51
|
Thom T, Schmitz M, Fischer AL, Correia A, Correia S, Llorens F, Pique AV, Möbius W, Domingues R, Zafar S, Stoops E, Silva CJ, Fischer A, Outeiro TF, Zerr I. Cellular Prion Protein Mediates α-Synuclein Uptake, Localization, and Toxicity In Vitro and In Vivo. Mov Disord 2021; 37:39-51. [PMID: 34448510 DOI: 10.1002/mds.28774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cellular prion protein (PrPC ) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers. OBJECTIVES We define PrPC 's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins. METHODS We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC -(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy. RESULTS Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC -expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC -overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization. CONCLUSION PrPC 's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tobias Thom
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Anna-Lisa Fischer
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Anna-Villar Pique
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Wiebke Möbius
- Department for Neurogenetics, EM Core Unit Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Renato Domingues
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | | | - Christopher J Silva
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, USA
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
52
|
Polido SA, Kamps J, Tatzelt J. Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:1201. [PMID: 34439867 PMCID: PMC8391301 DOI: 10.3390/biom11081201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian prion protein (PrPC) is composed of a large intrinsically disordered N-terminal and a structured C-terminal domain, containing three alpha-helical regions and a short, two-stranded beta-sheet. Traditionally, the activity of a protein was linked to the ability of the polypeptide chain to adopt a stable secondary/tertiary structure. This concept has been extended when it became evident that intrinsically disordered domains (IDDs) can participate in a broad range of defined physiological activities and play a major functional role in several protein classes including transcription factors, scaffold proteins, and signaling molecules. This ability of IDDs to engage in a variety of supramolecular complexes may explain the large number of PrPC-interacting proteins described. Here, we summarize diverse physiological and pathophysiological activities that have been described for the unstructured N-terminal domain of PrPC. In particular, we focus on subdomains that have been conserved in evolution.
Collapse
Affiliation(s)
- Stella A. Polido
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
53
|
Lakkaraju AKK, Frontzek K, Lemes E, Herrmann U, Losa M, Marpakwar R, Aguzzi A. Loss of PIKfyve drives the spongiform degeneration in prion diseases. EMBO Mol Med 2021; 13:e14714. [PMID: 34291577 PMCID: PMC8518562 DOI: 10.15252/emmm.202114714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
Brain‐matter vacuolation is a defining trait of all prion diseases, yet its cause is unknown. Here, we report that prion infection and prion‐mimetic antibodies deplete the phosphoinositide kinase PIKfyve—which controls endolysosomal maturation—from mouse brains, cultured cells, organotypic brain slices, and brains of Creutzfeldt‐Jakob disease victims. We found that PIKfyve is acylated by the acyltransferases zDHHC9 and zDHHC21, whose juxtavesicular topology is disturbed by prion infection, resulting in PIKfyve deacylation and rapid degradation, as well as endolysosomal hypertrophy and activation of TFEB‐dependent lysosomal enzymes. A protracted unfolded protein response (UPR), typical of prion diseases, also induced PIKfyve deacylation and degradation. Conversely, UPR antagonists restored PIKfyve levels in prion‐infected cells. Overexpression of zDHHC9 and zDHHC21, administration of the antiprion polythiophene LIN5044, or supplementation with the PIKfyve reaction product PI(3,5)P2 suppressed prion‐induced vacuolation and restored lysosomal homeostasis. Thus, PIKfyve emerges as a central mediator of vacuolation and neurotoxicity in prion diseases.
Collapse
Affiliation(s)
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Emina Lemes
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Uli Herrmann
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | | | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
54
|
Kamps J, Lin YH, Oliva R, Bader V, Winter R, Winklhofer KF, Tatzelt J. The N-terminal domain of the prion protein is required and sufficient for liquid-liquid phase separation: A crucial role of the Aβ-binding domain. J Biol Chem 2021; 297:100860. [PMID: 34102212 PMCID: PMC8254114 DOI: 10.1016/j.jbc.2021.100860] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Formation of biomolecular condensates through liquid–liquid phase separation (LLPS) has been described for several pathogenic proteins linked to neurodegenerative diseases and is discussed as an early step in the formation of protein aggregates with neurotoxic properties. In prion diseases, neurodegeneration and formation of infectious prions is caused by aberrant folding of the cellular prion protein (PrPC). PrPC is characterized by a large intrinsically disordered N-terminal domain and a structured C-terminal globular domain. A significant fraction of mature PrPC is proteolytically processed in vivo into an entirely unstructured fragment, designated N1, and the corresponding C-terminal fragment C1 harboring the globular domain. Notably, N1 contains a polybasic motif that serves as a binding site for neurotoxic Aβ oligomers. PrP can undergo LLPS; however, nothing is known how phase separation of PrP is triggered on a molecular scale. Here, we show that the intrinsically disordered N1 domain is necessary and sufficient for LLPS of PrP. Similar to full-length PrP, the N1 fragment formed highly dynamic liquid-like droplets. Remarkably, a slightly shorter unstructured fragment, designated N2, which lacks the Aβ-binding domain and is generated under stress conditions, failed to form liquid-like droplets and instead formed amorphous assemblies of irregular structures. Through a mutational analysis, we identified three positively charged lysines in the postoctarepeat region as essential drivers of condensate formation, presumably largely via cation–π interactions. These findings provide insights into the molecular basis of LLPS of the mammalian prion protein and reveal a crucial role of the Aβ-binding domain in this process.
Collapse
Affiliation(s)
- Janine Kamps
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Yu-Hsuan Lin
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosario Oliva
- Division of Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Roland Winter
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany; Division of Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany; Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
55
|
Schmitt-Ulms G, Mehrabian M, Williams D, Ehsani S. The IDIP framework for assessing protein function and its application to the prion protein. Biol Rev Camb Philos Soc 2021; 96:1907-1932. [PMID: 33960099 DOI: 10.1111/brv.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Sepehr Ehsani
- Theoretical and Philosophical Biology, Department of Philosophy, University College London, Bloomsbury, London, WC1E 6BT, U.K.,Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, U.S.A
| |
Collapse
|
56
|
Kushwaha R, Sinha A, Makarava N, Molesworth K, Baskakov IV. Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases. Acta Neuropathol Commun 2021; 9:22. [PMID: 33546775 PMCID: PMC7866439 DOI: 10.1186/s40478-021-01123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Under normal conditions, astrocytes perform a number of important physiological functions centered around neuronal support and synapse maintenance. In neurodegenerative diseases including Alzheimer’s, Parkinson’s and prion diseases, astrocytes acquire reactive phenotypes, which are sustained throughout the disease progression. It is not known whether in the reactive states associated with prion diseases, astrocytes lose their ability to perform physiological functions and whether the reactive states are neurotoxic or, on the contrary, neuroprotective. The current work addresses these questions by testing the effects of reactive astrocytes isolated from prion-infected C57BL/6J mice on primary neuronal cultures. We found that astrocytes isolated at the clinical stage of the disease exhibited reactive, pro-inflammatory phenotype, which also showed downregulation of genes involved in neurogenic and synaptogenic functions. In astrocyte-neuron co-cultures, astrocytes from prion-infected animals impaired neuronal growth, dendritic spine development and synapse maturation. Toward examining the role of factors secreted by reactive astrocytes, astrocyte-conditioned media was found to have detrimental effects on neuronal viability and synaptogenic functions via impairing synapse integrity, and by reducing spine size and density. Reactive microglia isolated from prion-infected animals were found to induce phenotypic changes in primary astrocytes reminiscent to those observed in prion-infected mice. In particular, astrocytes cultured with reactive microglia-conditioned media displayed hypertrophic morphology and a downregulation of genes involved in neurogenic and synaptogenic functions. In summary, the current study provided experimental support toward the non-cell autonomous mechanisms behind neurotoxicity in prion diseases and demonstrated that the astrocyte reactive phenotype associated with prion diseases is synaptotoxic.
