51
|
Xiang Q, Qu L, Lei H, Duan Z, Zhu C, Yuwen W, Ma X, Fan D. Expression of Multicopy Tandem Recombinant Ginseng Hexapeptide in Bacillus subtilis and the Evaluation of Antiaging Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7266-7278. [PMID: 38523338 DOI: 10.1021/acs.jafc.3c09158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.
Collapse
Affiliation(s)
- Qingyu Xiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Shaanxi Gaint Biotechnology Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
52
|
Qiao J, Borriss R, Sun K, Zhang R, Chen X, Liu Y, Liu Y. Research advances in the identification of regulatory mechanisms of surfactin production by Bacillus: a review. Microb Cell Fact 2024; 23:100. [PMID: 38566071 PMCID: PMC10988940 DOI: 10.1186/s12934-024-02372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.
Collapse
Affiliation(s)
- Junqing Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Rainer Borriss
- Institute of Biology, Humboldt University Berlin, Berlin, Germany.
| | - Kai Sun
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xijun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
53
|
Piguet B, Houseley J. Transcription as source of genetic heterogeneity in budding yeast. Yeast 2024; 41:171-185. [PMID: 38196235 DOI: 10.1002/yea.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.
Collapse
|
54
|
Tišma M, Bock FP, Kerssemakers J, Antar H, Japaridze A, Gruber S, Dekker C. Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells. Nat Commun 2024; 15:2737. [PMID: 38548820 PMCID: PMC10979009 DOI: 10.1038/s41467-024-47094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Florian Patrick Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
55
|
Shi C, Zeng S, Gao X, Hussain M, He M, Niu X, Wei C, Yang R, Lan M, Xie Y, Wang Z, Wu G, Tang P. Complete Genome Sequence Analysis of Bacillus subtilis MC4-2 Strain That against Tobacco Black Shank Disease. Int J Genomics 2024; 2024:8846747. [PMID: 38567257 PMCID: PMC10985647 DOI: 10.1155/2024/8846747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
The MC4-2 bacterium strain was isolated and purified from the Periplaneta americana intestine as a biocontrol agent with good antagonistic effect against the pathogens of a soil-borne disease called tobacco black shank. The MC4-2 strain was found to have good broad-spectrum inhibition by plate stand-off test. Based on 16S rRNA and gyrB genes, ANI analysis, and other comparative genomics methods, it was determined that the MC4-2 strain was Bacillus subtilis. The complete genome sequence showed that the genome size was 4,076,630 bp, the average GC content was 43.78%, and the total number of CDSs was 4,207. Genomic prediction analysis revealed that a total of 145 genes were annotated by the CAZy, containing mainly GH and CE enzymes that break down carbohydrates such as glucose, chitin, starch, and alginate, and a large number of enzymes involved in glycosylation were present. A total of ten secondary metabolite clusters were predicted, six clusters of which were annotated as surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. The present investigation found the biological control mechanism of B. subtilis MC4-2, which provides a strong theoretical basis for the best use of this strain in biological control methods and provides a reference for the subsequent development of agents of this bacterium.
Collapse
Affiliation(s)
- Chunlan Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shuquan Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mehboob Hussain
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingchuan He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xurong Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Congcong Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yonghui Xie
- Yunnan Tobacco Company Kunming Company, Kunming 650201, China
| | - Zhijiang Wang
- Yunnan Tobacco Company Kunming Company, Kunming 650201, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
56
|
Öktem A, Pranoto DA, van Dijl JM. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases. N Biotechnol 2024; 79:71-81. [PMID: 38158017 DOI: 10.1016/j.nbt.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The Gram-positive bacterium Bacillus subtilis is a prolific producer of industrial enzymes that are effectively harvested from the fermentation broth. However, the high capacity of B. subtilis for protein secretion has so far not been exploited to the full due to particular bottlenecks, including product degradation by extracellular proteases and counterproductive secretion stress responses. To unlock the Bacillus secretion pathway for difficult-to-produce proteins, various cellular interventions have been explored, including genome engineering. Our previous research has shown a superior performance of genome-reduced B. subtilis strains in the production of staphylococcal antigens compared to the parental strain 168. This was attributed, at least in part, to redirected secretion stress responses, including the presentation of elevated levels of the quality control proteases HtrA and HtrB that also catalyse protein folding. Here we show that this relates to the elimination of two homologous serine proteases, namely the cytosolic protease AprX and the extracellular protease AprE. This unprecedented posttranslational regulation of secretion stress effectors, like HtrA and HtrB, by the concerted action of cytosolic and extracellular proteases has important implications for the biotechnological application of microbial cell factories. In B. subtilis, this conclusion is underscored by extracellular degradation of the staphylococcal antigen IsaA by both AprX and AprE. Extracellular activity of the cytosolic protease AprX is remarkable since it shows that not only extracellular, but also intracellular proteases impact extracellular product levels. We therefore conclude that intracellular proteases represent new targets for improved recombinant protein production in microbial cell factories like B. subtilis.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dicky A Pranoto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
57
|
Flores-Ibarra A, Maia RNA, Olasz B, Church JR, Gotthard G, Schapiro I, Heberle J, Nogly P. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation. J Mol Biol 2024; 436:168356. [PMID: 37944792 DOI: 10.1016/j.jmb.2023.168356] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Raiza N A Maia
- Department of Chemistry, The University of Texas at Austin, 78712-1224 Austin, TX, USA
| | - Bence Olasz
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | | | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Przemyslaw Nogly
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
58
|
Liao C, Cui J, Gao M, Wang B, Ito K, Guo Y, Zhang B. Dual-sgRNA CRISPRa System for Enhanced MK-7 Production and Salmonella Infection Mitigation in Bacillus subtilis natto Applied to Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4301-4316. [PMID: 38344988 DOI: 10.1021/acs.jafc.3c08866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study optimized the menaquinone-7 (MK-7) synthetic pathways in Bacillus subtilis (B. subtilis) natto NB205, a strain that originated from natto, to enhance its MK-7 production. Utilizing mutation breeding, we developed NBMK308, a mutant strain that demonstrated a significant 117.23% increase in MK-7 production. A comprehensive transcriptome analysis identified two key genes, ispA and ispE, as being critical in MK-7 synthesis. The dual-sgRNA CRISPRa system was utilized to achieve precise regulation of ispA and ispE in the newly engineered strain, A3E3. This strategic modulation resulted in a significant enhancement of MK-7 production, achieving increases of 20.02% and 201.41% compared to traditional overexpression systems and the original strain NB205, respectively. Furthermore, the fermentation supernatant from A3E3 notably inhibited Salmonella invasion in Caco-2 cells, showcasing its potential for combating such infections. The safety of the dual-sgRNA CRISPRa system was confirmed through cell assays. The utilization of the dual-sgRNA CRISPRa system in this study was crucial for the precise regulation of key genes in MK-7 synthesis, leading to a remarkable increase in production and demonstrating additional therapeutic potential in inhibiting pathogenic infections. This approach effectively combined the advantages of microbial fermentation and biotechnology, addressing health and nutritional challenges.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 113-8654, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| |
Collapse
|
59
|
Svetlov MS, Dunand CF, Nakamoto JA, Atkinson GC, Safdari HA, Wilson DN, Vázquez-Laslop N, Mankin AS. Peptidyl-tRNA hydrolase is the nascent chain release factor in bacterial ribosome-associated quality control. Mol Cell 2024; 84:715-726.e5. [PMID: 38183984 DOI: 10.1016/j.molcel.2023.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 01/08/2024]
Abstract
Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Clémence F Dunand
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jose A Nakamoto
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Gemma C Atkinson
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
60
|
Liu Z, Zhang S, Hu H, Wang H, Qiu Y, Dong M, Wang M, Cui Z, Cui H, Wang Y, He G. Construction of recombinant Lactococcus expressing thymosin and interferon fusion protein and its application as an immune adjuvant. Microb Cell Fact 2024; 23:40. [PMID: 38321474 PMCID: PMC10845779 DOI: 10.1186/s12934-024-02308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.
