51
|
van Loo KMJ, Martens GJM. Genetic and environmental factors in complex neurodevelopmental disorders. Curr Genomics 2011; 8:429-44. [PMID: 19412416 PMCID: PMC2647153 DOI: 10.2174/138920207783591717] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 12/14/2022] Open
Abstract
Complex neurodevelopmental disorders, such as schizophrenia, autism, attention deficit (hyperactivity) disorder, (manic) depressive illness and addiction, are thought to result from an interaction between genetic and environmental factors. Association studies on candidate genes and genome-wide linkage analyses have identified many susceptibility chromosomal regions and genes, but considerable efforts to replicate association have been surprisingly often disappointing. Here, we summarize the current knowledge of the genetic contribution to complex neurodevelopmental disorders, focusing on the findings from association and linkage studies. Furthermore, the contribution of the interaction of the genetic with environmental and epigenetic factors to the aetiology of complex neurodevelopmental disorders as well as suggestions for future research are discussed.
Collapse
Affiliation(s)
- K M J van Loo
- Department of Molecular Animal Physiology, Donders Institute for Neuroscience, Nijmegen Center for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
52
|
Boone PM, Wiszniewski W, Lupski JR. Genomic medicine and neurological disease. Hum Genet 2011; 130:103-21. [PMID: 21594611 PMCID: PMC3133694 DOI: 10.1007/s00439-011-1001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/27/2011] [Indexed: 12/11/2022]
Abstract
"Genomic medicine" refers to the diagnosis, optimized management, and treatment of disease--as well as screening, counseling, and disease gene identification--in the context of information provided by an individual patient's personal genome. Genomic medicine, to some extent synonymous with "personalized medicine," has been made possible by recent advances in genome technologies. Genomic medicine represents a new approach to health care and disease management that attempts to optimize the care of a patient based upon information gleaned from his or her personal genome sequence. In this review, we describe recent progress in genomic medicine as it relates to neurological disease. Many neurological disorders either segregate as Mendelian phenotypes or occur sporadically in association with a new mutation in a single gene. Heritability also contributes to other neurological conditions that appear to exhibit more complex genetics. In addition to discussing current knowledge in this field, we offer suggestions for maximizing the utility of genomic information in clinical practice as the field of genomic medicine unfolds.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
53
|
Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, Zhang N, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Kendler KS, Freedman R, Dudbridge F, Pe’er I, Hakonarson H, Bergen SE, Fanous AH, Holmans PA, Gejman PV. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168:302-16. [PMID: 21285140 PMCID: PMC4441324 DOI: 10.1176/appi.ajp.2010.10060876] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate previously reported associations of copy number variants (CNVs) with schizophrenia and to identify additional associations, the authors analyzed CNVs in the Molecular Genetics of Schizophrenia study (MGS) and additional available data. METHOD After quality control, MGS data for 3,945 subjects with schizophrenia or schizoaffective disorder and 3,611 screened comparison subjects were available for analysis of rare CNVs (<1% frequency). CNV detection thresholds were chosen that maximized concordance in 151 duplicate assays. Pointwise and genewise analyses were carried out, as well as analyses of previously reported regions. Selected regions were visually inspected and confirmed with quantitative polymerase chain reaction. RESULTS In analyses of MGS data combined with other available data sets, odds ratios of 7.5 or greater were observed for previously reported deletions in chromosomes 1q21.1, 15q13.3, and 22q11.21, duplications in 16p11.2, and exon-disrupting deletions in NRXN1. The most consistently supported candidate associations across data sets included a 1.6-Mb deletion in chromosome 3q29 (21 genes, TFRC to BDH1) that was previously described in a mild-moderate mental retardation syndrome, exonic duplications in the gene for vasoactive intestinal peptide receptor 2 (VIPR2), and exonic duplications in C16orf72. The case subjects had a modestly higher genome-wide number of gene-containing deletions (>100 kb and >1 Mb) but not duplications. CONCLUSIONS The data strongly confirm the association of schizophrenia with 1q21.1, 15q13.3, and 22q11.21 deletions, 16p11.2 duplications, and exonic NRXN1 deletions. These CNVs, as well as 3q29 deletions, are also associated with mental retardation, autism spectrum disorders, and epilepsy. Additional candidate genes and regions, including VIPR2, were identified. Study of the mechanisms underlying these associations should shed light on the pathophysiology of schizophrenia.
