51
|
Calo D, Eichler J. Crossing the membrane in Archaea, the third domain of life. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:885-91. [PMID: 20347718 DOI: 10.1016/j.bbamem.2010.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/16/2022]
Abstract
Many of the recent advancements in the field of protein translocation, particularly from the structural perspective, have relied on Archaea. For instance, the solved structures of the translocon from the methanoarchaeon Methanocaldococcus jannaschii of the ribosomal large subunit from the haloarchaeon Haloarcula marismortui and of components of the SRP pathway from several archaeal species have provided novel insight into various aspects of the translocation event. Given the major contribution that Archaea have made to our understanding of how proteins enter and traverse membranes, it is surprising that relatively little is known of protein translocation in Archaea in comparison to the well-defined translocation pathways of Eukarya and Bacteria. What is known, however, points to archaeal translocation as comprising a mosaic of eukaryal and bacterial traits together with aspects of the process seemingly unique to this, the third domain of life. Here, current understanding of archaeal protein translocation is considered. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Doron Calo
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | | |
Collapse
|
52
|
Reinau ME, Thøgersen IB, Enghild JJ, Nielsen KL, Otzen DE. The diversity of FtsY-lipid interactions. Biopolymers 2010; 93:595-606. [DOI: 10.1002/bip.21404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
53
|
Yosef I, Bochkareva ES, Adler J, Bibi E. Membrane protein biogenesis in Ffh- or FtsY-depleted Escherichia coli. PLoS One 2010; 5:e9130. [PMID: 20161748 PMCID: PMC2817740 DOI: 10.1371/journal.pone.0009130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Escherichia coli version of the mammalian signal recognition particle (SRP) system is required for biogenesis of membrane proteins and contains two essential proteins: the SRP subunit Ffh and the SRP-receptor FtsY. Scattered in vivo studies have raised the possibility that expression of membrane proteins is inhibited in cells depleted of FtsY, whereas Ffh-depletion only affects their assembly. These differential results are surprising in light of the proposed model that FtsY and Ffh play a role in the same pathway of ribosome targeting to the membrane. Therefore, we decided to evaluate these unexpected results systematically. Methodology/Principal Findings We characterized the following aspects of membrane protein biogenesis under conditions of either FtsY- or Ffh-depletion: (i) Protein expression, stability and localization; (ii) mRNA levels; (iii) folding and activity. With FtsY, we show that it is specifically required for expression of membrane proteins. Since no changes in mRNA levels or membrane protein stability were detected in cells depleted of FtsY, we propose that its depletion may lead to specific inhibition of translation of membrane proteins. Surprisingly, although FtsY and Ffh function in the same pathway, depletion of Ffh did not affect membrane protein expression or localization. Conclusions Our results suggest that indeed, while FtsY-depletion affects earlier steps in the pathway (possibly translation), Ffh-depletion disrupts membrane protein biogenesis later during the targeting pathway by preventing their functional assembly in the membrane.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Elena S. Bochkareva
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
54
|
Guymer D, Maillard J, Agacan MF, Brearley CA, Sargent F. Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping. FEBS J 2010; 277:511-25. [PMID: 20064164 DOI: 10.1111/j.1742-4658.2009.07507.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial twin-arginine translocation (Tat) system is a protein targeting pathway dedicated to the transport of folded proteins across the cytoplasmic membrane. Proteins transported on the Tat pathway are synthesised as precursors with N-terminal signal peptides containing a conserved amino acid motif. In Escherichia coli, many Tat substrates contain prosthetic groups and undergo cytoplasmic assembly processes prior to the translocation event. A pre-export 'Tat proofreading' process, mediated by signal peptide-binding chaperones, is considered to prevent premature export of some Tat-targeted proteins until all other assembly processes are complete. TorD is a paradigm Tat proofreading chaperone and co-ordinates the maturation and export of the periplasmic respiratory enzyme trimethylamine N-oxide reductase (TorA). Although it is well established that TorD binds directly to the TorA signal peptide, the mechanism of regulation or control of binding is not understood. Previous structural analyses of TorD homologues showed that these proteins can exist as monomeric and domain-swapped dimeric forms. In the present study, we demonstrate that isolated recombinant TorD exhibits a magnesium-dependent GTP hydrolytic activity, despite the absence of classical nucleotide-binding motifs in the protein. TorD GTPase activity is shown to be present only in the domain-swapped homodimeric form of the protein, thus defining a biochemical role for the oligomerisation. Site-directed mutagenesis identified one TorD side-chain (D68) that was important in substrate selectivity. A D68W variant TorD protein was found to exhibit an ATPase activity not observed for native TorD, and an in vivo assay established that this variant was defective in the Tat proofreading process.
Collapse
Affiliation(s)
- David Guymer
- College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
55
|
Yuan J, Zweers JC, van Dijl JM, Dalbey RE. Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 2010; 67:179-99. [PMID: 19823765 PMCID: PMC11115550 DOI: 10.1007/s00018-009-0160-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/13/2009] [Accepted: 09/21/2009] [Indexed: 12/21/2022]
Abstract
In the three domains of life, the Sec, YidC/Oxa1, and Tat translocases play important roles in protein translocation across membranes and membrane protein insertion. While extensive studies have been performed on the endoplasmic reticular and Escherichia coli systems, far fewer studies have been done on archaea, other Gram-negative bacteria, and Gram-positive bacteria. Interestingly, work carried out to date has shown that there are differences in the protein transport systems in terms of the number of translocase components and, in some cases, the translocation mechanisms and energy sources that drive translocation. In this review, we will describe the different systems employed to translocate and insert proteins across or into the cytoplasmic membrane of archaea and bacteria.
Collapse
Affiliation(s)
- Jijun Yuan
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 USA
| | - Jessica C. Zweers
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 30001, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 30001, 9700 RB Groningen, The Netherlands
| | - Ross E. Dalbey
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
56
|
Reinau ME, Otzen DE. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids. Arch Biochem Biophys 2009; 492:48-53. [PMID: 19800309 DOI: 10.1016/j.abb.2009.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
The cytosolic protein Ffh transports membrane proteins from the ribosome to the inner membrane in complex with 4.5S RNA. Here we show that native Ffh binds to the hydrophobic probe ANS in a 1 Ffh:3 ANS stoichiometry, revealing a hydrophobic binding site. Thermal precipitation of Ffh is shifted upwards by approximately 10 degrees C by ANS or substrate protein, suggesting that the hydrophobic binding site makes the protein aggregation prone. Chemical denaturation confirm that Ffh is a rather unstable protein. 4.5S RNA destabilizes Ffh further, suggesting it keeps the protein in a more open conformation than the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's alpha-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude that Ffh is a structurally flexible and dynamic protein whose stability is significantly modulated by the environment.