Collapse
|
57
|
Minikel EV, Zhao HT, Le J, O'Moore J, Pitstick R, Graffam S, Carlson GA, Kavanaugh MP, Kriz J, Kim JB, Ma J, Wille H, Aiken J, McKenzie D, Doh-Ura K, Beck M, O'Keefe R, Stathopoulos J, Caron T, Schreiber SL, Carroll JB, Kordasiewicz HB, Cabin DE, Vallabh SM. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res 2020; 48:10615-10631. [PMID: 32776089 PMCID: PMC7641729 DOI: 10.1093/nar/gkaa616] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA 92010, USA
| | - Jason Le
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill O'Moore
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | | | | | - Jasna Kriz
- Cervo Brain Research Center, Université Laval, Québec, QC G1J 2G3, Canada
| | | | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Holger Wille
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Judd Aiken
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | | | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Matthew Beck
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rhonda O'Keefe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tyler Caron
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
58
|
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, Rümistrasse 100, CH-8091 Zürich, Switzerland.
| | - Elena De Cecco
- Institute of Neuropathology, University of Zürich, Rümistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
59
|
Tittelmeier J, Nachman E, Nussbaum-Krammer C. Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:581374. [PMID: 33132902 PMCID: PMC7572858 DOI: 10.3389/fnagi.2020.581374] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in many age-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Pathological inclusions and the associated toxicity appear to spread through the nervous system in a characteristic pattern during the disease. This has been attributed to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the pathological conformation, intercellular transfer, and the subsequent seeding of native forms of the same protein in the neighboring cell. Molecular chaperones play a major role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to ensure their function or by promoting the degradation of terminally misfolded proteins to prevent damage. With increasing age, however, the capacity of this proteostasis network tends to decrease, which enables the manifestation of neurodegenerative diseases. Recently, there has been a plethora of studies investigating how and when chaperones interact with disease-related proteins, which have advanced our understanding of the role of chaperones in protein misfolding diseases. This review article focuses on the steps of prion-like propagation from initial misfolding and self-templated replication to intercellular spreading and discusses the influence that chaperones have on these various steps, highlighting both the positive and adverse consequences chaperone action can have. Understanding how chaperones alleviate and aggravate disease progression is vital for the development of therapeutic strategies to combat these debilitating diseases.
Collapse
Affiliation(s)
- Jessica Tittelmeier
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eliana Nachman
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
60
|
Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020; 46:522-545. [PMID: 31868945 PMCID: PMC7687189 DOI: 10.1111/nan.12592] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The prototype of transmissible neurodegenerative proteinopathies is prion diseases, characterized by aggregation of abnormally folded conformers of the native prion protein. A wealth of mechanisms has been proposed to explain the conformational conversion from physiological protein into misfolded, pathological form, mode of toxicity, propagation from cell-to-cell and regional spread. There is increasing evidence that other neurodegenerative diseases, most notably Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), frontotemporal dementia (TDP43, tau or FUS) and motor neurone disease (TDP43), exhibit at least some of the misfolded prion protein properties. In this review, we will discuss to what extent each of the properties of misfolded prion protein is known to occur for Aβ, tau, α-synuclein and TDP43, with particular focus on self-propagation through seeding, conformational strains, selective cellular and regional vulnerability, stability and resistance to inactivation, oligomers, toxicity and summarize the most recent literature on transmissibility of neurodegenerative disorders.
Collapse
Affiliation(s)
- Z. Jaunmuktane
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders
| | - S. Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Neurodegenerative diseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
61
|
Scialò C, Legname G. The role of the cellular prion protein in the uptake and toxic signaling of pathological neurodegenerative aggregates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:297-323. [PMID: 32958237 DOI: 10.1016/bs.pmbts.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are invariably associated with intra- or extra-cellular deposition of aggregates composed of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Emerging evidence suggests that the circulating soluble species of these misfolded proteins (usually referred as oligomers) could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Convincing data support the hypothesis that the cellular prion protein, PrPC, act as a toxicity-transducing receptor for amyloid-β oligomers. As a consequence, several studies extended investigations to the role played by PrPC in binding aggregates of proteins other than Aβ, such as tau and α-synuclein, for its possible common role in mediating toxic signaling. A better characterization of the biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, would bring relevant therapeutic implications. Here we will first describe the structure of the prion protein and the hypothesized interplay with its pathological counterpart PrPSc and then we will recapitulate the most relevant discoveries regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
62
|
Supattapone S. Cofactor molecules: Essential partners for infectious prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:53-75. [PMID: 32958241 DOI: 10.1016/bs.pmbts.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, to date, all wild type protein-only PrPSc preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry and Cell Biology and Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
63
|
Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease. Biochem J 2020; 477:833-852. [PMID: 32108870 PMCID: PMC7054746 DOI: 10.1042/bcj20190872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative conditions of humans and animals that arise through neurotoxicity induced by PrP misfolding. The cellular and molecular mechanisms of prion-induced neurotoxicity remain undefined. Understanding these processes will underpin therapeutic and control strategies for human and animal prion diseases, respectively. Prion diseases are difficult to study in their natural hosts and require the use of tractable animal models. Here we used RNA-Seq-based transcriptome analysis of prion-exposed Drosophila to probe the mechanism of prion-induced neurotoxicity. Adult Drosophila transgenic for pan neuronal expression of ovine PrP targeted to the plasma membrane exhibit a neurotoxic phenotype evidenced by decreased locomotor activity after exposure to ovine prions at the larval stage. Pathway analysis and quantitative PCR of genes differentially expressed in prion-infected Drosophila revealed up-regulation of cell cycle activity and DNA damage response, followed by down-regulation of eIF2 and mTOR signalling. Mitochondrial dysfunction was identified as the principal toxicity pathway in prion-exposed PrP transgenic Drosophila. The transcriptomic changes we observed were specific to PrP targeted to the plasma membrane since these prion-induced gene expression changes were not evident in similarly treated Drosophila transgenic for cytosolic pan neuronal PrP expression, or in non-transgenic control flies. Collectively, our data indicate that aberrant cell cycle activity, repression of protein synthesis and altered mitochondrial function are key events involved in prion-induced neurotoxicity, and correlate with those identified in mammalian hosts undergoing prion disease. These studies highlight the use of PrP transgenic Drosophila as a genetically well-defined tractable host to study mammalian prion biology.
