51
|
Amor H, Hammadeh ME. A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes (Basel) 2022; 13:genes13071182. [PMID: 35885965 PMCID: PMC9325252 DOI: 10.3390/genes13071182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
According to current estimates, infertility affects one in four couples trying to conceive. Primary or secondary infertility can be due either to both partners or only to the man or the woman. Up to 15% of infertility cases in men can be attributed to genetic factors that can lead to irreversible partial or complete spermatogenic arrest. The increased use of assisted reproductive technology (ART) has provided not only insights into the causes of male infertility but also afforded a diagnostic tool to detect and manage this condition among couples. Genes control a variety of physiological attributes, such as the hypothalamic–pituitary–gonadal axis, development, and germ cell differentiation. In the era of ART, it is important to understand the genetic basis of infertility so as to provide the most tailored therapy and counseling to couples. Genetic factors involved in male infertility can be chromosome abnormalities or single-gene disorders, mitochondrial DNA (mtDNA) mutations, Y-chromosome deletions, multifactorial disorders, imprinting disorders, or endocrine disorders of genetic origin. In this review, we discuss the role of mitochondria and the mitochondrial genome as an indicator of sperm quality and fertility.
Collapse
|
52
|
Mitoribosomal Deregulation Drives Senescence via TPP1-Mediated Telomere Deprotection. Cells 2022; 11:cells11132079. [PMID: 35805162 PMCID: PMC9265344 DOI: 10.3390/cells11132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
While mitochondrial bioenergetic deregulation has long been implicated in cellular senescence, its mechanistic involvement remains unclear. By leveraging diverse mitochondria-related gene expression profiles derived from two different cellular senescence models of human diploid fibroblasts, we found that the expression of mitoribosomal proteins (MRPs) was generally decreased during the early-to-middle transition prior to the exhibition of noticeable SA-β-gal activity. Suppressed expression patterns of the identified senescence-associated MRP signatures (SA-MRPs) were validated in aged human cells and rat and mouse skin tissues and in aging mouse fibroblasts at single-cell resolution. TIN2- and POT1-interaction protein (TPP1) was concurrently suppressed, which induced senescence, accompanied by telomere DNA damage. Lastly, we show that SA-MRP deregulation could be a potential upstream regulator of TPP1 suppression. Our results indicate that mitoribosomal deregulation could represent an early event initiating mitochondrial dysfunction and serve as a primary driver of cellular senescence and an upstream regulator of shelterin-mediated telomere deprotection.
Collapse
|
53
|
Anderson L, Camus MF, Monteith KM, Salminen TS, Vale PF. Variation in mitochondrial DNA affects locomotor activity and sleep in Drosophila melanogaster. Heredity (Edinb) 2022; 129:225-232. [PMID: 35764697 PMCID: PMC9519576 DOI: 10.1038/s41437-022-00554-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/20/2023] Open
Abstract
Mitochondria are organelles that produce cellular energy in the form of ATP through oxidative phosphorylation, and this primary function is conserved among many taxa. Locomotion is a trait that is highly reliant on metabolic function and expected to be greatly affected by disruptions to mitochondrial performance. To this end, we aimed to examine how activity and sleep vary between Drosophila melanogaster strains with different geographic origins, how these patterns are affected by mitochondrial DNA (mtDNA) variation, and how breaking up co-evolved mito-nuclear gene combinations affect the studied activity traits. Our results demonstrate that Drosophila strains from different locations differ in sleep and activity, and that females are generally more active than males. By comparing activity and sleep of mtDNA variants introgressed onto a common nuclear background in cytoplasmic hybrid (cybrid) strains, we were able to quantify the among-line variance attributable to mitochondrial DNA, and we establish that mtDNA variation affects both activity and sleep, in a sex-specific manner. Altogether our study highlights the important role that mitochondrial genome variation plays on organismal physiology and behaviour.
Collapse
Affiliation(s)
- Lucy Anderson
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Katy M Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
54
|
Hubert S, Athrey G. Transcriptomic signals of mitochondrial dysfunction and OXPHOS dynamics in fast-growth chicken. PeerJ 2022; 10:e13364. [PMID: 35535239 PMCID: PMC9078135 DOI: 10.7717/peerj.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/09/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Birds are equipped with unique evolutionary adaptations to counter oxidative stress. Studies suggest that lifespan is inversely correlated with oxidative damage in birds. Mitochondrial function and performance are critical for cellular homeostasis, but the age-related patterns of mitochondrial gene expression and oxidative phosphorylation (OXPHOS) in birds are not fully understood. The domestic chicken is an excellent model to understand aging in birds; modern chickens are selected for rapid growth and high fecundity and oxidative stress is a recurring feature in chicken. Comparing fast- and slow-growing chicken phenotypes provides us an opportunity to disentangle the nexus of oxidative homeostasis, growth rate, and age in birds. Methods and Results We compared pectoralis muscle gene expression patterns between a fast and a slow-growing chicken breed at 11 and 42 days old. Using RNAseq analyses, we found that mitochondrial dysfunction and reduced oxidative phosphorylation are major features of fast-growth breast muscle, compared to the slow-growing heritage breed. We found transcriptomic evidence of reduced OXPHOS performance in young fast-growth broilers, which declined further by 42 days. Discussion OXPHOS performance declines are a common feature of aging. Sirtuin signaling and NRF2 dependent oxidative stress responses support the progression of oxidative damage in fast-growth chicken. Our gene expression datasets showed that fast growth in early life places immense stress on oxidative performance, and rapid growth overwhelms the OXPHOS system. In summary, our study suggests constraints on oxidative capacity to sustain fast growth at high metabolic rates, such as those exhibited by modern broilers.
Collapse
Affiliation(s)
- Shawna Hubert
- Thoracic Head Neck Medical Oncology, MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Poultry Science, Texas A&M University, College Station, Texas, United States
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, Texas, United States
- Faculty of Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
55
|
Danileviciute E, Zeng N, Capelle CM, Paczia N, Gillespie MA, Kurniawan H, Benzarti M, Merz MP, Coowar D, Fritah S, Vogt Weisenhorn DM, Gomez Giro G, Grusdat M, Baron A, Guerin C, Franchina DG, Léonard C, Domingues O, Delhalle S, Wurst W, Turner JD, Schwamborn JC, Meiser J, Krüger R, Ranish J, Brenner D, Linster CL, Balling R, Ollert M, Hefeng FQ. PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains T reg homeostasis during ageing. Nat Metab 2022; 4:589-607. [PMID: 35618940 DOI: 10.1038/s42255-022-00576-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-β (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.
Collapse
Affiliation(s)
- Egle Danileviciute
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nicole Paczia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Henry Kurniawan
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Cancer Metabolism Group, Department of Cancer Research, LIH, Luxembourg, Luxembourg
| | - Myriam P Merz
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sabrina Fritah
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, LIH, Luxembourg, Luxembourg
| | - Daniela Maria Vogt Weisenhorn
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Neuherberg/Munich, Germany
| | - Gemma Gomez Giro
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Coralie Guerin
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cathy Léonard
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Sylvie Delhalle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Wolfgang Wurst
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Neuherberg/Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | | | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, LIH, Luxembourg, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Transversal Translational Medicine, Strassen, Luxembourg
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA, USA
| | - Dirk Brenner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
56
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
57
|
Mansour HA, Chacko JA, Sanders RN, Schaefer GB, Uwaydat SH. Retinal Degeneration Associated With the G1606A Mitochondrial Mutation. Ophthalmic Surg Lasers Imaging Retina 2022; 53:116-119. [PMID: 35148219 DOI: 10.3928/23258160-20220121-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The guanine-to-adenine substitution at nucleotide 1606 (G1606A) mutation in the mitochondrial DNA transfer RNA-valine gene has been reported to cause sensorineural deafness, ataxia, myoclonus, seizures, and mental retardation. This study hereby presents a single case report of a new retinal phenotype associated with this mutation: a middle-aged woman with retinal pigment epithelium stippling, atrophy, and peripapillary (retinal pigment epithelium) dropout on fundus examination. The patient was administered an empiric trial of a mitochondrial cocktail with close monitoring of her systemic symptoms. This study identified a novel G1606A mutation to cause early-onset macular pathology resembling that previously described in the A3243G mutation. [Ophthalmic Surg Lasers Imaging Retina. 2022;53:116-119.].