Collapse
Affiliation(s)
- Marika E Reinau
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | |
Collapse
|
57
|
Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 2009; 461:361-6. [PMID: 19675567 DOI: 10.1038/nature08319] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/27/2009] [Indexed: 11/09/2022]
Abstract
Targeting of newly synthesized membrane proteins to the endoplasmic reticulum is an essential cellular process. Most membrane proteins are recognized and targeted co-translationally by the signal recognition particle. However, nearly 5% of membrane proteins are 'tail-anchored' by a single carboxy-terminal transmembrane domain that cannot access the co-translational pathway. Instead, tail-anchored proteins are targeted post-translationally by a conserved ATPase termed Get3. The mechanistic basis for tail-anchored protein recognition or targeting by Get3 is not known. Here we present crystal structures of yeast Get3 in 'open' (nucleotide-free) and 'closed' (ADP.AlF(4)(-)-bound) dimer states. In the closed state, the dimer interface of Get3 contains an enormous hydrophobic groove implicated by mutational analyses in tail-anchored protein binding. In the open state, Get3 undergoes a striking rearrangement that disrupts the groove and shields its hydrophobic surfaces. These data provide a molecular mechanism for nucleotide-regulated binding and release of tail-anchored proteins during their membrane targeting by Get3.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Department of Biochemistry & Molecular Biology, The University of Chicago, Gordon Center for Integrative Science, Room W238, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Philip AF, Eisenman KT, Papadantonakis GA, Hoff WD. Functional tuning of photoactive yellow protein by active site residue 46. Biochemistry 2009; 47:13800-10. [PMID: 19102703 DOI: 10.1021/bi801730y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-ligand interactions alter the properties of active site groups to achieve specific biological functions. The active site of photoactive yellow protein (PYP) provides a model system for studying such functional tuning. PYP is a small bacterial photoreceptor with photochemistry based on its p-coumaric acid (pCA) chromophore. The absorbance maximum and pK(a) of the pCA in the active site of native PYP are shifted from 400 nm and 8.8 in water to 446 nm and 2.8 in the native protein milieu, respectively, by protein-ligand interactions. We report high-throughput microscale methods for the purification and spectroscopic investigation of PYP and use these to examine the role of active site residue Glu46 in PYP, which is hydrogen bonded to the pCA anion. The functional and structural attributes of the 19 substitution mutants of PYP at critical active site position 46 vary widely, with absorbance maxima from 441 to 478 nm, pCA fluorescence quantum yields from 0.19 to 1.4%, pCA pK(a) values from 3.0 to 9.0, and protein folding stabilities from 6.5 to 12.9 kcal/mol. The kinetics of the last photocycle transition vary by more than 4 orders of magnitude and are often strongly biphasic. Only E46Q PYP exhibits a greatly accelerated photocycling rate. All substitutions yield a folded, photoactive PYP, illustrating the robustness of protein structure and function. Correlations between side chain and mutant properties establish the importance of residue 46 in tuning the function of PYP and the significance of the strength of its hydrogen bond to the pCA. Native PYP exhibits the lowest values for pCA fluorescence quantum yield and pK(a), indicating their functional relevance. These results demonstrate the value of quantitative high-throughput biophysical studies of proteins.
Collapse
Affiliation(s)
- Andrew F Philip
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
59
|
Clérico EM, Szymańska A, Gierasch LM. Exploring the interactions between signal sequences and E. coli SRP by two distinct and complementary crosslinking methods. Biopolymers 2009; 92:201-11. [PMID: 19280642 PMCID: PMC2896254 DOI: 10.1002/bip.21181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photoaffinity crosslinking comprises a group of invaluable techniques used to investigate in detail a binding interaction between two polypeptides. As the diverse photo crosslinking techniques available display inherent differences, the method of choice will provide specific information about a particular system under study. We used two complementary crosslinking approaches: photo-induced crosslinking of unmodified proteins (PICUP) and benzophenone-mediated (BPM) crosslinking to extensively examine the interaction between the signal recognition particle (SRP) and signal sequences. Signal peptide binding by SRP presents a central puzzle in the protein targeting process because signal sequences must be recognized with fidelity but lack strict primary structural homology. The concurrent use of PICUP and BPM crosslinking to link signal peptides to E. coli SRP allowed us to explore the crosslinking pattern resulting from using different crosslinking chemistries, varying the position of the photoprobe in the hydrophobic core of the signal sequence, and shifting the crosslinking reactive group away from the signal peptide backbone. By PICUP, signal peptides crosslinked exclusively to the NG domain of the SRP protein Ffh, regardless of the position of the reactive residue. Benzophenone-modified amino acids preferentially crosslinked the signal peptide to the C-terminal (M) domain of Ffh. We conclude that signal peptide binding is largely mediated by the M domain. Importantly, our data also indicate intimate, at least transient, contacts between the hydrophobic core of the signal peptide and the NG domain. These results reopen the possibility of a direct involvement of the NG domain in signal sequence recognition.
Collapse
Affiliation(s)
- Eugenia M. Clérico
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Massachusetts, Amherst MA 01003, U.S.A
| | - Aneta Szymańska
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst MA 01003, U.S.A
- Department of Chemistry, University of Massachusetts, Amherst MA 01003, U.S.A
| |
Collapse
|
60
|
Buskiewicz IA, Jöckel J, Rodnina MV, Wintermeyer W. Conformation of the signal recognition particle in ribosomal targeting complexes. RNA (NEW YORK, N.Y.) 2009; 15:44-54. [PMID: 19029307 PMCID: PMC2612770 DOI: 10.1261/rna.1285609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/14/2008] [Indexed: 05/27/2023]
Abstract
The bacterial signal recognition particle (SRP) binds to ribosomes synthesizing inner membrane proteins and, by interaction with the SRP receptor, FtsY, targets them to the translocon at the membrane. Here we probe the conformation of SRP and SRP protein, Ffh, at different stages of targeting by measuring fluorescence resonance energy transfer (FRET) between fluorophores placed at various positions within SRP. Distances derived from FRET indicate that SRP binding to nontranslating ribosomes triggers a global conformational change of SRP that facilitates binding of the SRP receptor, FtsY. Binding of SRP to a signal-anchor sequence exposed on a ribosome-nascent chain complex (RNC) causes a further change of the SRP conformation, involving the flexible part of the Ffh(M) domain, which increases the affinity for FtsY of ribosome-bound SRP up to the affinity exhibited by the isolated NG domain of Ffh. This indicates that in the RNC-SRP complex the Ffh(NG) domain is fully exposed for binding FtsY to form the targeting complex. Binding of FtsY to the RNC-SRP complex results in a limited conformational change of SRP, which may initiate subsequent targeting steps.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | |
Collapse
|
61
|
Clérico EM, Maki JL, Gierasch LM. Use of synthetic signal sequences to explore the protein export machinery. Biopolymers 2008; 90:307-19. [PMID: 17918185 DOI: 10.1002/bip.20856] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The information for correct localization of newly synthesized proteins in both prokaryotes and eukaryotes resides in self-contained, often transportable targeting sequences. Of these, signal sequences specify that a protein should be secreted from a cell or incorporated into the cytoplasmic membrane. A central puzzle is presented by the lack of primary structural homology among signal sequences, although they share common features in their sequences. Synthetic signal peptides have enabled a wide range of studies of how these "zipcodes" for protein secretion are decoded and used to target proteins to the protein machinery that facilitates their translocation across and integration into membranes. We review research on how the information in signal sequences enables their passenger proteins to be correctly and efficiently localized. Synthetic signal peptides have made possible binding and crosslinking studies to explore how selectivity is achieved in recognition by the signal sequence-binding receptors, signal recognition particle, or SRP, which functions in all organisms, and SecA, which functions in prokaryotes and some organelles of prokaryotic origins. While progress has been made, the absence of atomic resolution structures for complexes of signal peptides and their receptors has definitely left many questions to be answered in the future.
Collapse
Affiliation(s)
- Eugenia M Clérico
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
62
|
Affiliation(s)
- Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| | - Nico Nouwen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| |
Collapse
|
63
|
Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 2008; 33:75-89. [PMID: 18360008 DOI: 10.1247/csf.07044] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic cells cope with endoplasmic reticulum (ER) stress by activating the unfolded protein response (UPR), a coordinated system of transcriptional and translational controls, which ensures the integrity of synthesized proteins. Mammalian cells express three UPR transducers in the ER, namely IRE1, PERK and ATF6. The IRE1 pathway, which is conserved from yeast to humans, mediates transcriptional induction of not only ER quality control proteins (molecular chaperones, folding enzymes and components of ER-associated degradation) but also proteins working at various stages of secretion. The PERK pathway, conserved in metazoan cells, is responsible for translational control and also participates in transcriptional control in mammals. ATF6 is an ER-membrane-bound transcription factor activated by ER stress-induced proteolysis which consists of two closely related factors, ATF6alpha and ATF6beta, in mammals. ATF6alpha but not ATF6beta plays an important role in transcriptional control. In this study, we performed a genome-wide search for ATF6alpha-target genes in mice. Only 30 of the 14,729 analyzable genes were identified as specific targets, of which 40% were ER quality control proteins, 20% were ER proteins, while the rest had miscellaneous functions. The negative effects of the absence of PERK on transcriptional induction of ER quality control proteins could be explained by its inhibitory effect on ATF6alpha activation. Further, proteins involved in transport from the ER are not regulated by ATF6alpha, and transport of folded cargo molecules from the ER was not affected by the absence of ATF6alpha. Based on these results, we propose that ATF6 is a transcription factor specialized in the regulation of ER quality control proteins.