Collapse
|
64
|
Schilling KM, Tao L, Wu B, Kiblen JTM, Ubilla-Rodriguez NC, Pushie MJ, Britt RD, Roseman GP, Harris DA, Millhauser GL. Both N-Terminal and C-Terminal Histidine Residues of the Prion Protein Are Essential for Copper Coordination and Neuroprotective Self-Regulation. J Mol Biol 2020; 432:4408-4425. [PMID: 32473880 PMCID: PMC7387163 DOI: 10.1016/j.jmb.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
The cellular prion protein (PrPC) comprises two domains: a globular C-terminal domain and an unstructured N-terminal domain. Recently, copper has been observed to drive tertiary contact in PrPC, inducing a neuroprotective cis interaction that structurally links the protein's two domains. The location of this interaction on the C terminus overlaps with the sites of human pathogenic mutations and toxic antibody docking. Combined with recent evidence that the N terminus is a toxic effector regulated by the C terminus, there is an emerging consensus that this cis interaction serves a protective role, and that the disruption of this interaction by misfolded PrP oligomers may be a cause of toxicity in prion disease. We demonstrate here that two highly conserved histidines in the C-terminal domain of PrPC are essential for the protein's cis interaction, which helps to protect against neurotoxicity carried out by its N terminus. We show that simultaneous mutation of these histidines drastically weakens the cis interaction and enhances spontaneous cationic currents in cultured cells, the first C-terminal mutant to do so. Whereas previous studies suggested that Cu2+ coordination was localized solely to the protein's N-terminal domain, we find that both domains contribute equatorially coordinated histidine residue side-chains, resulting in a novel bridging interaction. We also find that extra N-terminal histidines in pathological familial mutations involving octarepeat expansions inhibit this interaction by sequestering copper from the C terminus. Our findings further establish a structural basis for PrPC's C-terminal regulation of its otherwise toxic N terminus.
Collapse
Affiliation(s)
- Kevin M Schilling
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lizhi Tao
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St Silvio Conte., Boston, MA 02118, USA
| | - Joseph T M Kiblen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Natalia C Ubilla-Rodriguez
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - M Jake Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, Saskatoon, SK S7N 5E5, Canada
| | - R David Britt
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St Silvio Conte., Boston, MA 02118, USA.
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
65
|
Moon JH, Park SY. Prion peptide-mediated calcium level alteration governs neuronal cell damage through AMPK-autophagy flux. Cell Commun Signal 2020; 18:109. [PMID: 32650778 PMCID: PMC7353712 DOI: 10.1186/s12964-020-00590-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The distinctive molecular structure of the prion protein, PrPsc, is established only in mammals with infectious prion diseases. Prion protein characterizes either the transmissible pathogen itself or a primary constituent of the disease. Our report suggested that prion protein-mediated neuronal cell death is triggered by the autophagy flux. However, the alteration of intracellular calcium levels, AMPK activity in prion models has not been described. This study is focused on the effect of the changes in intracellular calcium levels on AMPK/autophagy flux pathway and PrP (106-126)-induced neurotoxicity. METHODS Western blot and Immunocytochemistry was used to detect AMPK and autophagy-related protein expression. Flow cytometry and a TdT-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay were used to detect the percentage of apoptotic cells. Calcium measurement was employed using fluo-4 by confocal microscope. RESULTS We examined the effect of calcium homeostasis alterations induced by human prion peptide on the autophagy flux in neuronal cells. Treatment with human prion peptide increased the intracellular calcium concentration and induced cell death in primary neurons as well as in a neuronal cell line. Using pharmacological inhibitors, we showed that the L-type calcium channel is involved in the cellular entry of calcium ions. Inhibition of calcium uptake prevented autophagic cell death and reduction in AMP-activated protein kinase (AMPK) activity induced by human prion peptide. CONCLUSION Our data demonstrated that prion peptide-mediated calcium inflow plays a pivotal role in prion peptide-induced autophagic cell death, and reduction in AMPK activity in neurons. Altogether, our results suggest that calcium influx might play a critical role in neurodegenerative diseases, including prion diseases. Video Abstract.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
66
|
Colini Baldeschi A, Vanni S, Zattoni M, Legname G. Novel regulators of PrP C expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 2020; 24:759-776. [PMID: 32631090 DOI: 10.1080/14728222.2020.1782384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prion diseases are rare and fatal neurodegenerative disorders. The key molecular event in these disorders is the misfolding of the physiological form of the cellular prion protein, PrPC, leading to the accumulation of a pathological isoform, PrPSc, with unique features. Both isoforms share the same primary sequence, lacking detectable differences in posttranslational modification, a major hurdle for their biochemical or biophysical independent characterization. The mechanism underlying the conversion of PrPC to PrPSc is not completely understood, so finding an effective therapy to cure prion disorders is extremely challenging. AREAS COVERED This review discusses the strategies for decreasing prion replication and throws a spotlight on the relevance of PrPC in the prion accumulation process. EXPERT OPINION PrPC is the key substrate for prion pathology; hence, the most promising therapeutic approach appears to be the targeting of PrPC to block the production of the infectious isoform. The use of RNA interference and antisense oligonucleotide technologies may offer opportunities for treatment because of their success in clinical trials for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio E La Cura Dei Tumori (IRST) IRCCS , Meldola, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
67
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
68
|
Jones E, Mead S. Genetic risk factors for Creutzfeldt-Jakob disease. Neurobiol Dis 2020; 142:104973. [PMID: 32565065 DOI: 10.1016/j.nbd.2020.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders of mammals that share a central role for prion protein (PrP, gene PRNP) in their pathogenesis. Prions are infectious agents that account for the observed transmission of prion diseases between humans and animals in certain circumstances. The prion mechanism invokes a misfolded and multimeric assembly of PrP (a prion) that grows by templating of the normal protein and propagates by fission. Aside from the medical and public health notoriety of acquired prion diseases, the conditions have attracted interest as it has been realized that common neurodegenerative disorders share so-called prion-like mechanisms. In this article we will expand on recent evidence for new genetic loci that alter the risk of human prion disease. The most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), is characterized by the seemingly spontaneous appearance of prions in the brain. Genetic variation within PRNP is associated with all types of prion diseases, in particular, heterozygous genotypes at codons 129 and 219 have long been known to be strong protective factors against sCJD. A large number of rare mutations have been described in PRNP that cause autosomal dominant inherited prion diseases. Two loci recently identified by genome-wide association study increase sCJD risk, including variants in or near to STX6 and GAL3ST1. STX6 encodes syntaxin-6, a component of SNARE complexes with cellular roles that include the fusion of intracellular vesicles with target membranes. GAL3ST1 encodes cerebroside sulfotransferase, the only enzyme that sulfates sphingolipids to make sulfatides, a major lipid component of myelin. We discuss how these roles may modify the pathogenesis of prion diseases and their relevance for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Jones
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom.
