51
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
52
|
LeMaster DM, Hernandez G. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design. Curr Mol Pharmacol 2016; 9:5-26. [PMID: 25986571 DOI: 10.2174/1874467208666150519113146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/25/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.
Collapse
Affiliation(s)
| | - Griselda Hernandez
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York, 12201, USA.
| |
Collapse
|
53
|
Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016; 245:1130-1144. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Scientists have studied organs and their development for centuries and, along that path, described models and mechanisms explaining the developmental principles of organogenesis. In particular, with respect to the heart, new fundamental discoveries are reported continuously that keep changing the way we think about early cardiac development. These discoveries are driven by the need to answer long-standing questions regarding the origin of the earliest cells specified to the cardiac lineage, the differentiation potential of distinct cardiac progenitor cells, and, very importantly, the molecular mechanisms underlying these specification events. As evidenced by numerous examples, the wealth of developmental knowledge collected over the years has had an invaluable impact on establishing efficient strategies to generate cardiovascular cell types ex vivo, from either pluripotent stem cells or via direct reprogramming approaches. The ability to generate functional cardiovascular cells in an efficient and reliable manner will contribute to therapeutic strategies aimed at alleviating the increasing burden of cardiovascular disease and morbidity. Here we will discuss the recent discoveries in the field of cardiac progenitor biology and their translation to the pluripotent stem cell model to illustrate how developmental concepts have instructed regenerative model systems in the past and promise to do so in the future. Developmental Dynamics 245:1130-1144, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damelys Calderon
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Evan Bardot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicole Dubois
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
54
|
Burger NB, Haak MC, Kok E, de Groot CJM, Shou W, Scambler PJ, Lee Y, Cho E, Christoffels VM, Bekker MN. Cardiac defects, nuchal edema and abnormal lymphatic development are not associated with morphological changes in the ductus venosus. Early Hum Dev 2016; 101:39-48. [PMID: 27405055 DOI: 10.1016/j.earlhumdev.2016.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND In human fetuses with cardiac defects and increased nuchal translucency, abnormal ductus venosus flow velocity waveforms are observed. It is unknown whether abnormal ductus venosus flow velocity waveforms in fetuses with increased nuchal translucency are a reflection of altered cardiac function or are caused by local morphological alterations in the ductus venosus. AIM The aim of this study was to investigate if the observed increased nuchal translucency, cardiac defects and abnormal lymphatic development in the examined mouse models are associated with local changes in ductus venosus morphology. STUDY DESIGN Mouse embryos with anomalous lymphatic development and nuchal edema (Ccbe1(-/-) embryos), mouse embryos with cardiac defects and nuchal edema (Fkbp12(-/-), Tbx1(-/-), Chd7(fl/fl);Mesp1Cre, Jarid2(-/-NE+) embryos) and mouse embryos with cardiac defects without nuchal edema (Tbx2(-/-), Fgf10(-/-), Jarid2(-/-NE-) embryos) were examined. Embryos were analyzed from embryonic day (E) 11.5 to 15.5 using markers for endothelium, smooth muscle actin, nerve tissue and elastic fibers. RESULTS All mutant and wild-type mouse embryos showed similar, positive endothelial and smooth muscle cell expression in the ductus venosus at E11.5-15.5. Nerve marker and elastic fiber expression were not identified in the ductus venosus in all investigated mutant and wild-type embryos. Local morphology and expression of the used markers were similar in the ductus venosus in all examined mutant and wild-type embryos. CONCLUSIONS Cardiac defects, nuchal edema and abnormal lymphatic development are not associated with morphological changes in the ductus venosus. Ductus venosus flow velocity waveforms most probably reflect intracardiac pressure.
Collapse
Affiliation(s)
- Nicole B Burger
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.
| | - Monique C Haak
- Department of Obstetrics, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, the Netherlands.
| | - Evelien Kok
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Meibergdreef 9 1105 AZ Amsterdam, the Netherlands.
| | - Christianne J M de Groot
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.
| | - Weinian Shou
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Indiana University School of Medicine, 705 Riley Hospital Dr. Indianapolis, Indiana, USA.
| | - Peter J Scambler
- Department of Molecular Medicine, University College London, Institute of Child Health, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave. Madison, Wisconsin, USA.
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave. Madison, Wisconsin, USA.
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Meibergdreef 9 1105 AZ Amsterdam, the Netherlands.
| | - Mireille N Bekker
- Department of Obstetrics and Gynecology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
55
|
Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, Ebert AD, Shukla P, Abilez OJ, Churko JM, Karakikes I, Jung G, Ichida F, Wu SM, Snyder MP, Bernstein D, Wu JC. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016; 18:1031-42. [PMID: 27642787 PMCID: PMC5042877 DOI: 10.1038/ncb3411] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and this was associated with perturbed transforming growth factor beta (TGF-β) signalling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGF-β signalling. TBX20 regulates the expression of TGF-β signalling modifiers including one known to be a genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGF-β signalling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC.
Collapse
Affiliation(s)
- Kazuki Kodo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Keiichi Hirono
- Department of Pediatrics, University of Toyama, Toyama-shi, Toyama 930-8555, Japan
| | - Kolsoum InanlooRahatloo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gwanghyun Jung
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fukiko Ichida
- Department of Pediatrics, University of Toyama, Toyama-shi, Toyama 930-8555, Japan
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
56
|
Dunyak BM, Gestwicki JE. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem 2016; 59:9622-9644. [PMID: 27409354 DOI: 10.1021/acs.jmedchem.6b00411] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidyl-proline isomerases (PPIases) are a chaperone superfamily comprising the FK506-binding proteins (FKBPs), cyclophilins, and parvulins. PPIases catalyze the cis/trans isomerization of proline, acting as a regulatory switch during folding, activation, and/or degradation of many proteins. These "clients" include proteins with key roles in cancer, neurodegeneration, and psychiatric disorders, suggesting that PPIase inhibitors could be important therapeutics. However, the active site of PPIases is shallow, solvent-exposed, and well conserved between family members, making selective inhibitor design challenging. Despite these hurdles, macrocyclic natural products, including FK506, rapamycin, and cyclosporin, bind PPIases with nanomolar or better affinity. De novo attempts to derive new classes of inhibitors have been somewhat less successful, often showcasing the "undruggable" features of PPIases. Interestingly, the most potent of these next-generation molecules tend to integrate features of the natural products, including macrocyclization or proline mimicry strategies. Here, we review recent developments and ongoing challenges in the inhibition of PPIases, with a focus on how natural products might inform the creation of potent and selective inhibitors.
Collapse
Affiliation(s)
- Bryan M Dunyak
- Department of Biological Chemistry, University of Michigan Medical School , 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| |
Collapse
|
57
|
Merchant SS, Kosaka Y, Yost HJ, Hsu EW, Brunelli L. Micro-Computed Tomography for the Quantitative 3-Dimensional Assessment of the Compact Myocardium in the Mouse Embryo. Circ J 2016; 80:1795-803. [PMID: 27301409 DOI: 10.1253/circj.cj-16-0180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ventricular non-compaction is characterized by a thin layer of compact ventricular myocardium and it is an important abnormality in the mouse heart. It is reminiscent of left ventricular non-compaction, a fairly common human congenital cardiomyopathy. Non-compaction in transgenic mice has been classically evaluated by measuring the thickness of the compact myocardium through histological techniques involving image analysis of 2-dimensional (D) sections. Given the 3D nature of the heart, the aim of this study was to determine whether a technique for the non-destructive, 3D assessment of the mouse embryonic compact myocardium could be developed. METHODS AND RESULTS Micro-computed tomography (micro-CT), in combination with iodine staining, enabled the differentiation of the trabecular from the compact myocardium in wild-type mice. The 3D and digital nature of the micro-CT data allowed computation anatomical techniques to be readily applied, which were demonstrated via construction of group atlases and atlas-based descriptive statistics. Finally, micro-CT was used to identify the presence of non-compaction in mice with a deletion of the cell cycle inhibitor protein, p27(Kip1). CONCLUSIONS Iodine staining-enhanced micro-CT with computational anatomical analysis represents a valid addition to classical histology for the delineation of compact myocardial wall thickness in the mouse embryo. Given the quantitative 3D resolution of micro-CT, these approaches might provide helpful information for the analysis of non-compaction. (Circ J 2016; 80: 1795-1803).