Collapse
|
54
|
Dai C, Liang D, Li H, Sasaki M, Dawson TM, Dawson VL. Functional identification of neuroprotective molecules. PLoS One 2010; 5:e15008. [PMID: 21124846 PMCID: PMC2991347 DOI: 10.1371/journal.pone.0015008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
The central nervous system has the capacity to activate profound neuroprotection following sub-lethal stress in a process termed preconditioning. To gain insight into this potent survival response we developed a functional cloning strategy that identified 31 putative neuroprotective genes of which 28 were confirmed to provide protection against oxygen-glucose deprivation (OGD) or excitotoxic exposure to N-methyl-D-aspartate (NMDA) in primary rat cortical neurons. These results reveal that the brain possesses a wide and diverse repertoire of neuroprotective genes. Further characterization of these and other protective signals could provide new treatment opportunities for neurological injury from ischemia or neurodegenerative disease.
Collapse
Affiliation(s)
- Cheng Dai
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dong Liang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Huiwu Li
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Masayuki Sasaki
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (VLD); (TMD)
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (VLD); (TMD)
| |
Collapse
|
55
|
Thurner L, Müller A, Cérutti M, Martin T, Pasquali JL, Gross WL, Preuss KD, Pfreundschuh M, Voswinkel J. Wegener's granuloma harbors B lymphocytes with specificities against a proinflammatory transmembrane protein and a tetraspanin. J Autoimmun 2010; 36:87-90. [PMID: 20951001 DOI: 10.1016/j.jaut.2010.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/03/2010] [Accepted: 09/09/2010] [Indexed: 01/07/2023]
Abstract
Wegener's granulomatosis (WG) is a severe autoimmune disorder ranging from localized granulomatous disease to generalised anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. A previous analysis of immunoglobulin heavy chain genes derived from tissue, i.e. Wegener's granuloma indicated selection and affinity maturation towards local antigen(s). The current study focused on determining the specificity of immunoglobulins from distinct B lymphocytes out of Wegener's granuloma. Four pairs of variable region immunoglobulin light and heavy chain genes, isolated before, were recombinantly expressed using the baculovirus/insect cell system. These immunoglobulins were then analysed for their antigenic target employing a protein macroarray based upon a human fetal brain tissue cDNA expression library. The lysosomal transmembrane protein 9B, a key regulator for TNFα activation, was identified as the putative antigenic target of two immunoglobulins and a tetraspanin, which might play a role in leukocyte activation and motility, was identified as the putative antigenic target of another one. Recombinant monoclonal antibodies out of Wegener's granuloma represent a new tool aiding in elucidation of its and WG immunopathogenesis.
Collapse
Affiliation(s)
- Lorenz Thurner
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mladinic M, Lefèvre C, Del Bel E, Nicholls J, Digby M. Developmental changes of gene expression after spinal cord injury in neonatal opossums. Brain Res 2010; 1363:20-39. [PMID: 20849836 DOI: 10.1016/j.brainres.2010.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/07/2010] [Indexed: 01/16/2023]
Abstract
Changes in gene expression have been measured 24h after injury to mammalian spinal cords that can and cannot regenerate. In opossums there is a critical period of development when regeneration stops being possible: at 9 days postnatal cervical spinal cords regenerate, at 12 days they do not. By the use of marsupial cDNA microarrays, we detected 158 genes that respond differentially to injury at the two ages critical for regeneration. For selected candidates additional measurements were made by real-time PCR and sites of their expression were shown by immunostaining. Candidate genes have been classified so as to select those that promote or prevent regeneration. Up-regulated by injury at 8 days and/or down-regulated by injury at 13 days were genes known to promote growth, such as Mitogen-activated protein kinase kinase 1 or transcription factor TCF7L2. By contrast, at 13 days, up-regulation occurred of inhibitory molecules, including annexins, ephrins, and genes related to apoptosis and neurodegenerative diseases. Certain genes such as calmodulin 1 and NOGO, changed expression similarly in animals that could and could not regenerate without any additional changes in response to injury. These findings confirmed and extended changes of gene expression found in earlier screens on 9 and 12 ay preparations without lesions and provide a comprehensive list of genes that serve as a basis for testing how identified molecules, singly or in combination, promote and prevent central nervous system regeneration.