Collapse
Affiliation(s)
- Yusuke Adachi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
64
|
Pyhtila B, Zheng T, Lager PJ, Keene JD, Reedy MC, Nicchitta CV. Signal sequence- and translation-independent mRNA localization to the endoplasmic reticulum. RNA (NEW YORK, N.Y.) 2008; 14:445-53. [PMID: 18192611 PMCID: PMC2248262 DOI: 10.1261/rna.721108] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The process of mRNA localization typically utilizes cis-targeting elements and trans-recognition factors to direct the compartmental organization of translationally suppressed mRNAs. mRNA localization to the endoplasmic reticulum (ER), in contrast, occurs via a co-translational, signal sequence/signal recognition particle (SRP)-dependent mechanism. We have utilized cell fractionation/cDNA microarray analysis, shRNA-mediated suppression of SRP expression, and mRNA reporter construct studies to define the role of the SRP pathway in ER-directed mRNA localization. Cell fractionation studies of mRNA partitioning between the cytosol and ER demonstrated the expected enrichment of cytosolic/nucleoplasmic protein-encoding mRNAs and secretory/integral membrane protein-encoding mRNAs in the cytosol and ER fractions, respectively, and identified a subpopulation of cytosolic/nucleoplasmic protein-encoding mRNAs in the membrane-bound mRNA pool. The latter finding suggests a signal sequence-independent pathway of ER-directed mRNA localization. Extending from these findings, mRNA partitioning was examined in stable SRP54 shRNA knockdown HeLa cell lines. shRNA-directed reductions in SRP did not globally alter mRNA partitioning patterns, although defects in membrane protein processing were observed, further suggesting the existence of multiple pathways for mRNA localization to the ER. ER localization of GRP94-encoding mRNA was observed when translation was disabled by mutation of the start codon/insertion of a 5'UTR stem-loop structure or upon deletion of the encoded signal sequence. Combined, these data indicate that the mRNA localization to the ER can be conferred independent of the signal sequence/SRP pathway and suggest that mRNA localization to the ER may utilize cis-encoded targeting information.
Collapse
Affiliation(s)
- Brook Pyhtila
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
65
|
Chandrasekar S, Chartron J, Jaru-Ampornpan P, Shan SO. Structure of the chloroplast signal recognition particle (SRP) receptor: domain arrangement modulates SRP-receptor interaction. J Mol Biol 2007; 375:425-36. [PMID: 18035371 DOI: 10.1016/j.jmb.2007.09.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 08/24/2007] [Accepted: 09/20/2007] [Indexed: 11/18/2022]
Abstract
The signal recognition particle (SRP) pathway mediates co-translational targeting of nascent proteins to membranes. Chloroplast SRP is unique in that it does not contain the otherwise universally conserved SRP RNA, which accelerates the association between the SRP guanosine-5'-triphosphate (GTP) binding protein and its receptor FtsY in classical SRP pathways. Recently, we showed that the SRP and SRP receptor (SR) GTPases from chloroplast (cpSRP54 and cpFtsY, respectively) can interact with one another 400-fold more efficiently than their bacterial homologues, thus providing an explanation as to why this novel chloroplast SRP pathway bypasses the requirement for the SRP RNA. Here we report the crystal structure of cpFtsY from Arabidopsis thaliana at 2.0 A resolution. In this chloroplast SR, the N-terminal "N" domain is more tightly packed, and a more extensive interaction surface is formed between the GTPase "G" domain and the N domain than was previously observed in many of its bacterial homologues. As a result, the overall conformation of apo-cpFtsY is closer to that found in the bacterial SRP*FtsY complex than in free bacterial FtsY, especially with regard to the relative orientation of the N and G domains. In contrast, active-site residues in the G domain are mispositioned, explaining the low basal GTP binding and hydrolysis activity of free cpFtsY. This structure emphasizes proper N-G domain arrangement as a key factor in modulating the efficiency of SRP-receptor interaction and helps account, in part, for the faster kinetics at which the chloroplast SR interacts with its binding partner in the absence of an SRP RNA.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Arabidopsis/chemistry
- Arabidopsis/metabolism
- Binding Sites
- Chloroplasts/chemistry
- Conserved Sequence
- Crystallography, X-Ray
- GTP Phosphohydrolases/chemistry
- Hydrogen Bonding
- Hydrolysis
- Kinetics
- Malonates/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/isolation & purification
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/isolation & purification
- Receptors, Peptide/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
66
|
Miller JD, Walter P. A GTPase cycle in initiation of protein translocation across the endoplasmic reticulum membrane. CIBA FOUNDATION SYMPOSIUM 2007; 176:147-59; discussion 159-63. [PMID: 8299417 DOI: 10.1002/9780470514450.ch10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In higher eukaryotes proteins bearing a signal sequence are translocated across the membrane of the endoplasmic reticulum (ER). The initial events of protein translocation are the binding of the signal sequence by the 54 kDa subunit (SRP54) of the signal recognition particle (SRP) and the targeting of the ribosome nascent chain complex to the ER. Targeting is mediated by the binding of SRP to the SRP receptor, a membrane protein comprising two different subunits, SR alpha and SR beta. Interaction of SRP and SR alpha/SR beta causes release of the signal and the engagement of the nascent chain with the membrane-bound translocation apparatus. Both SRP54 and SR alpha contain homologous domains which include a predicted GTPase fold. The transmembrane protein SR beta also contains a GTPase domain, but it is not closely related to those of SRP54 and SR alpha. All three proteins bind GTP specifically, and the SR alpha/SR beta complex stimulates both GTP binding to and GTP hydrolysis by SRP54. We suggest a model for the initiation of protein translocation across the ER in which SR alpha beta catalyses a cycle of GTP binding, hydrolysis and release by SRP54 that regulates its dissociation from the signal sequence.
Collapse
Affiliation(s)
- J D Miller
- Department of Biochemistry and Biophysics, School of Medicine, University of California, San Francisco 94143-0448
| | | |
Collapse
|
67
|
Hainzl T, Huang S, Sauer-Eriksson AE. Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle. Proc Natl Acad Sci U S A 2007; 104:14911-6. [PMID: 17846429 PMCID: PMC1986587 DOI: 10.1073/pnas.0702467104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Indexed: 11/18/2022] Open
Abstract
The signal-recognition particle (SRP) is a ubiquitous protein-RNA complex that targets proteins to cellular membranes for insertion or secretion. A key player in SRP-mediated protein targeting is the evolutionarily conserved core consisting of the SRP RNA and the multidomain protein SRP54. Communication between the SRP54 domains is critical for SRP function, where signal sequence binding at the M domain directs receptor binding at the GTPase domain (NG domain). These SRP activities are linked to domain rearrangements, for which the role of SRP RNA is not clear. In free SRP, a direct interaction of the GTPase domain with SRP RNA has been proposed but has never been structurally verified. In this study, we present the crystal structure at 2.5-A resolution of the SRP54-SRP19-SRP RNA complex of Methanococcus jannaschii SRP. The structure reveals an RNA-bound conformation of the SRP54 GTPase domain, in which the domain is spatially well separated from the signal peptide binding site. The association of both the N and G domains with SRP RNA in free SRP provides further structural evidence for the pivotal role of SRP RNA in the regulation of the SRP54 activity.