| |
Collapse
|
69
|
Tanaka M, Yamasaki T, Hasebe R, Suzuki A, Horiuchi M. Enhanced phosphorylation of PERK in primary cultured neurons as an autonomous neuronal response to prion infection. PLoS One 2020; 15:e0234147. [PMID: 32479530 PMCID: PMC7263615 DOI: 10.1371/journal.pone.0234147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023] Open
Abstract
Conversion of cellular prion protein (PrPC) into the pathogenic isoform of prion protein (PrPSc) in neurons is one of the key pathophysiological events in prion diseases. However, the molecular mechanism of neurodegeneration in prion diseases has yet to be fully elucidated because of a lack of suitable experimental models for analyzing neuron-autonomous responses to prion infection. In the present study, we used neuron-enriched primary cultures of cortical and thalamic mouse neurons to analyze autonomous neuronal responses to prion infection. PrPSc levels in neurons increased over the time after prion infection; however, no obvious neuronal losses or neurite alterations were observed. Interestingly, a finer analysis of individual neurons co-stained with PrPSc and phosphorylated protein kinase RNA-activated-like endoplasmic reticulum (ER) kinase (p-PERK), the early cellular response of the PERK-eukaryotic initiation factor 2 (eIF2α) pathway, demonstrated a positive correlation between the number of PrPSc granular stains and p-PERK granular stains, in cortical neurons at 21 dpi. Although the phosphorylation of PERK was enhanced in prion-infected cortical neurons, there was no sign of subsequent translational repression of synaptic protein synthesis or activations of downstream unfolded protein response (UPR) in the PERK-eIF2α pathway. These results suggest that PrPSc production in neurons induces ER stress in a neuron-autonomous manner; however, it does not fully activate UPR in prion-infected neurons. Our findings provide insights into the autonomous neuronal responses to prion propagation and the involvement of neuron-non-autonomous factor(s) in the mechanisms of neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- Misaki Tanaka
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
70
|
Roseman GP, Wu B, Wadolkowski MA, Harris DA, Millhauser GL. Intrinsic toxicity of the cellular prion protein is regulated by its conserved central region. FASEB J 2020; 34:8734-8748. [PMID: 32385908 DOI: 10.1096/fj.201902749rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The conserved central region (CR) of PrPC has been hypothesized to serve as a passive linker connecting the protein's toxic N-terminal and globular C-terminal domains. Yet, deletion of the CR causes neonatal fatality in mice, implying the CR possesses a protective function. The CR encompasses the regulatory α-cleavage locus, and additionally facilitates a regulatory metal ion-promoted interaction between the PrPC N- and C-terminal domains. To elucidate the role of the CR and determine why CR deletion generates toxicity, we designed PrPC constructs wherein either the cis-interaction or α-cleavage are selectively prevented. These constructs were interrogated using nuclear magnetic resonance, electrophysiology, and cell viability assays. Our results demonstrate the CR is not a passive linker and the native sequence is crucial for its protective role over the toxic N-terminus, irrespective of α-cleavage or the cis-interaction. Additionally, we find that the CR facilitates homodimerization of PrPC , attenuating the toxicity of the N-terminus.
Collapse
Affiliation(s)
- Graham P Roseman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark A Wadolkowski
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
71
|
Towards a treatment for genetic prion disease: trials and biomarkers. Lancet Neurol 2020; 19:361-368. [PMID: 32199098 DOI: 10.1016/s1474-4422(19)30403-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/19/2023]
Abstract
Prion disease is a rare, fatal, and exceptionally rapid neurodegenerative disease. Although incurable, prion disease follows a clear pathogenic mechanism, in which a single gene gives rise to a single prion protein (PrP) capable of converting into the sole causal disease agent, the misfolded prion. As efforts progress to leverage this mechanistic knowledge toward rational therapies, a principal challenge will be the design of clinical trials. Previous trials in prion disease have been done in symptomatic patients who are often profoundly debilitated at enrolment. About 15% of prion disease cases are genetic, creating an opportunity for early therapeutic intervention to delay or prevent disease. Highly variable age of onset and absence of established prodromal biomarkers might render infeasible existing models for testing drugs before disease onset. Advancement of near-term targeted therapeutics could crucially depend on thoughtful design of rigorous presymptomatic trials.
Collapse
|
72
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
73
|
Salvesen Ø, Espenes A, Reiten MR, Vuong TT, Malachin G, Tran L, Andréoletti O, Olsaker I, Benestad SL, Tranulis MA, Ersdal C. Goats naturally devoid of PrP C are resistant to scrapie. Vet Res 2020; 51:1. [PMID: 31924264 PMCID: PMC6954626 DOI: 10.1186/s13567-019-0731-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Prion diseases are progressive and fatal, neurodegenerative disorders described in humans and animals. According to the "protein-only" hypothesis, the normal host-encoded prion protein (PrPC) is converted into a pathological and infectious form (PrPSc) in these diseases. Transgenic knockout models have shown that PrPC is a prerequisite for the development of prion disease. In Norwegian dairy goats, a mutation (Ter) in the prion protein gene (PRNP) effectively blocks PrPC synthesis. We inoculated 12 goats (4 PRNP+/+, 4 PRNP+/Ter, and 4 PRNPTer/Ter) intracerebrally with goat scrapie prions. The mean incubation time until clinical signs of prion disease was 601 days post-inoculation (dpi) in PRNP+/+ goats and 773 dpi in PRNP+/Ter goats. PrPSc and vacuolation were similarly distributed in the central nervous system (CNS) of both groups and observed in all brain regions and segments of the spinal cord. Generally, accumulation of PrPSc was limited in peripheral organs, but all PRNP+/+ goats and 1 of 4 PRNP+/Ter goats were positive in head lymph nodes. The four PRNPTer/Ter goats remained healthy, without clinical signs of prion disease, and were euthanized 1260 dpi. As expected, no accumulation of PrPSc was observed in the CNS or peripheral tissues of this group, as assessed by immunohistochemistry, enzyme immunoassay, and real-time quaking-induced conversion. Our study shows for the first time that animals devoid of PrPC due to a natural mutation do not propagate prions and are resistant to scrapie. Clinical onset of disease is delayed in heterozygous goats expressing about 50% of PrPC levels.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Malin R. Reiten
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Giulia Malachin
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
74
|
Enhanced detection of prion infectivity from blood by preanalytical enrichment with peptoid-conjugated beads. PLoS One 2019; 14:e0216013. [PMID: 31513666 PMCID: PMC6742390 DOI: 10.1371/journal.pone.0216013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Prions cause transmissible infectious diseases in humans and animals and have been found to be transmissible by blood transfusion even in the presymptomatic stage. However, the concentration of prions in body fluids such as blood and urine is extremely low; therefore, direct diagnostic tests on such specimens often yield false-negative results. Quantitative preanalytical prion enrichment may significantly improve the sensitivity of prion assays by concentrating trace amounts of prions from large volumes of body fluids. Here, we show that beads conjugated to positively charged peptoids not only captured PrP aggregates from plasma of prion-infected hamsters, but also adsorbed prion infectivity in both the symptomatic and preclinical stages of the disease. Bead absorbed prion infectivity efficiently transmitted disease to transgenic indicator mice. We found that the readout of the peptoid-based misfolded protein assay (MPA) correlates closely with prion infectivity in vivo, thereby validating the MPA as a simple, quantitative, and sensitive surrogate indicator of the presence of prions. The reliable and sensitive detection of prions in plasma will enable a wide variety of applications in basic prion research and diagnostics.
Collapse
|
75
|
Tarutani A, Hasegawa M. Prion-like propagation of α-synuclein in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:323-348. [PMID: 31699325 DOI: 10.1016/bs.pmbts.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are defined as proteinaceous infectious particles that do not contain nucleic acids. Neuropathological investigations of post-mortem brains and recent studies of experimental transmission have suggested that amyloid-like abnormal protein aggregates, which are the defining feature of many neurodegenerative diseases, behave like prions and propagate throughout the brain. This prion-like propagation may be the underlying mechanism of onset and progression of neurodegenerative diseases, although the precise molecular mechanisms involved remain unclear. However, in vitro and in vivo experimental models of prion-like propagation using pathogenic protein seeds are well established and are extremely valuable for the exploration and evaluation of novel drugs and therapies for neurodegenerative diseases for which there is no effective treatment. In this chapter, we introduce the experimental models of prion-like propagation of α-synuclein, which is accumulated in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, and we describe their applications for the development of new diagnostic and therapeutic modalities. We also introduce the concept of "α-syn strains," which may underlie the pathological and clinical diversity of α-synucleinopathies.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
76
|
Abstract
Prion diseases are progressive, incurable and fatal neurodegenerative conditions. The term 'prion' was first nominated to express the revolutionary concept that a protein could be infectious. We now know that prions consist of PrPSc, the pathological aggregated form of the cellular prion protein PrPC. Over the years, the term has been semantically broadened to describe aggregates irrespective of their infectivity, and the prion concept is now being applied, perhaps overenthusiastically, to all neurodegenerative diseases that involve protein aggregation. Indeed, recent studies suggest that prion diseases (PrDs) and protein misfolding disorders (PMDs) share some common disease mechanisms, which could have implications for potential treatments. Nevertheless, the transmissibility of bona fide prions is unique, and PrDs should be considered as distinct from other PMDs.
