transcriptional activity and are phosphorylated.
Collapse
Affiliation(s)
- Gretchen E Parker
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132, USA
| | | | | | | |
Collapse
|
57
|
Poizat C, Puri PL, Bai Y, Kedes L. Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 2005; 25:2673-87. [PMID: 15767673 PMCID: PMC1061628 DOI: 10.1128/mcb.25.7.2673-2687.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p300 and CBP are general transcriptional coactivators implicated in different cellular processes, including regulation of the cell cycle, differentiation, tumorigenesis, and apoptosis. Posttranslational modifications such as phosphorylation are predicted to select a specific function of p300/CBP in these processes; however, the identification of the kinases that regulate p300/CBP activity in response to individual stimuli and the physiological significance of p300 phosphorylation have not been elucidated. Here we demonstrate that the cardiotoxic anticancer agent doxorubicin (adriamycin) induces the phosphorylation of p300 in primary neonatal cardiomyocytes. Hyperphosphorylation precedes the degradation of p300 and parallels apoptosis in response to doxorubicin. Doxorubicin-activated p38 kinases alpha and beta associate with p300 and are implicated in the phosphorylation-mediated degradation of p300, as pharmacological blockade of p38 prevents p300 degradation. p38 phosphorylates p300 in vitro at both the N and C termini of the protein, and enforced activation of p38 by the constitutively active form of its upstream kinase (MKK6EE) triggers p300 degradation. These data support the conclusion that p38 mitogen-activated protein kinase regulates p300 protein stability and function in cardiomyocytes undergoing apoptosis in response to doxorubicin.
Collapse
Affiliation(s)
- Coralie Poizat
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 245, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
58
|
Huddleson JP, Ahmad N, Srinivasan S, Lingrel JB. Induction of KLF2 by fluid shear stress requires a novel promoter element activated by a phosphatidylinositol 3-kinase-dependent chromatin-remodeling pathway. J Biol Chem 2005; 280:23371-9. [PMID: 15834135 DOI: 10.1074/jbc.m413839200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fluid shear stress maintains vascular homeostasis by influencing endothelial gene expression. One mechanism by which shear stress achieves this is through the induction of transcription factors including Krüppel-like factor 2(KLF2). We have previously reported that a 62-bp region of the KLF2 promoter is responsible for its shear stress-induced expression via the binding of nuclear factors. In this study, we find that the 62-bp shear stress response region contains a 30-bp tripartite palindrome motif. Electrophoretic mobility supershift and chromatin immunoprecipitation assays demonstrate that PCAF (P-300/cAMP-response element-binding protein-binding protein-associated factor)) and heterogeneous nuclear ribonucleoprotein D bind this region as components of the shear stress regulatory complex. We have also characterized a PI3K-dependent/Akt-independent pathway responsible for shear stress-induced KLF2 nuclear binding, promoter activation, and mRNA expression. Furthermore, the shear stress response region of the KLF2 promoter was specifically immunoprecipitated by antibodies against acetylated histones H3 and H4 in shear-stressed but not static hemangioendothelioma cells. The acetylation of these histones was blocked by PI3K inhibition. Finally, we have found that KLF2 increases endothelial nitric-oxide synthase expression in murine endothelial cultures, an effect that is also blocked by PI3K inhibition. These results define the DNA regulatory element, signal transduction pathway, and molecular mechanism activating the flow-dependent expression of a vital endothelial transcription factor.
Collapse
Affiliation(s)
- Justin P Huddleson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | |
Collapse
|
59
|
Olson LE, Zhang J, Taylor H, Rose DW, Rosenfeld MG. Barx2 functions through distinct corepressor classes to regulate hair follicle remodeling. Proc Natl Acad Sci U S A 2005; 102:3708-13. [PMID: 15728386 PMCID: PMC553323 DOI: 10.1073/pnas.0500519102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hair-growth cycle, a complex biological system requiring coordinate alterations in gene expression and cellular behavior, provides a challenging model for investigating the interplay of specific transcriptional regulation events. Here we report that the Barx2 homeodomain factor serves as a regulator of hair follicle remodeling (catagen), and loss of Barx2 in mice causes a defect both in the initiation and progression of catagen, resulting in a protracted first catagen, and later, causing short hair in adult gene-deleted mice. Barx2 negatively regulates its own promoter, and our study highlights the role of Barx2 as a repressor in the skin that can, unexpectedly, functionally interact with two WD40-domain factors distantly related to the yeast corepressor Tup1. These two corepressors, transducin-like enhancer of split and transducin beta-like 1, function through distinct and independent interactions with Barx2 for the repression of gene targets, including the Barx2 gene itself, emphasizing the roles of complementary repression strategies in engrailed homology-1 motif-containing homeodomain factors. Together, our data suggest that the hair-remodeling defect of Barx2 mutant mice could be explained, in part, by failure to repress one or more critical target genes.
Collapse
Affiliation(s)
- Lorin E Olson
- Howard Hughes Medical Institute, Biomedical Sciences Graduate Program, University of California at San Diego School of Medicine, La Jolla, CA 92093-0648, USA
| | | | | | | | | |
Collapse
|
60
|
Thiel G, Al Sarraj J, Stefano L. cAMP response element binding protein (CREB) activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene. BMC Mol Biol 2005; 6:2. [PMID: 15659240 PMCID: PMC548273 DOI: 10.1186/1471-2199-6-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 01/19/2005] [Indexed: 01/04/2023] Open
Abstract
Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE). Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP) family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA) in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2), known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2/CREB fusion protein and a mutant of the PKA catalytic subunit that is targeted to the nucleus, we have shown that the glucose-6-phosphatase gene has two distinct genetic elements that function as bona fide CRE. This study further shows that the expression vectors encoding C2/CREB and catalytic subunit of PKA are valuable tools for the study of CREB-mediated gene transcription and the biological functions of CREB.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Jude Al Sarraj
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Luisa Stefano
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
61
|
Yan M, Jones MEE, Hernandez M, Liu D, Simpson ER, Chen C. Oestrogen replacement in vivo rescues the dysfunction of pituitary somatotropes in ovariectomised aromatase knockout mice. Neuroendocrinology 2005; 81:158-66. [PMID: 16015026 DOI: 10.1159/000086864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 04/28/2005] [Indexed: 11/19/2022]
Abstract
The mechanism of regulation of growth hormone (GH) secretion by oestrogens and androgens is still controversial. Available data on the action of oestrogens on GH expression and secretion in somatotropes is poorly understood. We previously reported that the aromatase knockout (ArKO) mouse with oestrogen deficiency and excessive androgen levels had dysfunctional somatotropes. In order to clarify the influence of androgen and oestrogen, we investigated the in vivo treatment of ovariectomised (OVX) ArKO mice with exogenous oestradiol (E2) on the mRNA expression of GH, GH-secretagogue receptor (GHS-R), GH-releasing hormone receptor (GHRH-R), pituitary-specific transcription factor (Pit-1), and somatostatin receptors (sst1-5) in pituitary glands. Circulating plasma GH levels were also evaluated. The results showed that ArKO/OVX mice have a low expression of pituitary GH, GHRH-R, GHS-R and Pit-1, and significantly reduced GH levels. Treatment of female ArKO/OVX (E2-deficient without excessive androgen) mice with E2 for 21 days enhanced expression of pituitary GHRH-R and Pit-1 to 151 and 168%, respectively, of that in mice without treatment. E2 treatment increased GH expression and plasma levels in ArKO/OVX mice to levels comparable with those in wild-type female mice. We conclude therefore that long-term E2 replacement rescues the dysfunction of somatotropes in ArKO/OVX mice through increases in expression of GH, GHRH-R, and Pit-1 in the pituitary somatotropes, whereas the level of androgen in this oestrogen-deficient female mouse does not significantly influence the function of somatotropes.