Collapse
Affiliation(s)
- Tobias Hainzl
- Umeå Center for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
68
|
Gawronski-Salerno J, Coon JS, Focia PJ, Freymann DM. X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases. Proteins 2007; 66:984-95. [PMID: 17186523 PMCID: PMC3543818 DOI: 10.1002/prot.21200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
FtsY and Ffh are structurally similar prokaryotic Signal Recognition Particle GTPases that play an essential role in the Signal Recognition Particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The two GTPases assemble in a GTP-dependent manner to form a heterodimeric SRP targeting complex. We report here the 2.1 A X-ray structure of FtsY from T. aquaticus bound to GDP. The structure of the monomeric protein reveals, unexpectedly, canonical binding interactions for GDP. A comparison of the structures of the monomeric and complexed FtsY NG GTPase domain suggests that it undergoes a conformational change similar to that of Ffh NG during the assembly of the symmetric heterodimeric complex. However, in contrast to Ffh, in which the C-terminal helix shifts independently of the other subdomains, the C-terminal helix and N domain of T. aquaticus FtsY together behave as a rigid body during assembly, suggesting distinct mechanisms by which the interactions of the NG domain "module" are regulated in the context of the two SRP GTPases.
Collapse
Affiliation(s)
| | | | | | - Douglas M. Freymann
- Correspondence to: Douglas M. Freymann, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611.
| |
Collapse
|
69
|
Gawronski-Salerno J, Freymann DM. Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY. J Struct Biol 2007; 158:122-8. [PMID: 17184999 PMCID: PMC2566988 DOI: 10.1016/j.jsb.2006.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 11/20/2022]
Abstract
Ffh and FtsY are GTPase components of the signal recognition particle co-translational targeting complex that assemble during the SRP cycle to form a GTP-dependent and pseudo twofold symmetric heterodimer. Previously the SRP GTPase heterodimer has been stabilized and purified for crystallographic studies using both the non-hydrolysable GTP analog GMPPCP and the pseudo-transition state analog GDP:AlF4, revealing in both cases a buried nucleotide pair that bridges and forms a key element of the heterodimer interface. A complex of Ffh and FtsY from Thermus aquaticus formed in the presence of the analog GMPPNP could not be obtained, however. The origin of this failure was previously unclear, and it was thought to have arisen from either instability of the analog, or, alternatively, from differences in its interactions within the tightly conscribed composite active site chamber of the complex. Using insights gained from the previous structure determinations, we have now determined the structure of the SRP GTPase targeting heterodimer stabilized by the non-hydrolysable GTP analog GMPPNP. The structure demonstrates how the different GTP analogs are accommodated within the active site chamber despite slight differences in the geometry of the phosphate chain. It also reveals a K+ coordination site at the highly conserved DARGG loop at the N/G interdomain interface.
Collapse
Affiliation(s)
- Joseph Gawronski-Salerno
- Dept. of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Ave., Chicago, IL 60611
| | - Douglas M. Freymann
- Dept. of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Ave., Chicago, IL 60611
| |
Collapse
|
70
|
Wu S, Ke A, Doudna JA. A fast and efficient procedure to produce scFvs specific for large macromolecular complexes. J Immunol Methods 2006; 318:95-101. [PMID: 17126854 PMCID: PMC2920608 DOI: 10.1016/j.jim.2006.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/30/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
We have expanded the application of antibody phage display to a new type of antigen: ribonucleoprotein (RNP) complexes. We describe a simple and efficient method for screening antibodies specific for large intact RNPs and individual components. We also describe a fast and easy method to overcome the abundance of amber stop codons in the positive phage clones. The resulting antibodies have been used in ELISA and Western blot analysis.
Collapse
Affiliation(s)
- Si Wu
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA
| | - Ailong Ke
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA
| | - Jennifer A Doudna
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Corresponding author. 301B/E Hildebrand Hall, University of California, Berkeley, CA 94720, USA. Tel: 510-643-0225; Fax: 510-643-0080. Email address:
| |
Collapse
|
71
|
Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 2006; 444:507-11. [PMID: 17086193 DOI: 10.1038/nature05326] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/10/2006] [Indexed: 11/08/2022]
Abstract
Membrane and secretory proteins can be co-translationally inserted into or translocated across the membrane. This process is dependent on signal sequence recognition on the ribosome by the signal recognition particle (SRP), which results in targeting of the ribosome-nascent-chain complex to the protein-conducting channel at the membrane. Here we present an ensemble of structures at subnanometre resolution, revealing the signal sequence both at the ribosomal tunnel exit and in the bacterial and eukaryotic ribosome-SRP complexes. Molecular details of signal sequence interaction in both prokaryotic and eukaryotic complexes were obtained by fitting high-resolution molecular models. The signal sequence is presented at the ribosomal tunnel exit in an exposed position ready for accommodation in the hydrophobic groove of the rearranged SRP54 M domain. Upon ribosome binding, the SRP54 NG domain also undergoes a conformational rearrangement, priming it for the subsequent docking reaction with the NG domain of the SRP receptor. These findings provide the structural basis for improving our understanding of the early steps of co-translational protein sorting.
Collapse
Affiliation(s)
- Mario Halic
- Gene Center, Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Dreanno C, Matsumura K, Dohmae N, Takio K, Hirota H, Kirby RR, Clare AS. An alpha2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc Natl Acad Sci U S A 2006; 103:14396-401. [PMID: 16983086 PMCID: PMC1599974 DOI: 10.1073/pnas.0602763103] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Indexed: 11/18/2022] Open
Abstract
Many benthic marine invertebrates, like barnacles, have a planktonic larval stage whose primary purpose is dispersal. How these species colonize suitable substrata is fundamental to understanding their evolution, population biology, and wider community dynamics. Unlike larval dispersal, settlement occurs on a relatively small spatial scale and involves larval behavior in response to physical and chemical characteristics of the substratum. Biogenic chemical cues have been implicated in this process. Their identification, however, has proven challenging, no more so than for the chemical basis of barnacle gregariousness, which was first described >50 years ago. We now report that a biological cue to gregarious settlement, the settlement-inducing protein complex (SIPC), of the major fouling barnacle Balanus amphitrite is a previously undescribed glycoprotein. The SIPC shares a 30% sequence homology with the thioester-containing family of proteins that includes the alpha(2)-macroglobulins. The cDNA (5.2 kb) of the SIPC encodes a protein precursor comprising 1,547 aa with a 17-residue signal peptide region. A number of structural characteristics and the absence of a thioester bond in the SIPC suggest that this molecule is a previously undescribed protein that may have evolved by duplication from an ancestral alpha(2)-macroglobulin gene. Although the SIPC is regarded as an adult cue that is recognized by the cyprid at settlement, it is also expressed in the juvenile and in larvae, where it may function in larva-larva settlement interactions.
Collapse
Affiliation(s)
- Catherine Dreanno
- *School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Kiyotaka Matsumura
- Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
- Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
| | | | - Koji Takio
- RIKEN Spring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan; and
| | | | - Richard R. Kirby
- **School of Biological Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Anthony S. Clare
- *School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
73
|
Angelini S, Boy D, Schiltz E, Koch HG. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. ACTA ACUST UNITED AC 2006; 174:715-24. [PMID: 16923832 PMCID: PMC2064314 DOI: 10.1083/jcb.200606093] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRα subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRβ subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane. However, the mechanisms that are involved in this membrane association are only poorly understood. Our data indicate that membrane association of FtsY involves two distinct binding sites and that binding to both sites is stabilized by blocking its GTPase activity. Binding to the first site requires only the NG-domain of FtsY and confers protease protection to FtsY. Importantly, the SecY translocon provides the second binding site, to which FtsY binds to form a carbonate-resistant 400-kD FtsY–SecY translocon complex. This interaction is stabilized by the N-terminal A-domain of FtsY, which probably serves as a transient lipid anchor.