Collapse
Affiliation(s)
- Samer S Merchant
- Small Animal Imaging Facility, Department of Bioengineering, University of Utah
| | | | | | | | | |
Collapse
|
58
|
Catalán Ú, Rubió L, López de las Hazas MC, Herrero P, Nadal P, Canela N, Pedret A, Motilva MJ, Solà R. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects. Mol Nutr Food Res 2016; 60:2114-2129. [DOI: 10.1002/mnfr.201600052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Úrsula Catalán
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Laura Rubió
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | | | - Pol Herrero
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Pedro Nadal
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Núria Canela
- Centre for Omic Sciences; Universitat Rovira i Virgili (COS-URV); Reus Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| | - Maria-José Motilva
- Food Technology Department; Universitat de Lleida-AGROTECNIO Center; Lleida Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), Faculty of Medicine and Health Sciences; Universitat Rovira i Virgili; Sant Llorenç Reus Spain
| |
Collapse
|
59
|
Wilsbacher L, McNally EM. Genetics of Cardiac Developmental Disorders: Cardiomyocyte Proliferation and Growth and Relevance to Heart Failure. ANNUAL REVIEW OF PATHOLOGY 2016; 11:395-419. [PMID: 26925501 PMCID: PMC8978617 DOI: 10.1146/annurev-pathol-012615-044336] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Cardiac developmental disorders represent the most common of human birth defects, and anomalies in cardiomyocyte proliferation drive many of these disorders. This review highlights the molecular mechanisms of prenatal cardiac growth. Trabeculation represents the initial ventricular growth phase and is necessary for embryonic survival. Later in development, the bulk of the ventricular wall derives from the compaction process, yet the arrest of this process can still be compatible with life. Cardiomyocyte proliferation and growth form the basis of both trabeculation and compaction, and mouse models indicate that cardiomyocyte interactions with the surrounding environment are critical for these proliferative processes. The human genetics of left ventricular noncompaction cardiomyopathy suggest that cardiomyocyte cell-autonomous mechanisms contribute to the compaction process. Understanding the determinants of prenatal or early postnatal cardiomyocyte proliferation and growth provides critical information that identifies risk factors for cardiovascular disease, including heart failure and its associated complications of arrhythmias and thromboembolic events.
Collapse
Affiliation(s)
- Lisa Wilsbacher
- Department of Medicine, Center for Genetic Medicine, and Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | - Elizabeth M McNally
- Department of Medicine, Center for Genetic Medicine, and Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| |
Collapse
|
60
|
Probing Mitosis by Manipulating the Interactions of Mitotic Regulator Proteins Using Rapamycin-Inducible Dimerization. Methods Mol Biol 2016; 1413:325-31. [PMID: 27193858 DOI: 10.1007/978-1-4939-3542-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Inducible dimerization is a general approach to experimentally manipulate protein-protein interactions with temporal control. This chapter describes the use of rapamycin-inducible dimerization to manipulate mitotic regulatory proteins, for example to control kinetochore localization. A significant feature of this method relative to previously described protocols is the depletion of endogenous FKBP12 protein, which markedly improves dimerization efficiency.
Collapse
|
61
|
FKBPs facilitate the termination of spontaneous Ca2+ release in wild-type RyR2 but not CPVT mutant RyR2. Biochem J 2016; 473:2049-60. [PMID: 27154203 DOI: 10.1042/bcj20160389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 01/08/2023]
Abstract
FK506-binding proteins 12.6 (FKBP12.6) and 12 (FKBP12) tightly associate with the cardiac ryanodine receptor (RyR2). Studies suggest that dissociation of FKBP12.6 from mutant forms of RyR2 contributes to store overload-induced Ca(2+) release (SOICR) and Ca(2+)-triggered arrhythmias. However, these findings are controversial. Previous studies focused on the effect of FKBP12.6 on the initiation of SOICR and did not explore changes in the termination of Ca(2+) release. Less is known about FKBP12. We aimed to determine the effect of FKBP12.6 and FKBP12 on the termination of SOICR. Using single-cell imaging, in cells expressing wild-type RyR2, we found that FKBP12.6 and FKBP12 significantly increase the termination threshold of SOICR without changing the activation threshold of SOICR. This effect, dependent on the association of each FKBP with RyR2, reduced the magnitude of Ca(2+) release but had no effect on the propensity for SOICR. In contrast, neither FKBP12.6 nor FKBP12 was able to regulate an arrhythmogenic variant of RyR2, despite a conserved protein interaction. Our results suggest that both FKBP12.6 and FKBP12 play critical roles in regulating RyR2 function by facilitating the termination of SOICR. The inability of FKBPs to mediate a similar effect on the mutant RyR2 represents a novel mechanism by which mutations within RyR2 lead to arrhythmia.
Collapse
|
62
|
Abstract
Invasive fungal infections remain difficult to treat and require novel targeting strategies. The 12-kDa FK506-binding protein (FKBP12) is a ubiquitously expressed peptidyl-prolyl isomerase with considerable homology between fungal pathogens and is thus a prime candidate for future targeting efforts to generate a panfungal strategy. Despite decades of research on FKBPs, their substrates and mechanisms of action remain unclear. Here we describe structural, biochemical, and in vivo analyses of FKBP12s from the pathogenic fungi Candida albicans, Candida glabrata, and Aspergillus fumigatus. Strikingly, multiple apo A. fumigatus and C. albicans FKBP12 crystal structures revealed a symmetric, intermolecular interaction involving the deep insertion of an active-site loop proline into the active-site pocket of an adjacent subunit. Such interactions have not been observed in previous FKBP structures. This finding indicates the possibility that this is a self-substrate interaction unique to the A. fumigatus and C. albicans fungal proteins that contain this central proline. Structures obtained with the proline in the cis and trans states provide more data in support of self-catalysis. Moreover, cysteine cross-linking experiments captured the interacting dimer, supporting the idea that it forms in solution. Finally, genetic studies exploring the impact of mutations altering the central proline and an adjacent residue provide evidence that any dimeric state formed in vivo, where FKBP12 concentrations are low, is transient. Taken together, these findings suggest a unique mechanism of self-substrate regulation by fungal FKBP12s, lending further novel understanding of this protein for future drug-targeting efforts. FKBP12 is a cis-trans peptidyl-prolyl isomerase that plays key roles in cellular protein homeostasis. FKBP12s also bind the immunosuppressive drug FK506 to inhibit the phosphatase calcineurin (CaN). CaN is required for virulence of A. fumigatus, C. albicans, C. glabrata, and other deadly fungal pathogens, marking FKBP12 and CaN as potential broad-spectrum drug targets. Here we describe structures of fungal FKBP12s. Multiple apo A. fumigatus and C. albicans FKBP12 structures reveal the insertion of a proline, conspicuously conserved in these proteins, into the active sites of adjacent molecules. This suggests that these proteins might serve as their own substrates. Cysteine disulfide trapping experiments provide support for this self-interaction and hence possible intermolecular catalysis by these enzymes.
Collapse
|
63
|
Yadin D, Knaus P, Mueller TD. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor Rev 2015; 27:13-34. [PMID: 26690041 DOI: 10.1016/j.cytogfr.2015.11.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β family (TGFβ), which signal through hetero-tetrameric complexes of type I and type II receptors. In humans there are many more TGFβ ligands than receptors, leading to the question of how particular ligands can initiate specific signaling responses. Here we review structural features of the ligands and receptors that contribute to this specificity. Ligand activity is determined by receptor-ligand interactions, growth factor prodomains, extracellular modulator proteins, receptor assembly and phosphorylation of intracellular signaling proteins, including Smad transcription factors. Detailed knowledge about the receptors has enabled the development of BMP-specific type I receptor kinase inhibitors. In future these may help to treat human diseases such as fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- David Yadin
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Thomas D Mueller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany.