Collapse
MESH Headings
- Androgens/physiology
- Animals
- Aromatase/genetics
- Aromatase/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Estradiol/deficiency
- Estradiol/physiology
- Estrogen Replacement Therapy
- Female
- Growth Hormone/genetics
- Growth Hormone/metabolism
- Mice
- Mice, Knockout
- Organ Size
- Ovariectomy
- Pituitary Gland/cytology
- Pituitary Gland/metabolism
- RNA, Messenger/analysis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Ghrelin
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Transcription Factor Pit-1
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Ming Yan
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
62
|
Silverstein RA, Ekwall K. Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 2004; 47:1-17. [PMID: 15565322 DOI: 10.1007/s00294-004-0541-5] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/05/2004] [Accepted: 10/10/2004] [Indexed: 10/26/2022]
Abstract
SIN3 was first identified genetically as a global regulator of transcription. Sin3 is a large protein composed mainly of protein-interaction domains, whose function is to provide structural support for a heterogeneous Sin3/histone deacetylase (HDAC) complex. The core Sin3/HDAC complex is conserved from yeast to man and consists of eight proteins. In addition to HDACs, Sin3 can sequester other enzymatic functions, including nucleosome remodeling, DNA methylation, N-acetylglucoseamine transferase activity, and histone methylation. Since the Sin3/HDAC complex lacks any DNA-binding activity, it must be targeted to gene promoters by interacting with DNA-binding proteins. Although most research on Sin3 has focused on its role as a corepressor, mounting evidence suggests that Sin3 can also positively regulate transcription. Furthermore, Sin3 is key to the propagation of epigenetically silenced domains and is required for centromere function. Thus, Sin3 provides a platform to deliver multiple combinations modifications to the chromatin, using both sequence-specific and sequence-independent mechanisms.
Collapse
Affiliation(s)
- Rebecca A Silverstein
- Karolinska Institutet, Department of Biosciences, University College Sodertorn, Alfred Nobels Allé 7, 141 89, Huddinge, Sweden
| | | |
Collapse
|
63
|
Ogawa S, Lozach J, Jepsen K, Sawka-Verhelle D, Perissi V, Sasik R, Rose DW, Johnson RS, Rosenfeld MG, Glass CK. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc Natl Acad Sci U S A 2004; 101:14461-6. [PMID: 15452344 PMCID: PMC521940 DOI: 10.1073/pnas.0405786101] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nuclear receptor corepressor (NCoR) and the related factor known as silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) are essential components of multiprotein complexes that mediate active repression by unliganded nuclear receptors. Recent studies suggest that NCoR and SMRT can interact with and exert repressive effects on several other classes of DNA-binding transcription factors, but the physiological importance of these interactions has not been established. Here, investigation of endogenous transcriptional programs regulated by NCoR in macrophages reveals that NCoR acts as a transcriptional checkpoint for activator protein (AP)-1-dependent gene networks that regulate diverse biological processes including inflammation, cell migration, and collagen catabolism, with loss of NCoR, resulting in derepression of AP-1 target genes. The NCoR corepressor complex imposes an active block of exchange of c-Jun for c-Jun/c-Fos heterodimers, with targeted deletion of the c-Jun locus, resulting in loss of NCoR complexes from AP-1 target genes under basal conditions. The checkpoint function of NCoR is relieved by signal-dependent phosphorylation of c-Jun, which directs removal of NCoR/HDAC3/TBL1/TBLR1 complexes through recruitment of a specific ubiquitylation complex, as a prerequisite to the default binding of c-Jun/c-Fos heterodimers and transcriptional activation. The requirement for a checkpoint function to achieve the appropriate dynamic range of transcriptional responses to inflammatory signals is likely to be used by other signal-dependent transcription factors that regulate diverse homeostatic and developmental processes.
Collapse
Affiliation(s)
- Sumito Ogawa
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Lausen J, Cho S, Liu S, Werner MH. The nuclear receptor co-repressor (N-CoR) utilizes repression domains I and III for interaction and co-repression with ETO. J Biol Chem 2004; 279:49281-8. [PMID: 15377655 DOI: 10.1074/jbc.m407239200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acute human leukemias are associated with the presence of chimeric gene products that arise from spontaneous chromosomal translocations. The t(8;21) translocation gene product led to the discovery of the Eight Twenty-One (ETO) gene. When fused to RUNX1, ETO is thought to mediate the formation of a repressive complex at RUNX1-dependent genes. ETO has also been found to act as a co-repressor of the promyelocytic zinc finger and Bcl-6 oncoproteins, suggesting that it may play a common role as a transcriptional co-repressor leading to human disease. An analysis of ETO-mediated repression revealed that one of the key binding partners of ETO is the nuclear receptor co-repressor (N-CoR). It is shown that two highly conserved domains of ETO interact with repression domains I and III of N-CoR. One of the ETO domains displays significant homology to Drosophila TAF(II)110, whereas the other is a predicted zinc binding motif that engages a conserved PPLXP motif in repression domain III of N-CoR. Together, these domains of ETO cooperate in repression with N-CoR and the binding sites in N-CoR overlap with those for other repressive factors. Thus, ETO has the potential to participate in a number of repressive complexes, which can be distinguished by their binding partners and target genes.
Collapse
Affiliation(s)
- Jörn Lausen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
65
|
Kievit P, Maurer RA. The pituitary-specific transcription factor, Pit-1, can direct changes in the chromatin structure of the prolactin promoter. Mol Endocrinol 2004; 19:138-47. [PMID: 15375187 DOI: 10.1210/me.2004-0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The chromatin structure of a promoter is an important determinant of its transcriptional activity. Many promoters are assembled into repressive polynucleosomal arrays that are subsequently remodeled to allow for the activation of gene expression. This study addresses the contribution of a single transcription factor, Pit-1, in orchestrating the chromatin structure of the prolactin gene. Utilizing an in vivo reconstitution system, we found that Pit-1 can bind to multiple sites in the chromatin-assembled 5'-flanking region of the prolactin gene and activate transcription from the chromatin-assembled template. Interestingly, Pit-1 was able to substantially alter micrococcal nuclease digestion of the prolactin 5'-flanking region, and the results are consistent with presence of a translationally positioned nucleosome on the prolactin promoter. Changes in micrococcal nuclease digestion were also observed with a truncated Pit-1 mutant containing only the DNA-binding domain. As the truncation mutant was unable to activate transcription from the chromatin-assembled template, the ability of Pit-1 to alter chromatin structure of the prolactin gene is not dependent on transcriptional activation. We propose that Pit-1 likely plays a role in altering chromatin to facilitate recruitment and subsequent transcriptional activation by additional factors.
Collapse
Affiliation(s)
- Paul Kievit
- Department of Cell and Developmental Biology, L215, Oregon Health & Science University, 3181 South West Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | |
Collapse
|
66
|
Constantinescu A, Wu M, Asher O, Diamond I. cAMP-dependent protein kinase type I regulates ethanol-induced cAMP response element-mediated gene expression via activation of CREB-binding protein and inhibition of MAPK. J Biol Chem 2004; 279:43321-9. [PMID: 15299023 DOI: 10.1074/jbc.m406994200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that the two types of cAMP-dependent protein kinase (PKA) in NG108-15 cells differentially mediate forskolin- and ethanol-induced cAMP response element (CRE)-binding protein (CREB) phosphorylation and CRE-mediated gene transcription. Activated type II PKA is translocated into the nucleus where it phosphorylates CREB. By contrast, activated type I PKA does not translocate to the nucleus but is required for CRE-mediated gene transcription by inducing the activation of other transcription cofactors such as CREB-binding protein (CBP). We show here that CBP is required for forskolin- and ethanol-induced CRE-mediated gene expression. Forskolin- and ethanol-induced CBP phosphorylation, demonstrable at 10 min, persists up to 24 h. CBP phosphorylation requires type I PKA but not type II PKA. In NG108-15 cells, ethanol and forskolin activation of type I PKA also inhibits several components of the MAPK pathway including B-Raf kinase, ERK1/2, and p90RSK phosphorylation. As a result, unphosphorylated p90RSK no longer binds to nor inhibits CBP. Moreover, MEK inhibition by PD98059 induces a significant increase of CRE-mediated gene activation. Taken together, our findings suggest that inhibition of the MAPK pathway enhances cAMP-dependent gene activation during exposure of NG108-15 cells to ethanol. This mechanism appears to involve type I PKA-dependent phosphorylation of CBP and inhibition of MEK-dependent phosphorylation of p90RSK. Under these conditions p90RSK is no longer bound to CBP, thereby promoting CBP-dependent CREB-mediated gene expression.