Collapse
Affiliation(s)
- Zengqi Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Suhua Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Hongjiao Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - He Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yu Qiu
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China
| | - Mingqi Dong
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China
| | - Muping Wang
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China
| | - Ziyang Cui
- Clinical Medical College, Hebei North University, Zhangjiakou, 075000, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yunfeng Wang
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China.
| | - Gaoming He
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
61
|
Negi A, Pasam T, Farqadain SM, Mahalaxmi Y, Dandekar MP. In-vitro and preclinical testing of bacillus subtilis UBBS-14 probiotic in rats shows no toxicity. Toxicol Res (Camb) 2024; 13:tfae021. [PMID: 38406637 PMCID: PMC10891425 DOI: 10.1093/toxres/tfae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Probiotics made from Bacillus subtilis provide a wide spread of health benefits, particularly in the treatment of diarrhea and gastrointestinal problems. Herein, we employed in vitro and in vivo paradigms to assess the potential adverse effects and toxicity of B. subtilis UBBS-14. Materials and methods According to Organization for Economic Co-operation and Development (OECD) 423 and 407 requirements, a preclinical investigation was conducted in male and female Sprague-Dawley rats. Acute toxicity was examined following a single peroral (PO) administration of 5,000 mg/kg body weight (bw) i.e. equivalent to 500 billion colony-forming units (CFU) per kg bw. Single administration of B. subtilis UBBS-14 showed no mortality or adverse effects until the 14-day observation period, indicating LD50 is >5,000 mg/kg bw. Results Incubation of B. subtilis UBBS-14 with Caco2, HT29, and Raw 264.7 cell lines, showed no cytotoxic effects. This probiotic strain was also found responsive to the majority of antibiotics. For a 28-day repeated dose toxicity study, rats were administered 100, 500, and 1,000 mg/kg bw daily once (10, 50, and 100 billion CFU/kg bw/day, respectively) doses of B. subtilis UBBS-14. No notable changes were seen in the morphology, weight, and histopathology of the critical internal organs. The haematological, biochemical, electrolyte (sodium, potassium, chloride, and calcium), and urine analytical results were within the normal range and equivalent to the vehicle-treated group. Conclusion B. subtilis UBBS-14's no-observed-effect level (NOEL) was thus determined to be >1,000 mg/kg bw/day following a 28-day oral dosing.
Collapse
Affiliation(s)
- Ankit Negi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana 500037, India
| | - Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana 500037, India
| | - Syed Muhammad Farqadain
- Unique Biotech Limited, Centre for Research and Development, Hyderabad, Telangana, 500 101, India
| | - Y Mahalaxmi
- Unique Biotech Limited, Centre for Research and Development, Hyderabad, Telangana, 500 101, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana 500037, India
| |
Collapse
|
62
|
Ouyang X, Hoeksma J, Beenker WA, van der Beek S, den Hertog J. Harzianic acid exerts antimicrobial activity against Gram-positive bacteria and targets the cell membrane. Front Microbiol 2024; 15:1332774. [PMID: 38348189 PMCID: PMC10860749 DOI: 10.3389/fmicb.2024.1332774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
The thermophilic fungus Oidiodendron flavum is a saprobe that is commonly isolated from soil. Here, we identified a Gram-positive bacteria-selective antimicrobial secondary metabolite from this fungal species, harzianic acid (HA). Using Bacillus subtilis strain 168 combined with dynamic bacterial morphology imaging, we found that HA targeted the cell membrane. To further study the antimicrobial activity of HA, we isolated an HA-resistant strain, Bacillus subtilis strain M9015, and discovered that the mutant had more translucent colonies than the wild type strain, showed cross resistance to rifampin, and harbored five mutations in the coding region of four distinct genes. Further analysis of these genes indicated that the mutation in atpE might be responsible for the translucency of the colonies, and mutation in mdtR for resistance to both HA and rifampin. We conclude that HA is an antimicrobial agent against Gram-positive bacteria that targets the cell membrane.
Collapse
Affiliation(s)
- Xudong Ouyang
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Wouter A.G. Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
63
|
Mahmoodi A, Farinas ET. Applications of Bacillus subtilis Protein Display for Medicine, Catalysis, Environmental Remediation, and Protein Engineering. Microorganisms 2024; 12:97. [PMID: 38257924 PMCID: PMC10821481 DOI: 10.3390/microorganisms12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Bacillus subtilis spores offer several advantages that make them attractive for protein display. For example, protein folding issues associated with unfolded polypeptide chains crossing membranes are circumvented. In addition, they can withstand physical and chemical extremes such as heat, desiccation, radiation, ultraviolet light, and oxidizing agents. As a result, the sequence of the displayed protein can be easily obtained even under harsh screening conditions. Next, immobilized proteins have many economic and technological advantages. They can be easily separated from the reaction and the protein stability is increased in harsh environments. In traditional immobilization methods, proteins are expressed and purified and then they are attached to a matrix. In contrast, immobilization occurs naturally during the sporulation process. They can be easily separated from the reaction and the protein stability is increased in harsh environments. Spores are also amenable to high-throughput screening for protein engineering and optimization. Furthermore, they can be used in a wide array of biotechnological and industrial applications such as vaccines, bioabsorbants to remove toxic chemicals, whole-cell catalysts, bioremediation, and biosensors. Lastly, spores are easily produced in large quantities, have a good safety record, and can be used as additives in foods and drugs.
Collapse
|
64
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Andryszkiewicz M, Cavanna D, Kovalkovicova N, Liu Y, Lunardi S, Chesson A. Safety evaluation of the food enzyme glucan 1,4- α-maltohydrolase from the genetically modified Bacillus subtilis strain BABSC. EFSA J 2024; 22:e8508. [PMID: 38222928 PMCID: PMC10784850 DOI: 10.2903/j.efsa.2024.8508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The food enzyme glucan 1,4-α-maltohydrolase (4-α-d-glucan α-maltohydrolase, EC 3.2.1.133) is produced with the genetically modified Bacillus subtilis strain BABSC by Advanced Enzyme Technologies Ltd. The requirements for the qualified presumption of safety (QPS) approach have not been met. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in baking processes and starch processing for the production of glucose syrups and other starch hydrolysates. Since residual amounts of total organic solids (TOS) are removed, dietary exposure was not calculated for starch processing for the production of glucose syrups and other starch hydrolysates. For baking processes, the dietary exposure was estimated to be up to 0.101 mg TOS/kg body weight per day in European populations. No toxicological studies were provided by the applicant. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a respiratory allergen was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. In the absence of appropriate data to fully characterise the production strain, the Panel was unable to conclude on the safety of the food enzyme under the intended conditions of use.
Collapse
|
65
|
Dergham Y, Le Coq D, Bridier A, Sanchez-Vizuete P, Jbara H, Deschamps J, Hamze K, Yoshida KI, Noirot-Gros MF, Briandet R. Bacillus subtilis NDmed, a model strain for biofilm genetic studies. Biofilm 2023; 6:100152. [PMID: 37694162 PMCID: PMC10485040 DOI: 10.1016/j.bioflm.2023.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hadi Jbara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
66
|
Walgraeve J, Ferrero-Bordera B, Maaß S, Becher D, Schwerdtfeger R, van Dijl JM, Seefried M. Diamide-based screening method for the isolation of improved oxidative stress tolerance phenotypes in Bacillus mutant libraries. Microbiol Spectr 2023; 11:e0160823. [PMID: 37819171 PMCID: PMC10714788 DOI: 10.1128/spectrum.01608-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE During their life cycle, bacteria are exposed to a range of different stresses that need to be managed appropriately in order to ensure their growth and viability. This applies not only to bacteria in their natural habitats but also to bacteria employed in biotechnological production processes. Oxidative stress is one of these stresses that may originate either from bacterial metabolism or external factors. In biotechnological settings, it is of critical importance that production strains are resistant to oxidative stresses. Accordingly, this also applies to the major industrial cell factory Bacillus subtilis. In the present study, we, therefore, developed a screen for B. subtilis strains with enhanced oxidative stress tolerance. The results show that our approach is feasible and time-, space-, and resource-efficient. We, therefore, anticipate that it will enhance the development of more robust industrial production strains with improved robustness under conditions of oxidative stress.