| |
Collapse
|
64
|
Burger NB, Bekker MN, Kok E, De Groot CJM, Martin JF, Shou W, Scambler PJ, Lee Y, Christoffels VM, Haak MC. Increased nuchal translucency origins from abnormal lymphatic development and is independent of the presence of a cardiac defect. Prenat Diagn 2015; 35:1278-86. [DOI: 10.1002/pd.4687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole B. Burger
- Department of Obstetrics and Gynecology; VU University Medical Center; Amsterdam The Netherlands
| | - Mireille N. Bekker
- Department of Obstetrics and Gynecology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Evelien Kok
- Department of Anatomy, Embryology and Physiology; Academic Medical Center; Amsterdam The Netherlands
| | | | - James F. Martin
- Department of Molecular Physiology and Biophysics; Baylor College of Medicine; Houston TX USA
| | - Weinian Shou
- Riley Heart Research Center, Division of Pediatric Cardiology; Indiana University School of Medicine; Indianapolis IN USA
| | - Peter J. Scambler
- Department of Molecular Medicine; UCL Institute of Child Health; London United Kingdom
| | - Youngsook Lee
- Department of Cell and Regenerative Biology; University of Wisconsin-Madison; Madison WI USA
| | - Vincent M. Christoffels
- Department of Anatomy, Embryology and Physiology; Academic Medical Center; Amsterdam The Netherlands
| | - Monique C. Haak
- Department of Obstetrics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
65
|
Song X, Tang Y, Lei C, Cao M, Shen Y, Yang Y. In situ visualizing T-Tubule/SR junction reveals the ultra-structures of calcium storage and release machinery. Int J Biol Macromol 2015; 82:7-12. [PMID: 26454109 DOI: 10.1016/j.ijbiomac.2015.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
In skeletal muscle, Ca(2+) release from sarcoplasmic reticulum (SR) following the action potential relies on the delicate architecture of the T-Tubule/SR junction. The T-Tubule/SR junction comprises two membrane systems: the integral proteins DHPR and RyR1 and the Ca(2+)-buffering apparatus within the SR lumen. The arrangement and interactions of the components have remained elusive due to technological limitations. Here, we determined whether electron tomography is effective fort the in situ determination of the relationships between RyR1 and DHPR, the SR membrane and other involved structures. First, we visually confirmed that RyR1 and DHPR are close neighbors that are mutually staggered with each other and directly interact with one of RyR1 subunits. Second, the Ca(2+) storage network within the SR lumen is directly correlated with RyR1. These results suggest that the excitation of the T-Tubule may induce Ca(2+) release through a direct interaction among DHPR, RyR1 and the Ca(2+) buffering apparatus. These results indicate that electron tomography has potential as an efficient method for the in situ characterization of the complex architecture and arrangement of two integral-integral-membrane proteins in the context of the surrounding phospholipid-bilayer and proteins.
Collapse
Affiliation(s)
- XiaoWei Song
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Ying Tang
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - ChangHai Lei
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Mi Cao
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - YaFeng Shen
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - YongJi Yang
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
66
|
Lazelle RA, McCully BH, Terker AS, Himmerkus N, Blankenstein KI, Mutig K, Bleich M, Bachmann S, Yang CL, Ellison DH. Renal Deletion of 12 kDa FK506-Binding Protein Attenuates Tacrolimus-Induced Hypertension. J Am Soc Nephrol 2015; 27:1456-64. [PMID: 26432904 DOI: 10.1681/asn.2015040466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
Tacrolimus is a widely used immunosuppressive drug that inhibits the phosphatase calcineurin when bound to the 12 kDa FK506-binding protein (FKBP12). When this binding occurs in T cells, it leads to immunosuppression. Tacrolimus also causes side effects, however, such as hypertension and hyperkalemia. Previously, we reported that tacrolimus stimulates the renal thiazide-sensitive sodium chloride cotransporter (NCC), which is necessary for the development of hypertension. However, it was unclear if tacrolimus-induced hypertension resulted from tacrolimus effects in renal epithelial cells directly or in extrarenal tissues, and whether inhibition of calcineurin was required. To address these questions, we developed a mouse model in which FKBP12 could be deleted along the nephron. FKBP12 disruption alone did not cause phenotypic effects. When treated with tacrolimus, however, BP and the renal abundance of phosphorylated NCC were lower in mice lacking FKBP12 along the nephron than in control mice. Mice lacking FKBP12 along the nephron also maintained a normal relationship between plasma potassium levels and the abundance of phosphorylated NCC with tacrolimus treatment. In cultured cells, tacrolimus inhibited dephosphorylation of NCC. Together, these results suggest that tacrolimus causes hypertension predominantly by inhibiting calcineurin directly in cells expressing NCC, indicating thiazide diuretics may be particularly effective for lowering BP in tacrolimus-treated patients with hypertension.
Collapse
Affiliation(s)
- Rebecca A Lazelle
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Belinda H McCully
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katharina I Blankenstein
- Institute of Vegetative Anatomy, Charité, Universitätsmedizin Berlin, Campus Charité-Mitte, Berlin, Germany; and
| | - Kerim Mutig
- Institute of Vegetative Anatomy, Charité, Universitätsmedizin Berlin, Campus Charité-Mitte, Berlin, Germany; and
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Charité, Universitätsmedizin Berlin, Campus Charité-Mitte, Berlin, Germany; and
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, and Renal Section, VA Portland Health Care System, Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, and Institute of Vegetative Anatomy, Charité, Universitätsmedizin Berlin, Campus Charité-Mitte, Berlin, Germany; and Renal Section, VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
67
|
Abstract
Left ventricular non-compaction, the most recently classified form of cardiomyopathy, is characterised by abnormal trabeculations in the left ventricle, most frequently at the apex. It can be associated with left ventricular dilation or hypertrophy, systolic or diastolic dysfunction, or both, or various forms of congenital heart disease. Affected individuals are at risk of left or right ventricular failure, or both. Heart failure symptoms can be induced by exercise or be persistent at rest, but many patients are asymptomatic. Patients on chronic treatment for compensated heart failure sometimes present acutely with decompensated heart failure. Other life-threatening risks of left ventricular non-compaction are ventricular arrhythmias or complete atrioventricular block, presenting clinically as syncope, and sudden death. Genetic inheritance arises in at least 30-50% of patients, and several genes that cause left ventricular non-compaction have been identified. These genes seem generally to encode sarcomeric (contractile apparatus) or cytoskeletal proteins, although, in the case of left ventricular non-compaction with congenital heart disease, disturbance of the NOTCH signalling pathway seems part of a final common pathway for this form of the disease. Disrupted mitochondrial function and metabolic abnormalities have a causal role too. Treatments focus on improvement of cardiac efficiency and reduction of mechanical stress in patients with systolic dysfunction. Further, treatment of arrhythmia and implantation of an automatic implantable cardioverter-defibrillator for prevention of sudden death are mainstays of therapy when deemed necessary and appropriate. Patients with left ventricular non-compaction and congenital heart disease often need surgical or catheter-based interventions. Despite progress in diagnosis and treatment in the past 10 years, understanding of the disorder and outcomes need to be improved.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Angela Lorts
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John Lynn Jefferies
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
68
|
Hussein A, Karimianpour A, Collier P, Krasuski RA. Isolated Noncompaction of the Left Ventricle in Adults. J Am Coll Cardiol 2015; 66:578-85. [DOI: 10.1016/j.jacc.2015.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
|
69
|
Chen X, Qin L, Liu Z, Liao L, Martin JF, Xu J. Knockout of SRC-1 and SRC-3 in Mice Decreases Cardiomyocyte Proliferation and Causes a Noncompaction Cardiomyopathy Phenotype. Int J Biol Sci 2015. [PMID: 26221073 PMCID: PMC4515817 DOI: 10.7150/ijbs.12408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Noncompaction cardiomyopathy (NCC) is a congenital heart disease that causes ventricular dysfunction and high mortality rate in children. The mechanisms responsible for NCC are still unknown. The steroid receptor coactivator-1 (SRC-1) and SRC-3 are transcriptional coactivators for nuclear hormone receptors and certain other transcription factors that regulate many genes in development and organ function. However, the roles of SRC-1/3 in heart morphogenesis, function and NCC occurrence are unknown. This study aims to examine the spatial and temporal expression patterns of SRC-1/3 in the heart and investigate the specific roles of SRC-1/3 in heart development, function and NCC occurrence. Immunochemical analysis detected SRC-1/3 expressions in the proliferating cardiomyocytes of mouse heart at prenatal and neonatal stages, while these expressions disappeared within two weeks after birth. Through generating and characterizing mouse lines with global or cardiomyocyte-specific knockouts of SRC-1/3, we found ablation of SRC-1/3 in the myocardial lineage resulted in prominent trabeculae, deep intertrabecular recesses and thin ventricular wall and septum. These developmental defects caused a failure of trabecular compaction, decreased internal ventricular dimension, reduced cardiac ejection fraction and output and led to a high rate of postnatal mortality. Collectively, these structural and functional abnormalities closely simulate the phenotype of NCC patients. Further molecular analysis of cardiomyocytes in vivo and in vitro revealed that SRC-1/3 directly up-regulate cyclin E2, cyclin B1 and myocardin to promote cardiomyocyte proliferation and differentiation. In conclusion, SRC-1/3 are required for cardiomyocyte proliferation and differentiation at earlier developmental stages, and their dysfunction causes NCC-like abnormalities in the hearts of newborn and adult mice.