Collapse
Affiliation(s)
- Anastasia Constantinescu
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA 94608, USA.
| | | | | | | |
Collapse
|
67
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
68
|
Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 2004; 116:511-26. [PMID: 14980219 DOI: 10.1016/s0092-8674(04)00133-3] [Citation(s) in RCA: 438] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 01/30/2023]
Abstract
The mechanisms that control the precisely regulated switch from gene repression to gene activation represent a central question in mammalian development. Here, we report that transcriptional activation mediated by liganded nuclear receptors unexpectedly requires the actions of two highly related F box/WD-40-containing factors, TBL1 and TBLR1, initially identified as components of an N-CoR corepressor complex. TBL1/TBLR1 serve as specific adaptors for the recruitment of the ubiquitin conjugating/19S proteasome complex, with TBLR1 selectively serving to mediate a required exchange of the nuclear receptor corepressors, N-CoR and SMRT, for coactivators upon ligand binding. Tbl1 gene deletion in embryonic stem cells severely impairs PPARgamma-induced adipogenic differentiation, indicating that TBL1 function is also biologically indispensable for specific nuclear receptor-mediated gene activation events. The role of TBLR1 and TBL1 in cofactor exchange appears to also operate for c-Jun and NFkappaB and is therefore likely to be prototypic of similar mechanisms for other signal-dependent transcription factors.
Collapse
Affiliation(s)
- Valentina Perissi
- Howard Hughes Medical Institute, Department of Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
69
|
Wang J, Wang M, Liu JM. Domains involved in ETO and human N-CoR interaction and ETO transcription repression. Leuk Res 2004; 28:409-14. [PMID: 15109542 DOI: 10.1016/j.leukres.2003.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 08/13/2003] [Indexed: 11/24/2022]
Abstract
The (8;21) translocation between the AML1 and ETO genes is seen in approximately 12-15% of all acute myeloid leukemia (AML) and is a frequently observed nonrandom genetic alteration associated with AML. The ETO moiety was shown to interact with the nuclear receptor co-repressor (N-CoR) complex, which includes mSin3A and the histone deacetylase, HDAC1. Repression of AML1-responsive hematopoietic genes by AML1-ETO and the N-CoR complex may play a mechanistic role in t(8;21) leukemogenesis. In order to characterize the interaction between ETO and N-CoR, mutants of either protein were constructed and tested for binding in both yeast two-hybrid and immunoprecipitation assays. We found that two domains of human N-CoR, amino acid residues 988-1126 and 1551-1803, were necessary for interaction with ETO. Previously, we and other investigators had reported that two unusual zinc finger motifs at the C-terminus of ETO mediated binding to N-CoR. Here, using mammalian two-hybrid assays, we found that transcription repression by ETO was substantially decreased when either zinc finger motif of ETO is deleted or mutated. In addition, we identified a second transcription repression domain located between residues 275 and 487. Characterization of the ETO interaction domains within human N-CoR and of the transcription domains of ETO is a first step in designing targeted molecular therapy for t(8;21) AML.
Collapse
Affiliation(s)
- Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences, Peking Union Medical College, 288 Nanjing Road, Tianjin, PR China
| | | | | |
Collapse
|
70
|
Gangemi RMR, Perera M, Corte G. Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem 2004; 89:286-306. [PMID: 15056273 DOI: 10.1046/j.1471-4159.2004.02310.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.
Collapse
|
71
|
Yan M, Jones MEE, Hernandez M, Liu D, Simpson ER, Chen C. Functional modification of pituitary somatotropes in the aromatase knockout mouse and the effect of estrogen replacement. Endocrinology 2004; 145:604-12. [PMID: 14563698 DOI: 10.1210/en.2003-0646] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Available data on the influence of estradiol (E(2)) on GH levels remains controversial. A factor contributing to this uncertainty is a lack of knowledge of both E(2) action on somatotropes as well as the molecular mechanisms involved. In this study we investigated gene expression implicated in GH secretion in somatotropes derived from female aromatase knockout (ArKO) mice. In these mice E(2) production is blocked due to disruption of the Cyp19 gene encoding aromatase, the enzyme responsible for estrogen biosynthesis. The effect of E(2) replacement was also studied by in vivo treatment of mice with E(2) for 3 wk. It was demonstrated that somatotropes from ArKO mice had a low expression of GH, GH secretagogue receptor, GHRH receptor (GHRH-R), and pituitary-specific transcription factor (Pit-1). On the other hand, the somatotropes exhibited elevated expression of somatostatin receptors (sst1-5). Overall, these effects resulted in a reduction in GH secretion. E(2) replacement increased GHRH-R, Pit-1, and GH mRNA levels to 185%, 193%, and 157% and reduced the levels of sst1, sst2, sst4, and sst5 mRNA expression in ArKO mice, respectively. E(2) replacement did not affect the levels of pituitary estrogen (alpha and beta) and androgen receptor mRNA expression. It is concluded that the expression of important genes involved in GH synthesis in somatotropes of the female ArKO mouse are functionally down-regulated, and such a down-regulation is reversed to normal levels by E(2) replacement. The levels of GH secretagogue receptor, GHRH-R, and Pit-1 mRNA expression were also reduced, and sst1 and sst3 mRNA expression enhanced in aging ArKO and wild-type mice, resulting in a decrease in GH mRNA expression. It is suggested that aging is another important impact factor for the pituitary expression and regulation of GH mRNA in female mice.
Collapse
Affiliation(s)
- Ming Yan
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
72
|
Sharp ZD, Stenoien DL, Mancini MG, Ouspenski II, Mancini MA. Inactivating Pit-1 mutations alter subnuclear dynamics suggesting a protein misfolding and nuclear stress response. J Cell Biochem 2004; 92:664-78. [PMID: 15211565 DOI: 10.1002/jcb.20028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pit-1, a POU-class nuclear DNA-binding transcription factor, specifies three of the parenchymal cell types in anterior pituitary ontogeny. Using fluorescent fusions and live cell imaging, we have compared the dynamic behavior of wild-type and inactivating Pit-1 point mutations. Fluorescence recovery after photobleaching (FRAP) and real-time extraction data indicate that wild-type Pit-1 has a dynamic mobility profile, with t(1/2s) approximately 5-7 s when expressed from low to high amounts, respectively. Biochemically, Pit-1 is approximately 50% retained according to direct observation during extraction, indicating a dynamic interaction with nuclear structure. An analysis of transiently expressed Pit-1 carrying two different debilitating mutations reveals that they translocate normally to the nucleus, but exhibit two different levels of mobility, both clearly distinguishable from wild-type Pit-1. At low expression levels, the t(1/2s) of Pit(W261C) and Pit(A158P) are extremely rapid (0.3 and 0.6 s t(1/2s), respectively). At higher expression levels, unlike wild-type Pit-1, both mutant proteins become immobilized and insoluble, and fractionate completely with the insoluble nuclear matrix. Relative to wild-type, over expression of mutated Pit-1 elicits a nuclear stress response indicated by increased levels of heat shock inducible heat shock protein 70 (Hsp70), and reorganization of heat shock factor-1. The decreased mobility of Pit(A158P) relative to Pit(W261C) at low expression levels correlates with its ability to partially activate when expressed at low levels and its ability to bind cognate DNA. At high expression levels, lower Pit(A158P) activation correlates with its immobilization and insolubility. These data suggest a link between specific rates of intranuclear mobility and Pit-1 transcription function, perhaps to insure sufficient interactions with chromatin, or in the case of non-DNA binding Pit-1, interaction as a repressor. These data imply inactivating mutations can lead to an intranuclear sorting away from transcription related pathways, and at least in part to a misfolded protein pathway. Taken together, caution is suggested when interpreting point (or other) mutational analyses of transactivator function, as new compartmentation, especially in the context of expression levels, may cloud the distinction between defining functional molecular domains and intranuclear processing of misfolded proteins.