Collapse
Affiliation(s)
- Claudia Scheckel
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
77
|
Hartmann K, Sepulveda-Falla D, Rose IVL, Madore C, Muth C, Matschke J, Butovsky O, Liddelow S, Glatzel M, Krasemann S. Complement 3 +-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol Commun 2019; 7:83. [PMID: 31118110 PMCID: PMC6530067 DOI: 10.1186/s40478-019-0735-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023] Open
Abstract
Astrogliosis and activation of microglia are hallmarks of prion diseases in humans and animals. Both were viewed to be rather independent events in disease pathophysiology, with proinflammatory microglia considered to be the potential neurotoxic species at late disease stages. Recent investigations have provided substantial evidence that a proinflammatory microglial cytokine cocktail containing TNF-α, IL-1α and C1qa reprograms a subset of astrocytes to change their expression profile and phenotype, thus becoming neurotoxic (designated as A1-astrocytes). Knockout or antibody blockage of the three cytokines abolish formation of A1-astrocytes, therefore, this pathway is of high therapeutic interest in neurodegenerative diseases. Since astrocyte polarization profiles have never been investigated in prion diseases, we performed several analyses and could show that C3+-PrPSc-reactive-astrocytes, which may represent a subtype of A1-astrocytes, are highly abundant in prion disease mouse models and human prion diseases. To investigate their impact on prion disease pathophysiology and to evaluate their potential therapeutic targeting, we infected TNF-α, IL-1α, and C1qa Triple-KO mice (TKO-mice), which do not transit astrocytes into A1, with prions. Although formation of C3+-astrocytes was significantly reduced in prion infected Triple-KO-mice, this did not affect the amount of PrPSc deposition or titers of infectious prions. Detailed characterization of the astrocyte activation signature in thalamus tissue showed that astrocytes in prion diseases are highly activated, showing a mixed phenotype that is distinct from other neurodegenerative diseases and were therefore termed C3+-PrPSc-reactive-astrocytes. Unexpectedly, Triple-KO led to a significant acceleration of prion disease course. While pan-astrocyte and -microglia marker upregulation was unchanged compared to WT-brains, microglial homeostatic markers were lost early in disease in TKO-mice, pointing towards important functions of different glia cell types in prion diseases.
Collapse
|
78
|
Forloni G, Chiesa R, Bugiani O, Salmona M, Tagliavini F. Review: PrP 106-126 - 25 years after. Neuropathol Appl Neurobiol 2019; 45:430-440. [PMID: 30635947 DOI: 10.1111/nan.12538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
A quarter of a century ago, we proposed an innovative approach to study the pathogenesis of prion disease, one of the most intriguing biomedical problems that remains unresolved. The synthesis of a peptide homologous to residues 106-126 of the human prion protein (PrP106-126), a sequence present in the PrP amyloid protein of Gerstmann-Sträussler-Scheinker syndrome patients, provided a tractable tool for investigating the mechanisms of neurotoxicity. Together with several other discoveries at the beginning of the 1990s, PrP106-126 contributed to underpin the role of amyloid in the pathogenesis of protein-misfolding neurodegenerative disorders. Later, the role of oligomers on one hand and of prion-like spreading of pathology on the other further clarified mechanisms shared by different neurodegenerative conditions. Our original report on PrP106-126 neurotoxicity also highlighted a role for programmed cell death in CNS diseases. In this review, we analyse the prion research context in which PrP106-126 first appeared and the advances in our understanding of prion disease pathogenesis and therapeutic perspectives 25 years later.
Collapse
Affiliation(s)
- G Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - R Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - O Bugiani
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M Salmona
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - F Tagliavini
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
| |
Collapse
|
79
|
Le NTT, Wu B, Harris DA. Prion neurotoxicity. Brain Pathol 2019; 29:263-277. [PMID: 30588688 DOI: 10.1111/bpa.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.
Collapse
Affiliation(s)
- Nhat T T Le
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
80
|
GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLoS Pathog 2019; 15:e1007520. [PMID: 30608982 PMCID: PMC6334958 DOI: 10.1371/journal.ppat.1007520] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/16/2019] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
The cellular prion protein (PrPC) is a cell surface glycoprotein attached to the membrane by a glycosylphosphatidylinositol (GPI)-anchor and plays a critical role in transmissible, neurodegenerative and fatal prion diseases. Alterations in membrane attachment influence PrPC-associated signaling, and the development of prion disease, yet our knowledge of the role of the GPI-anchor in localization, processing, and function of PrPCin vivo is limited We exchanged the PrPC GPI-anchor signal sequence of for that of Thy-1 (PrPCGPIThy-1) in cells and mice. We show that this modifies the GPI-anchor composition, which then lacks sialic acid, and that PrPCGPIThy-1 is preferentially localized in axons and is less prone to proteolytic shedding when compared to PrPC. Interestingly, after prion infection, mice expressing PrPCGPIThy-1 show a significant delay to terminal disease, a decrease of microglia/astrocyte activation, and altered MAPK signaling when compared to wild-type mice. Our results are the first to demonstrate in vivo, that the GPI-anchor signal sequence plays a fundamental role in the GPI-anchor composition, dictating the subcellular localization of a given protein and, in the case of PrPC, influencing the development of prion disease. The prion protein (PrPC) is a glycoprotein attached to the neuronal surface via a GPI-anchor. When misfolded to PrPSc, it leads to fatal neurodegenerative diseases which propagates from host to host. PrPSc is the principal component of the infectious agent of prion diseases, the “prion”. Misfolding occurs at the plasma membrane, and when PrPC lacks the GPI-anchor, neuropathology and incubation time of prion disease are strongly modified. Moreover, the composition of the PrPC GPI-anchor impacts on the conversion process. To study the role of the GPI-anchor in the pathophysiology of prion diseases in vivo, we have generated transgenic mice where the PrPC GPI-signal sequence (GPI-SS) is replaced for the one of Thy-1, a neuronal protein with a distinct GPI-anchor and membrane localization. We found that the resulting protein, PrPCGPIThy-1, shows a different GPI-anchor composition, increased axonal localization, and reduced enzymatic shedding. After prion infection, disease progression is significantly delayed, and the neuropathology and cellular signaling are changed. The present work demonstrates that the GPI-SS per se determines the GPI-anchor composition and localization of a given protein and it stresses the importance of PrPC membrane anchorage in prion disease.