Collapse
Affiliation(s)
- Sandra Angelini
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
74
|
Zanen G, Antelmann H, Meima R, Jongbloed JDH, Kolkman M, Hecker M, van Dijl JM, Quax WJ. Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics 2006; 6:3636-48. [PMID: 16705751 DOI: 10.1002/pmic.200500560] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The bacterial signal recognition particle (SRP)-dependent pathway is believed to be a major targeting route for membrane proteins, as well as for subsets of secretory proteins. The present studies were aimed at an assessment of the role of two key components of SRP, namely Ffh and FtsY, in protein secretion by the Gram-positive bacterium Bacillus subtilis. Our results show that both components are important for the extracellular accumulation of proteins containing known signal peptides. Remarkably, extracellular accumulation of individual proteins was affected to different extents by depletion of Ffh or FtsY, at least under the conditions tested. Moreover, the observed Ffh or FtsY dependence of certain secretory proteins did not seem to correlate with signal peptide length or hydrophobicity. Although it is presently difficult to distinguish between direct and indirect effects, these findings suggest that other, yet unidentified, determinants in secretory proteins are also important for their SRP dependence. High-level production of homologous and heterologous secretory proteins was shown to result in elevated cellular Ffh and FtsY levels. This phenomenon is, most likely, due to post-transcriptional regulation. In conclusion, the present proteomic dissection of SRP-dependent extracellular protein accumulation provides exciting leads to identify novel determinants for interactions between secretory proteins and SRP.
Collapse
Affiliation(s)
- Geeske Zanen
- Department of Pharmaceutical Biology, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Focia PJ, Gawronski-Salerno J, Coon JS, Freymann DM. Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site. J Mol Biol 2006; 360:631-43. [PMID: 16780874 PMCID: PMC3539414 DOI: 10.1016/j.jmb.2006.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/07/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The signal recognition particle (SRP) GTPases Ffh and FtsY play a central role in co-translational targeting of proteins, assembling in a GTP-dependent manner to generate the SRP targeting complex at the membrane. A suite of residues in FtsY have been identified that are essential for the hydrolysis of GTP that accompanies disengagement. We have argued previously on structural grounds that this region mediates interactions that serve to activate the complex for disengagement and term it the activation region. We report here the structure of a complex of the SRP GTPases formed in the presence of GDP:AlF4. This complex accommodates the putative transition-state analog without undergoing significant change from the structure of the ground-state complex formed in the presence of the GTP analog GMPPCP. However, small shifts that do occur within the shared catalytic chamber may be functionally important. Remarkably, an external nucleotide interaction site was identified at the activation region, revealed by an unexpected contaminating GMP molecule bound adjacent to the catalytic chamber. This site exhibits conserved sequence and structural features that suggest a direct interaction with RNA plays a role in regulating the activity of the SRP targeting complex.
Collapse
Affiliation(s)
- Pamela J Focia
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
76
|
Lustig Y, Goldshmidt H, Uliel S, Michaeli S. The Trypanosoma brucei signal recognition particle lacks the Alu-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi. J Cell Sci 2006; 118:4551-62. [PMID: 16179612 DOI: 10.1242/jcs.02578] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosomes are protozoan parasites that have a major impact on human health and that of livestock. These parasites represent a very early branch in the eukaryotic lineage, and possess unique RNA processing mechanisms. The trypanosome signal recognition particle (SRP) is also unusual in being the first signal recognition particle described in nature to be comprised of two RNA molecules, the 7SL RNA and a tRNA-like molecule. In this study, we further elucidated the unique properties of this particle. The genes encoding three SRP proteins (SRP19, SRP72 and SRP68) were identified by bioinformatics analysis. Silencing of these genes by RNAi suggests that the SRP-mediated protein translocation pathway is essential for growth. The depletion of SRP72 and SRP68 induced sudden death, most probably as a result of toxicity due to the accumulation of the pre-SRP in the nucleolus. Purification of the trypanosome particle to homogeneity, by TAP-tagging, identified four SRP proteins (SRP72, SRP68, SRP54 and SRP19), but no Alu-domain-binding protein homologs. This study highlights the unique features of the trypanosome SRP complex and further supports the hypothesis that the tRNA-like molecule present in this particle may replace the function of the Alu-domain-binding proteins present in many eukaryotic SRP complexes.
Collapse
Affiliation(s)
- Yaniv Lustig
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
77
|
Abstract
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.
Collapse
Affiliation(s)
- David D Sabatini
- New York University School of Medicine, New York, NY 10016-6497, USA.
| |
Collapse
|
78
|
Buskiewicz I, Kubarenko A, Peske F, Rodnina MV, Wintermeyer W. Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY. RNA (NEW YORK, N.Y.) 2005; 11:947-57. [PMID: 15923378 PMCID: PMC1370779 DOI: 10.1261/rna.7242305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The signal recognition particle (SRP) mediates membrane targeting of translating ribosomes displaying a signal-anchor sequence. In Escherichia coli, SRP consists of 4.5S RNA and a protein, Ffh, that recognizes the signal peptide emerging from the ribosome and the SRP receptor at the membrane, FtsY. In the present work, we studied the interactions between the NG and M domains in Ffh and their rearrangements upon complex formation with 4.5S RNA and/or FtsY. In free Ffh, the NG and M domains are facing one another in an orientation that allows cross-linking between positions 231 in the G domain and 377 in the M domain. There are binding interactions between the two domains, as the isolated domains form a strong complex. The interdomain contacts are disrupted upon binding of Ffh to 4.5S RNA, consuming a part of the total binding energy of 4.5S RNA-Ffh association that is roughly equivalent to the free energy of domain binding to each other. In the SRP particle, the NG domain binds to 4.5S RNA in a region adjacent to the binding site of the M domain. Ffh binding to FtsY also requires a reorientation of NG and M domains. These results suggest that in free Ffh, the binding sites for 4.5S RNA and FtsY are occluded by strong domain-domain interactions which must be disrupted for the formation of SRP or the Ffh-FtsY complex.
Collapse
Affiliation(s)
- Iwona Buskiewicz
- Institute of Molecular Biology, University of Witten/Herdecke, Germany
| | | | | | | | | |
Collapse
|
79
|
Zwieb C, Eichler J. Getting on target: the archaeal signal recognition particle. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:27-34. [PMID: 15803656 PMCID: PMC2685543 DOI: 10.1155/2002/729649] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein translocation begins with the efficient targeting of secreted and membrane proteins to complexes embedded within the membrane. In Eukarya and Bacteria, this is achieved through the interaction of the signal recognition particle (SRP) with the nascent polypeptide chain. In Archaea, homologs of eukaryal and bacterial SRP-mediated translocation pathway components have been identified. Biochemical analysis has revealed that although the archaeal system incorporates various facets of the eukaryal and bacterial targeting systems, numerous aspects of the archaeal system are unique to this domain of life. Moreover, it is becoming increasingly clear that elucidation of the archaeal SRP pathway will provide answers to basic questions about protein targeting that cannot be obtained from examination of eukaryal or bacterial models. In this review, recent data regarding the molecular composition, functional behavior and evolutionary significance of the archaeal signal recognition particle pathway are discussed.
Collapse
Affiliation(s)
- Christian Zwieb
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
- Corresponding author ()
| |
Collapse
|
80
|
Paraoan L, Ratnayaka A, Spiller DG, Hiscott P, White MRH, Grierson I. Unexpected intracellular localization of the AMD-associated cystatin C variant. Traffic 2005; 5:884-95. [PMID: 15479453 DOI: 10.1111/j.1600-0854.2004.00230.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cystatin C is abundantly expressed by the retinal pigment epithelium (RPE) of the eye. Targeting of cystatin C to the Golgi apparatus and processing through the secretory pathway of RPE cells are dependent upon a 26-amino acid signal sequence of precursor cystatin C. A variant with an alanine (A) to threonine (T) mutation in the penultimate amino acid of the signal sequence (A25T) was recently correlated with increased risk of developing exudative age-related macular degeneration. The biochemical consequence of the A25T mutation upon targeting of the protein is reported here. Targeting and trafficking of full-length mutant (A25T) precursor cystatin C-enhanced green fluorescent protein fusion protein were studied in living, cultured retinal pigment epithelial and HeLa cells. Confocal microscopy studies were substantiated by immunodetection. In striking contrast to wild-type precursor cystatin C fusion protein conspicuously targeted to the Golgi apparatus, the threonine variant was associated principally with mitochondria. Some diffuse fluorescence was also observed throughout the cytoplasm and nucleus (but not nucleoli). Secretion of fusion protein derived from the threonine variant was reduced by approximately 50% compared with that of the wild-type cystatin C fusion protein. Expression of the variant fusion protein did not appear to impair expression or secretion of endogenous cystatin C.