Collapse
Affiliation(s)
- Z Dave Sharp
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, USA
| | | | | | | | | |
Collapse
|
73
|
Carvalho LR, Woods KS, Mendonca BB, Marcal N, Zamparini AL, Stifani S, Brickman JM, Arnhold IJP, Dattani MT. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction. J Clin Invest 2003; 112:1192-201. [PMID: 14561704 PMCID: PMC213489 DOI: 10.1172/jci18589] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The paired-like homeobox gene expressed in embryonic stem cells Hesx1/HESX1 encodes a developmental repressor and is expressed in early development in a region fated to form the forebrain, with subsequent localization to Rathke's pouch, the primordium of the anterior pituitary gland. Mutations within the gene have been associated with septo-optic dysplasia, a constellation of phenotypes including eye, forebrain, and pituitary abnormalities, or milder degrees of hypopituitarism. We identified a novel homozygous nonconservative missense mutation (I26T) in the critical Engrailed homology repressor domain (eh1) of HESX1, the first, to our knowledge, to be described in humans, in a girl with evolving combined pituitary hormone deficiency born to consanguineous parents. Neuroimaging revealed a thin pituitary stalk with anterior pituitary hypoplasia and an ectopic posterior pituitary, but no midline or optic nerve abnormalities. This I26T mutation did not affect the DNA-binding ability of HESX1 but led to an impaired ability to recruit the mammalian Groucho homolog/Transducin-like enhancer of split-1 (Gro/TLE1), a crucial corepressor for HESX1, thereby leading to partial loss of repression. Thus, the novel pituitary phenotype highlighted here appears to be a specific consequence of the inability of HESX1 to recruit Groucho-related corepressors, suggesting that other molecular mechanisms govern HESX1 function in the forebrain.
Collapse
Affiliation(s)
- Luciani R Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, Disciplina de Endocrinologia, Hospital das Clinicas de Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Duval DL, Jean A, Gutierrez-Hartmann A. Ras signaling and transcriptional synergy at a flexible Ets-1/Pit-1 composite DNA element is defined by the assembly of selective activation domains. J Biol Chem 2003; 278:39684-96. [PMID: 12902343 DOI: 10.1074/jbc.m302433200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pit-1 and Ets-1 binding to a composite element synergistically activates and targets Ras-mitogen-activated protein kinase signaling to the rat prolactin promoter. These transcriptional responses appear to depend on three molecular features: organization of the Ets-1/Pit-1 composite element, physical interaction of these two factors via the Pit-1 homeodomain (amino acids 199-291) and the Ets-1 regulatory III domain (amino acids 190-257), and assembly of their transcriptional activation domains (TADs). Here we show that the organization of the Ets-1/Pit-1 composite element tolerates significant flexibility with regard to Ras stimulation and synergy. Specifically, the putative monomeric Pit-1 binding site can be substituted with bona fide binding sites for either a Pit-1 monomer or dimer, and these sites tolerated a separation of 28 bp. Additionally, we show that the physical interaction of Ets-1 and Pit-1 is not required for Ras responsiveness or synergy because block mutations of the Pit-1 interaction surface in Ets-1, which reduced Ets-1/Pit-1 binding in vitro, did not significantly affect Ets-1 stimulation of Ras responsiveness or synergy. We also show differential use of distinct TAD subtypes and Pit-1 TAD subregions to mediate either synergy or Ras responsiveness. Specifically, TADs from Gal4, VP16, or Ets-2 regulatory III domain linked to Ets-1 DNA binding domain constructs restored synergy to these TAD/Ets-1 DNA binding domain fusions. Conversely, deletion of the defined Pit-1 TAD (amino acids 2-80) retained synergy, but not Ras responsiveness. Consequently, we further defined the Pit-1 amino-terminal TAD into region 1 (R1, amino acids 2-45) and region 2 (R2, amino acids 46-80). R1 appears to regulate basal and synergistic responses, whereas the Ras response was mapped to R2. In summary, Ras responsiveness and Pit-1/Ets-1 synergy are mediated through the assembly of distinct TADs at a flexible composite element, indicating that different mechanisms underlie these two transcriptional responses and that the Pit-1 R2 subregion represents a novel, tissue-specific Ras-responsive TAD.
Collapse
Affiliation(s)
- Dawn L Duval
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
75
|
Targeted ablation of gonadotrophs in transgenic mice depresses prolactin but not growth hormone gene expression at birth as measured by quantitative mRNA detection. J Biomed Sci 2003. [DOI: 10.1007/bf02256333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
76
|
Polly P, Haddadi LM, Issa LL, Subramaniam N, Palmer SJ, Tay ESE, Hardeman EC. hMusTRD1alpha1 represses MEF2 activation of the troponin I slow enhancer. J Biol Chem 2003; 278:36603-10. [PMID: 12857748 DOI: 10.1074/jbc.m212814200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel transcription factor hMusTRD1alpha1 (human muscle TFII-I repeat domain-containing protein 1alpha1; previously named MusTRD1; O'Mahoney, J. V., Guven, K. L., Lin, J., Joya, J. E., Robinson, C. S., Wade, R. P., and Hardeman, E. C. (1998) Mol. Cell. Biol. 18, 6641-6652) was identified in a yeast one-hybrid screen as a protein that binds within an upstream enhancer-containing region of the skeletal muscle-specific gene, TNNI1 (human troponin I slow; hTnIslow). It has been proposed that hMusTRD1alpha1 may play an important role in fiber-specific muscle gene expression by virtue of its ability to bind to an Inr-like element (nucleotides -977 to -960) within the hTnIslow upstream enhancer-containing region that is necessary for slow fiber-specific expression. In this study we demonstrate that both MEF2C, a known regulator of slow fiber-specific genes, and hMusTRD1alpha1 regulate hTnIslow through the Inr-like element. Co-transfection assays in C2C12 cells and Cos-7 cells demonstrate that hMusTRD1alpha1 represses hTnIslow transcription and prevents MEF2C-mediated activation of hTnIslow transcription. Gel shift analysis shows that hMusTRD1alpha1 can abrogate MEF2C binding to its cognate site in the hTnIslow enhancer. Glutathione S-transferase pull-down assays demonstrate that hMusTRD1alpha1 can interact with both MEF2C and the nuclear receptor co-repressor. The data support the role of hMusTRD1alpha1 as a repressor of slow fiber-specific transcription through mechanisms involving direct interactions with MEF2C and the nuclear receptor co-repressor.
Collapse
Affiliation(s)
- Patsie Polly
- Muscle Development Unit, Children's Medical Research Institute, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | | | | | |
Collapse
|
77
|
Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR. CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J Biol Chem 2003; 278:36959-65. [PMID: 12857754 DOI: 10.1074/jbc.m303147200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) family members are transcription factors involved in important physiological processes, such as cellular proliferation and differentiation, regulation of energy homeostasis, inflammation, and hematopoiesis. Transcriptional activation by C/EBPalpha and C/EBPbeta involves the coactivators CREB-binding protein (CBP) and p300, which promote transcription by acetylating histones and recruiting basal transcription factors. In this study, we show that C/EBPdelta is also using CBP as a coactivator. Based on sequence homology with C/EBPalpha and -beta, we identify in C/EBPdelta two conserved amino acid segments that are necessary for the physical interaction with CBP. Using reporter gene assays, we demonstrate that mutation of these residues prevents CBP recruitment and diminishes the transactivating potential of C/EBPdelta. In addition, our results indicate that C/EBP family members not only recruit CBP but specifically induce its phosphorylation. We provide evidence that CBP phosphorylation depends on its interaction with C/EBPdelta and define point mutations within one of the two conserved amino acid segments of C/EBPdelta that abolish CBP phosphorylation as well as transcriptional activation, suggesting that this new mechanism could be important for C/EBP-mediated transcription.