Collapse
Affiliation(s)
- Miranda Mladinic
- SISSA, Department of Neurobiology, Via Bonomea 265, 34136 Trieste, Italy.
| | | | | | | | | |
Collapse
|
57
|
Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010; 2:182-209. [PMID: 21124998 PMCID: PMC2974911 DOI: 10.1007/s11689-010-9055-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/25/2010] [Indexed: 11/06/2022] Open
Abstract
Intellectual disability (ID), also referred to as mental retardation (MR), is frequently the result of genetic mutation. Where ID is present together with additional clinical symptoms or physical anomalies, there is often sufficient information available for the diagnosing physician to identify a known syndrome, which may then educe the identification of the causative defect. However, where co-morbid features are absent, narrowing down a specific gene can only be done by ‘brute force’ using the latest molecular genetic techniques. Here we attempt to provide a systematic review of genetic causes of cases of ID where no other symptoms or co-morbid features are present, or non-syndromic ID. We attempt to summarize commonalities between the genes and the molecular pathways of their encoded proteins. Since ID is a common feature of autism, and conversely autistic features are frequently present in individuals with ID, we also look at possible overlaps in genetic etiology with non-syndromic ID.
Collapse
|
58
|
DeSalle R, Mares R, Garcia-España A. Evolution of cysteine patterns in the large extracellular loop of tetraspanins from animals, fungi, plants and single-celled eukaryotes. Mol Phylogenet Evol 2010; 56:486-91. [DOI: 10.1016/j.ympev.2010.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/20/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
59
|
Scholz CJ, Jacob CP, Buttenschon HN, Kittel-Schneider S, Boreatti-Hümmer A, Zimmer M, Walter U, Lesch KP, Mors O, Kneitz S, Deckert J, Reif A. Functional variants of TSPAN8 are associated with bipolar disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:967-72. [PMID: 20052686 DOI: 10.1002/ajmg.b.31057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tetraspanins affect protein trafficking and are known to influence a wide variety of physiologic processes. Recently, single nucleotide polymorphisms (SNPs) of the tetraspanin gene TSPAN8 were found among the best ranked markers of genome wide association studies on bipolar disorder (BPD) (rs1705236) and type-2 diabetes, but functional consequences remained largely unknown. In the present study, we examined 13 tagging SNPs covering the TSPAN8 gene, the intronic TSPAN8 SNP rs1705236 as well as two non-synonymous (ns) SNPs in schizophrenia (SCZ) and BPD samples. In our analysis setting, we were not able to replicate the association of rs1705236 with BPD, nor did we find an association with SCZ. In the TSPAN8 upstream transcriptional control region however, we found rs4500567 to be associated with BPD. In contrast, in SCZ the nsSNP rs3763978 was associated with disease. The significance of both associations withstood conservative Bonferroni correction. In an attempt to link the polymorphisms to functional consequences, we performed an allele-specific in silico mapping of transcription factor binding sites around rs4500567 and predicted the tolerance of the Gly73Ala exchange caused by rs3763978. The results argue for a differential promoter activity specific for the variant associated with BPD, but impaired protein functionality in SCZ. This suggests that TSPAN8 contributes to both diseases, yet with different underlying mechanisms: regulatory versus structural. Similar phenomena might also occur in other risk genes for both BPD and SCZ, providing a molecular basis for the genetic overlap of both entities.
Collapse
Affiliation(s)
- Claus-Jürgen Scholz
- IZKF Laboratory for Microarray Applications, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 2010; 86:240-7. [PMID: 20159111 DOI: 10.1016/j.ajhg.2009.12.016] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 01/24/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous retinal disorder characterized by abnormal vascularisation of the peripheral retina, often accompanied by retinal detachment. To date, mutations in three genes (FZD4, LRP5, and NDP) have been shown to be causative for FEVR. In two large Dutch pedigrees segregating autosomal-dominant FEVR, genome-wide SNP analysis identified an FEVR locus of approximately 40 Mb on chromosome 7. Microsatellite marker analysis suggested similar at risk haplotypes in patients of both families. To identify the causative gene, we applied next-generation sequencing in the proband of one of the families, by analyzing all exons and intron-exon boundaries of 338 genes, in addition to microRNAs, noncoding RNAs, and other highly conserved genomic regions in the 40 Mb linkage interval. After detailed bioinformatic analysis of the sequence data, prioritization of all detected sequence variants led to three candidates to be considered as the causative genetic defect in this family. One of these variants was an alanine-to-proline substitution in the transmembrane 4 superfamily member 12 protein, encoded by TSPAN12. This protein has very recently been implicated in regulating the development of retinal vasculature, together with the proteins encoded by FZD4, LRP5, and NDP. Sequence analysis of TSPAN12 revealed two mutations segregating in five of 11 FEVR families, indicating that mutations in TSPAN12 are a relatively frequent cause of FEVR. Furthermore, we demonstrate the power of targeted next-generation sequencing technology to identify disease genes in linkage intervals.