Collapse
|
58
|
Pavez-Giani MG, Cyganek L. Recent Advances in Modeling Mitochondrial Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2022; 9:800529. [PMID: 35083221 PMCID: PMC8784695 DOI: 10.3389/fcell.2021.800529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Around one third of patients with mitochondrial disorders develop a kind of cardiomyopathy. In these cases, severity is quite variable ranging from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. ATP is primarily generated in the mitochondrial respiratory chain via oxidative phosphorylation by utilizing fatty acids and carbohydrates. Genes in both the nuclear and the mitochondrial DNA encode components of this metabolic route and, although mutations in these genes are extremely rare, the risk to develop cardiac symptoms is significantly higher in this patient cohort. Additionally, infants with cardiovascular compromise in mitochondrial deficiency display a worse late survival compared to patients without cardiac symptoms. At this point, the mechanisms behind cardiac disease progression related to mitochondrial gene mutations are poorly understood and current therapies are unable to substantially restore the cardiac performance and to reduce the disease burden. Therefore, new strategies are needed to uncover the pathophysiological mechanisms and to identify new therapeutic options for mitochondrial cardiomyopathies. Here, human induced pluripotent stem cell (iPSC) technology has emerged to provide a suitable patient-specific model system by recapitulating major characteristics of the disease in vitro, as well as to offer a powerful platform for pre-clinical drug development and for the testing of novel therapeutic options. In the present review, we summarize recent advances in iPSC-based disease modeling of mitochondrial cardiomyopathies and explore the patho-mechanistic insights as well as new therapeutic approaches that were uncovered with this experimental platform. Further, we discuss the challenges and limitations of this technology and provide an overview of the latest techniques to promote metabolic and functional maturation of iPSC-derived cardiomyocytes that might be necessary for modeling of mitochondrial disorders.
Collapse
Affiliation(s)
- Mario G Pavez-Giani
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| |
Collapse
|
59
|
Liu Z, Tian J, Peng F, Wang J. Hypermethylation of mitochondrial DNA facilitates bone metastasis of renal cell carcinoma. J Cancer 2022; 13:304-312. [PMID: 34976191 PMCID: PMC8692697 DOI: 10.7150/jca.62278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney cancers including clear cell carcinoma (RCC) are identified with very vulnerable mitochondria DNA (mtDNA) and frequent epigenetic aberrations. Bone metastasis from RCC is prevalent and destructive. Bone marrow contains a quite hypoxic microenvironment that usually insitigate 50% of hypermethylation events in conferring a selective advantage for tumor growth. We hypothesized that hypermethylation of mtDNA in RCC cells would significantly contribute to bone metastatic tumor progression. Methylation-specific polymerase chain reaction assay (MSP) was adopted to measure the methylation status of D-loop region of mtDNA in 15 pairs of bone metastatic and primary RCC as well as tumor adjescent normal kidney tissues. mtDNA copy number was examined by the real-time quantitative polymerase chain reaction (qPCR). Western blotting analysis was used to measure the accumulation of several DNA methyltransferases (DNMTs) in the mitochondria and nucleus fractions of bone metastatic RCC cells. mRNA expression of mitochondria encoded genes was examined by RT-PCR. Reactive oxygen species (ROS), mitochondrial membrane potential and ATP content were measured using in vitro cells treated with de-methylation drug 5-Azacytidine (5-Aza). Non-invasive bioluminescent imaging was performed to monitor tumor occurrence in skeleton in mice. Our results showed that the D-loop region in bone metastatic tumor cells was markedly hypermethylated than those in primary RCC tumor cells, that is associated with a decreased mtDNA copy number and accumulation of DNMT1 in the mitochondria. The bone-tropism tumor colonization and progression of RCC cells was significantly suppressed by demethylating the D-loop region of mtDNA and reducing the intracellular level of ROS and ATP by 5-Aza treatment. In conclusion, our study provided a direct association between hypermethylation of mtDNA in RCC with bone metastastic tumor growth.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Oncology, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Jinhai Tian
- Department of Orthopedics, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Fuhong Peng
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Wang
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
60
|
Kang EYC, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 2021; 10:1948. [PMID: 34943051 PMCID: PMC8750806 DOI: 10.3390/antiox10121948] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ocular diseases associated with retinal ganglion cell (RGC) degeneration is the most common neurodegenerative disorder that causes irreversible blindness worldwide. It is characterized by visual field defects and progressive optic nerve atrophy. The underlying pathophysiology and mechanisms of RGC degeneration in several ocular diseases remain largely unknown. RGCs are a population of central nervous system neurons, with their soma located in the retina and long axons that extend through the optic nerve to form distal terminals and connections in the brain. Because of this unique cytoarchitecture and highly compartmentalized energy demand, RGCs are highly mitochondrial-dependent for adenosine triphosphate (ATP) production. Recently, oxidative stress and mitochondrial dysfunction have been found to be the principal mechanisms in RGC degeneration as well as in other neurodegenerative disorders. Here, we review the role of oxidative stress in several ocular diseases associated with RGC degenerations, including glaucoma, hereditary optic atrophy, inflammatory optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and drug toxicity. We also review experimental approaches using cell and animal models for research on the underlying mechanisms of RGC degeneration. Lastly, we discuss the application of antioxidants as a potential future therapy for the ocular diseases associated with RGC degenerations.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80424, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Sarah R. Levi
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97403, Taiwan
| |
Collapse
|
61
|
van de Wal M, Adjobo-Hermans M, Keijer J, Schirris T, Homberg J, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain 2021; 145:45-63. [PMID: 34849584 PMCID: PMC8967107 DOI: 10.1093/brain/awab426] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce ‘mitochondrial complex I deficiency, nuclear type 1’ (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.
Collapse
Affiliation(s)
- Melissa van de Wal
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Merel Adjobo-Hermans
- Department of Biochemistry (286), RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom Schirris
- Department of Pharmacology and Toxicology, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Clara van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Quintana
- Mitochondrial Neuropathology Laboratory, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
62
|
Yin M, O'Neill LAJ. The role of the electron transport chain in immunity. FASEB J 2021; 35:e21974. [PMID: 34793601 DOI: 10.1096/fj.202101161r] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
The electron transport chain (ETC) couples oxidative phosphorylation (OXPHOS) with ATP synthase to drive the generation of ATP. In immune cells, research surrounding the ETC has drifted away from bioenergetics since the discovery of cytochrome c (Cyt c) release as a signal for programmed cell death. Complex I has been shown to generate reactive oxygen species (ROS), with key roles identified in inflammatory macrophages and T helper 17 cells (TH 17) cells. Complex II is the site of reverse electron transport (RET) in inflammatory macrophages and is also responsible for regulating fumarate levels linking to epigenetic changes. Complex III also produces ROS which activate hypoxia-inducible factor 1-alpha (HIF-1α) and can participate in regulatory T cell (Treg ) function. Complex IV is required for T cell activation and differentiation and the proper development of Treg subsets. Complex V is required for TH 17 differentiation and can be expressed on the surface of tumor cells where it is recognized by anti-tumor T and NK cells. In this review, we summarize these findings and speculate on the therapeutic potential of targeting the ETC as an anti-inflammatory strategy.
Collapse
Affiliation(s)
- Maureen Yin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
63
|
MRPS31 loss is a key driver of mitochondrial deregulation and hepatocellular carcinoma aggressiveness. Cell Death Dis 2021; 12:1076. [PMID: 34772924 PMCID: PMC8589861 DOI: 10.1038/s41419-021-04370-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Deregulated mitochondrial energetics is a metabolic hallmark of cancer cells. However, the causative mechanism of the bioenergetic deregulation is not clear. In this study, we show that somatic copy number alteration (SCNA) of mitoribosomal protein (MRP) genes is a key mechanism of bioenergetic deregulation in hepatocellular carcinoma (HCC). Association analysis between the genomic and transcriptomic profiles of 82 MRPs using The Cancer Genome Atlas-Liver HCC database identified eight key SCNA-dependent MRPs: MRPS31, MRPL10, MRPL21, MRPL15, MRPL13, MRPL55, and DAP3. MRPS31 was the only downregulated MRP harboring a DNA copy number (DCN) loss. MRPS31 loss was associated specifically with the DCN losses of many genes on chromosome 13q. Survival analysis revealed a unique dependency of HCC on the MRPS31 deficiency, showing poor clinical outcome. Subclass prediction analysis using several public classifiers indicated that MRPS31 loss is linked to aggressive HCC phenotypes. By employing hepatoma cell lines with SCNA-dependent MRPS31 expression (JHH5, HepG2, Hep3B, and SNU449), we demonstrated that MRPS31 deficiency is the key mechanism, disturbing the whole mitoribosome assembly. MRPS31 suppression enhanced hepatoma cell invasiveness by augmenting MMP7 and COL1A1 expression. Unlike the action of MMP7 on extracellular matrix destruction, COL1A1 modulated invasiveness via the ZEB1-mediated epithelial-to-mesenchymal transition. Finally, MRPS31 expression further stratified the high COL1A1/DDR1-expressing HCC groups into high and low overall survival, indicating that MRPS31 loss is a promising prognostic marker. SIGNIFICANCE: Our results provide new mechanistic insight for mitochondrial deregulation in HCC and present MRPS31 as a novel biomarker of HCC malignancy.