Collapse
|
81
|
Pease D, Scheckel C, Schaper E, Eckhardt V, Emmenegger M, Xenarios I, Aguzzi A. Genome-wide identification of microRNAs regulating the human prion protein. Brain Pathol 2018; 29:232-244. [PMID: 30451334 DOI: 10.1111/bpa.12679] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/11/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein (PrPC ) is best known for its misfolded disease-causing conformer, PrPSc . Because the availability of PrPC is often limiting for prion propagation, understanding its regulation may point to possible therapeutic targets. We sought to determine to what extent the human microRNAome is involved in modulating PrPC levels through direct or indirect pathways. We probed PrPC protein levels in cells subjected to a genome-wide library encompassing 2019 miRNA mimics using a robust time-resolved fluorescence-resonance screening assay. Screening was performed in three human neuroectodermal cell lines: U-251 MG, CHP-212 and SH-SY5Y. The three screens yielded 17 overlapping high-confidence miRNA mimic hits, 13 of which were found to regulate PrPC biosynthesis directly via binding to the PRNP 3'UTR, thereby inducing transcript degradation. The four remaining hits (miR-124-3p, 192-3p, 299-5p and 376b-3p) did not bind either the 3'UTR or CDS of PRNP, and were therefore deemed indirect regulators of PrPC . Our results show that multiple miRNAs regulate PrPC levels both directly and indirectly. These findings may have profound implications for prion disease pathogenesis and potentially also for their therapy. Furthermore, the possible role of PrPC as a mediator of Aβ toxicity suggests that its regulation by miRNAs may also impinge on Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Pease
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Claudia Scheckel
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Elke Schaper
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland.,Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valeria Eckhardt
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Ioannis Xenarios
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
82
|
Salvesen Ø, Tatzelt J, Tranulis MA. The prion protein in neuroimmune crosstalk. Neurochem Int 2018; 130:104335. [PMID: 30448564 DOI: 10.1016/j.neuint.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
The cellular prion protein (PrPC) is a medium-sized glycoprotein, attached to the cell surface by a glycosylphosphatidylinositol anchor. PrPC is encoded by a single-copy gene, PRNP, which is abundantly expressed in the central nervous system and at lower levels in non-neuronal cells, including those of the immune system. Evidence from experimental knockout of PRNP in rodents, goats, and cattle and the occurrence of a nonsense mutation in goat that prevents synthesis of PrPC, have shown that the molecule is non-essential for life. Indeed, no easily recognizable phenotypes are associate with a lack of PrPC, except the potentially advantageous trait that animals without PrPC cannot develop prion disease. This is because, in prion diseases, PrPC converts to a pathogenic "scrapie" conformer, PrPSc, which aggregates and eventually induces neurodegeneration. In addition, endogenous neuronal PrPC serves as a toxic receptor to mediate prion-induced neurotoxicity. Thus, PrPC is an interesting target for treatment of prion diseases. Although loss of PrPC has no discernable effect, alteration of its normal physiological function can have very harmful consequences. It is therefore important to understand cellular processes involving PrPC, and research of this topic has advanced considerably in the past decade. Here, we summarize data that indicate the role of PrPC in modulating immune signaling, with emphasis on neuroimmune crosstalk both under basal conditions and during inflammatory stress.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany.
| | - Michael A Tranulis
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
83
|
Fang C, Wu B, Le NTT, Imberdis T, Mercer RCC, Harris DA. Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog 2018; 14:e1007283. [PMID: 30235355 PMCID: PMC6147624 DOI: 10.1371/journal.ppat.1007283] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022] Open
Abstract
Synaptic degeneration is one of the earliest pathological correlates of prion disease, and it is a major determinant of the progression of clinical symptoms. However, the cellular and molecular mechanisms underlying prion synaptotoxicity are poorly understood. Previously, we described an experimental system in which treatment of cultured hippocampal neurons with purified PrPSc, the infectious form of the prion protein, induces rapid retraction of dendritic spines, an effect that is entirely dependent on expression of endogenous PrPC by the target neurons. Here, we use this system to dissect pharmacologically the underlying cellular and molecular mechanisms. We show that PrPSc initiates a stepwise synaptotoxic signaling cascade that includes activation of NMDA receptors, calcium influx, stimulation of p38 MAPK and several downstream kinases, and collapse of the actin cytoskeleton within dendritic spines. Synaptic degeneration is restricted to excitatory synapses, spares presynaptic structures, and results in decrements in functional synaptic transmission. Pharmacological inhibition of any one of the steps in the signaling cascade, as well as expression of a dominant-negative form of p38 MAPK, block PrPSc-induced spine degeneration. Moreover, p38 MAPK inhibitors actually reverse the degenerative process after it has already begun. We also show that, while PrPC mediates the synaptotoxic effects of both PrPSc and the Alzheimer’s Aβ peptide in this system, the two species activate distinct signaling pathways. Taken together, our results provide powerful insights into the biology of prion neurotoxicity, they identify new, druggable therapeutic targets, and they allow comparison of prion synaptotoxic pathways with those involved in other neurodegenerative diseases. Prion diseases are a group of fatal neurodegenerative disorders that includes Creutzfeldt-Jakob disease and kuru in humans, and bovine spongiform encephalopathy in cattle. The infectious agent, or prion, that transmits these diseases is a naked protein molecule, the prion protein (PrP), which is an altered form of a normal, cellular protein. Although a great deal is known about how prions propagate themselves and transmit infection, the process by which they actually cause neurons to degenerate has remained mysterious. Here, we have used a specialized neuronal culture system to dissect the cellular and molecular mechanisms by which prions damage synapses, the structures that connect nerve cells and that play a crucial role in learning, memory, and neurological disease. Our results define a stepwise molecular pathway underlying prion synaptic toxicity, which involves activation of glutamate neurotransmitter receptors, influx of calcium ions into the neuron, and stimulation of specific mitogen-activated protein kinases, which attach phosphate groups to proteins to regulate their activity. We demonstrate that specific drugs, as well as a dominant-negative kinase mutant, block these steps and thereby prevent the synaptic degeneration produced by prions. Our results provide new insights into the pathogenesis of prion diseases, they uncover new drug targets for treating these diseases, and they allow us to compare prion diseases to other, more common neurodegenerative disorders like Alzheimer’s disease.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Nhat T. T. Le
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Thibaut Imberdis
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - Robert C. C. Mercer
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
84
|
Collins SJ, Tumpach C, Groveman BR, Drew SC, Haigh CL. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression. Cell Mol Life Sci 2018; 75:3231-3249. [PMID: 29574582 PMCID: PMC6063333 DOI: 10.1007/s00018-018-2790-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 01/06/2023]
Abstract
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Carolin Tumpach
- Doherty Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, USA
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Cathryn L Haigh
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, USA.
| |
Collapse
|
85
|
Sarell CJ, Quarterman E, Yip DCM, Terry C, Nicoll AJ, Wadsworth JDF, Farrow MA, Walsh DM, Collinge J. Soluble Aβ aggregates can inhibit prion propagation. Open Biol 2018; 7:rsob.170158. [PMID: 29142106 PMCID: PMC5717343 DOI: 10.1098/rsob.170158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrPC). Ligands that bind to PrPC can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrPC, and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrPC and emphasize the bidirectional nature of the interplay between Aβ and PrPC in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common.
Collapse
Affiliation(s)
- Claire J Sarell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Emma Quarterman
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Daniel C-M Yip
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Cassandra Terry
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Andrew J Nicoll
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Mark A Farrow
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Dominic M Walsh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK .,Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
86
|
Ulbrich S, Janning P, Seidel R, Matschke J, Gonsberg A, Jung S, Glatzel M, Engelhard M, Winklhofer KF, Tatzelt J. Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer's disease. PLoS One 2018; 13:e0197659. [PMID: 29791485 PMCID: PMC5965872 DOI: 10.1371/journal.pone.0197659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein (PrPC) is implicated in neuroprotective signaling and neurotoxic pathways in both prion diseases and Alzheimer's disease (AD). Specifically, the intrinsically disordered N-terminal domain (N-PrP) has been shown to interact with neurotoxic ligands, such as Aβ and Scrapie prion protein (PrPSc), and to be crucial for the neuroprotective activity of PrPC. To gain further insight into cellular pathways tied to PrP, we analyzed the brain interactome of N-PrP. As a novel approach employing recombinantly expressed PrP and intein-mediated protein ligation, we used N-PrP covalently coupled to beads as a bait for affinity purification. N-PrP beads were incubated with human AD or control brain lysates. N-PrP binding partners were then identified by electrospray ionization tandem mass spectrometry (nano ESI-MS/MS). In addition to newly identified proteins we found many previously described PrP interactors, indicating a crucial role of the intrinsically disordered part of PrP in mediating protein interactions. Moreover, some interactors were found only in either non-AD or AD brain, suggesting aberrant PrPC interactions in the pathogenesis of AD.