Collapse
Affiliation(s)
- Xian Chen
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Qin
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhaoliang Liu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- 2. Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; 3. Sichuan Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
70
|
Captur G, Syrris P, Obianyo C, Limongelli G, Moon JC. Formation and Malformation of Cardiac Trabeculae: Biological Basis, Clinical Significance, and Special Yield of Magnetic Resonance Imaging in Assessment. Can J Cardiol 2015; 31:1325-37. [PMID: 26440509 DOI: 10.1016/j.cjca.2015.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
Adult and pediatric cardiologists are familiar with variation in cardiac trabeculation. Abnormal trabeculation is a key feature of left ventricular noncompaction, but it is also common in congenital heart diseases and in cardiomyopathies (dilated and hypertrophied). Trabeculae might be a measurable phenotypic marker that will allow insights into how cardiomyopathy and congenital heart disease arise and develop. This will require the linking together of clinical and preclinical information (such as embryology and genetics), with new analysis methods for trabecular quantitation. In adult cardiology several promising quantitative methods have been developed for echocardiography, computed tomography, and cardiovascular magnetic resonance, and earlier cross-sectional caliper approaches have now been refined to permit more advanced assessment. Adaptation of these methods for use in developmental biology might inform on better ways to measure and track trabecular morphology in model organisms.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, Cardiovascular Magnetic Resonance Unit, St Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Petros Syrris
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom
| | - Chinwe Obianyo
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom
| | - Giuseppe Limongelli
- Unità Complessa di Cardiologia, Dipartimento di Scienze Cardiotoraciche e Respiratorie, Azienda, Ospedaliera dei Colli - Ospedale Monaldi, Naples, Italy
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, United Kingdom; Barts Heart Centre, Cardiovascular Magnetic Resonance Unit, St Bartholomew's Hospital, West Smithfield, London, United Kingdom.
| |
Collapse
|
71
|
Neary MT, Neary JM, Lund GK, Holt TN, Garry FB, Mohun TJ, Breckenridge RA. Myosin heavy chain 15 is associated with bovine pulmonary arterial pressure. Pulm Circ 2015; 4:496-503. [PMID: 25621163 DOI: 10.1086/677364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/16/2014] [Indexed: 11/03/2022] Open
Abstract
Bovine pulmonary hypertension, brisket disease, causes significant morbidity and mortality at elevations above 2,000 m. Mean pulmonary arterial pressure (mPAP) is moderately heritable, with inheritance estimated to lie within a few major genes. Invasive mPAP measurement is currently the only tool available to identify cattle at risk of hypoxia-induced pulmonary hypertension. A genetic test could allow selection of cattle suitable for high altitude without the need for invasive testing. In this study we evaluated three candidate genes (myosin heavy chain 15 [MYH15], NADH dehydrogenase flavoprotein 2, and FK binding protein 1A) for association with mPAP in 166 yearling Angus bulls grazing at 2,182 m. The T allele (rs29016420) of MYH15 was linked to lower mPAP in a dominant manner (CC 47.2 ± 1.6 mmHg [mean ± standard error of the mean]; CT/TT 42.8 ± 0.7 mmHg; P = 0.02). The proportions of cattle with MYH15 CC, CT, and TT genotypes were 55%, 41%, and 4%, respectively. Given the high frequency of the deleterious allele, it is likely that the relative contribution of MYH15 polymorphisms to pulmonary hypertension is small, supporting previous predictions that the disease is polygenic. We evaluated allelic frequency of MYH15 in the Himalayan yak (Bos grunniens), a closely related species adapted to high altitude, and found 100% prevalence of T allele homozygosity. In summary, we identified a polymorphism in MYH15 significantly associated with mPAP. This finding may aid selection of cattle suitable for high altitude and contribute to understanding human hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Marianne T Neary
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom ; These two authors contributed equally to the work
| | - Joseph M Neary
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA ; These two authors contributed equally to the work
| | - Gretchen K Lund
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Timothy N Holt
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Franklyn B Garry
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Timothy J Mohun
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Ross A Breckenridge
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom ; Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
72
|
Hausch F. FKBPs and their role in neuronal signaling. Biochim Biophys Acta Gen Subj 2015; 1850:2035-40. [PMID: 25615537 DOI: 10.1016/j.bbagen.2015.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ligands for FK506-binding proteins, also referred to as neuroimmunophilin ligands, have repeatedly been described as neuritotrophic, neuroprotective or neuroregenerative agents. However, the precise molecular mechanism of action underlying the observed effects has remained elusive, which eventually led to a reduced interest in FKBP ligand development. SCOPE OF REVIEW A survey is presented on the pharmacology of neuroimmunophilin ligands, of the current understanding of individual FKBP homologs in neuronal processes and an assessment of their potential as drug targets for CNS disorders. MAJOR CONCLUSIONS FKBP51 is the major target accounting for the neuritotrophic effect of neuroimmunophilin ligands. Selectivity against the homolog FKBP52 is essential for optimal neuritotrophic efficacy. GENERAL SIGNIFICANCE Selectivity within the FKBP family, in particular selective inhibition of FKBP12 or FKBP51, is possible. FKBP51 is a pharmacologically tractable target for stress-related disorders. The role of FKBPs in neurodegeneration remains to be clarified. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Felix Hausch
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
73
|
Woo JS, Perez-Rosendahl M, Haydel D, Perens G, Fishbein MC. A novel association of biventricular cardiac noncompaction and diabetic embryopathy: case report and review of the literature. Pediatr Dev Pathol 2015; 18:71-5. [PMID: 25386687 DOI: 10.2350/14-07-1532-cr.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diabetic embryopathy refers to a constellation of congenital malformations arising in the setting of poorly controlled maternal diabetes mellitus. Cardiac abnormalities are the most frequently observed findings, with a 5-fold risk over normal pregnancies. Although a diverse spectrum of cardiac defects has been documented, cardiac noncompaction morphology has not been associated with this syndrome. In this report, we describe a novel case of biventricular cardiac noncompaction in a neonate of a diabetic mother. The patient was a late preterm female with right anotia, caudal dysgenesis, multiple cardiac septal and aortic arch defects, and biventricular cardiac noncompaction. Examination of both ventricles demonstrated spongy myocardium with increased myocardial trabeculation greater than 50% left ventricular thickness and greater than 75% right ventricular thickness, with hypoplasia of the bilateral papillary muscles, consistent with noncompaction morphology. Review of the literature highlights the importance of gene expression and epigenomic regulation in cardiac embryogenesis.
Collapse
Affiliation(s)
- Jennifer S Woo
- 1 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 13-145, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
74
|
Venturi E, Galfré E, O'Brien F, Pitt SJ, Bellamy S, Sessions RB, Sitsapesan R. FKBP12.6 activates RyR1: investigating the amino acid residues critical for channel modulation. Biophys J 2014; 106:824-33. [PMID: 24559985 PMCID: PMC3945099 DOI: 10.1016/j.bpj.2013.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/25/2013] [Accepted: 12/19/2013] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that FKBP12 associates with RyR2 in cardiac muscle and that it modulates RyR2 function differently to FKBP12.6. We now investigate how these proteins affect the single-channel behavior of RyR1 derived from rabbit skeletal muscle. Our results show that FKBP12.6 activates and FKBP12 inhibits RyR1. It is likely that both proteins compete for the same binding sites on RyR1 because channels that are preactivated by FKBP12.6 cannot be subsequently inhibited by FKBP12. We produced a mutant FKBP12 molecule (FKBP12E31Q/D32N/W59F) where the residues Glu(31), Asp(32), and Trp(59) were converted to the corresponding residues in FKBP12.6. With respect to the functional regulation of RyR1 and RyR2, the FKBP12E31Q/D32N/W59F mutant lost all ability to behave like FKBP12 and instead behaved like FKBP12.6. FKBP12E31Q/D32N/W59F activated RyR1 but was not capable of activating RyR2. In conclusion, FKBP12.6 activates RyR1, whereas FKBP12 activates RyR2 and this selective activator phenotype is determined within the amino acid residues Glu(31), Asp(32), and Trp(59) in FKBP12 and Gln(31), Asn(32), and Phe(59) in FKBP12.6. The opposing but different effects of FKBP12 and FKBP12.6 on RyR1 and RyR2 channel gating provide scope for diversity of regulation in different tissues.