Collapse
|
64
|
Foo BJA, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1341604. [PMID: 34777681 PMCID: PMC8580634 DOI: 10.1155/2021/1341604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
Collapse
Affiliation(s)
- Brittney Joy-Anne Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute, NUS, Singapore, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, NUS, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Faculté de Médicine, Université de Paris, Paris, France
| |
Collapse
|
65
|
Rodimova S, Elagin V, Karabut M, Koryakina I, Timin A, Zagainov V, Zyuzin M, Zagaynova E, Kuznetsova D. Toxicological Analysis of Hepatocytes Using FLIM Technique: In Vitro versus Ex Vivo Models. Cells 2021; 10:2894. [PMID: 34831114 PMCID: PMC8616382 DOI: 10.3390/cells10112894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/03/2022] Open
Abstract
The search for new criteria indicating acute or chronic pathological processes resulting from exposure to toxic agents, testing of drugs for potential hepatotoxicity, and fundamental study of the mechanisms of hepatotoxicity at a molecular level still represents a challenging issue that requires the selection of adequate research models and tools. Microfluidic chips (MFCs) offer a promising in vitro model for express analysis and are easy to implement. However, to obtain comprehensive information, more complex models are needed. A fundamentally new label-free approach for studying liver pathology is fluorescence-lifetime imaging microscopy (FLIM). We obtained FLIM data on both the free and bound forms of NAD(P)H, which is associated with different metabolic pathways. In clinical cases, liver pathology resulting from overdoses is most often as a result of acetaminophen (APAP) or alcohol (ethanol). Therefore, we have studied and compared the metabolic state of hepatocytes in various experimental models of APAP and ethanol hepatotoxicity. We have determined the potential diagnostic criteria including the pathologically altered metabolism of the hepatocytes in the early stages of toxic damage, including pronounced changes in the contribution from the bound form of NAD(P)H. In contrast to the MFCs, the changes in the metabolic state of hepatocytes in the ex vivo models are, to a greater extent, associated with compensatory processes. Thus, MFCs in combination with FLIM can be applied as an effective tool set for the express modeling and diagnosis of hepatotoxicity in clinics.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
| | - Irina Koryakina
- School of Physics and Engineering, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (I.K.); (M.Z.)
| | - Alexander Timin
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634034 Tomsk, Russia;
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya St., 194064 St. Petersburg, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Mikhail Zyuzin
- School of Physics and Engineering, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (I.K.); (M.Z.)
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
66
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
67
|
MicroRNA-26a/b-5p promotes myocardial infarction-induced cell death by downregulating cytochrome c oxidase 5a. Exp Mol Med 2021; 53:1332-1343. [PMID: 34518647 PMCID: PMC8492744 DOI: 10.1038/s12276-021-00665-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022] Open
Abstract
Myocardial infarction (MI) damage induces various types of cell death, and persistent ischemia causes cardiac contractile decline. An effective therapeutic strategy is needed to reduce myocardial cell death and induce cardiac recovery. Therefore, studies on molecular and genetic biomarkers of MI, such as microRNAs (miRs), have recently been increasing and attracting attention due to the ideal characteristics of miRs. The aim of the present study was to discover novel causative factors of MI using multiomics-based functional experiments. Through proteomic, MALDI-TOF-MS, RNA sequencing, and network analyses of myocardial infarcted rat hearts and in vitro functional analyses of myocardial cells, we found that cytochrome c oxidase subunit 5a (Cox5a) expression is noticeably decreased in myocardial infarcted rat hearts and myocardial cells under hypoxic conditions, regulates other identified proteins and is closely related to hypoxia-induced cell death. Moreover, using in silico and in vitro analyses, we found that miR-26a-5p and miR-26b-5p (miR-26a/b-5p) may directly modulate Cox5a, which regulates hypoxia-related cell death. The results of this study elucidate the direct molecular mechanisms linking miR-26a/b-5p and Cox5a in cell death induced by oxygen tension, which may contribute to the identification of new therapeutic targets to modulate cardiac function under physiological and pathological conditions. Monitoring the activity of two microRNAs, small non-coding RNAs, may provide a useful biomarker for heart attack prognosis and inform novel treatments for repairing heart cells. Ki-Chul Hwang and Jung-Won Choi at the Catholic Kwandong University in Gangwon-do, South Korea, and co-workers examined potential causative factors for heart attacks by exploring the activity of microRNAs in rat models and heart cell cultures. They found that levels of a key protein involved in maintaining mitochondrial function and energy metabolism, cytochrome c oxidase subunit 5a (Cox5a), were significantly decreased in heart cells during oxygen deprivation. Further, they identified two microRNAs that acted to inhibit Cox5a after a heart attack. Suppressing these two microRNAs could boost Cox5a activity and limit cell death, although the authors urge caution because microRNAs also play physiological roles in the body.
Collapse
|
68
|
Kanamori F, Yokoyama K, Ota A, Yoshikawa K, Karnan S, Maruwaka M, Shimizu K, Ota S, Uda K, Araki Y, Okamoto S, Maesawa S, Wakabayashi T, Natsume A. Transcriptome-wide analysis of intracranial artery in patients with moyamoya disease showing upregulation of immune response, and downregulation of oxidative phosphorylation and DNA repair. Neurosurg Focus 2021; 51:E3. [PMID: 34469870 DOI: 10.3171/2021.6.focus20870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive occlusion of the internal carotid artery and the secondary formation of collateral vessels. Patients with MMD have ischemic attacks or intracranial bleeding, but the disease pathophysiology remains unknown. In this study, the authors aimed to identify a gene expression profile specific to the intracranial artery in MMD. METHODS This was a single-center, prospectively sampled, retrospective cohort study. Microsamples of the middle cerebral artery (MCA) were collected from patients with MMD (n = 11) and from control patients (n = 9). Using microarray techniques, transcriptome-wide analysis was performed. RESULTS Comparison of MCA gene expression between patients with MMD and control patients detected 62 and 26 genes whose expression was significantly (p < 0.001 and fold change > 2) up- or downregulated, respectively, in the MCA of MMD. Gene set enrichment analysis of genes expressed in the MCA of patients with MMD revealed positive correlations with genes involved in antigen processing and presentation, the dendritic cell pathway, cytokine pathway, and interleukin-12 pathway, and negative correlations with genes involved in oxidative phosphorylation and DNA repair. Microarray analysis was validated by quantitative polymerase chain reaction. CONCLUSIONS Transcriptome-wide analysis showed upregulation of genes for immune responses and downregulation of genes for DNA repair and oxidative phosphorylation within the intracranial artery of patients with MMD. These findings may represent clues to the pathophysiology of MMD.
Collapse
Affiliation(s)
- Fumiaki Kanamori
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Kinya Yokoyama
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Akinobu Ota
- 2Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute
| | - Kazuhiro Yoshikawa
- 3Division of Research Creation and Biobank, Research Creation Support Center, Aichi Medical University, Nagakute
| | - Sivasundaram Karnan
- 2Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute
| | - Mikio Maruwaka
- 4Department of Neurosurgery, Toyota Kosei Hospital, Toyota
| | - Kenzo Shimizu
- 5Department of Neurosurgery, Kasugai Municipal Hospital, Kasugai
| | - Shinji Ota
- 6Department of Neurosurgery, Handa City Hospital, Handa; and
| | - Kenji Uda
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Yoshio Araki
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Sho Okamoto
- 7Aichi Rehabilitation Hospital, Nishio, Japan
| | - Satoshi Maesawa
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | | | - Atsushi Natsume
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| |
Collapse
|
69
|
Dahadhah FW, Jaweesh MS, Al Zoubi MS, Alarjah MIA, Hammadeh ME, Amor H. Mitochondrial nicotinamide adenine dinucleotide hydride dehydrogenase (NADH) subunit 4 (MTND4) polymorphisms and their association with male infertility. J Assist Reprod Genet 2021; 38:2021-2029. [PMID: 33895935 PMCID: PMC8417158 DOI: 10.1007/s10815-021-02199-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/18/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of the present study was to determine the relationship between infertility and the polymorphisms of mitochondrial NADH dehydrogenase subunit 4 (MTND4) by spermatozoa analysis in fertile and subfertile men. METHODS Samples were divided into 68 subfertile men (case group) and 44 fertile men (control group). After semen analysis, samples were purified. The whole genome was extracted using a QIAamp DNA Mini Kit and the mitochondrial DNA was amplified by using the REPLI-g Mitochondrial DNA Kit. Polymerase chain reaction (PCR) was used to amplify the MT-ND4 gene. Then, samples were purified and sequenced using the Sanger method. RESULTS Twenty-five single-nucleotide polymorphisms (SNPs) were identified in the MTND4 gene. The genotype frequencies of the study population showed a statistically significant association between rs2853495 G>A (Gly320Gly) and male infertility (P = 0.0351). Similarly, the allele frequency test showed that rs2853495 G>A (Gly320Gly) and rs869096886 A>G (Leu164Leu) were significantly associated with male infertility (adjusted OR = 2.616, 95% CI = 1.374-4.983, P = 0.002; adjusted OR = 2.237, 95% CI = 1.245-4.017, P = 0.007, respectively). CONCLUSION In conclusion, our findings suggested that male infertility was correlated with rs2853495 and rs869096886 SNPs in MTND4.