Collapse
Affiliation(s)
- Sarah Ulbrich
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ralf Seidel
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Gonsberg
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| |
Collapse
|
87
|
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class.
Collapse
Affiliation(s)
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.
| |
Collapse
|
88
|
Lee SM, Lee W, Lee YS, Yoo JS, Park SJ, Kim H, Kim SY. THERPA: A small molecule database related to prion protein regulation and prion diseases progression. Prion 2018; 12:138-142. [PMID: 29633896 PMCID: PMC6016511 DOI: 10.1080/19336896.2018.1461519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals. Although various small molecules have been evaluated for application in the treatment of prion diseases, none have been shown to be efficacious. Expanding our knowledge of these molecules is important for understanding of the complex mechanisms of prion diseases. To improve access to the scattered information on small molecules related to prion diseases, we built a database of therapeutic molecules associated with prion diseases (THERPA, therpa.pythonanywhere.com). THERPA includes 119 small molecules and their 283 relationships with prion diseases. THERPA is an interactive visual database and useful for improving search efficiency which can help researchers identify intrinsic small molecules that can be used for developing therapeutics for prion diseases.
Collapse
Affiliation(s)
- Sol Moe Lee
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Wonseok Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yeong Seon Lee
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jin-Soo Yoo
- Division of Bio-Medical Informatics, Center for Genome Science, Korea National Institute of Health, Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Soo-Jung Park
- Division of Bio-Medical Informatics, Center for Genome Science, Korea National Institute of Health, Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Su Yeon Kim
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| |
Collapse
|
89
|
The function of the cellular prion protein in health and disease. Acta Neuropathol 2018; 135:159-178. [PMID: 29151170 DOI: 10.1007/s00401-017-1790-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt-Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer's disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC's existence remains enigmatic.
Collapse
|
90
|
Leighton PLA, Allison WT. Protein Misfolding in Prion and Prion-Like Diseases: Reconsidering a Required Role for Protein Loss-of-Function. J Alzheimers Dis 2018; 54:3-29. [PMID: 27392869 DOI: 10.3233/jad-160361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prion disease research has contributed much toward understanding other neurodegenerative diseases, including recent demonstrations that Alzheimer's disease (AD) and other neurodegenerative diseases are prion-like. Prion-like diseases involve the spread of degeneration between individuals and/or among cells or tissues via template directed misfolding, wherein misfolded protein conformers propagate disease by causing normal proteins to misfold. Here we use the premise that AD, amyotrophic lateral sclerosis, Huntington's disease, and other similar diseases are prion-like and ask: Can we apply knowledge gained from studies of these prion-like diseases to resolve debates about classical prion diseases? We focus on controversies about what role(s) protein loss-of-function might have in prion diseases because this has therapeutic implications, including for AD. We examine which loss-of-function events are recognizable in prion-like diseases by considering the normal functions of the proteins before their misfolding and aggregation. We then delineate scenarios wherein gain-of-function and/or loss-of-function would be necessary or sufficient for neurodegeneration. We consider roles of PrPC loss-of-function in prion diseases and in AD, and conclude that the conventional wisdom that prion diseases are 'toxic gain-of-function diseases' has limitations. While prion diseases certainly have required gain-of-function components, we propose that disease phenotypes are predominantly caused by deficits in the normal physiology of PrPC and its interaction partners as PrPC converts to PrPSc. In this model, gain-of-function serves mainly to spread disease, and loss-of-function directly mediates neuron dysfunction. We propose experiments and predictions to assess our conclusion. Further study on the normal physiological roles of these key proteins is warranted.
Collapse
Affiliation(s)
- Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
91
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
92
|
Flow Cytometric Detection of PrP Sc in Neurons and Glial Cells from Prion-Infected Mouse Brains. J Virol 2017; 92:JVI.01457-17. [PMID: 29046463 DOI: 10.1128/jvi.01457-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
In prion diseases, an abnormal isoform of prion protein (PrPSc) accumulates in neurons, astrocytes, and microglia in the brains of animals affected by prions. Detailed analyses of PrPSc-positive neurons and glial cells are required to clarify their pathophysiological roles in the disease. Here, we report a novel method for the detection of PrPSc in neurons and glial cells from the brains of prion-infected mice by flow cytometry using PrPSc-specific staining with monoclonal antibody (MAb) 132. The combination of PrPSc staining and immunolabeling of neural cell markers clearly distinguished neurons, astrocytes, and microglia that were positive for PrPSc from those that were PrPSc negative. The flow cytometric analysis of PrPSc revealed the appearance of PrPSc-positive neurons, astrocytes, and microglia at 60 days after intracerebral prion inoculation, suggesting the presence of PrPSc in the glial cells, as well as in neurons, from an early stage of infection. Moreover, the kinetic analysis of PrPSc revealed a continuous increase in the proportion of PrPSc-positive cells for all cell types with disease progression. Finally, we applied this method to isolate neurons, astrocytes, and microglia positive for PrPSc from a prion-infected mouse brain by florescence-activated cell sorting. The method described here enables comprehensive analyses specific to PrPSc-positive neurons, astrocytes, and microglia that will contribute to the understanding of the pathophysiological roles of neurons and glial cells in PrPSc-associated pathogenesis.IMPORTANCE Although formation of PrPSc in neurons is associated closely with neurodegeneration in prion diseases, the mechanism of neurodegeneration is not understood completely. On the other hand, recent studies proposed the important roles of glial cells in PrPSc-associated pathogenesis, such as the intracerebral spread of PrPSc and clearance of PrPSc from the brain. Despite the great need for detailed analyses of PrPSc-positive neurons and glial cells, methods available for cell type-specific analysis of PrPSc have been limited thus far to microscopic observations. Here, we have established a novel high-throughput method for flow cytometric detection of PrPSc in cells with more accurate quantitative performance. By applying this method, we succeeded in isolating PrPSc-positive cells from the prion-infected mouse brains via fluorescence-activated cell sorting. This allows us to perform further detailed analysis specific to PrPSc-positive neurons and glial cells for the clarification of pathological changes in neurons and pathophysiological roles of glial cells.