Collapse
Affiliation(s)
- Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Elena Galfré
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Fiona O'Brien
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha J Pitt
- School of Medicine, University of St. Andrews, St. Andrew, United Kingdom
| | - Stuart Bellamy
- Centre for Nanoscience and Quantum Information (NSQI), University of Bristol, Bristol, United Kingdom
| | | | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
75
|
Xu B, Zhu JX, Huo R, Yan ZY, He JL, Deng L, Wang JX, He J, Qiao GF, Chen H, Li BY. Alternations of cardiac IK1 and Ito from FKBP12.6 transgenic mouse heart and potential impact of cardiac hypertrophy. Int J Cardiol 2014; 176:1017-20. [PMID: 25189487 DOI: 10.1016/j.ijcard.2014.07.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Bing Xu
- Department of Pharmacology of Harbin Medical University, Harbin, China
| | - Jiu-Xin Zhu
- Department of Pharmacology of Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Rong Huo
- Department of Pharmacology of Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Zhen-Yu Yan
- Department of Pharmacology of Harbin Medical University, Harbin, China; Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, IN University School of Medicine, Indianapolis, USA
| | - Jian-Li He
- Department of Pharmacology of Harbin Medical University, Harbin, China
| | - Lin Deng
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Jian-Xin Wang
- Department of Pharmacology of Harbin Medical University, Harbin, China
| | - Jian He
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Guo-Fen Qiao
- Department of Pharmacology of Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Hanying Chen
- Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, IN University School of Medicine, Indianapolis, USA
| | - Bai-Yan Li
- Department of Pharmacology of Harbin Medical University, Harbin, China.
| |
Collapse
|
76
|
Lee CS, Georgiou DK, Dagnino-Acosta A, Xu J, Ismailov II, Knoblauch M, Monroe TO, Ji R, Hanna AD, Joshi AD, Long C, Oakes J, Tran T, Corona BT, Lorca S, Ingalls CP, Narkar VA, Lanner JT, Bayle JH, Durham WJ, Hamilton SL. Ligands for FKBP12 increase Ca2+ influx and protein synthesis to improve skeletal muscle function. J Biol Chem 2014; 289:25556-70. [PMID: 25053409 DOI: 10.1074/jbc.m114.586289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rapamycin at high doses (2-10 mg/kg body weight) inhibits mammalian target of rapamycin complex 1 (mTORC1) and protein synthesis in mice. In contrast, low doses of rapamycin (10 μg/kg) increase mTORC1 activity and protein synthesis in skeletal muscle. Similar changes are found with SLF (synthetic ligand for FKBP12, which does not inhibit mTORC1) and in mice with a skeletal muscle-specific FKBP12 deficiency. These interventions also increase Ca(2+) influx to enhance refilling of sarcoplasmic reticulum Ca(2+) stores, slow muscle fatigue, and increase running endurance without negatively impacting cardiac function. FKBP12 deficiency or longer treatments with low dose rapamycin or SLF increase the percentage of type I fibers, further adding to fatigue resistance. We demonstrate that FKBP12 and its ligands impact multiple aspects of muscle function.
Collapse
Affiliation(s)
- Chang Seok Lee
- From the Baylor College of Medicine, Houston, Texas 77030
| | | | | | - Jianjun Xu
- From the Baylor College of Medicine, Houston, Texas 77030
| | | | - Mark Knoblauch
- From the Baylor College of Medicine, Houston, Texas 77030
| | | | - RuiRui Ji
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Amy D Hanna
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Aditya D Joshi
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Cheng Long
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Joshua Oakes
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Ted Tran
- From the Baylor College of Medicine, Houston, Texas 77030
| | - Benjamin T Corona
- the Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia 30302
| | - Sabina Lorca
- the Center for Metabolic and Degenerative Disease, University of Texas Health Science Center, Houston, Texas 77030, and
| | - Christopher P Ingalls
- the Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia 30302
| | - Vihang A Narkar
- the Center for Metabolic and Degenerative Disease, University of Texas Health Science Center, Houston, Texas 77030, and
| | | | - J Henri Bayle
- From the Baylor College of Medicine, Houston, Texas 77030
| | - William J Durham
- the Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1041
| | | |
Collapse
|
77
|
Ahn EH, Kim DW, Shin MJ, Jo HS, Eom SA, Kim DS, Park EY, Park JH, Cho SW, Park J, Eum WS, Son O, Hwang HS, Choi SY. Fenobam promoted the neuroprotective effect of PEP-1-FK506BP following oxidative stress by increasing its transduction efficiency. BMB Rep 2014; 46:561-6. [PMID: 24152913 PMCID: PMC4133844 DOI: 10.5483/bmbrep.2013.46.11.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 11/30/2022] Open
Abstract
We examined the ways in which fenobam could promote not only the transduction of PEP-1-FK506BP into cells and tissues but also the neuroprotective effect of PEP-1-FK506BP against ischemic damage. Fenobam strongly enhanced the protective effect of PEP-1-FK506BP against H2O2-induced toxicity and DNA fragmentation in C6 cells. In addition, combinational treatment of fenobam with PEP-1-FK506BP significantly inhibited the activation of Akt and MAPK induced by H2O2, compared to treatment with PEP-1-FK506BP alone. Interestingly, our results showed that fenobam significantly increased the transduction of PEP-1-FK506BP into both C6 cells and the hippocampus of gerbil brains. Subsequently, a transient ischemic gerbil model study demonstrated that fenobam pretreatment led to the increased neuroprotection of PEP-1-FK506BP in the CA1 region of the hippocampus. Therefore, these results suggest that fenobam can be a useful agent to enhance the transduction of therapeutic PEP-1-fusion proteins into cells and tissues, thereby promoting their neuroprotective effects. [BMB Reports 2013; 46(11): 561-566]
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Anderson JS, Mustafi SM, Hernández G, LeMaster DM. Statistical allosteric coupling to the active site indole ring flip equilibria in the FK506-binding domain. Biophys Chem 2014; 192:41-8. [PMID: 25016286 DOI: 10.1016/j.bpc.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
In solution, the Trp 59 indole ring at the base of the active site cleft in the FKBP domain protein FKBP12 is rotated by ~90° at a population level of 20%, relative to its canonical crystallographic orientation. NMR measurements on the homologous FK1 domains of human FKBP51 and FKBP52 indicate no observable indole ring flip conformation, while the V101I variant of FKBP12 decreases the population having a perpendicular indole orientation by 10-fold. A set of three parallel 400 ns CHARMM27 molecular simulations for both wild type FKBP12 and the V101I variant examined how this ring flip might be energetically coupled to a transition of the Glu 60 sidechain which interacts with the backbone of the 50's loop located ~12 Å from the indole nitrogen. Analysis of the transition matrix for the local dynamics of the Glu 60 sidechain, the Trp 59 sidechain, and of the structurally interposed α-helix hydrogen bonding pattern yielded a statistical allosteric coupling of 10 kJ/mol with negligible concerted dynamical coupling for the transitions of the two sidechains.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, NY 12308, United States
| | - Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States.
| |
Collapse
|
79
|
Tokunaga M, Shiheido H, Hayakawa I, Utsumi A, Takashima H, Doi N, Horisawa K, Sakuma-Yonemura Y, Tabata N, Yanagawa H. Hereditary spastic paraplegia protein spartin is an FK506-binding protein identified by mRNA display. ACTA ACUST UNITED AC 2014; 20:935-42. [PMID: 23890011 DOI: 10.1016/j.chembiol.2013.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 11/15/2022]
Abstract
Here, we used mRNA display to search for proteins that bind to FK506, a potent immunosuppressant drug, and identified spartin, a hereditary spastic paraplegia protein, from a human brain cDNA library. We demonstrated that FK506 binds to the C-terminal region of spartin and thereby inhibits the interaction of spartin with TIP47, one of the lipid droplet-associated proteins. We further confirmed that FK506 inhibits localization of spartin and its binder, an E3 ubiquitin ligase AIP4, in lipid droplets and increases the protein level of ADRP (adipose differentiation-related protein), which is a regulator of lipid homeostasis. These results strongly suggest that FK506 suppresses the proteasomal degradation of ADRP, a substrate of AIP4, by inhibiting the spartin-TIP47 interaction and thereby blocking the localization of spartin and AIP4 in lipid droplets.