Collapse
Affiliation(s)
| | | | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | | | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | |
Collapse
|
67
|
Öktem A, Núñez-Nepomuceno D, Ferrero-Bordera B, Walgraeve J, Seefried M, Gesell Salazar M, Steil L, Michalik S, Maaß S, Becher D, Mäder U, Völker U, van Dijl JM. Enhancing bacterial fitness and recombinant enzyme yield by engineering the quality control protease HtrA of Bacillus subtilis. Microbiol Spectr 2023; 11:e0177823. [PMID: 37819116 PMCID: PMC10715036 DOI: 10.1128/spectrum.01778-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the expanding market of recombinant proteins, microbial cell factories such as Bacillus subtilis are key players. Microbial cell factories experience secretion stress during high-level production of secreted proteins, which can negatively impact product yield and cell viability. The CssRS two-component system and CssRS-regulated quality control proteases HtrA and HtrB play critical roles in the secretion stress response. HtrA has a presumptive dual function in protein quality control by exerting both chaperone-like and protease activities. However, its potential role as a chaperone has not been explored in B. subtilis. Here, we describe for the first time the beneficial effects of proteolytically inactive HtrA on α-amylase yields and overall bacterial fitness.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Núñez-Nepomuceno
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Borja Ferrero-Bordera
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
68
|
Kondo T, Sibponkrung S, Hironao KY, Tittabutr P, Boonkerd N, Ishikawa S, Ashida H, Teaumroong N, Yoshida KI. Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones. J GEN APPL MICROBIOL 2023; 69:175-183. [PMID: 36858546 DOI: 10.2323/jgam.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Bacillus velezensis S141, a plant growth-promoting rhizobacteria (PGPR), was isolated from a soybean field in Thailand. Previous studies demonstrated that S141 enhanced soybean growth, stimulating nodulation for symbiotic nitrogen fixation with soybean root nodule bacteria, including Bradyrhizobium diazoefficience USDA110. Isoflavone glycosides are produced in soybean roots and hydrolyzed into their aglycones, triggering nodulation. This study revealed that S141 efficiently hydrolyzed two isoflavone glycosides in soybean roots (daidzin and genistin) to their aglycones (daidzein and genistein, respectively). However, S141, Bacillus subtilis 168, NCIB3610, and B. velezensis FZB42 hydrolyzed isoflavone glucosides into aglycones. A BLASTp search suggested that S141 and the other three strains shared four genes encoding β-glucosidases corresponding to bglA, bglC, bglH, and gmuD in B. subtilis 168. The gene inactivation analysis of B. subtilis 168 revealed that bglC encoded the major β-glucosidase, contributing about half of the total activity to hydrolyze isoflavone glycosides and that bglA, bglH, and gmuD, all barely committed to the hydrolysis of isoflavone glycosides. Thus, an unknown β-glucosidase exists, and our genetic knowledge of β-glucosidases was insufficient to evaluate the ability to hydrolyze isoflavone glycosides. Nevertheless, S141 could predominate in the soybean rhizosphere, releasing isoflavone aglycones to enhance soybean nodulation.
Collapse
Affiliation(s)
- Takahiko Kondo
- Department of Science, Technology and Innovation, Kobe University
| | - Surachat Sibponkrung
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Ken-Yu Hironao
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University
| |
Collapse
|
69
|
Qian J, Wang Y, Hu Z, Shi T, Wang Y, Ye C, Huang H. Bacillus sp. as a microbial cell factory: Advancements and future prospects. Biotechnol Adv 2023; 69:108278. [PMID: 37898328 DOI: 10.1016/j.biotechadv.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Bacillus sp. is one of the most distinctive gram-positive bacteria, able to grow efficiently using cheap carbon sources and secrete a variety of useful substances, which are widely used in food, pharmaceutical, agricultural and environmental industries. At the same time, Bacillus sp. is also recognized as a safe genus with a relatively clear genetic background, which is conducive to the industrial production of target metabolites. In this review, we discuss the reasons why Bacillus sp. has been so extensively studied and summarize its advances in systems and synthetic biology, engineering strategies to improve microbial cell properties, and industrial applications in several metabolic engineering applications. Finally, we present the current challenges and possible solutions to provide a reliable basis for Bacillus sp. as a microbial cell factory.
Collapse
Affiliation(s)
- Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zijian Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
70
|
Magness LH, Delesalle VA, Vill AC, Strine MS, Chaudhry BE, Lichty KB, Guffey AA, DeCurzio JM, Krukonis GP. Bacillus subtilis Phages Related to SIOphi from Desert Soils of the Southwest United States. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:165-172. [PMID: 40134792 PMCID: PMC11932521 DOI: 10.1089/phage.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Background Phages impact Bacillus subtilis microbial dynamics, but our understanding of the diversity of phages that can lyse this model organism is limited. Materials and Methods Phages were isolated from soil collected from two Southwest United States desert sites on wild B. subtilis strains. Phage genomes were assembled and bioinformatically characterized, and phage host range was assessed. Results Four myoviruses with high nucleotide and amino acid similarity to each other (>97%) and to three phages in GenBank (>82%), including SIOphi, were isolated. These phages have double-stranded DNA genomes (153,882-156,577 bp), low GC content, and 256-270 putative protein coding genes (28-30% with predicted functions). Comparative genomics revealed differences in putative lysis and replication genes. Conclusions Comparative approaches provide insight into phage evolution, identifying unique genes shared within phage clusters. Better characterization of Bacillus phages will aid in linking genetic differences among phages (e.g., lysin genes) to phenotype (e.g., host range).
Collapse
Affiliation(s)
- Leigh H. Magness
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | | | - Albert C. Vill
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Madison S. Strine
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Katherine B. Lichty
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | - Jenna M. DeCurzio
- Research and Development, Montera, Inc., DBA Forta, San Francisco, USA
| | - Greg P. Krukonis
- Department of Biology, Angelo State University, San Angelo, Texas, USA
| |
Collapse
|
71
|
Loney RE, Delesalle VA, Chaudry BE, Czerpak M, Guffey AA, Goubet-McCall L, McCarty M, Strine MS, Tanke NT, Vill AC, Krukonis GP. A Novel Subcluster of Closely Related Bacillus Phages with Distinct Tail Fiber/Lysin Gene Combinations. Viruses 2023; 15:2267. [PMID: 38005943 PMCID: PMC10674732 DOI: 10.3390/v15112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteriophages (phages) are the most numerous entities on Earth, but we have only scratched the surface of describing phage diversity. We isolated seven Bacillus subtilis phages from desert soil in the southwest United States and then sequenced and characterized their genomes. Comparative analyses revealed high nucleotide and amino acid similarity between these seven phages, which constitute a novel subcluster. Interestingly, the tail fiber and lysin genes of these phages seem to come from different origins and carry out slightly different functions. These genes were likely acquired by this subcluster of phages via horizontal gene transfer. In conjunction with host range assays, our data suggest that these phages are adapting to hosts with different cell walls.