Collapse
Affiliation(s)
- Fatina W Dahadhah
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany.
| | - Mayyas Saleh Jaweesh
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 21163, Jordan
| | - Manal Issam Abu Alarjah
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 21163, Jordan
| | - Mohamad Eid Hammadeh
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany
| | - Houda Amor
- Department of Obstetrics & Gynaecology, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
70
|
Lin BC, Phung TH, Higgins NR, Greenslade JE, Prado MA, Finley D, Karbowski M, Polster BM, Monteiro MJ. ALS/FTD mutations in UBQLN2 are linked to mitochondrial dysfunction through loss-of-function in mitochondrial protein import. Hum Mol Genet 2021; 30:1230-1246. [PMID: 33891006 PMCID: PMC8212775 DOI: 10.1093/hmg/ddab116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/12/2023] Open
Abstract
UBQLN2 mutations cause amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD), but the pathogenic mechanisms by which they cause disease remain unclear. Proteomic profiling identified 'mitochondrial proteins' as comprising the largest category of protein changes in the spinal cord (SC) of the P497S UBQLN2 mouse model of ALS/FTD. Immunoblots confirmed P497S animals have global changes in proteins predictive of a severe decline in mitochondrial health, including oxidative phosphorylation (OXPHOS), mitochondrial protein import and network dynamics. Functional studies confirmed mitochondria purified from the SC of P497S animals have age-dependent decline in nearly all steps of OXPHOS. Mitochondria cristae deformities were evident in spinal motor neurons of aged P497S animals. Knockout (KO) of UBQLN2 in HeLa cells resulted in changes in mitochondrial proteins and OXPHOS activity similar to those seen in the SC. KO of UBQLN2 also compromised targeting and processing of the mitochondrial import factor, TIMM44, resulting in accumulation in abnormal foci. The functional OXPHOS deficits and TIMM44-targeting defects were rescued by reexpression of WT UBQLN2 but not by ALS/FTD mutant UBQLN2 proteins. In vitro binding assays revealed ALS/FTD mutant UBQLN2 proteins bind weaker with TIMM44 than WT UBQLN2 protein, suggesting that the loss of UBQLN2 binding may underlie the import and/or delivery defect of TIMM44 to mitochondria. Our studies indicate a potential key pathogenic disturbance in mitochondrial health caused by UBQLN2 mutations.
Collapse
Affiliation(s)
- Brian C Lin
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Trong H Phung
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole R Higgins
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jessie E Greenslade
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mariusz Karbowski
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian M Polster
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mervyn J Monteiro
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
71
|
Dahadhah FW, Saleh Jaweesh M, Al Zoubi MS, Issam Abu Alarjah M, Hammadeh ME, Amor H. Lack of association between single polymorphic variants of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase 3, and 4L (MT-ND3 and MT-ND4L) and male infertility. Andrologia 2021; 53:e14139. [PMID: 34120353 DOI: 10.1111/and.14139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Male infertility is a multifactorial condition associated with different genetic abnormalities in at least 15%-30% of cases. The purpose of this study was to identify suspected correlations between infertility and polymorphisms in mitochondrial NADH dehydrogenase subunits 3 and 4L (MT-ND3 and MT-ND4L) in subfertile male spermatozoa. Sanger sequencing of the mitochondrial DNA target genes was performed on 68 subfertile and 44 fertile males. Eight single nucleotide polymorphisms (SNPs) in MT-ND3 (rs2853826, rs28435660, rs193302927, rs28358278, rs41467651, rs3899188, rs28358277 and rs28673954) and seven SNPs in MT-ND4L (rs28358280, rs28358281, rs28358279, rs2853487, rs2853488, rs193302933 and rs28532881) were detected and genotyped. The genotypes and allele frequencies of the study population have shown a lack of statistically significant association between MT-ND3 and MT-ND4L SNPs and male infertility. However, no statistically significant association was found between the asthenozoospermia, oligozoospermia, teratozoospermia, asthenoteratozoospermia, oligoasthenoteratozoospermia and oligoteratozoospermia subgroups of subfertile males. However, rs28358278 genotype of the MT-ND3 gene was reported in the subfertile group but not in the fertile group, which implies a possible role of this SNP in male infertility. In conclusion, the investigated polymorphic variants in the MT-ND3 and MT-ND4L genes did not show any significant association with the occurrence of male infertility. Further studies are required to evaluate these findings. Moreover, the subfertile individuals who exhibit a polymorphism at rs28358278 require further monitoring and evaluation.
Collapse
Affiliation(s)
- Fatina W Dahadhah
- Department of Obstetrics & Gynaecology, Saarland University, Homburg/Saar, Germany
| | - Mayyas Saleh Jaweesh
- Department of Obstetrics & Gynaecology, Saarland University, Homburg/Saar, Germany
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Manal Issam Abu Alarjah
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamad Eid Hammadeh
- Department of Obstetrics & Gynaecology, Saarland University, Homburg/Saar, Germany
| | - Houda Amor
- Department of Obstetrics & Gynaecology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
72
|
Brandão SR, Ferreira R, Rocha H. Exploring the contribution of mitochondrial dynamics to multiple acyl-CoA dehydrogenase deficiency-related phenotype. Arch Physiol Biochem 2021; 127:210-216. [PMID: 31215835 DOI: 10.1080/13813455.2019.1628065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAOD) are among the diseases detected by newborn screening in most developed countries. Alterations of mitochondrial functionality are characteristic of these metabolic disorders. However, many questions remain to be clarified, namely how the interplay between the signaling pathways harbored in mitochondria contributes to the disease-related phenotype. Herein, we overview the role of mitochondria on the regulation of cell homeostasis through the production of ROS, mitophagy, apoptosis, and mitochondrial biogenesis. Emphasis is given to the signaling pathways involving MnSOD, sirtuins and PGC-1α, which seem to contribute to FAOD phenotype, namely to multiple acyl-CoA dehydrogenase deficiency (MADD). The association between phenotype and genotype is not straightforward, suggesting that specific molecular mechanisms may contribute to MADD pathogenesis, making MADD an interesting model to better understand this interplay. However, more work needs to be done envisioning the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sofia R Brandão
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Ricardo Jorge, Porto, Portugal
| |
Collapse
|
73
|
Zhang ZY, Guan JY, Cao YR, Dai XY, Storey KB, Yu DN, Zhang JY. Mitogenome Analysis of Four Lamiinae Species (Coleoptera: Cerambycidae) and Gene Expression Responses by Monochamus alternatus When Infected with the Parasitic Nematode, Bursaphelenchus mucronatus. INSECTS 2021; 12:453. [PMID: 34069253 PMCID: PMC8157225 DOI: 10.3390/insects12050453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
We determined the mitochondrial gene sequence of Monochamus alternatus and three other mitogenomes of Lamiinae (Insect: Coleoptera: Cerambycidae) belonging to three genera (Aulaconotus, Apriona and Paraglenea) to enrich the mitochondrial genome database of Lamiinae and further explore the phylogenetic relationships within the subfamily. Phylogenetic trees of the Lamiinae were built using the Bayesian inference (BI) and maximum likelihood (ML) methods and the monophyly of Monochamus, Anoplophora, and Batocera genera was supported. Anoplophora chinensis, An. glabripennis and Aristobia reticulator were closely related, suggesting they may also be potential vectors for the transmission of the pine wood pathogenic nematode (Bursaphelenchus xylophilus) in addition to M. alternatus, a well-known vector of pine wilt disease. There is a special symbiotic relationship between M. alternatus and Bursaphelenchus xylophilus. As the native sympatric sibling species of B. xylophilus, B. mucronatus also has a specific relationship that is often overlooked. The analysis of mitochondrial gene expression aimed to explore the effect of B. mucronatus on the energy metabolism of the respiratory chain of M. alternatus adults. Using RT-qPCR, we determined and analyzed the expression of eight mitochondrial protein-coding genes (COI, COII, COIII, ND1, ND4, ND5, ATP6, and Cty b) between M. alternatus infected by B. mucronatus and M. alternatus without the nematode. Expression of all the eight mitochondrial genes were up-regulated, particularly the ND4 and ND5 gene, which were up-regulated by 4-5-fold (p < 0.01). Since longicorn beetles have immune responses to nematodes, we believe that their relationship should not be viewed as symbiotic, but classed as parasitic.
Collapse
Affiliation(s)
- Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Jia-Yin Guan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Yu-Rou Cao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Xin-Yi Dai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
74
|
Zhang X, Gu N, Zhou Y, Godana EA, Dhanasekaran S, Gu X, Zhao L, Zhang H. Transcriptome analysis reveals the mechanisms involved in the enhanced antagonistic efficacy of Rhodotorula mucilaginosa induced by chitosan. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
75
|
Abstract
Metabolic reprogramming is one of the major steps that tumor cells take during cancer progression. This process allows the cells to survive in a nutrient- and oxygen-deprived environment, to become stress tolerant, and to metastasize to different sites. Recent studies have shown that reprogramming happens in stromal cells and involves the cross-talk of the cancer cell/tumor microenvironment. There are similarities between the metabolic reprogramming that occurs in both noncancerous kidney diseases and renal cell carcinoma (RCC), suggesting that such reprogramming is a means by which renal epithelial cells survive injury and repair the tissue, and that RCC cells hijack this system. This article reviews reprogramming of major metabolism pathways in RCC, highlighting similarities and differences from kidney diseases and potential therapeutic strategies against it.