Collapse
Affiliation(s)
- Krisztián A Kovács
- Department of Child and Adolescent Psychiatry, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
78
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
79
|
Vojtek AB, Taylor J, DeRuiter SL, Yu JY, Figueroa C, Kwok RPS, Turner DL. Akt regulates basic helix-loop-helix transcription factor-coactivator complex formation and activity during neuronal differentiation. Mol Cell Biol 2003; 23:4417-27. [PMID: 12808085 PMCID: PMC164860 DOI: 10.1128/mcb.23.13.4417-4427.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neural basic helix-loop-helix (bHLH) transcription factors regulate neurogenesis in vertebrates. Signaling by peptide growth factors also plays critical roles in regulating neuronal differentiation and survival. Many peptide growth factors activate phosphatidylinositol 3-kinase (PI3K) and subsequently the Akt kinases, raising the possibility that Akt may impact bHLH protein function during neurogenesis. Here we demonstrate that reducing expression of endogenous Akt1 and Akt2 by RNA interference (RNAi) reduces neuron generation in P19 cells transfected with a neural bHLH expression vector. The reduction in neuron generation from decreased Akt expression is not solely due to decreased cell survival, since addition of the caspase inhibitor z-VAD-FMK rescues cell death associated with loss of Akt function but does not restore neuron formation. This result indicates that Akt1 and Akt2 have additional functions during neuronal differentiation that are separable from neuronal survival. We show that activated Akt1 enhances complex formation between bHLH proteins and the transcriptional coactivator p300. Activated Akt1 also significantly augments the transcriptional activity of the bHLH protein neurogenin 3 in complex with the coactivators p300 or CBP. In addition, inhibition of endogenous Akt activity by the PI3K/Akt inhibitor LY294002 abolishes transcriptional cooperativity between the bHLH proteins and p300. We propose that Akt regulates the assembly and activity of bHLH-coactivator complexes to promote neuronal differentiation.
Collapse
Affiliation(s)
- Anne B Vojtek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Schausi D, Tiffoche C, Thieulant ML. Regulation of the intronic promoter of rat estrogen receptor alpha gene, responsible for truncated estrogen receptor product-1 expression. Endocrinology 2003; 144:2845-55. [PMID: 12810539 DOI: 10.1210/en.2003-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have characterized the intronic promoter of the rat estrogen receptor (ER) alpha gene, responsible for the lactotrope-specific truncated ER product (TERP)-1 isoform expression. Transcriptional regulation was investigated by transient transfections using 5'-deletion constructs. TERP promoter constructs were highly active in MMQ cells, a pure lactotrope cell line, whereas a low basal activity was detected in alphaT3-1 gonadotrope cells or in COS-7 monkey kidney cells. Serial deletion analysis revealed that 1) a minimal -693-bp region encompassing the TATA box is sufficient to allow lactotrope-specific expression; 2) the promoter contains strong positive cis-acting elements both in the distal and proximal regions, and 3) the region spanning the -1698/-1194 region includes repressor elements. Transient transfection studies, EMSAs, and gel shifts demonstrated that estrogen activates the TERP promoter via an estrogen-responsive element (ERE1) located within the proximal region. Mutation of ERE1 site completely abolishes the estradiol-dependent transcription, indicating that ERE1 site is sufficient to confer estrogen responsiveness to TERP promoter. In addition, ERalpha action was synergized by transfection of the pituitary-specific factor Pit-1. EMSAs showed that a single Pit-1 DNA binding element in the vicinity of the TATA box is sufficient to confer response by the TERP promoter. In conclusion, we demonstrated, for the first time, that TERP promoter regulation involves ERE and Pit-1 cis-elements and corresponding trans-acting factors, which could play a role in the physiological changes that occur in TERP-1 transcription in lactotrope cells.
Collapse
Affiliation(s)
- Diane Schausi
- Université de Rennes I, Interactions Cellulaires et Moléculaires, Equipe Information et Programmation Cellulaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6026, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | |
Collapse
|
81
|
Lazar MA. Nuclear receptor corepressors. NUCLEAR RECEPTOR SIGNALING 2003; 1:e001. [PMID: 16604174 PMCID: PMC1402229 DOI: 10.1621/nrs.01001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2003] [Accepted: 06/05/2003] [Indexed: 11/20/2022]
Abstract
The ability of NR LBDs to transfer repression function to a heterologous DNA binding domain, and the cross-squelching of repression by untethered LBDs, has suggested that repression is mediated by interactions with putative cellular corepressor proteins. The yeast-two hybrid screen for protein interactors has proven to be the key to the isolation and characterization of corepressors. This short review will focus on N-CoR and SMRT.
Collapse
Affiliation(s)
- Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
82
|
Osano K, Ono M. State of histone modification in the rat Ig-beta/growth hormone locus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2532-9. [PMID: 12755709 DOI: 10.1046/j.1432-1033.2003.03628.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The state of acetylation in H3 and H4 histones and dimethylation in the H3 histone Lys4 residue were examined by chromatin immunoprecipitation (ChIP) at 11 targets in the rat Ig-beta/growth hormone locus. Marked enhancement of the acetylation of histones H3 and H4 and the dimethylation of H3 Lys4 was observed in the chromatin situated close to the promoter of an actively transcribed gene. Chromatin positioned near a cell-type-specific DNase I-hypersensitive site with enhancer activity had the same histone modifications as the active promoter. In one transcribed intron, chromatin with fewer histone modifications was found, and in another transcribed intron, chromatin with markedly enhanced modifications was found. In most cases, no appreciable difference in the acetylation of histones H3 and H4 was found at prominently enhanced targets. However, different acetylation levels of H3 and H4 were found at one target. The targets with enhanced dimethylation of the H3 Lys4 residue coincided with those with prominently enhanced acetylation of histones H3 and H4.
Collapse
Affiliation(s)
- Kyoichi Osano
- Department of Life Science, and Frontier Project Life's Adaptation Strategies to Environmental Changes, College of Science, Rikkyo University, Tokyo, Japan
| | | |
Collapse
|
83
|
Yanazume T, Morimoto T, Wada H, Kawamura T, Hasegawa K. Biological role of p300 in cardiac myocytes. Mol Cell Biochem 2003; 248:115-9. [PMID: 12870662 DOI: 10.1023/a:1024132217870] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A cellular target of adenovirus E1A oncoprotein, p300 is a transcriptional coactivator required for the maintenance of differentiated phenotypes in cardiac myocytes. The full transcriptional activities of hypertrophy-responsive transcription factors such as GATA-4 and MEF2 require interaction with p300. A p300 protein also possesses intrinsic histone acetyl transferase activity, which promotes a transcriptionally active chromatin configuration. Here, we review the biological functions of p300 in cardiac myocytes. Although p300 is biologically active in many cell types, this protein appears to play a crucial role in the differentiation, growth and apoptosis of cardiac myocytes. Understanding precise mechanisms of its biological functions will shed light on molecular pathways for heart failure.