Collapse
Affiliation(s)
- Rachel E. Loney
- University Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Véronique A. Delesalle
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | | | - Megan Czerpak
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | - Alexandra A. Guffey
- Janssen Scientific Affairs, LLC. 200 Tournament Dr., Horsham, PA 19044, USA;
| | - Leo Goubet-McCall
- Department of Biology, The Pennsylvania State University, 201 Huck Life Sciences Building, University Park, PA 16802, USA;
| | - Michael McCarty
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | - Madison S. Strine
- Department of Immunobiology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA;
| | - Natalie T. Tanke
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Albert C. Vill
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
| | - Greg P. Krukonis
- Department of Biology, Angelo State University, Cavness Science Building 101, ASU Station #10890, San Angelo, TX 76909, USA;
| |
Collapse
|
72
|
Cacace E, Kim V, Varik V, Knopp M, Tietgen M, Brauer-Nikonow A, Inecik K, Mateus A, Milanese A, Mårli MT, Mitosch K, Selkrig J, Brochado AR, Kuipers OP, Kjos M, Zeller G, Savitski MM, Göttig S, Huber W, Typas A. Systematic analysis of drug combinations against Gram-positive bacteria. Nat Microbiol 2023; 8:2196-2212. [PMID: 37770760 PMCID: PMC10627819 DOI: 10.1038/s41564-023-01486-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Drug combinations can expand options for antibacterial therapies but have not been systematically tested in Gram-positive species. We profiled ~8,000 combinations of 65 antibacterial drugs against the model species Bacillus subtilis and two prominent pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Thereby, we recapitulated previously known drug interactions, but also identified ten times more novel interactions in the pathogen S. aureus, including 150 synergies. We showed that two synergies were equally effective against multidrug-resistant S. aureus clinical isolates in vitro and in vivo. Interactions were largely species-specific and synergies were distinct from those of Gram-negative species, owing to cell surface and drug uptake differences. We also tested 2,728 combinations of 44 commonly prescribed non-antibiotic drugs with 62 drugs with antibacterial activity against S. aureus and identified numerous antagonisms that might compromise the efficacy of antimicrobial therapies. We identified even more synergies and showed that the anti-aggregant ticagrelor synergized with cationic antibiotics by modifying the surface charge of S. aureus. All data can be browsed in an interactive interface ( https://apps.embl.de/combact/ ).
Collapse
Affiliation(s)
- Elisabetta Cacace
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Vladislav Kim
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Vallo Varik
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Michael Knopp
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Manuela Tietgen
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | | | - Kemal Inecik
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Alessio Milanese
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- Department of Biology, Institute of Microbiology, and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karin Mitosch
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | - Ana Rita Brochado
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Molecular Biology and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Georg Zeller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
73
|
Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MGN, De Benedetti S, Krueger AM, Vermeulen BJA, Harbig T, Lavore F, Kumar R, Honorato RV, Grein F, Nieselt K, Liu Y, Bonvin AMJJ, Baldus M, Kubitscheck U, Breukink E, Achorn C, Nitti A, Schwalen CJ, Spoering AL, Ling LL, Hughes D, Lelli M, Roos WH, Lewis K, Schneider T, Weingarth M. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 2023; 186:4059-4073.e27. [PMID: 37611581 DOI: 10.1016/j.cell.2023.07.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.
Collapse
Affiliation(s)
- Rhythm Shukla
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Kevin C Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Maik G N Derks
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annika M Krueger
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bram J A Vermeulen
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Theresa Harbig
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Francesca Lavore
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Raj Kumar
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rodrigo V Honorato
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Kay Nieselt
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Alexandre M J J Bonvin
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ulrich Kubitscheck
- Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | | | | | | | - Dallas Hughes
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| | - Markus Weingarth
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
74
|
Liu Q, Li R, Shi H, Yang R, Shen Q, Cui Q, Wang X, Li A, Zhang Y, Fu J. A recombineering system for Bacillus subtilis based on the native phage recombinase pair YqaJ/YqaK. ENGINEERING MICROBIOLOGY 2023; 3:100099. [PMID: 39628932 PMCID: PMC11610992 DOI: 10.1016/j.engmic.2023.100099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 12/06/2024]
Abstract
Bacillus subtilis plays an important role in fundamental and applied research, and it has been widely used as a cell factory for the production of enzymes, antimicrobial materials, and chemicals for agriculture, medicine, and industry. However, genetic manipulation tools for B. subtilis have low efficiency. In this work, our goal was to develop a simple recombineering system for B. subtilis. We showed that genome editing can be achieved in B. subtiliis 1A751 through co-expression of YqaJ/YqaK, a native phage recombinase pair found in B. subtilis 168, and the competence master regulator ComK using a double-stranded DNA substrate with short homology arms (100 bp) and a phosphorothioate modification at the 5'-end. Efficient gene knockouts and large DNA insertions were achieved using this new recombineering system in B. subtilis 1A751. As far as we know, this is the first recombineering system using the native phage recombinase pair YqaJ/YqaK in B. subtilis. In conclusion, this new recombineering system provides a simple and fast tool for genetic manipulation of B. subtilis, and it will promote studies of genome function, construction of production strains, and genome mining in B. subtilis.
Collapse
Affiliation(s)
- Qingshu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Hunan Institute of Microbiology, Xinkaipu Lu 18, Tianxin District, Changsha 410009, China
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongbo Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Runyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qiyao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiuling Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
75
|
Muñoz-Hisado V, Ruiz-Blas F, Sobrado JM, Garcia-Lopez E, Martinez-Alonso E, Alcázar A, Cid C. Bacterial molecular machinery in the Martian cryosphere conditions. Front Microbiol 2023; 14:1176582. [PMID: 37840745 PMCID: PMC10569478 DOI: 10.3389/fmicb.2023.1176582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023] Open
Abstract
The exploration of Mars is one of the main objectives of space missions since the red planet is considered to be, or was in the past, potentially habitable. Although the surface of Mars is now dry and arid, abundant research suggests that water covered Mars billions of years ago. Recently, the existence of liquid water in subglacial lakes has been postulated below the South pole of Mars. Until now, experiments have been carried out on the survival of microorganisms in Martian surface conditions, but it remains unknown how their adaptation mechanisms would be in the Martian cryosphere. In this work, two bacterial species (Bacillus subtilis and Curtobacterium flacumfaciens) were subjected to a simulated Martian environment during 24 h using a planetary chamber. Afterward, the molecular machinery of both species was studied to investigate how they had been modified. Proteomes, the entire set of proteins expressed by each bacterium under Earth (named standard) conditions and Martian conditions, were compared using proteomic techniques. To establish this evaluation, both the expression levels of each protein, and the variation in their distribution within the different functional categories were considered. The results showed that these bacterial species followed a different strategy. The Bacillus subtilis resistance approach consisted of improving its stress response, membrane bioenergetics, degradation of biomolecules; and to a lesser extent, increasing its mobility and the formation of biofilms or resistance endospores. On the contrary, enduring strategy of Curtobacterium flacumfaciens comprised of strengthening the cell envelope, trying to protect cells from the extracellular environment. These results are especially important due to their implications for planetary protection, missions to Mars and sample return since contamination by microorganisms would invalidate the results of these investigations.
Collapse
Affiliation(s)
| | - Fátima Ruiz-Blas
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, Potsdam, Germany
| | | | | | - Emma Martinez-Alonso
- Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Alberto Alcázar
- Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiologia (CAB), CSIC-INTA, Madrid, Spain
| |
Collapse
|
76
|
Tofan L, Niță V, Nenciu M, Coatu V, Lazăr L, Damir N, Vasile D, Popoviciu DR, Brotea AG, Curtean-Bănăduc AM, Avramescu S, Aonofriesei F. Multiple Assays on Non-Target Organisms to Determine the Risk of Acute Environmental Toxicity in Tebuconazole-Based Fungicides Widely Used in the Black Sea Coastal Area. TOXICS 2023; 11:597. [PMID: 37505562 PMCID: PMC10385278 DOI: 10.3390/toxics11070597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The widespread use of Tebuconazole-based fungicides in phytosanitary treatments on a wide range of crops, on the one hand, and the lack of official reports on the amount of fungicide residues in nearby water basins, on the other hand, may lead to uncontrolled and hazardous contamination of water sources used by the resident population, and to serious effects on the environment and public health. Our study explores the acute toxicological risk of this fungicide on various organisms, from bacteria and yeast to fish, using a battery of tests (standardized Toxkit microbiotests and acute semi-static tests). By investigating the interaction between Tebuconazole and bacteria and yeast organisms, we observed that Gram-negative bacteria displayed a strong tolerance for Tebuconazole, while Gram-positive bacteria and yeasts proved to be very sensitive. The fish experiment was conducted on Chelon auratus juveniles exposed to five concentrations of the fungicide Tebustar EW (Tebuconazole, 250 g/L as active substance). After 96 h of exposure, the LC50 for C. auratus was 1.13 mg/L. In the case of the Toxkit microbiotests' application, the following results were recorded: Spirodela polyrhiza EC50 = 2.204 mg/L (after 72 h exposure), Thamnocephalus platyurus EC50 = 0.115 mg/L (after 24 h), and Daphnia magna EC50 = 2.37 mg/L (after 24-48 h). With the exception of bacteria and yeast, the same response pattern was observed for all non-target species tested; the response range expressed by concentrations causing growth inhibition or mortality was small, ranging between very close values that are quite low, thereby demonstrating the high toxicity of Tebuconazole-based fungicides to the environment.