Collapse
|
76
|
Alwehaidah MS, Al-Kafaji G, Bakhiet M, Alfadhli S. Next-generation sequencing of the whole mitochondrial genome identifies novel and common variants in patients with psoriasis, type 2 diabetes mellitus and psoriasis with comorbid type 2 diabetes mellitus. Biomed Rep 2021; 14:41. [PMID: 33728047 PMCID: PMC7953201 DOI: 10.3892/br.2021.1417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies have shown the role of mitochondrial DNA (mtDNA) variants in the pathogenesis of both psoriasis (Ps) and type 2 diabetes (T2D) amongst different ethnicities. However, no studies have investigated the mtDNA variants present in patients with Ps, T2D, and both Ps and T2D (Ps-T2D) in the Arab population. The entire mitochondrial genomes of Kuwaiti subjects with Ps, T2D, Ps-T2D and healthy controls were sequenced using Ion Torrent next-generation sequencing. A total of 36 novel mutations and 51 previously reported mutations were identified in the patient groups that were absent in the controls. Amongst the novel mutations, eight were non-synonymous and exhibited amino acid changes. Of these, two missense mutations (G5262A and A12397G) in the ND genes were detected in the Ps group and a C15735T missense mutation in the CYB gene was detected in Ps-T2D. Other known sequence variations were seen more frequently in all or certain patient groups compared with the controls (P<0.05). Additionally, the A8701G missense mutation in the ATPase 6 gene missense mutation was also observed in a higher frequency in the Ps group compared with the control. The present study is the first to perform a complete mitochondrial genome sequence analysis of Kuwaiti subjects with Ps, T2D and Ps-T2D, and both novel and known mtDNA variants were discovered. The patient-specific novel non-synonymous mutations may be co-responsible in the determination of these diseases. The higher frequency of certain mtDNA variants in the patients compared with the controls may suggest a role in predisposing patients to these diseases. Further functional analyses are required to reveal the role of the identified mutations in these disease conditions.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Suad Alfadhli
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| |
Collapse
|
77
|
Klein IL, van de Loo KFE, Hoogeboom TJ, Janssen MCH, Smeitink JAM, van der Veer E, Verhaak CM, Custers JAE. Blended cognitive behaviour therapy for children and adolescents with mitochondrial disease targeting fatigue (PowerMe): study protocol for a multiple baseline single case experiment. Trials 2021; 22:177. [PMID: 33648576 PMCID: PMC7923335 DOI: 10.1186/s13063-021-05126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial disease is a rare, hereditary disease with a heterogeneous clinical presentation. However, fatigue is a common and burdensome complaint in children and adolescents with mitochondrial disease. No psychological intervention targeting fatigue exists for paediatric patients with a mitochondrial disease. We designed the PowerMe intervention, a blended cognitive behaviour therapy targeting fatigue in children and adolescents with mitochondrial disease. The aim of the intervention is to reduce perceived fatigue by targeting fatigue-related cognitions and behaviours. Methods A multiple baseline single case experiment will be conducted in five children (8–12 years old) and 5 adolescents (12–18 years old) with mitochondrial disease and severe fatigue. Patients will be included in the study for 33 weeks, answering weekly questions about the fatigue. Patients will be randomly assigned a baseline period of 5 to 9 weeks before starting the PowerMe intervention. The intervention consists of face-to-face and online sessions with a therapist and a website with information and assignments. The treatment will be tailored to the individual. Each patient will work on their personalized treatment plan focusing on personally relevant goals. The primary outcome is perceived fatigue. Secondary outcomes are quality of life, school presence and physical functioning. Discussion The results of the PowerMe study will provide information on the efficacy of a blended cognitive behaviour therapy on reducing perceived fatigue and its impact on daily life in children and adolescents with mitochondrial disease. Strengths and limitations of the study design are discussed. Trial registration Dutch Trial Register NTR 7675. Registered on 17 December 2018. Identifier https://www.trialregister.nl/trial/7433
Collapse
Affiliation(s)
- I L Klein
- Radboud university medical center, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, PO Box 9101, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands.
| | - K F E van de Loo
- Radboud university medical center, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, PO Box 9101, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - T J Hoogeboom
- Radboud university medical center, Radboud Institute for Health Sciences, IQ Healthcare, PO Box 9101, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - M C H Janssen
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Internal Medicine, PO Box 9101, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - J A M Smeitink
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Pediatrics, PO Box 9101, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - E van der Veer
- International Mito Patients Association, Bergambacht, The Netherlands
| | - C M Verhaak
- Radboud university medical center, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, PO Box 9101, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - J A E Custers
- Radboud university medical center, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, PO Box 9101, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
78
|
Zhang B, Li Y, Fei Y, Cheng Y. Novel Pathway for Vanadium(V) Bio-Detoxification by Gram-Positive Lactococcus raffinolactis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2121-2131. [PMID: 33492933 DOI: 10.1021/acs.est.0c07442] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Whereas prospects of bioremediation for a vanadium(V) [V(V)]-contaminated environment are widely recognized, reported functional species are extremely limited, with the vast majority of Gram-negative bacteria in Proteobacteria. Herein, the effectiveness of V(V) reduction is proved for the first time by Lactococcus raffinolactis, a Gram-positive bacterium in Firmicutes. The V(V) removal efficiency was 86.5 ± 2.17% during 10-d operation, with an average removal rate of 4.32 ± 0.28 mg/L·d in a citrate-fed system correspondingly. V(V) was bio-reduced to insoluble vanadium(IV) and distributed both inside and outside the cells. Nitrite reductase encoded by gene nirS mainly catalyzed intracellular V(V) reduction, revealing a previously unrecognized pathway. Oxidative stress induced by reactive oxygen species from dissimilatory V(V) reduction was alleviated through strengthened superoxide dismutase and catalase activities. Extracellular polymeric substances with chemically reactive hydroxyl (-OH) and carboxyl (-COO-) groups also contributed to V(V) binding and reduction as well as ROS scavenging. This study can improve the understanding of Gram-positive bacteria for V(V) bio-detoxification and offer microbial resources for bioremediation of a V(V)-polluted environment.
Collapse
Affiliation(s)
- Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yi'na Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yangmei Fei
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yutong Cheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| |
Collapse
|
79
|
Ray SK, Mukherjee S. Molecular and biochemical investigations of inborn errors of metabolism-altered redox homeostasis in branched-chain amino acid disorders, organic acidurias, and homocystinuria. Free Radic Res 2021; 55:627-640. [PMID: 33504220 DOI: 10.1080/10715762.2021.1877286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
India, resembling other developing nations, is confronting a hastening demographic switch to non-communicable diseases. Inborn errors of metabolism (IEM) constitute a varied heterogeneous group of disorders with variable clinical appearance, primarily in the pediatric populace. Congenital deformities and genetic disorders are significant for mortality throughout the world, and the Indian scenario is not very different. IEMs are a group of monogenic issues described by dysregulation of the metabolic networks that bring about development and homeostasis. Incipient evidence focuses on oxidative stress and mitochondrial dysfunction as significant contributors to the multiorgan modifications are detected in a few IEMs. The amassing of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation ailments inhibit mitochondrial enzymes and processes, bringing about elevated levels of reactive oxygen species (ROS). In different IEMs, as in homocystinuria, various sources of ROS have been suggested. In patients' samples along with cellular and experimental animal models, a few investigations have recognized substantial increments in ROS levels alongside diminishes in antioxidant defenses, relating with oxidative damage to proteins, lipids as well as DNA. Elevated ROS levels interrupt redox signaling pathways controlling biological processes such as cell development, differentiation, or apoptosis; however, few investigations explore these processes in IEMs. This review depicts the mitochondrial dysfunction, oxidative stress, redox signaling in branched-chain amino acid disorders, further organic acidurias, and homocystinuria, alongside the latest research investigating the proficiency of antioxidants in addition to mitochondria-targeted therapies as therapeutic components in these diseases.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences, Indira Gandhi Technological and Medical Sciences University, Ziro, Arunachal , Pradesh, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
80
|
Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R. Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166082. [PMID: 33486097 DOI: 10.1016/j.bbadis.2021.166082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The dysfunction of respiratory chain complex I (CI) is the most common form of mitochondrial disease that most often presents as Leigh syndrome (LS) in children - a severe neurometabolic disorder defined by progressive focal lesions in specific brain regions. The mechanisms underlying this region-specific vulnerability to CI deficiency, however, remain elusive. Here, we examined brain regional respiratory chain enzyme activities and metabolic profiles in a mouse model of LS with global CI deficiency to gain insight into regional vulnerability to neurodegeneration. One lesion-resistant and three lesion-prone brain regions were investigated in Ndufs4 knockout (KO) mice at the late stage of LS. Enzyme assays confirmed significantly decreased (60-80%) CI activity in all investigated KO brain regions, with the lesion-resistant region displaying the highest residual CI activity (38% of wild type). A higher residual CI activity, and a less perturbed NADH/NAD+ ratio, correlate with less severe metabolic perturbations in KO brain regions. Moreover, less perturbed BCAA oxidation and increased glutamate oxidation seem to distinguish lesion-resistant from -prone KO brain regions, thereby identifying key areas of metabolism to target in future therapeutic intervention studies.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Janeé Coetzer
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Jeremy Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa.