Collapse
Affiliation(s)
- Tetsuhiko Yanazume
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
84
|
Fernández M, Sánchez-Franco F, Palacios N, Sánchez I, Villuendas G, Cacicedo L. Involvement of vasoactive intestinal peptide on insulin-like growth factor I-induced proliferation of rat pituitary lactotropes in primary culture: evidence for an autocrine and/or paracrine regulatory system. Neuroendocrinology 2003; 77:341-52. [PMID: 12806180 DOI: 10.1159/000070900] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 03/17/2003] [Indexed: 11/19/2022]
Abstract
In previous studies we demonstrated that insulin-like growth factor I (IGF-I) induces pituitary vasoactive intestinal peptide (VIP) gene expression and secretion, and that IGF-I-induced prolactin (PRL) release is mediated by VIP. In this study, we investigate the mitotropic action of IGF-I and VIP on pituitary lactotropes, and their possible interplay in this effect. Cultured male rat pituitary cells were treated with rhIGF-I (10(-7)M) and/or VIP (10(-7)M) for 48 h. 5-Bromo-2'-deoxyuridine (BrdU) (10 microM) was added for labeling proliferation of pituitary cells. BrdU-labeling indices indicative of the proliferation rate of lactotropes were determined by double-labeling immunofluorescence staining for PRL and BrdU. Treatment with either IGF-I or VIP increased BrdU-labeling indices of lactotropes, but there was no further increase upon combined incubation with both factors, suggesting an interaction between the signal transduction pathways of IGF-I and VIP. VIP antiserum partially suppressed IGF-I-induced BrdU-labeling indices of lactotropes. We also investigated the intracellular signal transduction pathways in the action of IGF-I and VIP on the proliferation of lactotropes. Treatment of pituitary cells with an inhibitor of the mitogen-activated protein kinase (MAPK) pathway completely abolished IGF-I-induced lactotrope proliferation, whereas it partially suppressed VIP-induced BrdU-labeling indices. The protein kinase A (PKA) inhibitor, which abolished the mitogenic action of VIP, markedly suppressed IGF-I-induced lactotrope proliferation. These results indicate that both IGF-I and VIP stimulate lactotrope proliferation, and that IGF-I-induced lactotrope proliferation is partially mediated by VIP produced locally. Also, this study suggests that interactions between MAPK and cyclic adenosine 3',5'-monophosphate-PKA signaling pathways are implicated in the lactotrope proliferation induced by IGF-I and VIP.
Collapse
Affiliation(s)
- Miriam Fernández
- Servicio de Endocrinología, Hospital Ramón y Cajal, Carretera de Colmenar, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
85
|
Vanden Berghe W, De Bosscher K, Vermeulen L, De Wilde G, Haegeman G. Induction and repression of NF-kappa B-driven inflammatory genes. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:233-78. [PMID: 12355719 DOI: 10.1007/978-3-662-04660-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- W Vanden Berghe
- Unit of Eukaryotic Gene Expression and Signal Transduction, Department of Molecular Biology, University of Gent-VIB, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
86
|
Baek SH, Kioussi C, Briata P, Wang D, Nguyen HD, Ohgi KA, Glass CK, Wynshaw-Boris A, Rose DW, Rosenfeld MG. Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc Natl Acad Sci U S A 2003; 100:3245-50. [PMID: 12629224 PMCID: PMC152277 DOI: 10.1073/pnas.0330217100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2003] [Indexed: 11/18/2022] Open
Abstract
Pitx2 is a bicoid-related homeodomain factor that is required for effective cell type-specific proliferation directly activating a specific growth-regulating gene cyclin D2. Here, we report that Pitx2, in response to the Wntbeta-catenin pathway and growth signals, also can regulate c-Myc and cyclin D1. Investigation of molecular mechanisms required for Pitx2-dependent proliferation, in these cases, further supports a nuclear role for beta-catenin in preventing the histone deacetylase 1-dependent inhibitory functions of several DNA-binding transcriptional repressors, potentially including E2F4p130 pocket protein inhibitory complex, as well as lymphoid enhancer factor 1 and Pitx2, by dismissal of histone deacetylase 1 and loss of its enzymatic activity. Thus, beta-catenin plays a signal-integrating role in Wnt- and growth factor-dependent proliferation events in mammalian development by both derepressing several classes of repressors and by activating Pitx2, regulating the activity of several growth control genes.
Collapse
Affiliation(s)
- Sung Hee Baek
- Howard Hughes Medical Institute, Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
An extranuclear locus of cAMP-dependent protein kinase action is necessary and sufficient for promotion of spiral ganglion neuronal survival by cAMP. J Neurosci 2003. [PMID: 12574406 DOI: 10.1523/jneurosci.23-03-00777.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We showed previously that cAMP is a survival-promoting stimulus for cultured postnatal rat spiral ganglion neurons (SGNs) and that depolarization promotes SGN survival in part via recruitment of cAMP signaling. We here investigate the subcellular locus of cAMP prosurvival signaling. Transfection of GPKI, a green fluorescent protein (GFP)-tagged cAMP-dependent protein kinase (PKA) inhibitor, inhibits the ability of the permeant cAMP analog cpt-cAMP [8-(4-chlorophenylthio)-cAMP] to promote survival, indicating that PKA activity is necessary. Transfection of GFP-tagged PKA (GPKA) is sufficient to promote SGN survival, but restriction of GPKA to the nucleus by addition of a nuclear localization signal (GPKAnls) almost completely abrogates its prosurvival effect. In contrast, GPKA targeted to the extranuclear cytoplasm by addition of a nuclear export signal (GPKAnes) promotes SGN survival as effectively as does GPKA. Moreover, GPKI targeted to the nucleus lacks inhibitory effect on SGN survival attributable to cpt-cAMP or depolarization. These data indicate an extranuclear target of PKA for promotion of neuronal survival. Consistent with this, we find that dominant-inhibitory CREB mutants inhibit the prosurvival effect of depolarization but not that of cpt-cAMP. SGN survival is compromised by overexpression of the proapoptotic regulator Bad, previously shown to be phosphorylated in the cytoplasm by PKA. This Bad-induced apoptosis is prevented by cpt-cAMP or by cotransfection of GPKA or of GPKAnes but not of GPKAnls. Thus, cAMP prevents SGN death through a cytoplasmic as opposed to nuclear action, and inactivation of Bad proapoptotic function is a mechanism by which PKA can prevent neuronal death.
Collapse
|
88
|
Enwright JF, Kawecki-Crook MA, Voss TC, Schaufele F, Day RN. A PIT-1 homeodomain mutant blocks the intranuclear recruitment of the CCAAT/enhancer binding protein alpha required for prolactin gene transcription. Mol Endocrinol 2003; 17:209-22. [PMID: 12554749 PMCID: PMC2900764 DOI: 10.1210/me.2001-0222] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, including CCAAT/enhancer binding protein alpha (C/EBPalpha), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPalpha with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPalpha induced PRL gene transcription in pituitary GHFT1-5 cells, whereas the coexpression of Pit-1 and C/EBPalpha in HeLa cells demonstrated their cooperativity at the PRL promoter. Individually expressed Pit-1 or C/EBPalpha, fused to color variants of fluorescent proteins, occupied different subnuclear compartments in living pituitary cells. When coexpressed, Pit-1 recruited C/EBPalpha from regions of transcriptionally quiescent centromeric heterochromatin to the nuclear regions occupied by Pit-1. The homeodomain region of Pit-1 was necessary for the recruitment of C/EBPalpha. A point mutation in the Pit-1 homeodomain associated with the syndrome of combined pituitary hormone deficiency in humans also failed to recruit C/EBPalpha. This Pit-1 mutant functioned as a dominant inhibitor of PRL gene transcription and, instead of recruiting C/EBPalpha, was itself recruited by C/EBPalpha to centromeric heterochromatin. Together our results suggest that the intranuclear positioning of these factors determines whether they activate or silence PRL promoter activity.