Collapse
Affiliation(s)
- Mayuko Tokunaga
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Udeoji DU, Philip KJ, Morrissey RP, Phan A, Schwarz ER. Left ventricular noncompaction cardiomyopathy: updated review. Ther Adv Cardiovasc Dis 2014; 7:260-73. [PMID: 24132556 DOI: 10.1177/1753944713504639] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The first case of noncompaction was described in 1932 after an autopsy performed on a newborn infant with aortic atresia/coronary-ventricular fistula. Isolated noncompaction cardiomyopathy was first described in 1984. A review on selected/relevant medical literature was conducted using Pubmed from 1984 to 2013 and the pathogenesis, clinical features, and management are discussed. Left ventricular noncompaction (LVNC) is a relatively rare congenital condition that results from arrest of the normal compaction process of the myocardium during fetal development. LVNC shows variability in its genetic pattern, pathophysiologic findings, and clinical presentations. The genetic heterogeneity, phenotypical overlap, and variety in clinical presentation raised the suspicion that LVNC might just be a morphological variant of other cardiomyopathies, but the American Heart Association classifies LVNC as a primary genetic cardiomyopathy. The familiar type is common and follows a X-linked, autosomal-dominant, or mitochondrial-inheritance pattern (in children). LVNC can occur in isolation or coexist with other cardiac and/or systemic anomalies. The clinical presentations are variable ranging from asymptomatic patients to patients who develop ventricular arrhythmias, thromboembolism, heart failure, and sudden cardiac death. Increased awareness over the last 25 years and improvements in technology have increased the identification of this illness and improved the clinical outcome and prognosis. LVNC is commonly diagnosed by echocardiography. Other useful diagnostic techniques for LVNC include cardiac magnetic resonance imaging, computerized tomography, and left ventriculography. Management is symptom based and patients with symptoms have a poorer prognosis. LVNC is a genetically heterogeneous disorder which can be associated with other anomalies. Making the correct diagnosis is important because of the possible associations and the need for long-term management and screening of living relatives.
Collapse
Affiliation(s)
- Dioma U Udeoji
- Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
81
|
Peng Y, Song L, Zhao M, Harmelink C, Debenedittis P, Cui X, Wang Q, Jiao K. Critical roles of miRNA-mediated regulation of TGFβ signalling during mouse cardiogenesis. Cardiovasc Res 2014; 103:258-67. [PMID: 24835278 DOI: 10.1093/cvr/cvu126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS MicroRNAs (miRNAs) play critical roles during the development of the cardiovascular system. Blocking miRNA biosynthesis in embryonic hearts through a conditional gene inactivation approach led to differential cardiac defects depending on the Cre drivers used in different studies. The goal of this study is to reveal the cardiogenic pathway that is regulated by the miRNA mechanism at midgestation, a stage that has not been evaluated in previous publications. METHODS AND RESULTS We specifically inactivated Dicer1, which is essential for generation of functional mature miRNAs, in the myocardium by crossing cTnt-Cre mice with Dicer1(loxP) mice. cTnt-Cre efficiently inactivates target genes in cardiomyocytes at midgestation. All mutants died between E14.5 and E16.5 with severe myocardial wall defects, including reduced cell proliferation, increased cell death, and spongy myocardial wall. Expression of TGFβ type I receptor (Tgfbr1), which encodes the Type I receptor of TGFβ ligands, was up-regulated in mutant hearts. As expected, TGFβ activity was increased in Dicer1-inactivated hearts. Our further molecular analysis suggested that Tgfbr1 is a direct target of three miRNAs. Reducing TGFβ activities using a pharmacological inhibitor on in vitro cultured hearts, or through an in vivo genetic approach, partially rescued the cardiac defects caused by Dicer1 inactivation. CONCLUSIONS We show for the first time that TGFβ signalling is directly regulated by the miRNA mechanism during myocardial wall morphogenesis. Increased TGFβ activity plays a major role in the cardiac defects caused by myocardial deletion of Dicer1. Thus, miRNA-mediated regulation of TGFβ signalling is indispensable for normal cardiogenesis.
Collapse
Affiliation(s)
- Yin Peng
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, 720 20th St. S., 768 Kaul Building, Birmingham AL 35294, USA
| | - Lanying Song
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, 720 20th St. S., 768 Kaul Building, Birmingham AL 35294, USA
| | - Mei Zhao
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, 720 20th St. S., 768 Kaul Building, Birmingham AL 35294, USA
| | - Cristina Harmelink
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, 720 20th St. S., 768 Kaul Building, Birmingham AL 35294, USA
| | - Paige Debenedittis
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, 720 20th St. S., 768 Kaul Building, Birmingham AL 35294, USA
| | - Xiangqin Cui
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, USA
| | - Kai Jiao
- Division of Research, Department of Genetics, The University of Alabama at Birmingham, 720 20th St. S., 768 Kaul Building, Birmingham AL 35294, USA
| |
Collapse
|
82
|
Finsterer J, Stöllberger C, Brandau O, Laccone F, Bichler K, Laing NG. Novel MYH7 mutation associated with mild myopathy but life-threatening ventricular arrhythmias and noncompaction. Int J Cardiol 2014; 173:532-5. [DOI: 10.1016/j.ijcard.2014.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/09/2014] [Indexed: 11/27/2022]
|
83
|
Structural basis of conformational transitions in the active site and 80's loop in the FK506-binding protein FKBP12. Biochem J 2014; 458:525-36. [PMID: 24405377 PMCID: PMC3940039 DOI: 10.1042/bj20131429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive set of NMR doublings exhibited by the immunophilin FKBP12 (FK506-binding protein 12) arose from a slow transition to the cis-peptide configuration at Gly89 near the tip of the 80′s loop, the site for numerous protein-recognition interactions for both FKBP12 and other FKBP domain proteins. The 80′s loop also exhibited linebroadening, indicative of microsecond to millisecond conformational dynamics, but only in the trans-peptide state. The G89A variant shifted the trans–cis peptide equilibrium from 88:12 to 33:67, whereas a proline residue substitution induced fully the cis-peptide configuration. The 80′s loop conformation in the G89P crystal structure at 1.50 Å resolution differed from wild-type FKBP12 primarily at residues 88, 89 and 90, and it closely resembled that reported for FKBP52. Structure-based chemical-shift predictions indicated that the microsecond to millisecond dynamics in the 80′s loop probably arose from a concerted main chain (ψ88 and ϕ89) torsion angle transition. The indole side chain of Trp59 at the base of the active-site cleft was reoriented ~90o and the adjacent backbone was shifted in the G89P crystal structure. NOE analysis of wild-type FKBP12 demonstrated that this indole populates the perpendicular orientation at 20%. The 15N relaxation analysis was consistent with the indole reorientation occurring in the nanosecond timeframe. Recollection of the G89P crystal data at 1.20 Å resolution revealed a weaker wild-type-like orientation for the indole ring. Differences in the residues that underlie the Trp59 indole ring and altered interactions linking the 50′s loop to the active site suggested that reorientation of this ring may be disfavoured in the other six members of the FKBP domain family that bear this active-site tryptophan residue. Extensive resonance doubling arises from a cis–trans peptide transition at Gly89, whereas linebroadening appears due to a concerted shift in the neighbouring torsion angles. The active site Trp59 ring adopts a perpendicular orientation at a population of 20%.
Collapse
|
84
|
Captur G, Lopes LR, Patel V, Li C, Bassett P, Syrris P, Sado DM, Maestrini V, Mohun TJ, McKenna WJ, Muthurangu V, Elliott PM, Moon JC. Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. ACTA ACUST UNITED AC 2014; 7:241-8. [PMID: 24704860 DOI: 10.1161/circgenetics.113.000362] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Mutations in genes coding for sarcomeric proteins cause hypertrophic cardiomyopathy. Subtle abnormalities of the myocardium may be present in mutation carriers without left ventricular hypertrophy (G+LVH-) but are difficult to quantify. Fractal analysis has been used to define trabeculae in left ventricular noncompaction and to identify normal racial variations. We hypothesized that trabeculae measured by fractal analysis of cardiovascular magnetic resonance images are abnormal in G+LVH- patients, providing a preclinical marker of disease in hypertrophic cardiomyopathy. METHODS AND RESULTS Cardiovascular magnetic resonance was performed on 40 G+LVH- patients (33±15 years, 38% men), 67 patients with a clinical diagnosis of hypertrophic cardiomyopathy (53±15 years, 76% men; 31 with a pathogenic mutation [G+LVH+]), and 69 matched healthy volunteers (44±15 years, 57% men). Trabeculae were quantified by fractal analysis of cine slices to calculate the fractal dimension, a unitless index of endocardial complexity calculated from endocardial contours after segmentation. In G+LVH- patients, apical left ventricular trabeculation was increased compared with controls (maximal apical fractal dimension, 1.249±0.07 versus 1.199±0.05; P=0.001). In G+LVH+ and G-LVH+ cohorts, maximal apical fractal dimension was greater than in controls (P<0.0001) irrespective of gene status (G+LVH+: 1.370±0.08; G-LVH+: 1.380±0.09). Compared with controls, G+LVH- patients also had a higher frequency of clefts (28% versus 8%; P=0.02), longer anterior mitral valve leaflets (23.5±3.0 versus 19.7±3.1 mm; P<0.0001), greater septal systolic wall thickness (12.6±3.2 versus 11.2±2.1 mm; P=0.03), higher ejection fraction (71±4% versus 69±4%; P=0.03), and smaller end-systolic volumes (38±9 versus 43±12 mL; P=0.03). CONCLUSIONS Increased myocardial trabecular complexity is one of several preclinical abnormalities in hypertrophic cardiomyopathy sarcomere gene mutation carriers without LVH.