Collapse
Affiliation(s)
- Lucica Tofan
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | - Victor Niță
- Marine Living Resources Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Magda Nenciu
- Marine Living Resources Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Valentina Coatu
- Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Luminița Lazăr
- Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Nicoleta Damir
- Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Daniela Vasile
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | - Dan Răzvan Popoviciu
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | - Alina-Giorgiana Brotea
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | | | - Sorin Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Șoseaua Panduri, 050663 Bucharest, Romania
- PROTMED Research Centre, University of Bucharest, 91-95 Splaiul Independenței, 050095 Bucharest, Romania
| | - Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| |
Collapse
|
77
|
Satoh K, Hoshino W, Hase Y, Kitamura S, Hayashi H, Furuta M, Oono Y. Lethal and mutagenic effects of different LET radiations on Bacillus subtilis spores. Mutat Res 2023; 827:111835. [PMID: 37562181 DOI: 10.1016/j.mrfmmm.2023.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
New, useful microorganism resources have been generated by ionizing radiation breeding technology. However, the mutagenic effects of ionizing radiation on microorganisms have not been systematically clarified. For a deeper understanding and characterization of ionizing radiation-induced mutations in microorganisms, we investigated the lethal effects of seven different linear energy transfer (LET) radiations based on the survival fraction (SF) and whole-genome sequencing analysis of the mutagenic effects of a dose resulting in an SF of around 1% in Bacillus subtilis spores. Consequently, the lower LET radiations (gamma [surface LET: 0.2 keV/µm] and 4He2+ [24 keV/µm]) showed low lethality and high mutation frequency (MF), resulting in the major induction of single-base substitutions. Whereas higher LET radiations (12C5+ [156 keV/µm] and 12C6+ [179 keV/µm]) showed high lethality and low MF, resulting in the preferential induction of deletion mutations. In addition, 12C6+ (111) ion beams likely possess characteristics of both low- and high-LET radiations simultaneously. A decrease in the relative biological effectiveness and an evaluation of the inactivation cross section indicated that 20Ne8+ (468 keV/µm) and 40Ar13+ (2214 keV/µm) ion beams had overkill effects. In conclusion, in the mutation breeding of microorganisms, it should be possible to regulate the proportions, types, and frequencies of induced mutations by selecting an ionizing radiation of an appropriate LET in accordance with the intended purpose.
Collapse
Affiliation(s)
- Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan.
| | - Wataru Hoshino
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan; Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Yoshihiro Hase
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Satoshi Kitamura
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Hidenori Hayashi
- Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yutaka Oono
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
78
|
Willett E, Banta S. Synthetic NAD(P)(H) Cycle for ATP Regeneration. ACS Synth Biol 2023. [PMID: 37369039 DOI: 10.1021/acssynbio.3c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ATP is the energy currency of the cell and new methods for ATP regeneration will benefit a range of emerging biotechnology applications including synthetic cells. We designed and assembled a membraneless ATP-regenerating enzymatic cascade by exploiting the substrate specificities of selected NAD(P)(H)-dependent oxidoreductases combined with substrate-specific kinases. The enzymes in the NAD(P)(H) cycle were selected to avoid cross-reactions, and the cascade was driven by irreversible fuel oxidation. As a proof-of-concept, formate oxidation was chosen as the fueling reaction. ATP regeneration was accomplished via the phosphorylation of NADH to NADPH and the subsequent transfer of the phosphate to ADP by a reversible NAD+ kinase. The cascade was able to regenerate ATP at a high rate (up to 0.74 mmol/L/h) for hours, and >90% conversion of ADP to ATP using monophosphate was also demonstrated. The cascade was used to regenerate ATP for use in cell free protein synthesis reactions, and the ATP production rate was further enhanced when powered by the multistep oxidation of methanol. The NAD(P)(H) cycle provides a simple cascade for the in vitro regeneration of ATP without the need for a pH-gradient or costly phosphate donors.
Collapse
Affiliation(s)
- Emma Willett
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
79
|
Murthy AC, Aleksanyan N, Morton GM, Toyoda HC, Kalashyan M, Chen S, Ragucci AE, Broulidakis MP, Swerdlow KJ, Bui MNN, Muccioli M, Berkmen MB. Characterization of ConE, the VirB4 Homolog of the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2023; 205:e0003323. [PMID: 37219457 PMCID: PMC10294652 DOI: 10.1128/jb.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.
Collapse
Affiliation(s)
- Anastasia C. Murthy
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Georgeanna M. Morton
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Hunter C. Toyoda
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Meri Kalashyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Sirui Chen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Adelyn E. Ragucci
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
- Cancer Immunology and Virology Department, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew P. Broulidakis
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Kyle J. Swerdlow
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Minh N. N. Bui
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Maria Muccioli
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Melanie B. Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| |
Collapse
|
80
|
Rabbee MF, Baek KH. Detection of Antagonistic Compounds Synthesized by Bacillus velezensis against Xanthomonas citri subsp. citri by Metabolome and RNA Sequencing. Microorganisms 2023; 11:1523. [PMID: 37375024 DOI: 10.3390/microorganisms11061523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Biological control of plant diseases has gained attraction for controlling various bacterial diseases at a field trial stage. An isolated endophytic bacterium, Bacillus velezensis 25 (Bv-25), from Citrus species had strong antagonistic activity against Xanthomonas citri subsp. citri (Xcc), which causes citrus canker disease. When Bv-25 was incubated in Landy broth or yeast nutrient broth (YNB), the ethyl acetate extract of Landy broth exhibited higher levels of antagonistic activity against Xcc compared to that of YNB. Therefore, the antimicrobial compounds in the two ethyl acetate extracts were detected by high performance liquid chromatography-mass spectrometry. This comparison revealed an increase in production of several antimicrobial compounds, including difficidin, surfactin, fengycin, and Iturin-A or bacillomycin-D by incubation in Landy broth. RNA sequencing for the Bv-25 grown in Landy broth were performed, and the differential expressions were detected for the genes encoding the enzymes for the synthesis of antimicrobial compounds, such as bacilysin, plipastatin or fengycin, surfactin, and mycosubtilin. Combination of metabolomics analysis and RNA sequencing strongly suggests that several antagonistic compounds, especially bacilysin produced by B. velezensis, exhibit an antagonistic effect against Xcc.