Collapse
Affiliation(s)
- John F Enwright
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908-0578, USA
| | | | | | | | | |
Collapse
|
89
|
Li QJ, Yang SH, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M. MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J 2003; 22:281-91. [PMID: 12514134 PMCID: PMC140103 DOI: 10.1093/emboj/cdg028] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CBP/p300 recruitment to enhancer-bound complexes is a key determinant in promoter activation by many transcription factors. We present a novel mechanism of activating such complexes and show that pre-assembled Elk-1-p300 complexes become activated following Elk-1 phosphorylation by changes in Elk-1-p300 interactions rather than recruitment. It is known that Elk-1 binds to promoter in the absence of stimuli. However, it is unclear how activation of Elk-1 by mitogen-acivated protein kinase (MAPK)-mediated phosphorylation leads to targeted gene transactivation. We show that Elk-1 can interact with p300 in vitro and in vivo in the absence of a stimulus through the Elk-1 C-terminus and the p300 N-terminus. Phosphorylation on Ser383 and Ser389 of Elk-1 by MAPK enhances this basal binding but, most importantly, Elk-1 exhibits new interactions with p300. These interaction changes render a strong histone acetyltransferase activity in the Elk-1-associated complex that could play a critical role in chromatin remodeling and gene activation. The pre-assembly mechanism may greatly accelerate transcription activation, which is important in regulation of expression of immediate-early response genes, in particular those involved in stress responses.
Collapse
Affiliation(s)
| | - Shen-Hsi Yang
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA and
School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK Corresponding author e-mail:
| | | | | | - Andrew D. Sharrocks
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA and
School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK Corresponding author e-mail:
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA and
School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK Corresponding author e-mail:
| |
Collapse
|
90
|
Yalcin A, Koulich E, Mohamed S, Liu L, D'Mello SR. Apoptosis in cerebellar granule neurons is associated with reduced interaction between CREB-binding protein and NF-kappaB. J Neurochem 2003; 84:397-408. [PMID: 12559002 DOI: 10.1046/j.1471-4159.2003.01540.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cerebellar granule neurons undergo apoptosis when switched from medium containing depolarizing levels of potassium (high K+ medium, HK) to medium containing low K+ (LK). NF-kappaB, a ubiquitously expressed transcription factor, is involved in the survival-promoting effects of HK. However, neither the expression nor the intracellular localization of the five NF-kappaB proteins, or of IkappaB-alpha and IkappaB-beta, are altered in neurons primed to undergo apoptosis by LK, suggesting that uncommon mechanisms regulate NF-kappaB activity in granule neurons. In this study, we show that p65 interacts with the transcriptional co-activator, CREB-binding protein (CBP), in healthy neurons. The decrease in NF-kappaB transcriptional activity caused by LK treatment is accompanied by a reduction in the interaction between p65 and CBP, an alteration that is accompanied by hyperphosporylation of CBP. LK-induced CBP hyperphosphorylation can be mimicked by inhibitors of protein phosphatase (PP) 2A and PP2A-like phosphatases such as okadaic acid and cantharidin, which also causes a reduction in p65-CBP association. In addition, treatment with these inhibitors induces cell death. Treatment with high concentrations of the broad-spectrum kinase inhibitor staurosporine prevents LK-mediated CBP hyperphosphorylation and inhibits cell death. In vitro kinase assays using glutathione-S-transferase (GST)-CBP fusion proteins map the LK-regulated site of phosphorylation to a region spanning residues 1662-1840 of CBP. Our results are consistent with possibility that LK-induced apoptosis is triggered by CBP hyperphosphorylation, an alteration that causes the dissociation of CBP and NF-kappaB.
Collapse
Affiliation(s)
- Asligul Yalcin
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083, USA
| | | | | | | | | |
Collapse
|
91
|
Driggers PH, Segars JH. Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol Metab 2002; 13:422-7. [PMID: 12431838 PMCID: PMC4152897 DOI: 10.1016/s1043-2760(02)00634-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, distinct signaling pathways involving specific complexes of cytoplasmic proteins have been shown to orchestrate estrogen action. These pathways might supplement or augment genomic effects of estrogen that are attributable to transcriptional activation by liganded receptor. Signals might be transduced through phosphorylation of the estrogen receptors (ERs), or indirectly through effects upon transcriptional coactivators or cell receptors. Estrogen signaling is coupled to growth factor signaling with feedback mechanisms directly impacting function of growth factor receptors. These signaling pathways regulate important physiological processes, such as cell growth and apoptosis. Here, we focus on cytoplasmic signaling pathways leading to activation of ERs.
Collapse
Affiliation(s)
- Paul H Driggers
- Dept of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, USA.
| | | |
Collapse
|
92
|
Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw-Boris A, Rosenfeld MG. Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 2002; 111:673-85. [PMID: 12464179 DOI: 10.1016/s0092-8674(02)01084-x] [Citation(s) in RCA: 409] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding the cell type-specific molecular mechanisms by which distinct signaling pathways combinatorially control proliferation during organogenesis is a central issue in development and disease. Here, we report that the bicoid-related transcription factor Pitx2 is rapidly induced by the Wnt/Dvl/beta-catenin pathway and is required for effective cell-type-specific proliferation by directly activating specific growth-regulating genes. Regulated exchange of HDAC1/beta-catenin converts Pitx2 from repressor to activator, analogous to control of TCF/LEF1. Pitx2 then serves as a competence factor required for the temporally ordered and growth factor-dependent recruitment of a series of specific coactivator complexes that prove necessary for Cyclin D2 gene induction. The molecular strategy underlying interactions between the Wnt and growth factor-dependent signaling pathways in cardiac outflow tract and pituitary proliferation is likely to be prototypic of cell-specific proliferation strategies in other tissues.
Collapse
Affiliation(s)
- Chrissa Kioussi
- Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, CMM-West, Room 345, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kishimoto M, Okimura Y, Yagita K, Iguchi G, Fumoto M, Iida K, Kaji H, Okamura H, Chihara K. Novel function of the transactivation domain of a pituitary-specific transcription factor, Pit-1. J Biol Chem 2002; 277:45141-8. [PMID: 12200420 DOI: 10.1074/jbc.m202991200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pit-1 stimulates the expression of growth hormone, prolactin, and thyrotropin beta subunit genes. Consequently, abnormality of the Pit-1 gene results in combined pituitary hormone deficiency (CPHD). In this study, we analyzed the function of Pit-1 with a mutation (proline to leucine at codon 24) in the transactivation domain, P24L, which has a normal POU domain important for binding to DNA, because this mutation had been reported in a patient with CPHD. We found that codon 24 proline in the transactivation domain as well as the POU domain of Pit-1 was crucial to recruit coactivator CREB-binding protein (CBP) in the cultured cells. P24L completely lost the responsiveness to cAMP to stimulate the expression of the Pit-1-targeted genes. Furthermore, CBP and Pit-1, but not P24L, markedly enhanced the expression of the Pit-1-targeted gene to cAMP, and adenovirus E1a that binds to CBP and abrogates its function blocked the induction by cAMP of Pit-1-stimulated gene transcription in the pituitary-derived GH3 cells. These results suggest that CBP and proline at codon 24 in the transactivation domain of Pit-1 are important for the cAMP-induced activation of Pit-1-targeted genes. However, P24L maintained basal transcriptional activity, suggesting that CBP is unlikely to be an essential coactivator for Pit-1.