Collapse
Affiliation(s)
- Gabriella Captur
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Luis R Lopes
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Vimal Patel
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Chunming Li
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Paul Bassett
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Petros Syrris
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Daniel M Sado
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Viviana Maestrini
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Timothy J Mohun
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - William J McKenna
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Vivek Muthurangu
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - Perry M Elliott
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu)
| | - James C Moon
- From Division of Cardiovascular Imaging and Inherited Cardiovascular Disease Unit, The Heart Hospital, part of University College London NHS Foundation Trust, London, United Kingdom (G.C., L.L., V.P., P.S., D.M.S., V. Maestrini, W.J.M., P.M.E., J.C.M.); UCL Institute of Cardiovascular Science (G.C., L.L., V.P., P.B., P.S., D.M.S., V. Maestrini, W.J.M., V. Muthurangu, P.M.E., J.C.M.) and Biostatistics Joint Research Office (P.B.), University College London, London, United Kingdom; Department of Radiology, University of Pennsylvania, Philadelphia (C.L.); Developmental Biology Division, MRC National Institute for Medical Research, London, United Kingdom (T.J.M.); and UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children (GOSH), London, United Kingdom (V. Muthurangu).
| |
Collapse
|
85
|
Santini E, Huynh TN, Klann E. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:131-67. [PMID: 24484700 DOI: 10.1016/b978-0-12-420170-5.00005-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation. New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation has enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation.
Collapse
Affiliation(s)
| | - Thu N Huynh
- Center for Neural Science, New York University, New York, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
86
|
Guerrero-Hernández A, Ávila G, Rueda A. Ryanodine receptors as leak channels. Eur J Pharmacol 2013; 739:26-38. [PMID: 24291096 DOI: 10.1016/j.ejphar.2013.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/21/2013] [Indexed: 01/18/2023]
Abstract
Ryanodine receptors are Ca(2+) release channels of internal stores. This review focuses on those situations and conditions that transform RyRs from a finely regulated ion channel to an unregulated Ca(2+) leak channel and the pathological consequences of this alteration. In skeletal muscle, mutations in either CaV1.1 channel or RyR1 results in a leaky behavior of the latter. In heart cells, RyR2 functions normally as a Ca(2+) leak channel during diastole within certain limits, the enhancement of this activity leads to arrhythmogenic situations that are tackled with different pharmacological strategies. In smooth muscle, RyRs are involved more in reducing excitability than in stimulating contraction so the leak activity of RyRs in the form of Ca(2+) sparks, locally activates Ca(2+)-dependent potassium channels to reduce excitability. In neurons the enhanced activity of RyRs is associated with the development of different neurodegenerative disorders such as Alzheimer and Huntington diseases. It appears then that the activity of RyRs as leak channels can have both physiological and pathological consequences depending on the cell type and the metabolic condition.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Departamento de Bioquímica, Cinvestav, Mexico city, México
| |
Collapse
|
87
|
Abstract
The 1H-15N 2D NMR correlation spectrum of the widely studied FK506-binding protein FKBP12 (FK506-binding protein of 12 kDa) contains previously unreported peak doublings for at least 31 residues that arise from a minor conformational state (12% of total) which exchanges with the major conformation with a time constant of 3.0 s at 43°C. The largest differences in chemical shift occur for the 80′s loop that forms critical recognition interactions with many of the protein partners for the FKBP family. The residues exhibiting doubling extend into the adjacent strands of the β-sheet, across the active site to the α-helix and into the 50′s loop. Each of the seven proline residues adopts a trans-peptide linkage in both the major and minor conformations, indicating that this slow transition is not the result of prolyl isomerization. Many of the residues exhibiting resonance doubling also participate in conformational line-broadening transition(s) that occur ~105-fold more rapidly, proposed previously to arise from a single global process. The 1.70 Å (1 Å=0.1 nm) resolution X-ray structure of the H87V variant is strikingly similar to that of FKBP12, yet this substitution quenches the slow conformational transition throughout the protein while quenching the line-broadening transition for residues near the 80′s loop. Line-broadening was also decreased for the residues in the α-helix and 50′s loop, whereas line-broadening in the 40′s loop was unaffected. The K44V mutation selectively reduces the line-broadening in the 40′s loop, verifying that at least three distinct conformational transitions underlie the line-broadening processes of FKBP12.
Collapse
|
88
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
89
|
Niu XW, Zheng ZY, Feng YG, Guo WZ, Wang XY. The Fusarium Graminearum virulence factor FGL targets an FKBP12 immunophilin of wheat. Gene 2013; 525:77-83. [PMID: 23648486 DOI: 10.1016/j.gene.2013.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/28/2013] [Accepted: 04/22/2013] [Indexed: 11/24/2022]
Abstract
Wheat scab, caused by the fungal pathogen Fusarium graminearum is a devastating disease worldwide. Despite an extensive and coordinated effort to investigate this pathosystem, little progress has been made to understand the molecular basis of host-pathogen interactions, for example how the pathogen causes disease in plant. Recently, a secreted lipase (FGL1) has been identified from the fungus and shown to be an important virulence factor; however, the intrinsic function of FGL1 in plant is unknown. Here, we report the identification of the molecular components that may possibly be involved in the FGL virulence pathway using yeast two hybrid system. FGL gene was amplified from a local virulent strain (F15) and shown to be 99.5% identical to the original published FGL at the amino acid level. We showed that transient expression of this FGL gene by Agroinfiltration in tobacco leaves causes cell death further implicating the role of FGL in virulence. To identify FGL initial physical target in plant, we screened two wheat cDNA libraries using the FGL protein as the bait. From both libraries, a small FKBP-type immunophilin protein, designated wFKBP12, was found to physically interact with FGL. The direct interaction of FGL with wFKBP12 was confirmed in living onion epidermal cells by biomolecular fluorescence complementation (BiFC) assay. To investigate further, we then used wFKBP12 protein as bait and identified an elicitor-responsive protein that contains a potential Ca(2+) binding domain. Semi-quantitative PCR showed that this elicitor-responsive gene is down-regulated during the F. graminearum infection suggesting that this protein may be an important component in FGL virulence pathway. This work serves as an initial step to reveal how fungal lipases act as a general virulence factor.
Collapse
Affiliation(s)
- Xiao-Wei Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
90
|
Park DS, Tompkins RO, Liu F, Zhang J, Phoon CKL, Zavadil J, Fishman GI. Pocket proteins critically regulate cell cycle exit of the trabecular myocardium and the ventricular conduction system. Biol Open 2013; 2:968-78. [PMID: 24143284 PMCID: PMC3773344 DOI: 10.1242/bio.20135785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 01/22/2023] Open
Abstract
During development, the ventricular conduction system (VCS) arises from the trabecular or spongy myocardium. VCS and trabecular myocytes proliferate at a significantly slower rate than compact zone myocardial cells, establishing a transmural cell cycle gradient. The molecular determinants of VCS/trabecular myocyte cell cycle arrest are not known. Given the importance of pocket proteins (Rb, p107 and p130) in mediating G0/G1 arrest in many cell types, we examined the role of this gene family in regulating cell cycle exit of the trabecular myocardium and ventricular conduction system. Using a combinatorial knockout strategy, we found that graded loss of pocket proteins results in a spectrum of heart and lung defects. p107/p130 double knockout (dKO) hearts manifest dysregulated proliferation within the compact myocardium and trabecular bases, while the remaining trabecular region cell cycle exits normally. Consequently, dKO hearts exhibit defective cardiac compaction, septal hyperplasia and biventricular outflow tract obstruction, while the VCS appears relatively normal. Loss of all three pocket proteins (3KO) is necessary to completely disrupt the transmural cell cycle gradient. 3KO hearts exhibit massive overgrowth of the trabecular myocardium and ventricular conduction system, which leads to fetal heart failure and death. Hearts carrying a single pocket protein allele are able to maintain the transmural cell cycle gradient. These results demonstrate the exquisite sensitivity of trabecular and conduction myocytes to pocket protein function during ventricular chamber development.