Collapse
Affiliation(s)
- Luminita Paraoan
- Unit of Ophthalmology, Department of Medicine, Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
81
|
Pidikiti R, Shamim M, Mallela KMG, Reddy KS, Johansson JS. Expression and Characterization of a Four-α-Helix Bundle Protein That Binds the Volatile General Anesthetic Halothane. Biomacromolecules 2005; 6:1516-23. [PMID: 15877373 DOI: 10.1021/bm049226a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structural features of volatile anesthetic binding sites on proteins are being investigated with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. The current study describes the bacterial expression, purification, and initial characterization of the four-alpha-helix bundle (Aalpha(2)-L1M/L38M)(2). The alpha-helical content and stability of the expressed protein are comparable to that of the chemically synthesized four-alpha-helix bundle (Aalpha(2)-L38M)(2) reported earlier. The affinity for binding halothane is somewhat improved with a K(d) = 120 +/- 20 microM as determined by W15 fluorescence quenching, attributed to the L1M substitution. Near-UV circular dichroism spectroscopy demonstrated that halothane binding changes the orientation of the aromatic residues in the four-alpha-helix bundle. Nuclear magnetic resonance experiments reveal that halothane binding results in narrowing of the peaks in the amide region of the one-dimensional proton spectrum, indicating that bound anesthetic limits protein dynamics. This expressed protein should prove to be amenable to nuclear magnetic resonance structural studies on the anesthetic complexes, because of its relatively small size (124 residues) and the high affinities for binding volatile anesthetics. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules and will provide guidelines regarding the general architecture of binding sites on central nervous system proteins.
Collapse
Affiliation(s)
- Ravindernath Pidikiti
- Departments of Anesthesia, and the Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
82
|
Abstract
Co-translational targeting of secretory and membrane proteins to the translocation machinery is mediated by the signal recognition particle (SRP) and its membrane-bound receptor (SR) in all three domains of life. Although the overall composition of the SRP system differs, the central ribonucleoprotein core and the general mechanism of GTP-dependent targeting are highly conserved. Recently, structural studies have contributed significantly to our understanding of the molecular organization of SRP. SRP appears as a structurally flexible particle modulated and regulated by its interactions with the ribosome-nascent chain complex, the translocon and the SR. The SRP core (SRP54 with its cognate RNA binding site) plays a central role in these interactions and communicates the different binding states by long-range interdomain communication. Based on recent structures of SRP54, a model for signal peptide binding stimulating the GTP affinity during the first step of the SRP cycle is presented. The model is placed in the context of the recent structures of mammalian SRP bound to a ribosome-nascent chain complex and of a subcomplex of SRP-SR.
Collapse
Affiliation(s)
- Klemens Wild
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
83
|
Abstract
Signal recognition particles and their receptors target ribosome nascent chain complexes of preproteins toward the protein translocation apparatus of the cell. The discovery of essential SRP components in the third urkingdom of the phylogenetic tree, the archaea (Woese, C. R., and Fox, G. E. (1977). Proc. Natl. Acad. Sci. U.S.A. 74, 5088-5090) raises questions concerning the structure and composition of the archaeal signal recognition particle as well as the functions that route nascent prepoly peptide chains to the membrane. Investigations of the archaeal SRP pathway could therefore identify novel aspects of this process not previously reported or unique to archaea when compared with the respective eukaryal and bacterial systems.
Collapse
Affiliation(s)
- Ralf G Moll
- Department of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
84
|
Chu F, Shan SO, Moustakas DT, Alber F, Egea PF, Stroud RM, Walter P, Burlingame AL. Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry. Proc Natl Acad Sci U S A 2004; 101:16454-9. [PMID: 15546976 PMCID: PMC528904 DOI: 10.1073/pnas.0407456101] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the methods used to unravel protein interaction surfaces, chemical cross-linking followed by identification of the cross-linked peptides by mass spectrometry has proven especially useful in dynamic and complex systems. During the signal recognition particle (SRP)-dependent targeting of proteins to the bacterial plasma membrane, the specific interaction between Ffh (the protein component of SRP) and FtsY (the SRP receptor) is known to be essential for the efficiency and fidelity of this process. In this work, we studied the Escherichia coli and Thermus aquaticus Ffh.FtsY complexes by using chemical cross-linking and tandem mass spectrometry to identify nine intermolecular cross-linked peptides. This information was used in conjunction with a previously undescribed model-building approach that combines geometric restraint optimization with macromolecular docking. The resulting model of the Ffh.FtsY complex is in good agreement with the crystal structure solved shortly thereafter. Intriguingly, four of the cross-linked pairs involve the M domain of Ffh, which is absent from the crystal structure, providing previously undocumented experimental evidence that the M domain is positioned in close proximity to the Ffh.FtsY interface in the complex.
Collapse
Affiliation(s)
- Feixia Chu
- Mass Spectrometry Facility, University of California, San Francisco 94143-0046, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
The signal recognition particle (SRP) directs integral membrane and secretory proteins to the cellular protein translocation machinery during translation. The SRP is an evolutionarily conserved RNA-protein complex whose activities are regulated by GTP hydrolysis. Recent structural investigations of SRP functional domains and interactions provide new insights into the mechanisms of SRP activity in all cells, leading toward a comprehensive understanding of protein trafficking by this elegant pathway.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94705, USA.
| | | |
Collapse
|
86
|
Ren YG, Wagner KW, Knee DA, Aza-Blanc P, Nasoff M, Deveraux QL. Differential regulation of the TRAIL death receptors DR4 and DR5 by the signal recognition particle. Mol Biol Cell 2004; 15:5064-74. [PMID: 15356269 PMCID: PMC524775 DOI: 10.1091/mbc.e04-03-0184] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) death receptors DR4 and DR5 facilitate the selective elimination of malignant cells through the induction of apoptosis. From previous studies the regulation of the DR4 and DR5 cell-death pathways appeared similar; nevertheless in this study we screened a library of small interfering RNA (siRNA) for genes, which when silenced, differentially affect DR4- vs. DR5-mediated apoptosis. These experiments revealed that expression of the signal recognition particle (SRP) complex is essential for apoptosis mediated by DR4, but not DR5. Selective diminution of SRP subunits by RNA interference resulted in a dramatic decrease in cell surface DR4 receptors that correlated with inhibition of DR4-dependent cell death. Conversely, SRP silencing had little influence on cell surface DR5 levels or DR5-mediated apoptosis. Although loss of SRP function in bacteria, yeast and protozoan parasites causes lethality or severe growth defects, we observed no overt phenotypes in the human cancer cells studied--even in stable cell lines with diminished expression of SRP components. The lack of severe phenotype after SRP depletion allowed us to delineate, for the first time, a mechanism for the differential regulation of the TRAIL death receptors DR4 and DR5--implicating the SRP complex as an essential component of the DR4 cell-death pathway.
Collapse
Affiliation(s)
- Yan-Guo Ren
- Department of Cancer Biology, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
87
|
Sagar MB, Lucast L, Doudna JA. Conserved but nonessential interaction of SRP RNA with translation factor EF-G. RNA (NEW YORK, N.Y.) 2004; 10:772-8. [PMID: 15100432 PMCID: PMC1370567 DOI: 10.1261/rna.5266504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
4.5S RNA is essential for viability of Escherichia coli, and forms a key component of the signal recognition particle (SRP), a ubiquitous ribonucleoprotein complex responsible for cotranslational targeting of secretory proteins. 4.5S RNA also binds independently to elongation factor G (EF-G), a five-domain GTPase that catalyzes the translocation step during protein biosynthesis on the ribosome. Point mutations in EF-G suppress deleterious effects of 4.5S RNA depletion, as do mutations in the EF-G binding site within ribosomal RNA, suggesting that 4.5S RNA might play a critical role in ribosome function in addition to its role in SRP. Here we show that 4.5S RNA and EF-G form a phylogenetically conserved, low-affinity but highly specific complex involving sequence elements required for 4.5S binding to its cognate SRP protein, Ffh. Mutational analysis indicates that the same molecular structure of 4.5S RNA is recognized in each case. Surprisingly, however, the suppressor mutant forms of EF-G bind very weakly or undetectably to 4.5S RNA, implying that cells can survive 4.5S RNA depletion by decreasing the affinity between 4.5S RNA and the translational machinery. These data suggest that SRP function is the essential role of 4.5S RNA in bacteria.