| |
Collapse
|
81
|
Xiao Y, Wang M, He Q, Xu L, Zhang Q, Meng F, Jia Z, Zhang F, Wang H, Guan MX. Asymmetrical effects of deafness-associated mitochondrial DNA 7516delA mutation on the processing of RNAs in the H-strand and L-strand polycistronic transcripts. Nucleic Acids Res 2020; 48:11113-11129. [PMID: 33045734 PMCID: PMC7641755 DOI: 10.1093/nar/gkaa860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
In this report, we investigated the molecular mechanism underlying a deafness-associated m.7516delA mutation affecting the 5′ end processing sites of mitochondrial tRNAAsp and tRNASer(UCN). An in vitro processing experiment demonstrated that m.7516delA mutation caused the aberrant 5′ end processing of tRNASer(UCN) and tRNAAsp precursors, catalyzed by RNase P. Using cytoplasmic hybrids (cybrids) derived from one hearing-impaired Chinese family bearing the m.7516delA mutation and control, we demonstrated the asymmetrical effects of m.7516delA mutation on the processing of tRNAs in the heavy (H)-strand and light (L)-strand polycistronic transcripts. Specially, the m.7516delA mutation caused the decreased levels of tRNASer(UCN) and downstream five tRNAs, including tRNATyr from the L-strand transcripts and tRNAAsp from the H-strand transcripts. Strikingly, mutant cybrids exhibited the lower level of COX2 mRNA and accumulation of longer and uncleaved precursors of COX2 from the H-strand transcripts. Aberrant RNA metabolisms yielded variable reductions in the mitochondrial proteins, especially marked reductions in the levels of ND4, ND5, CO1, CO2 and CO3. The impairment of mitochondrial translation caused the proteostasis stress and respiratory deficiency, diminished ATP production and membrane potential, increased production of reactive oxygen species and promoted apoptosis. Our findings provide new insights into the pathophysiology of deafness arising from mitochondrial tRNA processing defects.
Collapse
Affiliation(s)
- Yun Xiao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiufen He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Fengguo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
82
|
Abstract
BACKGROUND General anesthetics influence mitochondrial homeostasis, placing individuals with mitochondrial disorders and possibly carriers of recessive mitochondrial mutations at increased risk of perioperative complications. In Drosophila, mutations in the ND23 subunit of complex I of the mitochondrial electron transport chain-analogous to mammalian NDUFS8-replicate key characteristics of Leigh syndrome, an inherited mitochondrial disorder. The authors used the ND23 mutant for testing the hypothesis that anesthetics have toxic potential in carriers of mitochondrial mutations. METHODS The authors exposed wild-type flies and ND23 mutant flies to behaviorally equivalent doses of isoflurane or sevoflurane in 5%, 21%, or 75% oxygen. The authors used percent mortality (mean ± SD, n ≥ 3) at 24 h after exposure as a readout of toxicity and changes in gene expression to investigate toxicity mechanisms. RESULTS Exposure of 10- to 13-day-old male ND23 flies to isoflurane in 5%, 21%, or 75% oxygen resulted in 16.0 ± 14.9% (n = 10), 48.2 ± 16.1% (n = 9), and 99.2 ± 2.0% (n = 10) mortality, respectively. Comparable mortality was observed in females. In contrast, under the same conditions, mortality was less than 5% for all male and female groups exposed to sevoflurane, except 10- to 13-day-old male ND23 flies with 9.6 ± 8.9% (n = 16) mortality. The mortality of 10- to 13-day-old ND23 flies exposed to isoflurane was rescued by neuron- or glia-specific expression of wild-type ND23. Isoflurane and sevoflurane differentially affected expression of antioxidant genes in 10- to 13-day-old ND23 flies. ND23 flies had elevated mortality from paraquat-induced oxidative stress compared with wild-type flies. The mortality of heterozygous ND23 flies exposed to isoflurane in 75% oxygen increased with age, resulting in 54.0 ± 19.6% (n = 4) mortality at 33 to 39 days old, and the percent mortality varied in different genetic backgrounds. CONCLUSIONS Mutations in the mitochondrial complex I subunit ND23 increase susceptibility to isoflurane-induced toxicity and to oxidative stress in Drosophila. Asymptomatic flies that carry ND23 mutations are sensitized to hyperoxic isoflurane toxicity by age and genetic background. EDITOR’S PERSPECTIVE
Collapse
|
83
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
84
|
Choi SY, Lee JH, Chung AY, Jo Y, Shin JH, Park HC, Kim H, Lopez-Gonzalez R, Ryu JR, Sun W. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis 2020; 11:888. [PMID: 33087694 PMCID: PMC7578657 DOI: 10.1038/s41419-020-03102-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood. In this study, we found that Dynamin-related protein 1 (Drp1) was dephosphorylated in several ALS models, including those with SOD1 and TDP-43 mutations, and the dephosphorylation was mediated by the pathological induction of protein phosphatase 1 (PP1) activity in these models. Suppression of the PP1-Drp1 cascade effectively prevented ALS-related symptoms, including mitochondrial fragmentation, mitochondrial complex I impairment, axonal degeneration, and cell death, in primary neuronal culture models, iPSC-derived human MNs, and zebrafish models in vivo. These results suggest that modulation of PP1-Drp1 activity may be a therapeutic target for multiple pathological features of ALS.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
- Department of Neurology, University of Massachusetts Medical school, Worcester, MA, USA
| | - Ju-Hyun Lee
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Ah-Young Chung
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Youhwa Jo
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | | | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
85
|
Chen J, Guan L, Zou M, He S, Li D, Chi W. Specific cyprinid HIF isoforms contribute to cellular mitochondrial regulation. Sci Rep 2020; 10:17246. [PMID: 33057104 PMCID: PMC7560723 DOI: 10.1038/s41598-020-74210-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of the cellular response to hypoxic stress. Two HIF-1α paralogs, HIF-1αA and HIF-1αB, were generated in euteleosts by the specific, third round of genome duplication, but one paralog was later lost in most families with the exception of cyprinid fish. How these duplicates function in mitochondrial regulation and whether their preservation contributes to the hypoxia tolerance demonstrated by cyprinid fish in freshwater environments is not clear. Here we demonstrated the divergent function of these two zebrafish Hif-1a paralogs through cellular approaches. The results showed that Hif-1aa played a role in tricarboxylic acid cycle by increasing the expression of Citrate synthase and the activity of mitochondrial complex II, and it also enhanced mitochondrial membrane potential and ROS production by reducing free Ca2+ in the cytosol. Hif-1ab promoted intracellular ATP content by up-regulating the activity of mitochondrial complexes I, III and IV and the expression of related genes. Furthermore, both the two zebrafish Hif-1a paralogs promoted mitochondrial mass and the expression level of mtDNA, contributing to mitochondrial biogenesis. Our study reveals the divergent functions of Hif-1aa and Hif-1ab in cellular mitochondrial regulation.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Lihong Guan
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ming Zou
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dapeng Li
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Wei Chi
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
86
|
Mental health and health related quality of life in mitochondrial POLG disease. Mitochondrion 2020; 55:95-99. [PMID: 32976988 DOI: 10.1016/j.mito.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022]
Abstract
We aimed to assess the impact of POLG disease on mental health and quality of life in 15 patients using the Symptom Checklist-90-R (SCL-90-R) and Short-Form 36 Health Survey (RAND-36). We found increased scores in all nine subscales of SCL-90-R, particularly phobic anxiety, depression and somatization. Further, patients reported considerably lower scores in all RAND-36 domains. This study revealed a global decline in mental health and poor quality of life in patients with POLG disease and highlights the need for increased awareness and systematic assessment in order to improve their quality of life and mental health.