Collapse
Affiliation(s)
- David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine , New York, NY 10016 , USA ; Heart Rhythm Center, New York University School of Medicine , New York, NY 10016 , USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Zhang W, Chen H, Qu X, Chang CP, Shou W. Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:144-56. [PMID: 23843320 DOI: 10.1002/ajmg.c.31369] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ventricular trabeculation and compaction are two of the many essential steps for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with ventricular compact zone deficiencies (hypoplastic wall), which commonly leads to embryonic heart failure and early embryonic lethality. In contrast, hypertrabeculation and lack of ventricular wall compaction (noncompaction) are closely related defects in cardiac embryogenesis associated with left ventricular noncompaction (LVNC), a genetically heterogenous disorder. Here we review recent findings through summarizing several genetically engineered mouse models that have defects in cardiac trabeculation and compaction.
Collapse
Affiliation(s)
- Wenjun Zhang
- Riley Heart Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
92
|
Chen H, Zhang W, Sun X, Yoshimoto M, Chen Z, Zhu W, Liu J, Shen Y, Yong W, Li D, Zhang J, Lin Y, Li B, VanDusen NJ, Snider P, Schwartz RJ, Conway SJ, Field LJ, Yoder MC, Firulli AB, Carlesso N, Towbin JA, Shou W. Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development 2013; 140:1946-57. [PMID: 23571217 DOI: 10.1242/dev.089920] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trabeculation and compaction of the embryonic myocardium are morphogenetic events crucial for the formation and function of the ventricular walls. Fkbp1a (FKBP12) is a ubiquitously expressed cis-trans peptidyl-prolyl isomerase. Fkbp1a-deficient mice develop ventricular hypertrabeculation and noncompaction. To determine the physiological function of Fkbp1a in regulating the intercellular and intracellular signaling pathways involved in ventricular trabeculation and compaction, we generated a series of Fkbp1a conditional knockouts. Surprisingly, cardiomyocyte-restricted ablation of Fkbp1a did not give rise to the ventricular developmental defect, whereas endothelial cell-restricted ablation of Fkbp1a recapitulated the ventricular hypertrabeculation and noncompaction observed in Fkbp1a systemically deficient mice, suggesting an important contribution of Fkbp1a within the developing endocardia in regulating the morphogenesis of ventricular trabeculation and compaction. Further analysis demonstrated that Fkbp1a is a novel negative modulator of activated Notch1. Activated Notch1 (N1ICD) was significantly upregulated in Fkbp1a-ablated endothelial cells in vivo and in vitro. Overexpression of Fkbp1a significantly reduced the stability of N1ICD and direct inhibition of Notch signaling significantly reduced hypertrabeculation in Fkbp1a-deficient mice. Our findings suggest that Fkbp1a-mediated regulation of Notch1 plays an important role in intercellular communication between endocardium and myocardium, which is crucial in controlling the formation of the ventricular walls.
Collapse
Affiliation(s)
- Hanying Chen
- Riley Heart Research Center, Division of Pediatric Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Captur G, Flett AS, Jacoby DL, Moon JC. Left ventricular non-noncompaction: The mitral valve prolapse of the 21st century? Int J Cardiol 2013; 164:3-6. [DOI: 10.1016/j.ijcard.2012.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/17/2012] [Accepted: 05/05/2012] [Indexed: 01/03/2023]
|
94
|
|
95
|
Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D'Amato G, MacGrogan D, Gonzalez-Rajal A, Dobarro D, Torroja C, Martinez F, Izquierdo-García JL, Fernández-Friera L, Sabater-Molina M, Kong YY, Pizarro G, Ibañez B, Medrano C, García-Pavía P, Gimeno JR, Monserrat L, Jiménez-Borreguero LJ, de la Pompa JL. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 2013; 19:193-201. [PMID: 23314057 DOI: 10.1038/nm.3046] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/26/2012] [Indexed: 02/07/2023]
Abstract
Left ventricular noncompaction (LVNC) causes prominent ventricular trabeculations and reduces cardiac systolic function. The clinical presentation of LVNC ranges from asymptomatic to heart failure. We show that germline mutations in human MIB1 (mindbomb homolog 1), which encodes an E3 ubiquitin ligase that promotes endocytosis of the NOTCH ligands DELTA and JAGGED, cause LVNC in autosomal-dominant pedigrees, with affected individuals showing reduced NOTCH1 activity and reduced expression of target genes. Functional studies in cells and zebrafish embryos and in silico modeling indicate that MIB1 functions as a dimer, which is disrupted by the human mutations. Targeted inactivation of Mib1 in mouse myocardium causes LVNC, a phenotype mimicked by inactivation of myocardial Jagged1 or endocardial Notch1. Myocardial Mib1 mutants show reduced ventricular Notch1 activity, expansion of compact myocardium to proliferative, immature trabeculae and abnormal expression of cardiac development and disease genes. These results implicate NOTCH signaling in LVNC and indicate that MIB1 mutations arrest chamber myocardium development, preventing trabecular maturation and compaction.
Collapse
Affiliation(s)
- Guillermo Luxán
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013; 700:181-93. [DOI: 10.1016/j.ejphar.2012.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
|
97
|
Mapping domains and mutations on the skeletal muscle ryanodine receptor channel. Trends Mol Med 2012; 18:644-57. [DOI: 10.1016/j.molmed.2012.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/14/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
|
98
|
14-3-3ε plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle. Mol Cell Biol 2012; 32:5089-102. [PMID: 23071090 DOI: 10.1128/mcb.00829-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3 isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G(2)/M and the accumulation of cardiomyocytes in the G(0)/G(1) phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27(Kip1), possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27(Kip1). These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies.
Collapse
|
99
|
Kunert-Keil C, Landsberger M, Jantzen F, Niessner F, Kroemer HK, Felix SB, Brinkmeier H, Peters J. Molecular changes in the early phase of renin-dependent cardiac hypertrophy in hypertensive cyp1a1ren-2 transgenic rats. J Renin Angiotensin Aldosterone Syst 2012; 14:41-50. [PMID: 23060473 DOI: 10.1177/1470320312460070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An early response to high arterial pressure is the development of cardiac hypertrophy. Functional and transcriptional regulation of ion channels and Ca(2+) handling proteins are involved in this process but the relative contribution of each is unclear. In this study, we investigated the expression of genes involved in action potential generation and Ca(2+) homeostasis of cardiomyocytes in hypertensive cyp1a1ren-2 transgenic rats. In this model, the transgene prorenin was induced by indole-3-carbinol for 2 weeks allowing the induction of hypertension. Electrophysiological recordings from cardiomyocytes of hypertensive rats revealed a slight increase in membrane capacitance consistent with cellular hypertrophy. L-type calcium current density was reduced by 30%. Left ventricles of hypertensive rats showed a significant increase in transcript and protein levels of the cation channel TRPC6 and FK506-binding protein, whereas levels of SERCA2 and voltage-dependent potassium channels K(v)4.2 and K(v)4.3 were found to be decreased. Further, a marked nuclear localization of the transcription factors GATA4 and NFATC4 was observed in cardiac tissue of hypertensive rats. The cyp1a1ren-2 transgenic rat thus appears to be a valid model to investigate early changes in cardiac hypertrophy. This study points to roles for TRPC6, FK506BP, SERCA2, K(v)4.2, and K(v)4.3 in the development of cardiac hypertrophy.
Collapse
|
100
|
Goeppert B, Lindner M, Vogel MN, Warth A, Stenzinger A, Renner M, Schnabel P, Schirmacher P, Autschbach F, Weichert W. Noncompaction myocardium in association with type Ib glycogen storage disease. Pathol Res Pract 2012; 208:620-2. [DOI: 10.1016/j.prp.2012.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/15/2022]
|