Collapse
Affiliation(s)
- Madi Bidya Sagar
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
88
|
Ezraty B, Grimaud R, Hassouni ME, Moinier D, Barras F. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J 2004; 23:1868-77. [PMID: 15057280 PMCID: PMC394232 DOI: 10.1038/sj.emboj.7600172] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 02/23/2004] [Indexed: 11/09/2022] Open
Abstract
In proteins, methionine residues are primary targets for oxidation. Methionine oxidation is reversed by methionine sulfoxide reductases A and B, a class of highly conserved enzymes. Ffh protein, a component of the ubiquitous signal recognition particle, contains a methionine-rich domain, interacting with a small 4.5S RNA. In vitro analyses reported here show that: (i) oxidized Ffh is unable to bind 4.5S RNA, (ii) oxidized Ffh contains methionine sulfoxide residues, (iii) oxidized Ffh is a substrate for MsrA and MsrB enzymes; and (iv) MsrA/B repairing activities allow oxidized Ffh to recover 4.5S RNA-binding abilities. In vivo analyses reveal that: (i) Ffh synthesized in the msrA msrB mutant contains methionine sulfoxide residues and is unstable, (ii) msrA msrB mutant requires high levels of Ffh synthesis for growth and (iii) msrA msrB mutation leads to defects in Ffh-dependent targeting of MalF. We conclude that MsrA and MsrB are required to repair Ffh oxidized by reactive oxygen species produced by aerobic metabolism, establishing an as-yet undescribed link between protein targeting and oxidation.
Collapse
Affiliation(s)
- Benjamin Ezraty
- Laboratoire de Chimie Bactérienne, Institut Fédératif de Recherche Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, Marseille Cedex, France
| | - Régis Grimaud
- Laboratoire de Chimie Bactérienne, Institut Fédératif de Recherche Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, Marseille Cedex, France
| | - Mohammed El Hassouni
- Laboratoire de Chimie Bactérienne, Institut Fédératif de Recherche Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, Marseille Cedex, France
| | - Daniéle Moinier
- Laboratoire de Chimie Bactérienne, Institut Fédératif de Recherche Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, Marseille Cedex, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, Institut Fédératif de Recherche Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, Marseille Cedex, France
- Laboratoire de Chimie Bactérienne, Institut Fédératif de Recherche Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. Tel.: +33 4 91 16 45 79; Fax: +33 4 91 71 89 14; E-mail:
| |
Collapse
|
89
|
Halic M, Becker T, Pool MR, Spahn CMT, Grassucci RA, Frank J, Beckmann R. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 2004; 427:808-14. [PMID: 14985753 DOI: 10.1038/nature02342] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/16/2004] [Indexed: 11/09/2022]
Abstract
Cotranslational translocation of proteins across or into membranes is a vital process in all kingdoms of life. It requires that the translating ribosome be targeted to the membrane by the signal recognition particle (SRP), an evolutionarily conserved ribonucleoprotein particle. SRP recognizes signal sequences of nascent protein chains emerging from the ribosome. Subsequent binding of SRP leads to a pause in peptide elongation and to the ribosome docking to the membrane-bound SRP receptor. Here we present the structure of a targeting complex consisting of mammalian SRP bound to an active 80S ribosome carrying a signal sequence. This structure, solved to 12 A by cryo-electron microscopy, enables us to generate a molecular model of SRP in its functional conformation. The model shows how the S domain of SRP contacts the large ribosomal subunit at the nascent chain exit site to bind the signal sequence, and that the Alu domain reaches into the elongation-factor-binding site of the ribosome, explaining its elongation arrest activity.
Collapse
Affiliation(s)
- Mario Halic
- Institute of Biochemistry, Charité, University Medical School, Humboldt University of Berlin, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
90
|
Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM. Heterodimeric GTPase core of the SRP targeting complex. Science 2004; 303:373-7. [PMID: 14726591 PMCID: PMC3546161 DOI: 10.1126/science.1090827] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two structurally homologous guanosine triphosphatase (GTPase) domains interact directly during signal recognition particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The 2.05 angstrom structure of a complex of the NG GTPase domains of Ffh and FtsY reveals a remarkably symmetric heterodimer sequestering a composite active site that contains two bound nucleotides. The structure explains the coordinate activation of the two GTPases. Conformational changes coupled to formation of their extensive interface may function allosterically to signal formation of the targeting complex to the signal-sequence binding site and the translocon. We propose that the complex represents a molecular "latch" and that its disengagement is regulated by completion of assembly of the GTPase active site.
Collapse
|
91
|
Pohlschröder M, Dilks K, Hand NJ, Wesley Rose R. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev 2004; 28:3-24. [PMID: 14975527 DOI: 10.1016/j.femsre.2003.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/03/2003] [Accepted: 07/09/2003] [Indexed: 11/20/2022] Open
Abstract
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Mechthild Pohlschröder
- Department of Biology, University of Pennsylvania, 415 University Avenue, 201 Leidy Labs, Philadelphia, PA 19104-6018, USA.
| | | | | | | |
Collapse
|
92
|
Jones SE, Lloyd LJ, Tan KK, Buck M. Secretion defects that activate the phage shock response of Escherichia coli. J Bacteriol 2003; 185:6707-11. [PMID: 14594846 PMCID: PMC262093 DOI: 10.1128/jb.185.22.6707-6711.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phage shock protein (psp) operon of Escherichia coli is induced by membrane-damaging cues. Earlier studies linked defects in secretion across the inner membrane to induction of the psp response. Here we show that defects in yidC and sec secretion induce psp but that defects in tat and srp have no effect. We have also determined the cellular location of PspB and PspD proteins.
Collapse
Affiliation(s)
- Susan E Jones
- Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
93
|
Shepotinovskaya IV, Focia PJ, Freymann DM. Crystallization of the GMPPCP complex of the NG domains of Thermus aquaticus Ffh and FtsY. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2003; 59:1834-7. [PMID: 14501130 PMCID: PMC3543697 DOI: 10.1107/s0907444903016573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 07/28/2003] [Indexed: 11/10/2022]
Abstract
The GTPases Ffh and FtsY are components of the prokaryotic signal recognition particle protein-targeting pathway. The two proteins interact in a GTP-dependent manner, forming a complex that can be stabilized by use of the non-hydrolyzable GTP analog GMPPCP. Crystals of the complex of the NG GTPase domains of the two proteins have been obtained from ammonium sulfate solutions. Crystals grow with several different morphologies, predominately as poorly diffracting plates and needle clusters, but occasionally as well diffracting rods. It has been demonstrated that all forms of the crystals observed contain an intact complex. Diffraction data to 2.0 A resolution have been measured.
Collapse
|
94
|
Linde D, Volkmer-Engert R, Schreiber S, Müller JP. Interaction of the Bacillus subtilis chaperone CsaA with the secretory protein YvaY. FEMS Microbiol Lett 2003; 226:93-100. [PMID: 13129613 DOI: 10.1016/s0378-1097(03)00578-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacillus subtilis CsaA was previously characterised as a molecular chaperone with export-related activities. In order to elucidate the functionality of CsaA further, interaction with its postulated substrate YvaY was investigated. Similar binding to carrier immobilised mature and preYvaY revealed that the interaction was not mediated via the signal peptide of preYvaY. Higher affinity to denatured peptides compared to native peptides indicated preferred binding to unfolded proteins. To characterise affinity of CsaA more detailed, binding to preYvaY derived peptides was analysed. CsaA showed affinity to multiple peptides in the scan, mainly correlated to a positive net charge. Affinity of export-specific Escherichia coli chaperone SecB to the carrier immobilised peptides indicated partially overlapping binding characteristics of SecB and CsaA.