Collapse
|
87
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Tallaksen CME, Samsonsen C, Brodtkorb E, Ostergaard E, de Coo R, Pias-Peleteiro L, Isohanni P, Uusimaa J, Darin N, Rahman S, Bindoff LA. The impact of gender, puberty, and pregnancy in patients with POLG disease. Ann Clin Transl Neurol 2020; 7:2019-2025. [PMID: 32949115 PMCID: PMC7545595 DOI: 10.1002/acn3.51199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To study the impact of gender, puberty, and pregnancy on the expression of POLG disease, one of the most common mitochondrial diseases known. Methods Clinical, laboratory, and genetic data were collected retrospectively from 155 patients with genetically confirmed POLG disease recruited from seven European countries. We used the available data to study the impact of gender, puberty, and pregnancy on disease onset and deterioration. Results We found that disease onset early in life was common in both sexes but there was also a second peak in females around the time of puberty. Further, pregnancy had a negative impact with 10 of 14 women (71%) experiencing disease onset or deterioration during pregnancy. Interpretation Gender clearly influences the expression of POLG disease. While onset very early in life was common in both males and females, puberty in females appeared associated both with disease onset and increased disease activity. Further, both disease onset and deterioration, including seizure aggravation and status epilepticus, appeared to be associated with pregnancy. Thus, whereas disease activity appears maximal early in life with no subsequent peaks in males, both menarche and pregnancy appear associated with disease onset or worsening in females. This suggests that hormonal changes may be a modulating factor.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, 5021, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Claus Klingenberg
- Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway.,Paediatric Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromso, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway.,Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Chantal M E Tallaksen
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian Samsonsen
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway
| | - Eylert Brodtkorb
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rene de Coo
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands.,Department of Genetics and Cell Biology, University of Maastricht, Maastricht, The Netherlands
| | | | - Pirjo Isohanni
- Department of Pediatric Neurology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Pediatric Neurology, Clinic for Children and Adolescents, Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Niklas Darin
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Metabolic Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, 5021, Norway
| |
Collapse
|
88
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine. J Control Release 2020; 327:533-545. [PMID: 32916227 PMCID: PMC7477636 DOI: 10.1016/j.jconrel.2020.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Due to the rapid changes that have occurred in the field of drug discovery and the recent developments in the early 21st century, the role of drug delivery systems (DDS) has become increasingly more important. For the past 20 years, our laboratory has been developing gene delivery systems based on lipid-based delivery systems. One of our efforts has been directed toward developing a multifunctional envelope-type nano device (MEND) by modifying the particle surface with octaarginine, which resulted in a remarkably enhanced cellular uptake and improved intracellular trafficking of plasmid DNA (pDNA). When we moved to in vivo applications, however, we were faced with the PEG-dilemma and we shifted our strategy to the incorporation of ionizable cationic lipids into our system. This resulted in some dramatic improvements over our original design and this can be attributed to the development of a new lipid library. We have also developed a mitochondrial targeting system based on a membrane fusion mechanism using a MITO-Porter, which can deliver nucleic acids/pDNA into the matrix of mitochondria. After the appearance of antibody medicines, Opdivo, an immune checkpoint inhibitor, has established cancer immunology as the 4th strategy in cancer therapy. Our DDS technologies can also be applied to this new field of cancer therapy to cure cancer by controlling our immune mechanisms. The latest studies are summarized in this review article.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
89
|
Gutiérrez-Fernández J, Kaszuba K, Minhas GS, Baradaran R, Tambalo M, Gallagher DT, Sazanov LA. Key role of quinone in the mechanism of respiratory complex I. Nat Commun 2020; 11:4135. [PMID: 32811817 PMCID: PMC7434922 DOI: 10.1038/s41467-020-17957-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I. Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the respiratory chain in bacteria and mitochondria. Here, the authors present cryo-EM and crystal structures of T. thermophilus complex I in different conformational states and further analyse them by Normal Mode Analysis and molecular dynamics simulations and conclude that quinone redox reactions are important for the coupling mechanism of complex I.
Collapse
Affiliation(s)
| | - Karol Kaszuba
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Gurdeep S Minhas
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, Hills rd, Cambridge, CB2 0XY, UK.,Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Rozbeh Baradaran
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, Hills rd, Cambridge, CB2 0XY, UK.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Margherita Tambalo
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - David T Gallagher
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, Hills rd, Cambridge, CB2 0XY, UK
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| |
Collapse
|
90
|
Citrigno L, Muglia M, Qualtieri A, Spadafora P, Cavalcanti F, Pioggia G, Cerasa A. The Mitochondrial Dysfunction Hypothesis in Autism Spectrum Disorders: Current Status and Future Perspectives. Int J Mol Sci 2020; 21:ijms21165785. [PMID: 32806635 PMCID: PMC7461038 DOI: 10.3390/ijms21165785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASDs) constitute a set of heterogeneous neurodevelopmental conditions, characterized by a wide genetic variability that has led to hypothesize a polygenic origin. The metabolic profiles of patients with ASD suggest a possible implication of mitochondrial pathways. Although different physiological and biochemical studies reported deficits in mitochondrial oxidative phosphorylation in subjects with ASD, the role of mitochondrial DNA variations has remained relatively unexplored. In this review, we report and discuss very recent evidence to demonstrate the key role of mitochondrial disorders in the development of ASD.
Collapse
Affiliation(s)
- Luigi Citrigno
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Maria Muglia
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 98164 Messina, Italy;
| | - Antonio Cerasa
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
- S’Anna Institute and Research in Advanced Neurorehabilitation (RAN), 88100 Crotone, Italy
- Correspondence: ; Tel.: +39-333-9633511
| |
Collapse
|
91
|
Fakhouri EW, Peterson SJ, Kothari J, Alex R, Shapiro JI, Abraham NG. Genetic Polymorphisms Complicate COVID-19 Therapy: Pivotal Role of HO-1 in Cytokine Storm. Antioxidants (Basel) 2020; 9:E636. [PMID: 32708430 PMCID: PMC7402116 DOI: 10.3390/antiox9070636] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are very large RNA viruses that originate in animal reservoirs and include severe acute respiratory distress syndrome (SARS) and Middle East respiratory syndrome (MERS) and other inconsequential coronaviruses from human reservoirs like the common cold. SARS-CoV-2, the virus that causes COVID-19 and is believed to originate from bat, quickly spread into a global pandemic. This RNA virus has a special affinity for porphyrins. It invades the cell at the angiotensin converting enzyme-2 (ACE-2) receptor and binds to hemoproteins, resulting in a severe systemic inflammatory response, particularly in high ACE-2 organs like the lungs, heart, and kidney, resulting in systemic disease. The inflammatory response manifested by increased cytokine levels and reactive oxygen species results in inhibition of heme oxygenase (HO-1), with a subsequent loss of cytoprotection. This has been seen in other viral illness like human immunodeficiency virus (HIV), Ebola, and SARS/MERS. There are a number of medications that have been tried with some showing early clinical promise. This illness disproportionately affects patients with obesity, a chronic inflammatory disease with a baseline excess of cytokines. The majority of the medications used in the treatment of COVID-19 are metabolized by cytochrome P450 (CYP) enzymes, primarily CYP2D6. This is further complicated by genetic polymorphisms of CYP2D6, HO-1, ACE, and ACE-2. There is a potential role for HO-1 upregulation to treat/prevent cytokine storm. Current therapy must focus on antivirals and heme oxygenase upregulation. Vaccine development will be the only magic bullet.
Collapse
Affiliation(s)
- Eddie W. Fakhouri
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Stephen J. Peterson
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
- Department of Medicine, New York Medical College, Valhalla, New York, NY 10595, USA
| |
Collapse
|
92
|
Wong LJC, Chen T, Schmitt ES, Wang J, Tang S, Landsverk M, Li F, Zhang S, Wang Y, Zhang VW, Craigen WJ. Clinical and laboratory interpretation of mitochondrial mRNA variants. Hum Mutat 2020; 41:1783-1796. [PMID: 32652755 DOI: 10.1002/humu.24082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
Interpretation of mitochondrial protein-encoding (mt-mRNA) variants has been challenging due to mitochondrial characteristics that have not been addressed by American College of Medical Genetics and Genomics guidelines. We developed criteria for the interpretation of mt-mRNA variants via literature review of reported variants, tested and refined these criteria by using our new cases, followed by interpreting 421 novel variants in our clinical database using these verified criteria. A total of 32 of 56 previously reported pathogenic (P) variants had convincing evidence for pathogenicity. These variants are either null variants, well-known disease-causing variants, or have robust functional data or strong phenotypic correlation with heteroplasmy levels. Based on our criteria, 65.7% (730/1,111) of variants of unknown significance (VUS) were reclassified as benign (B) or likely benign (LB), and one variant was scored as likely pathogenic (LP). Furthermore, using our criteria we classified 2, 12, and 23 as P, LP, and LB, respectively, among 421 novel variants. The remaining stayed as VUS (91.2%). Appropriate interpretation of mt-mRNA variants is the basis for clinical diagnosis and genetic counseling. Mutation type, heteroplasmy levels in different tissues of the probands and matrilineal relatives, in silico predictions, population data, as well as functional studies are key points for pathogenicity assessments.