Collapse
Affiliation(s)
- Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
81
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
82
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
83
|
Moeckel C, Zaravinos A, Georgakopoulos-Soares I. Strand asymmetries across genomic processes. Comput Struct Biotechnol J 2023; 21:2036-2047. [PMID: 36968020 PMCID: PMC10030826 DOI: 10.1016/j.csbj.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Across biological systems, a number of genomic processes, including transcription, replication, DNA repair, and transcription factor binding, display intrinsic directionalities. These directionalities are reflected in the asymmetric distribution of nucleotides, motifs, genes, transposon integration sites, and other functional elements across the two complementary strands. Strand asymmetries, including GC skews and mutational biases, have shaped the nucleotide composition of diverse organisms. The investigation of strand asymmetries often serves as a method to understand underlying biological mechanisms, including protein binding preferences, transcription factor interactions, retrotransposition, DNA damage and repair preferences, transcription-replication collisions, and mutagenesis mechanisms. Research into this subject also enables the identification of functional genomic sites, such as replication origins and transcription start sites. Improvements in our ability to detect and quantify DNA strand asymmetries will provide insights into diverse functionalities of the genome, the contribution of different mutational mechanisms in germline and somatic mutagenesis, and our knowledge of genome instability and evolution, which all have significant clinical implications in human disease, including cancer. In this review, we describe key developments that have been made across the field of genomic strand asymmetries, as well as the discovery of associated mechanisms.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
84
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
85
|
Diessner EM, Takahashi GR, Martin RW, Butts CT. Comparative Modeling and Analysis of Extremophilic D-Ala-D-Ala Carboxypeptidases. Biomolecules 2023; 13:328. [PMID: 36830697 PMCID: PMC9953012 DOI: 10.3390/biom13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria. Using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis, we examine both conserved features and trends across thermal groups. Our findings suggest a number of hypotheses for experimental investigation.
Collapse
Affiliation(s)
| | - Gemma R. Takahashi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Carter T. Butts
- Departments of Sociology, Statistics, Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| |
Collapse
|
86
|
Myers BK, Shin GY, Agarwal G, Stice SP, Gitaitis RD, Kvitko BH, Dutta B. Genome-wide association and dissociation studies in Pantoea ananatis reveal potential virulence factors affecting Allium porrum and Allium fistulosum × Allium cepa hybrid. Front Microbiol 2023; 13:1094155. [PMID: 36817114 PMCID: PMC9933511 DOI: 10.3389/fmicb.2022.1094155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Pantoea ananatis is a member of a Pantoea species complex that causes center rot of bulb onions (A. cepa) and also infects other Allium crops like leeks (Allium porrum), chives (Allium schoenoprasum), bunching onion or Welsh onion (Allium fistulosum), and garlic (Allium sativum). This pathogen relies on a chromosomal phosphonate biosynthetic gene cluster (HiVir) and a plasmid-borne thiosulfinate tolerance cluster (alt) for onion pathogenicity and virulence, respectively. However, pathogenicity and virulence factors associated with other Allium species remain unknown. We used phenotype-dependent genome-wide association (GWAS) and phenotype-independent gene-pair coincidence (GPC) analyses on a panel of diverse 92 P. ananatis strains, which were inoculated on A. porrum and A. fistulosum × A. cepa under greenhouse conditions. Phenotypic assays showed that, in general, these strains were more aggressive on A. fistulosum × A. cepa as opposed to A. porrum. Of the 92 strains, only six showed highly aggressive foliar lesions on A. porrum compared to A. fistulosum × A. cepa. Conversely, nine strains showed highly aggressive foliar lesions on A. fistulosum × A. cepa compared to A. porrum. These results indicate that there are underlying genetic components in P. ananatis that may drive pathogenicity in these two Allium spp. Based on GWAS for foliar pathogenicity, 835 genes were associated with P. ananatis' pathogenicity on A. fistulosum × A. cepa whereas 243 genes were associated with bacterial pathogenicity on A. porrum. The Hivir as well as the alt gene clusters were identified among these genes. Besides the 'HiVir' and the alt gene clusters that are known to contribute to pathogenicity and virulence from previous studies, genes annotated with functions related to stress responses, a potential toxin-antitoxin system, flagellar-motility, quorum sensing, and a previously described phosphonoglycan biosynthesis (pgb) cluster were identified. The GPC analysis resulted in the identification of 165 individual genes sorted into 39 significant gene-pair association components and 255 genes sorted into 50 significant gene-pair dissociation components. Within the coincident gene clusters, several genes that occurred on the GWAS outputs were associated with each other but dissociated with genes that did not appear in their respective GWAS output. To focus on candidate genes that could explain the difference in virulence between hosts, a comparative genomics analysis was performed on five P. ananatis strains that were differentially pathogenic on A. porrum or A. fistulosum × A. cepa. Here, we found a putative type III secretion system, and several other genes that occurred on both GWAS outputs of both Allium hosts. Further, we also demonstrated utilizing mutational analysis that the pepM gene in the HiVir cluster is important than the pepM gene in the pgb cluster for P. ananatis pathogenicity in A. fistulosum × A. cepa and A. porrum. Overall, our results support that P. ananatis may utilize a common set of genes or gene clusters to induce symptoms on A. fistulosum × A. cepa foliar tissue as well as A. cepa but implicates additional genes for infection on A. porrum.
Collapse
Affiliation(s)
- Brendon K. Myers
- Department of Plant Pathology, The University of Georgia, Tifton, GA, United States
| | - Gi Yoon Shin
- Department of Plant Pathology, The University of Georgia, Athens, GA, United States
| | - Gaurav Agarwal
- Department of Plant Pathology, The University of Georgia, Tifton, GA, United States
| | - Shaun P. Stice
- Department of Plant Pathology, The University of Georgia, Athens, GA, United States
| | - Ronald D. Gitaitis
- Department of Plant Pathology, The University of Georgia, Tifton, GA, United States
| | - Brian H. Kvitko
- Department of Plant Pathology, The University of Georgia, Athens, GA, United States
| | - Bhabesh Dutta
- Department of Plant Pathology, The University of Georgia, Tifton, GA, United States,*Correspondence: Bhabesh Dutta, ✉
| |
Collapse
|
87
|
Lin WT, How SC, Lin WZ, Chen FH, Liao WC, Ma IC, Wang SSS, Hou SY. Using flow cytometry to develop a competitive assay for the detection of biotin. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
88
|
Ge YD, Guo YT, Jiang LL, Wang HH, Hou SL, Su FZ. Enzymatic Characterization and Coenzyme Specificity Conversion of a Novel Dimeric Malate Dehydrogenase from Bacillus subtilis. Protein J 2023; 42:14-23. [PMID: 36534341 PMCID: PMC9761052 DOI: 10.1007/s10930-022-10087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Malate is an important material to various industrials and clinical applications. Bacillus subtilis is a widely used biocatalyst tool for chemical production. However, the specific enzymatic properties of malate dehydrogenase from Bacillus subtilis (BsMDH) remain largely unknown. In the present study, BsMDH was cloned, recombinantly expressed and purified to test its enzymatic properties. The molecular weight of single unit of BsMDH was 34,869.7 Da. Matrix-Assisted Laser-Desorption Ionization-Time-of-Flight Mass Spectrometry and gel filtration analysis indicated that the recombinant BsMDH could form dimers. The kcat/Km values of oxaloacetate and NADH were higher than those of malate and NAD+, respectively, indicating a better catalysis in the direction of malate synthesis than the reverse. Furthermore, six BsMDH mutants were constructed with the substitution of amino acids at the coenzyme binding site. Among them, BsMDH-T7 showed a greatly higher affinity and catalysis efficiency to NADPH than NADH with the degree of alteration of 2039, suggesting the shift of the coenzyme dependence from NADH to NADPH. In addition, BsMDH-T7 showed a relatively lower Km value, but a higher kcat and kcat/Km than NADPH-dependent MDHs from Thermus flavus and Corynebacterium glutamicum. Overall, these results indicated that BsMDH and BsMDH-T7 mutant might be promising enzymes for malate production.
Collapse
Affiliation(s)
- Ya-Dong Ge
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China.
| | - Yi-Tian Guo
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Lu-Lu Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Hui-Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Shao-Lin Hou
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Feng-Zhi Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
89
|
de Lima Ferreira JK, de Mello Varani A, Tótola MR, Fernandes Almeida M, de Sousa Melo D, Ferreira Silva E Batista C, Chalfun-Junior A, Pimenta de Oliveira KK, Wurdig Roesch LF, Satler Pylro V. Phylogenomic characterization and pangenomic insights into the surfactin-producing bacteria Bacillus subtilis strain RI4914. Braz J Microbiol 2022; 53:2051-2063. [PMID: 36083529 PMCID: PMC9679098 DOI: 10.1007/s42770-022-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.