Collapse
|
93
|
Cheng L, Zhao W, Hill AF. Exosomes and their role in the intercellular trafficking of normal and disease associated prion proteins. Mol Aspects Med 2017; 60:62-68. [PMID: 29196098 DOI: 10.1016/j.mam.2017.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Over the past decade, small extracellular vesicles called exosomes have been observed to harbour protein and genetic cargo that can assist in health and also cause disease. Many groups are extensively investigating the mechanisms involved that regulate the trafficking and packaging of exosomal contents and how these processes may be deregulated in disease. Prion diseases are transmissible neurodegenerative disorders and are characterized by the presence of detectable misfolded prion proteins. The disease associated form of the prion protein can be found in exosomes and its transmissible properties have provided a reliable experimental read out that can be used to understand how exosomes and their cargo are involved in cell-cell communication and in the spread of prion diseases. This review reports on the current understanding of how exosomes are involved in the intercellular spread of infectious prions. Furthermore, we discuss how these principles are leading future investigations in developing new exosome based diagnostic tools and therapeutic drugs that could be applied to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Wenting Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.
| |
Collapse
|
94
|
What Is Our Current Understanding of PrP Sc-Associated Neurotoxicity and Its Molecular Underpinnings? Pathogens 2017; 6:pathogens6040063. [PMID: 29194372 PMCID: PMC5750587 DOI: 10.3390/pathogens6040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
The prion diseases are a collection of fatal, transmissible neurodegenerative diseases that cause rapid onset dementia and ultimately death. Uniquely, the infectious agent is a misfolded form of the endogenous cellular prion protein, termed PrPSc. Despite the identity of the molecular agent remaining the same, PrPSc can cause a range of diseases with hereditary, spontaneous or iatrogenic aetiologies. However, the link between PrPSc and toxicity is complex, with subclinical cases of prion disease discovered, and prion neurodegeneration without obvious PrPSc deposition. The toxic mechanisms by which PrPSc causes the extensive neuropathology are still poorly understood, although recent advances are beginning to unravel the molecular underpinnings, including oxidative stress, disruption of proteostasis and induction of the unfolded protein response. This review will discuss the diseases caused by PrPSc toxicity, the nature of the toxicity of PrPSc, and our current understanding of the downstream toxic signaling events triggered by the presence of PrPSc.
Collapse
|
95
|
McDonald AJ, Wu B, Harris DA. An inter-domain regulatory mechanism controls toxic activities of PrP C. Prion 2017; 11:388-397. [PMID: 28960140 DOI: 10.1080/19336896.2017.1384894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The normal function of PrPC, the cellular prion protein, has remained mysterious since its first description over 30 years ago. Amazingly, although complete deletion of the gene encoding PrPC has little phenotypic consequence, expression in transgenic mice of PrP molecules carrying certain internal deletions produces dramatic neurodegenerative phenotypes. In our recent paper, 1 we have demonstrated that the flexible, N-terminal domain of PrPC possesses toxic effector functions, which are regulated by a docking interaction with the structured, C-terminal domain. Disruption of this inter-domain interaction, for example by deletions of the hinge region or by binding of antibodies to the C-terminal domain, results in abnormal ionic currents and degeneration of dendritic spines in cultured neuronal cells. This mechanism may contribute to the neurotoxicity of PrPSc and possibly other protein aggregates, and could play a role in the physiological activity of PrPC. These results also provide a warning about the potential toxic side effects of PrP-directed antibody therapies for prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Alex J McDonald
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| | - Bei Wu
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| | - David A Harris
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
96
|
Goniotaki D, Lakkaraju AKK, Shrivastava AN, Bakirci P, Sorce S, Senatore A, Marpakwar R, Hornemann S, Gasparini F, Triller A, Aguzzi A. Inhibition of group-I metabotropic glutamate receptors protects against prion toxicity. PLoS Pathog 2017; 13:e1006733. [PMID: 29176838 PMCID: PMC5720820 DOI: 10.1371/journal.ppat.1006733] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/07/2017] [Accepted: 11/04/2017] [Indexed: 12/29/2022] Open
Abstract
Prion infections cause inexorable, progressive neurological dysfunction and neurodegeneration. Expression of the cellular prion protein PrPC is required for toxicity, suggesting the existence of deleterious PrPC-dependent signaling cascades. Because group-I metabotropic glutamate receptors (mGluR1 and mGluR5) can form complexes with the cellular prion protein (PrPC), we investigated the impact of mGluR1 and mGluR5 inhibition on prion toxicity ex vivo and in vivo. We found that pharmacological inhibition of mGluR1 and mGluR5 antagonized dose-dependently the neurotoxicity triggered by prion infection and by prion-mimetic anti-PrPC antibodies in organotypic brain slices. Prion-mimetic antibodies increased mGluR5 clustering around dendritic spines, mimicking the toxicity of Aβ oligomers. Oral treatment with the mGluR5 inhibitor, MPEP, delayed the onset of motor deficits and moderately prolonged survival of prion-infected mice. Although group-I mGluR inhibition was not curative, these results suggest that it may alleviate the neurological dysfunctions induced by prion diseases.
Collapse
Affiliation(s)
| | | | - Amulya N. Shrivastava
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Pamela Bakirci
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
97
|
Dugger BN, Perl DP, Carlson GA. Neurodegenerative Disease Transmission and Transgenesis in Mice. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023549. [PMID: 28193724 DOI: 10.1101/cshperspect.a023549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the discovery of the prion protein (PrP) resulted from its co-purification with scrapie infectivity in Syrian hamsters, work with genetically defined and genetically modified mice proved crucial for understanding the fundamental processes involved not only in prion diseases caused by PrP misfolding, aggregation, and spread but also in other, much more common, neurodegenerative brain diseases. In this review, we focus on methodological and conceptual approaches used to study scrapie and related PrP misfolding diseases in mice and how these approaches have advanced our understanding of related disorders including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Brittany N Dugger
- Institute for Neurodegenerative Diseases, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Daniel P Perl
- F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158.,McLaughlin Research Institute of Biomedical Sciences, Great Falls, Montana 59405
| |
Collapse
|
98
|
Genetic human prion disease modelled in PrP transgenic Drosophila. Biochem J 2017; 474:3253-3267. [PMID: 28814578 PMCID: PMC5606059 DOI: 10.1042/bcj20170462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt–Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrPSc, an abnormal isomer of the normal host protein PrPC, in the brain of affected individuals. PrPSc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila. We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila. Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host.
Collapse
|
99
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
100
|
Aulić S, Masperone L, Narkiewicz J, Isopi E, Bistaffa E, Ambrosetti E, Pastore B, De Cecco E, Scaini D, Zago P, Moda F, Tagliavini F, Legname G. α-Synuclein Amyloids Hijack Prion Protein to Gain Cell Entry, Facilitate Cell-to-Cell Spreading and Block Prion Replication. Sci Rep 2017; 7:10050. [PMID: 28855681 PMCID: PMC5577263 DOI: 10.1038/s41598-017-10236-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
The precise molecular mechanism of how misfolded α-synuclein (α-Syn) accumulates and spreads in synucleinopathies is still unknown. Here, we show the role of the cellular prion protein (PrPC) in mediating the uptake and the spread of recombinant α-Syn amyloids. The in vitro data revealed that the presence of PrPC fosters the higher uptake of α-Syn amyloid fibrils, which was also confirmed in vivo in wild type (Prnp+/+) compared to PrP knock-out (Prnp−/−) mice. Additionally, the presence of α-Syn amyloids blocked the replication of scrapie prions (PrPSc) in vitro and ex vivo, indicating a link between the two proteins. Indeed, whilst PrPC is mediating the internalization of α-Syn amyloids, PrPSc is not able to replicate in their presence. This observation has pathological relevance, since several reported case studies show that the accumulation of α-Syn amyloid deposits in Creutzfeldt-Jakob disease patients is accompanied by a longer disease course.
Collapse
Affiliation(s)
- Suzana Aulić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Lara Masperone
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Joanna Narkiewicz
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Elisa Isopi
- Department of Medical, Oral, and Biotechnology Science and Center on Aging Sciences and Translational Medicine (CeSI-MeT) "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Edoardo Bistaffa
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute Italy Laboratory, Milano, Italy
| | - Elena Ambrosetti
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - Beatrice Pastore
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Denis Scaini
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zago
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Fabio Moda
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute Italy Laboratory, Milano, Italy
| | - Fabrizio Tagliavini
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute Italy Laboratory, Milano, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy. .,ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.
| |
Collapse
|