Collapse
Affiliation(s)
- Dirk Linde
- Institute for Molecular Biology, Jena University, Winzerlaer Strasse 10, D-07745, Jena, Germany
| | | | | | | |
Collapse
|
95
|
Graceffa P, Dominguez R. Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics. J Biol Chem 2003; 278:34172-80. [PMID: 12813032 DOI: 10.1074/jbc.m303689200] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A nucleotide-dependent conformational change regulates actin filament dynamics. Yet, the structural basis of this mechanism remains controversial. The x-ray crystal structure of tetramethylrhodamine-5-maleimide-actin with bound AMPPNP, a non-hydrolyzable ATP analog, was determined to 1.85-A resolution. A comparison of this structure to that of tetramethylrhodamine-5-maleimide-actin with bound ADP, determined previously under similar conditions, reveals how the release of the nucleotide gamma-phosphate sets in motion a sequence of events leading to a conformational change in subdomain 2. The side chain of Ser-14 in the catalytic site rotates upon Pi release, triggering the rearrangement of the loop containing the methylated His-73, referred to as the sensor loop. This in turn causes a transition in the DNase I-binding loop in subdomain 2 from a disordered loop in ATP-actin to an ordered alpha-helix in ADP-actin. Despite this conformational change, the nucleotide cleft remains closed in ADP-actin, similar to ATP-actin. An analysis of the existing structures of members of the actin superfamily suggests that the cleft is open in the nucleotide-free state.
Collapse
Affiliation(s)
- Philip Graceffa
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | |
Collapse
|
96
|
Legate KR, Andrews DW. The beta-subunit of the signal recognition particle receptor is a novel GTP-binding protein without intrinsic GTPase activity. J Biol Chem 2003; 278:27712-20. [PMID: 12759365 DOI: 10.1074/jbc.m302158200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-subunit of the signal recognition particle receptor (SRbeta), a member of the Ras family of small molecular weight GTPases, is involved in the targeting of nascent polypeptide chains to the protein translocation machinery in the endoplasmic reticulum membrane. We purified SRbeta from an expressing strain of Escherichia coli and investigated the properties of the isolated GTPase. We find that, unlike other Ras family GTPases, most SRbeta purifies bound to GTP, and SRbeta-bound GTP is not easily exchanged with solution GTP. SRbeta possesses no detectable GTPase activity. Although a stable interaction between SRbeta and ribosomes is observed, SRbeta is not stimulated to hydrolyze GTP when incubated with ribosomes or ribosome-nascent chains. A GTPase mutant harboring a mutation in a region predicted to be functionally important, based on observations made in related GTPases, binds GTP with faster kinetics and appears to be a less stable protein but otherwise displays similar properties to the wild-type SRbeta GTPase. Our results demonstrate that as an isolated GTPase, SRbeta functions differently from the Arf- and Ras-type GTPases that it is most closely related to by sequence.
Collapse
MESH Headings
- Animals
- Chromatography, High Pressure Liquid
- Cross-Linking Reagents/pharmacology
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Escherichia coli/metabolism
- GTP Phosphohydrolases/metabolism
- GTP-Binding Proteins/metabolism
- Guanosine Triphosphate/metabolism
- Humans
- Hydrolysis
- Intracellular Membranes/metabolism
- Kinetics
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Peptide/chemistry
- Receptors, Peptide/physiology
- Ribosomes/metabolism
- Saccharomyces cerevisiae/metabolism
- Spectrometry, Fluorescence
- Time Factors
- Ultraviolet Rays
Collapse
Affiliation(s)
- Kyle R Legate
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
97
|
Johnson AE, Chen JC, Flanagan JJ, Miao Y, Shao Y, Lin J, Bock PE. Structure, function, and regulation of free and membrane-bound ribosomes: the view from their substrates and products. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:531-41. [PMID: 12762055 DOI: 10.1101/sqb.2001.66.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A E Johnson
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Koch HG, Moser M, Müller M. Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev Physiol Biochem Pharmacol 2003; 146:55-94. [PMID: 12605305 DOI: 10.1007/s10254-002-0002-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The signal recognition particle (SRP) and its membrane-bound receptor represent a ubiquitous protein-targeting device utilized by organisms as different as bacteria and humans, archaea and plants. The unifying concept of SRP-dependent protein targeting is that SRP binds to signal sequences of newly synthesized proteins as they emerge from the ribosome. In eukaryotes this interaction arrests or retards translation elongation until SRP targets the ribosome-nascent chain complexes via the SRP receptor to the translocation channel. Such channels are present in the endoplasmic reticulum of eukaryotic cells, the thylakoids of chloroplasts, or the plasma membrane of prokaryotes. The minimal functional unit of SRP consists of a signal sequence-recognizing protein and a small RNA. The as yet most complex version is the mammalian SRP whose RNA, together with six proteinaceous subunits, undergo an intricate assembly process. The preferential substrates of SRP possess especially hydrophobic signal sequences. Interactions between SRP and its receptor, the ribosome, the signal sequence, and the target membrane are regulated by GTP hydrolysis. SRP-dependent protein targeting in bacteria and chloroplasts slightly deviate from the canonical mechanism found in eukaryotes. Pro- and eukaryotic cells harbour regulatory mechanisms to prevent a malfunction of the SRP pathway.
Collapse
Affiliation(s)
- H-G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| | | | | |
Collapse
|
99
|
Bae T, Schneewind O. The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol 2003; 185:2910-9. [PMID: 12700270 PMCID: PMC154403 DOI: 10.1128/jb.185.9.2910-2919.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many surface proteins of pathogenic gram-positive bacteria are linked to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins of Streptococcus pneumoniae harbor another motif, YSIRK-G/S, which is positioned within signal peptides. The signal peptides of some, but not all, of the 20 surface proteins of Staphylococcus aureus carry a YSIRK-G/S motif, whereas those of surface proteins of Listeria monocytogenes and Bacillus anthracis do not. To determine whether the YSIRK-G/S motif is required for the secretion or cell wall anchoring of surface proteins, we analyzed variants of staphylococcal protein A, an immunoglobulin binding protein with an LPXTG sorting signal. Deletion of the YSIR sequence or replacement of G or S significantly reduced the rate of signal peptide processing of protein A precursors. In contrast, cell wall anchoring or the functional display of protein A was not affected. The fusion of cell wall sorting signals to reporter proteins bearing N-terminal signal peptides with or without the YSIRK-G/S motif resulted in hybrid proteins that were anchored in a manner similar to that of wild-type protein A. The requirement of the YSIRK-G/S motif for efficient secretion implies the existence of a specialized mode of substrate recognition by the secretion pathway of gram-positive cocci. It seems, however, that this mechanism is not essential for surface protein anchoring to the cell wall envelope.
Collapse
Affiliation(s)
- Taeok Bae
- Committee on Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
100
|
Abstract
In signal-recognition particle (SRP)-dependent protein targeting to the bacterial plasma membrane, two GTPases, Ffh (a subunit of the bacterial SRP) and FtsY (the bacterial SRP receptor), act as GTPase activating proteins for one another. The molecular mechanism of this reciprocal GTPase activation is poorly understood. In this work, we show that, unlike other GTPases, free FtsY exhibits only low preference for GTP over other nucleotides. On formation of the SRP.FtsY complex, however, the nucleotide specificity of FtsY is enhanced 10(3)-fold. Thus, interactions with SRP must induce conformational changes that directly affect the FtsY GTP-binding site: in response to SRP binding, FtsY switches from a nonspecific "open" state to a "closed" state that provides discrimination between cognate and noncognate nucleotides. We propose that this conformational change leads to more accurate positioning of the nucleotide and thus could contribute to activation of FtsY's GTPase activity by a novel mechanism.
Collapse
Affiliation(s)
- Shu-ou Shan
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|