Collapse
Affiliation(s)
| | - Alessandro de Mello Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil
| | - Michelle Fernandes Almeida
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil
| | - Dirceu de Sousa Melo
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | | | - Antonio Chalfun-Junior
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | | | | | - Victor Satler Pylro
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
90
|
Research Progress on the Effect of Autolysis to Bacillus subtilis Fermentation Bioprocess. FERMENTATION 2022. [DOI: 10.3390/fermentation8120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a gram-positive bacterium, a promising microorganism due to its strong extracellular protein secretion ability, non-toxic, and relatively mature industrial fermentation technology. However, cell autolysis during fermentation restricts the industrial application of B. subtilis. With the fast advancement of molecular biology and genetic engineering technology, various advanced procedures and gene editing tools have been used to successfully construct autolysis-resistant B. subtilis chassis cells to manufacture various biological products. This paper first analyses the causes of autolysis in B. subtilis from a mechanistic perspective and outlines various strategies to address autolysis in B. subtilis. Finally, potential strategies for solving the autolysis problem of B. subtilis are foreseen.
Collapse
|
91
|
Separation and analysis of Bacillus subtilis respiratory chain complexes. J Bioenerg Biomembr 2022; 54:251-271. [DOI: 10.1007/s10863-022-09951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
|
92
|
Nickels JD, Bonifer KS, Tindall RR, Yahya A, Tan L, Do C, Davison BH, Elkins JG. Improved chemical and isotopic labeling of biomembranes in Bacillus subtilis by leveraging CRISPRi inhibition of beta-ketoacyl-ACP synthase ( fabF). Front Mol Biosci 2022; 9:1011981. [PMID: 36339713 PMCID: PMC9634059 DOI: 10.3389/fmolb.2022.1011981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/05/2022] [Indexed: 09/08/2024] Open
Abstract
Assessing the structure of living microbial cell membranes is a challenging analytical goal. The cell membrane is defined by its transverse structure, an approximately 5 nm-thick selectively permeable bilayer that serves many important cellular functions. Compositionally complex, dynamic, and organized in both the transverse and lateral dimensions, understanding the cell membrane structure-and the role that structure plays in cellular function, communication, and environmental sensing is an active scientific effort. Previously, we have devised a novel isotopic labeling approach for membrane lipids to enable direct in vivo structural studies of the cell membrane in the Gram-positive bacterium, Bacillus subtilis, using small-angle neutron scattering. This was accomplished through a genetic inhibition of fatty acid (FA) degradation (ΔfadN) and a chemical inhibition of FA biosynthesis using cerulenin, an irreversible inhibitor of type II fatty acid synthases. Here, we improve upon the previous system by introducing a dCas9/sgRNA-fabF complex that blocks transcription of the essential fabF gene when under xylose induction. This leads to greater sensitivity to cerulenin in the mutant strain (JEBS102) and more robust cell growth when supplementary FAs are introduced to the culture medium. A subtle change in FA uptake is noted when compared to the prior labeling strategy. This is seen in the gas chromatography/mass spectrometry (GC/MS) data as a higher ratio of n16:0 to a15:0, and manifests in an apparent increase in the membrane thickness determined via neutron scattering. This represents an improved method of isotopic labeling for the cell membrane of Bacillus subtilis; enabling improved investigations of cellular uptake and utilization of FAs, cell membrane structure and organization as a phenotypic response to metabolic and environmental changes.
Collapse
Affiliation(s)
- Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Kyle S. Bonifer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rachel R. Tindall
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ahmad Yahya
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Luoxi Tan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Changwoo Do
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brian H. Davison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - James G. Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
93
|
Feng Z, Xu M, Yang J, Zhang R, Geng Z, Mao T, Sheng Y, Wang L, Zhang J, Zhang H. Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. FRONTIERS IN PLANT SCIENCE 2022; 13:1019512. [PMID: 36325560 PMCID: PMC9618607 DOI: 10.3389/fpls.2022.1019512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Rhizoctonia solani Kühn naturally infects and causes Sheath blight disease in cereal crops such as wheat, rice and maize, leading to severe reduction in grain yield and quality. In this work, a new bacterial strain Bacillus halotolerans LDFZ001 showing efficient antagonistic activity against the pathogenic strain Rhizoctonia solani Kühn sh-1 was isolated. Antagonistic, phylogenetic and whole genome sequencing analyses demonstrate that Bacillus halotolerans LDFZ001 strongly suppressed the growth of Rhizoctonia solani Kühn sh-1, showed a close evolutionary relationship with B. halotolerans F41-3, and possessed a 3,965,118 bp circular chromosome. Bioinformatic analysis demonstrated that the genome of Bacillus halotolerans LDFZ001 contained ten secondary metabolite biosynthetic gene clusters (BGCs) encoding five non-ribosomal peptide synthases, two polyketide synthase, two terpene synthases and one bacteriocin synthase, and a new kijanimicin biosynthetic gene cluster which might be responsible for the biosynthesis of novel compounds. Gene-editing experiments revealed that functional expression of phosphopantetheinyl transferase (SFP) and major facilitator superfamily (MFS) transporter genes in Bacillus halotolerans LDFZ001 was essential for its antifungal activity against R. solani Kühn sh-1. Moreover, the existence of two identical chitosanases may also make contribution to the antipathogen activity of Bacillus halotolerans LDFZ001. Our findings will provide fundamental information for the identification and isolation of new sheath blight resistant genes and bacterial strains which have a great potential to be used for the production of bacterial control agents. IMPORTANCE A new Bacillus halotolerans strain Bacillus halotolerans LDFZ001 resistant to sheath blight in wheat is isolated. Bacillus halotolerans LDFZ001 harbors a new kijanimicin biosynthetic gene cluster, and the functional expression of SFP and MFS contribute to its antipathogen ability.
Collapse
Affiliation(s)
- Zhibin Feng
- College of Life Science, Ludong University, Yantai, China
| | - Mingzhi Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Renhong Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
94
|
Improvement of Lignocellulolytic Enzyme Production Mediated by Calcium Signaling in Bacillus subtilis Z2 under Graphene Oxide Stress. Appl Environ Microbiol 2022; 88:e0096022. [PMID: 36121214 PMCID: PMC9552604 DOI: 10.1128/aem.00960-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in exoenzyme production can be enhanced by environmental stresses such as graphene oxide (GO) stress, but the link between the two events is still unclear. In this work, the effect of GO as an environmental stress factor on exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) biosynthesis was investigated in Bacillus subtilis Z2, and a plausible mechanism by which cytosolic Ca2+ regulates lignocellulolytic enzyme production in B. subtilis Z2 subjected to GO stress was proposed. The filter paper-hydrolyzing (FPase [representing total cellulase]), carboxymethylcellulase (CMCase [representing endoglucanase]), and β-glucosidase activities and extracellular protein concentration of the wild-type strain under 10 μg/mL GO stress were 1.37-, 1.64-, 1.24-, and 1.16-fold those of the control (without GO stress), respectively. Correspondingly, the transcription levels of lignocellulolytic enzyme genes, cytosolic Ca2+ level, and biomass concentration of B. subtilis were all increased. With lignocellulolytic enzyme from B. subtilis used to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 265.53 mg/g, and the removal rates of cellulose, hemicellulose, and lignin were 52.4%, 30.1%, and 7.5%, respectively. Furthermore, transcriptome data revealed that intracellular Ca2+ homeostasis played a key role in regulating the levels of gene transcription related to the synthesis of lignocellulolytic enzymes and exoenzymes. Finally, the use of Ca2+ inhibitors (LaCl3 and EDTA) and deletion of spcF (a calmodulin-like protein gene) further demonstrated that the overexpression of those genes was regulated via calcium signaling in B. subtilis subjected to GO stress. IMPORTANCE To effectively convert lignocellulose into fermentable sugars, high lignocellulolytic enzyme loading is needed. Graphene oxide (GO) has been shown to promote exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) production in some microorganisms; however, the regulatory mechanism of the biosynthesis of lignocellulolytic enzymes under GO stress remains unclear. In this work, the lignocellulolytic enzyme production of B. subtilis under GO stress was investigated, and the potential mechanism by which B. subtilis enhanced lignocellulolytic enzyme production through the calcium signaling pathway under GO stress was proposed. This work revealed the role of calcium signaling in the production of enzymes under external environmental stress and provided a direction to facilitate lignocellulolytic enzyme production by B. subtilis.