Collapse
Affiliation(s)
- Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Ting Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Eric S Schmitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sha Tang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Megan Landsverk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Fangyuan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shulin Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yue Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Victor W Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| |
Collapse
|
93
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Tallaksen CM, Brodtkorb E, Ostergaard E, de Coo IFM, Pias-Peleteiro L, Isohanni P, Uusimaa J, Darin N, Rahman S, Bindoff LA. Simplifying the clinical classification of polymerase gamma (POLG) disease based on age of onset; studies using a cohort of 155 cases. J Inherit Metab Dis 2020; 43:726-736. [PMID: 32391929 DOI: 10.1002/jimd.12211] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Variants in POLG are one of the most common causes of inherited mitochondrial disease. Phenotypic classification of POLG disease has evolved haphazardly making it complicated and difficult to implement in everyday clinical practise. The aim of our study was to simplify the classification and facilitate better clinical recognition. METHODS A multinational, retrospective study using data from 155 patients with POLG variants recruited from seven European countries. RESULTS We describe the spectrum of clinical features associated with POLG variants in the largest known cohort of patients. While clinical features clearly form a continuum, stratifying patients simply according to age of onset-onset prior to age 12 years; onset between 12 and 40 years and onset after the age of 40 years, permitted us to identify clear phenotypic and prognostic differences. Prior to 12 years of age, liver involvement (87%), seizures (84%), and feeding difficulties (84%) were the major features. For those with onset between 12 and 40 years, ataxia (90%), peripheral neuropathy (84%), and seizures (71%) predominated, while for those with onset over 40 years, ptosis (95%), progressive external ophthalmoplegia (89%), and ataxia (58%) were the major clinical features. The earlier the onset the worse the prognosis. Patients with epilepsy and those with compound heterozygous variants carried significantly worse prognosis. CONCLUSION Based on our data, we propose a simplified POLG disease classification, which can be used to guide diagnostic investigations and predict disease course.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claus Klingenberg
- Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway
- Paediatric Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromso, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
- Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Chantal Me Tallaksen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eylert Brodtkorb
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - I F M de Coo
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands
- Department of Genetics and Cell Biology, University of Maastricht, Maastricht, The Netherlands
| | | | - Pirjo Isohanni
- Department of Pediatric Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Pediatric Neurology, Clinic for Children and Adolescents, Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Niklas Darin
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
94
|
Stenger M, Le DT, Klecker T, Westermann B. Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae. MICROBIAL CELL 2020; 7:234-249. [PMID: 32904421 PMCID: PMC7453639 DOI: 10.15698/mic2020.09.729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The production of metabolic energy in form of ATP by oxidative phosphorylation depends on the coordinated action of hundreds of nuclear-encoded mitochondrial proteins and a handful of proteins encoded by the mitochondrial genome (mtDNA). We used the yeast Saccharomyces cerevisiae as a model system to systematically identify the genes contributing to this process. Integration of genome-wide high-throughput growth assays with previously published large data sets allowed us to define with high confidence a set of 254 nuclear genes that are indispensable for respiratory growth. Next, we induced loss of mtDNA in the yeast deletion collection by growth on ethidium bromide-containing medium and identified twelve genes that are essential for viability in the absence of mtDNA (i.e. petite-negative). Replenishment of mtDNA by cytoduction showed that respiratory-deficient phenotypes are highly variable in many yeast mutants. Using a mitochondrial genome carrying a selectable marker, ARG8m, we screened for mutants that are specifically defective in maintenance of mtDNA and mitochondrial protein synthesis. We found that up to 176 nuclear genes are required for expression of mitochondria-encoded proteins during fermentative growth. Taken together, our data provide a comprehensive picture of the molecular processes that are required for respiratory metabolism in a simple eukaryotic cell.
Collapse
Affiliation(s)
- Maria Stenger
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Duc Tung Le
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Till Klecker
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
95
|
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y, Liu G. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front Cell Infect Microbiol 2020; 10:287. [PMID: 32596169 PMCID: PMC7303283 DOI: 10.3389/fcimb.2020.00287] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
Macrophages differentiated into a classically activated (M1) or alternatively activated phenotype (M2) in infection and tumor, but the precise effects of glycolysis and oxidative phosphorylation (OXPHOS) metabolic pathway remain unclear. Herein, the effects of glycolysis or OXPHOS on macrophage polarizations were investigated using a pharmacological approach in mice. 2-Deoxy-D-glucose (2-DG) treatments, which blocks the key enzyme hexokinase of glycolysis, efficiently inhibits a specific switch to M1 lineage, decreasing the secretion of pro-inflammatory cytokines and expressions of co-stimulatory molecules associated with relieving infectious inflammation in vitro and in vivo. Glycolytic activation through the hypoxia-inducible factor-1α (HIF-1α) pathway was required for differentiation to the M1 phenotype, which conferred protection against infection. Dimethyl malonate (DMM) treatment, which blocks the key element succinate of OXPHOS, efficiently inhibits a specific switch to M2 lineage when macrophages receiving M2 stimulation, decreasing the secretion of anti-inflammatory cytokine and CD206 expressions. Mitochondrial dynamic alterations including mitochondrial mass, mitochondrial membrane potential (Dym) and ROS productions were critically for differentiation to the M2 phenotype, which conferred protection against anti-tumor immunity. Glycolysis is also required for macrophage M2 differentiation. Thus, these data provide a basis for a comprehensively understanding the role of glycolysis and OXPHOS in macrophage differentiation during anti-infection and anti-tumor inflammation.
Collapse
Affiliation(s)
- Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
96
|
Antonyová V, Kejík Z, Brogyányi T, Kaplánek R, Pajková M, Talianová V, Hromádka R, Masařík M, Sýkora D, Mikšátková L, Martásek P, Jakubek M. Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair (Amst) 2020; 91-92:102871. [PMID: 32502755 DOI: 10.1016/j.dnarep.2020.102871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (e.g. Alzheimer's and Parkinson's disease) are becoming increasingly problematic to healthcare systems. Therefore, their underlying mechanisms are trending topics of study in medicinal research. Numerous studies have evidenced a strong association between mitochondrial DNA disturbances (e.g. oxidative damage, mutations, and methylation shifts) and the initiation and progression of neurodegenerative diseases. Therefore, this review discusses the risk and development of neurodegenerative diseases in terms of disturbances in mitochondrial DNA and as a part of a complex ecosystem that includes other important mechanisms (e.g. neuroinflammation and the misfolding and aggregation of amyloid-β peptides, α-synuclein, and tau proteins). In addition, the influence of individual mitochondrial DNA haplogroups on the risk and development of neurodegenerative diseases is also described and discussed.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Tereza Brogyányi
- Depertment of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Martina Pajková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Veronika Talianová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Róbert Hromádka
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Michal Masařík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - David Sýkora
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Lucie Mikšátková
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| | - Milan Jakubek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic.
| |
Collapse
|
97
|
Adjobo-Hermans MJW, de Haas R, Willems PHGM, Wojtala A, van Emst-de Vries SE, Wagenaars JA, van den Brand M, Rodenburg RJ, Smeitink JAM, Nijtmans LG, Sazanov LA, Wieckowski MR, Koopman WJH. NDUFS4 deletion triggers loss of NDUFA12 in Ndufs4 -/- mice and Leigh syndrome patients: A stabilizing role for NDUFAF2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148213. [PMID: 32335026 DOI: 10.1016/j.bbabio.2020.148213] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/07/2023]
Abstract
Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4-/- mouse tissues. Ndufs4-/- animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4-/- mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4-/- MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4-/- mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.
Collapse
Affiliation(s)
- Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Ria de Haas
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | | | - Sjenet E van Emst-de Vries
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Jori A Wagenaars
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Mariel van den Brand
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Leo G Nijtmans
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
98
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
99
|
Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, Xu Y, Han L, Kim HL, Nakagawa H, Park K, Campbell PJ, Liang H. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet 2020; 52:342-352. [PMID: 32024997 PMCID: PMC7058535 DOI: 10.1038/s41588-019-0557-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential cellular organelles that play critical roles in cancer. Here, as part of the International Cancer Genome Consortium/The Cancer Genome Atlas Pan-Cancer Analysis of Whole Genomes Consortium, which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we performed a multidimensional, integrated characterization of mitochondrial genomes and related RNA sequencing data. Our analysis presents the most definitive mutational landscape of mitochondrial genomes and identifies several hypermutated cases. Truncating mutations are markedly enriched in kidney, colorectal and thyroid cancers, suggesting oncogenic effects with the activation of signaling pathways. We find frequent somatic nuclear transfers of mitochondrial DNA, some of which disrupt therapeutic target genes. Mitochondrial copy number varies greatly within and across cancers and correlates with clinical variables. Co-expression analysis highlights the function of mitochondrial genes in oxidative phosphorylation, DNA repair and the cell cycle, and shows their connections with clinically actionable genes. Our study lays a foundation for translating mitochondrial biology into clinical applications.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Ju
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Youngwook Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher J Yoon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yang Yang
- Division of Biostatistics, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keunchil Park
- Division of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
100
|
Pengam M, Moisan C, Simon B, Guernec A, Inizan M, Amérand A. Training protocols differently affect AMPK-PGC-1α signaling pathway and redox state in trout muscle. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110673. [PMID: 32044445 DOI: 10.1016/j.cbpa.2020.110673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023]
Abstract
Beneficial effects of physical exercise training are in part related to enhancement of muscle mitochondrial performance. The effects of two different trainings were investigated on transcripts and proteins of the AMPK-PGC-1α signaling pathway, the mitochondrial functioning (citrate synthase (CS), oxidative phosphorylation complexes, uncoupling proteins (UCP)) and the antioxidant defenses (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase) in rainbow trout red and white skeletal muscles. One group of trouts swam for 10 days at a moderate intensity (approximately 57% Ucrit or 2.0 body lengths/s, 23.5 h/day) and another group at a high intensity (approximately 90% Ucrit or 3.2 body lengths/s, 2 h/day). In the red muscle, the increase of Cs mRNA levels was significantly correlated with the transcripts of Ampkα1, Ampkα2, Pgc-1α, the oxidative phosphorylation complexes, Ucp2α, Ucp2β, Sod1, Sod2 and Gpx1. After 10 days of training, high intensity training (HIT) stimulates more the transcription of genes involved in this aerobic pathway than moderate intensity training (MIT) in the skeletal muscles, and mainly in the red oxidative muscle. However, no changes in CS, cytochrome c oxidase (COX) and antioxidant defenses activities and in oxidative stress marker (isoprostane plasmatic levels) were observed. The transcriptomic responses are fiber- and training-type dependent when proteins were not yet expressed after 10 days of training. As in mammals, our results suggest that HIT could promote benefit effects in fish.
Collapse
Affiliation(s)
- Morgane Pengam
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Christine Moisan
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Bernard Simon
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Anthony Guernec
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Manon Inizan
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France
| | - Aline Amérand
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200 Brest, France.
| |
Collapse
|