Collapse
Affiliation(s)
- Masahiko Kishimoto
- Division of Endocrinology/Metabolism, Neurology and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe University School of Medicine, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Quentien MH, Manfroid I, Moncet D, Gunz G, Muller M, Grino M, Enjalbert A, Pellegrini I. Pitx factors are involved in basal and hormone-regulated activity of the human prolactin promoter. J Biol Chem 2002; 277:44408-16. [PMID: 12223489 DOI: 10.1074/jbc.m207824200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pituitary-specific POU homeodomain factor Pit-1 likely interacts with other factors for cell-specific expression of prolactin. Here we identify the paired-like homeobox transcription factors Pitx1 and Pitx2 as factors functionally activating the proximal human prolactin promoter (hPRL-164luc). Using in vitro binding assays and a series of site-specific mutations of the proximal hPRL promoter, we mapped the B1 and B2 bicoid sites involved in Pitx-mediated transactivation of the hPRL-164luc construct. In somatolactotroph GH4C1 cells, basal proximal hPRL promoter activity was inhibited by a Pitx2 dominant-negative form in a dose-dependent manner, whereas binding disruptive mutations in the Pitx sites significantly reduced basal activity of the promoter. We also show that synergistic activation of hPRL-164luc by Pitx2 and Pit-1 requires the integrity of the B2 Pitx binding site, and at least one of the P1 and P2 Pit-1 response elements. In addition, mutation in the B2 Pitx site results in attenuation of the promoter's responsiveness to forskolin, thyrotropin-releasing hormone, and epidermal growth factor. Conversely, Pitx1 or Pitx2 overexpression in GH4C1 cells leads to an enhancement of the drugs stimulatory effects. Altogether, these results suggest that full responsiveness to several signaling pathways regulating the hPRL promoter requires the B2 Pitx binding site and that Pitx factors may be part of the proteic complex involved in these regulations. Finally, in situ hybridization analysis showing coexpression of the PRL and Pitx2 genes in rat and human lactotroph cells corroborates the physiological relevance of these results.
Collapse
|
95
|
Gordon DF, Woodmansee WW, Black JN, Dowding JM, Bendrick-Peart J, Wood WM, Ridgway EC. Domains of Pit-1 required for transcriptional synergy with GATA-2 on the TSH beta gene. Mol Cell Endocrinol 2002; 196:53-66. [PMID: 12385825 DOI: 10.1016/s0303-7207(02)00223-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that Pit-1 functionally cooperates with GATA-2 to stimulate transcription of the TSH beta gene. Pit-1 and GATA-2 are uniquely coexpressed in pituitary thyrotropes and activate transcription by binding to a composite promoter element. To define the domains of Pit-1 important for functional cooperativity with GATA-2, we cotransfected a set of Pit-1 deletions with an mTSH beta-luciferase reporter. Plasmids were titrated to express equivalent amounts of protein. A mutant containing a deletion of the hinge region between the POU and homeodomains retained the ability to fully synergize with GATA-2. In contrast, mutants containing deletions of amino acids 2-80 or 72-125 demonstrated 56 or 34% of the synergy found with the full-length protein, suggesting that these regions contributed to cooperativity. Mutants with deletions of the POU-specific or homeodomain further reduced the effect signifying the requirement for DNA binding. GST interaction studies demonstrated that only the homeodomain of Pit-1 interacted with GATA-2. Finally, several mutations between the Pit-1 and GATA-2 sites on the TSH beta promoter reduced binding for each factor and greatly reduced ternary complex formation. Thus multiple domains of Pit-1 are required for full synergy with GATA-2 and sequences between the two binding sites contribute to co-occupancy with both factors on the proximal TSH beta promoter.
Collapse
Affiliation(s)
- David F Gordon
- Department of Medicine, University of Colorado Health Sciences Center, Box B151, 4200 E Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Yuan LW, Soh JW, Weinstein IB. Inhibition of histone acetyltransferase function of p300 by PKCdelta. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:205-11. [PMID: 12379484 DOI: 10.1016/s0167-4889(02)00327-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein kinase Cdelta (PKCdelta) is one of the functionally distinct isoforms in PKC family. p300 is a histone acetyltransferase/transcription coactivator. They share certain properties, such as ubiquitous expression, growth and tumor suppression, and ability to enhance differentiation and apoptosis. In this study, we found that PKCdelta but not classical PKC, specifically phosphorylates p300 at serine 89 in vitro and in vivo. This phosphorylation causes inhibition of p300 intrinsic HAT activity. Subsequently, the targeted acetylation of nucleosomal histones is markedly reduced, which causes repression of p300 transcription coactivator function. These findings identify a new signal transduction pathway by which PKCdelta may inhibit cell growth and promote cellular differentiation.
Collapse
Affiliation(s)
- L W Yuan
- Department of Physiology and Biophysics, School of Medicine, Boston University, 715 Albany St., MA 02118, USA.
| | | | | |
Collapse
|
97
|
Weber W, Fussenegger M. Artificial mammalian gene regulation networks-novel approaches for gene therapy and bioengineering. J Biotechnol 2002; 98:161-87. [PMID: 12141985 DOI: 10.1016/s0168-1656(02)00130-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recently developed strategies for targeted molecular interventions in mammalian cells have created novel opportunities in biotechnological and biomedical research with huge economic and therapeutic impact: the design of mammalian cells with desired phenotypes for biopharmaceutical manufacturing, tissue engineering and gene therapy. These advances have been enabled by constructing artificial gene regulation systems with control modalities similar to those evolved in key regulatory networks of mammalian cells. This review highlights recurring cellular regulation strategies and artificial gene regulation technology currently in use for rational reprogramming of cellular key events including metabolism, growth, differentiation and cell death to achieve sophisticated bioprocess and therapeutic goals.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich ETH Hoenggerberg, HPT, Switzerland
| | | |
Collapse
|
98
|
Augustijn KD, Duval DL, Wechselberger R, Kaptein R, Gutierrez-Hartmann A, van der Vliet PC. Structural characterization of the PIT-1/ETS-1 interaction: PIT-1 phosphorylation regulates PIT-1/ETS-1 binding. Proc Natl Acad Sci U S A 2002; 99:12657-62. [PMID: 12242337 PMCID: PMC130516 DOI: 10.1073/pnas.192693499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The POU-domain transcription factor Pit-1 and Ets-1, a member of the ETS family of transcription factors, can associate in solution and synergistically activate the prolactin promoter by binding to a composite response element in the prolactin promoter. We mapped the minimal region of Ets-1 required for the interaction with the Pit-1 POU-homeodomain. Here, we describe a detailed NMR study of the interaction between the POU-homeodomain of Pit-1 and the minimal interacting region of Ets-1. By using heteronuclear single quantum coherence titration experiments, we were able to map exact residues on the POU-homeodomain that are involved in the interaction with this minimal Ets-1 interaction domain. By using our NMR data, we generated point mutants in the POU-homeodomain and tested their effect on the interaction with Ets-1. Our results show that phosphorylation of Pit-1 can regulate the interaction with Ets-1.
Collapse
Affiliation(s)
- Kevin D Augustijn
- Department of Physiological Chemistry, University Medical Center Utrecht and Center for Biomedical Genetics, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
99
|
Shewchuk BM, Liebhaber SA, Cooke NE. Specification of unique Pit-1 activity in the hGH locus control region. Proc Natl Acad Sci U S A 2002; 99:11784-9. [PMID: 12189206 PMCID: PMC129346 DOI: 10.1073/pnas.182418199] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human GH (hGH) gene cluster is regulated by a remote 5' locus control region (LCR). HSI, an LCR component located 14.5 kb 5' to the hGH-N promoter, constitutes the primary determinant of high-level hGH-N activation in pituitary somatotropes. HSI encompasses an array of three binding sites for the pituitary-specific POU homeodomain factor Pit-1. In the present report we demonstrate that all three Pit-1 sites in the HSI array contribute to LCR activity in vivo. Furthermore, these three sites as a unit are fully sufficient for position-independent and somatotrope-restricted hGH-N transgene activation. In contrast, the hGH-N transgene is not activated by Pit-1 sites native to either the hGH-N or rat (r)GH gene promoters. These findings suggest that the structures of the Pit-1 binding sites at HSI specify distinct chromatin-dependent activities essential for LCR-mediated activation of hGH in the developing pituitary.
Collapse
Affiliation(s)
- Brian M Shewchuk
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
100
|
Voss TC, Day RN. Editorial: Pitx-2 mutants and somatolactotroph gene regulation--deciphering the combinatorial code. Endocrinology 2002; 143:2836-8. [PMID: 12130546 DOI: 10.1210/endo.143.8.9999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|