Collapse
|
95
|
Crystal structure and biochemical analysis suggest that YjoB ATPase is a putative substrate-specific molecular chaperone. Proc Natl Acad Sci U S A 2022; 119:e2207856119. [PMID: 36191235 PMCID: PMC9565160 DOI: 10.1073/pnas.2207856119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AAA+ ATPases are ubiquitous proteins associated with most cellular processes, including DNA unwinding and protein unfolding. Their functional and structural properties are typically determined by domains and motifs added to the conserved ATPases domain. Currently, the molecular function and structure of many ATPases remain elusive. Here, we report the crystal structure and biochemical analyses of YjoB, a Bacillus subtilis AAA+ protein. The crystal structure revealed that the YjoB hexamer forms a bucket hat-shaped structure with a porous chamber. Biochemical analyses showed that YjoB prevents the aggregation of vegetative catalase KatA and gluconeogenesis-specific glyceraldehyde-3 phosphate dehydrogenase GapB but not citrate synthase, a conventional substrate. Structural and biochemical analyses further showed that the internal chamber of YjoB is necessary for inhibition of substrate aggregation. Our results suggest that YjoB, conserved in the class Bacilli, is a potential molecular chaperone acting in the starvation/stationary phases of B. subtilis growth.
Collapse
|
96
|
Yoshida KI. From "Bacillus subtilis conference" to "Conference on functional genomics of Gram-positive bacteria". J GEN APPL MICROBIOL 2022; 68:43-44. [PMID: 36104183 DOI: 10.2323/jgam.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ken-Ichi Yoshida
- Graduate School of Science and Technology Innovation, Kobe University
| |
Collapse
|
97
|
Improved assessments of bulk milk microbiota composition via sample preparation and DNA extraction methods. PLoS One 2022; 17:e0267992. [PMID: 36107863 PMCID: PMC9477292 DOI: 10.1371/journal.pone.0267992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Although bacterial detection by 16S rRNA gene amplicon DNA sequencing is a widely-applied technique, standardized methods for sample preparation and DNA extraction are needed to ensure accuracy, reproducibility, and scalability for automation. To develop these methods for bovine bulk milk, we assembled and tested a bacterial cell mock community (BCMC) containing bacterial species commonly found in milk. The following protocol variations were examined:: BCMC enumeration (colony enumeration or microscopy), sample volume (200 μl to 30 ml), sample storage condition (frozen in PBS or 25% glycerol or exposure to freeze-thaw cycles), cell lysis method (bead-beating, vortex, enzymatic), and DNA extraction procedure (MagMAX Total, MagMAX CORE, and MagMAX Ultra 2.0, with and without either Proteinase K or RNase A). Cell enumeration by microscopy was more accurate for quantification of the BCMC contents. We found that least 10 mL (≥ 104 cells in high quality milk) is needed for reproducible bacterial detection by 16S rRNA gene amplicon DNA sequencing, whereas variations in storage conditions caused minor differences in the BCMC. For DNA extraction and purification, a mild lysis step (bead-beating for 10 s at 4 m/s or vortexing at 1800 rpm for 10 s) paired with the MagMAX Total kit and Proteinase K digestion provided the most accurate representation of the BCMC. Cell lysis procedures conferred the greatest changes to milk microbiota composition and these effects were confirmed to provide similar results for commercial milk samples. Overall, our systematic approach with the BCMC is broadly applicable to other milk, food, and environmental samples therefore recommended for improving accuracy of culture-independent, DNA sequence-based analyses of microbial composition in different habitats.
Collapse
|
98
|
A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms 2022; 10:microorganisms10091720. [PMID: 36144322 PMCID: PMC9505155 DOI: 10.3390/microorganisms10091720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
By integrating phylogenomic and comparative analyses of 1104 high-quality genome sequences, we identify the core proteins and the lineage-specific fingerprint proteins of the various evolutionary clusters (clades/groups/species) of the Bacillus genus. As fingerprints, we denote those core proteins of a certain lineage that are present only in that particular lineage and absent in any other Bacillus lineage. Thus, these lineage-specific fingerprints are expected to be involved in particular adaptations of that lineage. Intriguingly, with a few notable exceptions, the majority of the Bacillus species demonstrate a rather low number of species-specific fingerprints, with the majority of them being of unknown function. Therefore, species-specific adaptations are mostly attributed to highly unstable (in evolutionary terms) accessory proteomes and possibly to changes at the gene regulation level. A series of comparative analyses consistently demonstrated that the progenitor of the Cereus Clade underwent an extensive genomic expansion of chromosomal protein-coding genes. In addition, the majority (76–82%) of the B. subtilis proteins that are essential or play a significant role in sporulation have close homologs in most species of both the Subtilis and the Cereus Clades. Finally, the identification of lineage-specific fingerprints by this study may allow for the future development of highly specific vaccines, therapeutic molecules, or rapid and low-cost molecular tests for species identification.
Collapse
|
99
|
Lee HY, Yoon CK, Cho YJ, Lee JW, Lee KA, Lee WJ, Seok YJ. A mannose-sensing AraC-type transcriptional activator regulates cell-cell aggregation of Vibrio cholerae. NPJ Biofilms Microbiomes 2022; 8:65. [PMID: 35987769 PMCID: PMC9392796 DOI: 10.1038/s41522-022-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to catalyzing coupled transport and phosphorylation of carbohydrates, the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulates various physiological processes in most bacteria. Therefore, the transcription of genes encoding the PTS is precisely regulated by transcriptional regulators depending on substrate availability. As the distribution of the mannose-specific PTS (PTSMan) is limited to animal-associated bacteria, it has been suggested to play an important role in host-bacteria interactions. In Vibrio cholerae, mannose is known to inhibit biofilm formation. During host infection, the transcription level of the V. cholerae gene encoding the putative PTSMan (hereafter referred to as manP) significantly increases, and mutations in this gene increase host survival rate. Herein, we show that an AraC-type transcriptional regulator (hereafter referred to as ManR) acts as a transcriptional activator of the mannose operon and is responsible for V. cholerae growth and biofilm inhibition on a mannose or fructose-supplemented medium. ManR activates mannose operon transcription by facilitating RNA polymerase binding to the promoter in response to mannose 6-phosphate and, to a lesser extent, to fructose 1-phosphate. When manP or manR is impaired, the mannose-induced inhibition of biofilm formation was reversed and intestinal colonization was significantly reduced in a Drosophila melanogaster infection model. Our results show that ManR recognizes mannose and fructose in the environment and facilitates V. cholerae survival in the host.
Collapse
Affiliation(s)
- Hye-Young Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
100
|
HU Knew? Bacillus subtilis HBsu Is Required for DNA Replication Initiation. J Bacteriol 2022; 204:e0015122. [PMID: 35862733 PMCID: PMC9380533 DOI: 10.1128/jb.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The prokaryotic nucleoid-associated protein (NAP) HU is both highly conserved and ubiquitous. Deletion of HU causes pleiotropic phenotypes, making it difficult to uncover the critical functions of HU within a bacterial cell. In their recent work, Karaboja and Wang (J Bacteriol 204:e00119-22, 2022, https://doi.org/10.1128/JB.00119-22) show that one essential function of Bacillus subtilis HU (HBsu) is to drive the DnaA-dependent initiation of DNA replication at the chromosome origin. We discuss the possible roles of HBsu in replication initiation and other essential cellular functions.
Collapse
|