Collapse
|
61
|
Liu TM, Wu YN, Guo XM, Hui JHP, Lee EH, Lim B. Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev 2009; 18:1013-22. [PMID: 19102659 DOI: 10.1089/scd.2008.0335] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a source of pluripotent cells that are already in various phases of clinical application. However, the use of MSCs in tissue engineering has been hampered largely due to their limitations, including low proliferation, finite life span, and gradual loss of their stem cell properties during ex vivo expansion. Nanog and Oct4 are key transcription factors essential to the pluripotent and self-renewing phenotypes of undifferentiated embryonic stem cells (ESCs). To determine whether Nanog and Oct4 improve human bone marrow-MSC quality, we therefore established stable Nanog and Oct4 overexpressing MSCs using a lentiviral system and showed that this promoted cell proliferation and enhanced colony formation of MSCs. In differentiating MSCs, Nanog, and Oct4, overexpression had converse effects on adipogenesis of MSCs and Nanog overexpression slowed down adipogenesis, whereas Oct4 overexpression improved adipogenesis. Nanog and Oct4 overexpression both improved chondrogenesis. Microarray data showed many differences in transcriptional targets in undifferentiated MSCs overexpressing Nanog and Oct4. These results provide insight into the improvement of the stemness of MSCs by genetic modification with stemness-related genes.
Collapse
Affiliation(s)
- Tong Ming Liu
- Department of Orthopaedic Surgery, NUS Tissue Engineering Program, National University of Singapore, 119074 Singapore
| | | | | | | | | | | |
Collapse
|
62
|
Fuchsova B, Fernández ME, Alfonso J, Frasch AC. Cysteine residues in the large extracellular loop (EC2) are essential for the function of the stress-regulated glycoprotein M6a. J Biol Chem 2009; 284:32075-88. [PMID: 19737934 DOI: 10.1074/jbc.m109.012377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gpm6a was identified as a stress-responsive gene in the hippocampal formation. This gene is down-regulated in the hippocampus of both socially and physically stressed animals, and this effect can be reversed by antidepressant treatment. Previously we showed that the stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. In the present work, mutational analysis was used to characterize the action of M6a at the molecular level. We show that four cysteines 162, 174, 192, and 202 within EC2 are functionally crucial sites. The presence of cysteines 162 and 202 is essential for the efficient cell surface expression of the M6a protein. In contrast, cysteines 174 and 192, which form a disulfide bridge as shown by biochemical analysis, are not required for the efficient surface expression of M6a. Their mutation to alanine does not interfere with the localization of M6a to filopodial protrusions in primary hippocampal neurons. The neurons expressing C174A and/or C192A mutants display decreased filopodia number. In non-permeabilized cells, these mutant proteins are not recognized by a function-blocking monoclonal antibody directed to M6a. Moreover, neurons in contact with axons expressing C174A/C192A mutant display significantly lower density of presynaptic clusters over their dendrites. Taken together, this study demonstrates that cysteines in the EC2 domain are critical for the role of M6a in filopodium outgrowth and synaptogenesis.
Collapse
Affiliation(s)
- Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas-INTECH, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Argentina.
| | | | | | | |
Collapse
|
63
|
Edwards AC, Ayroles JF, Stone EA, Carbone MA, Lyman RF, Mackay TFC. A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biol 2009; 10:R76. [PMID: 19607677 PMCID: PMC2728530 DOI: 10.1186/gb-2009-10-7-r76] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/03/2009] [Accepted: 07/16/2009] [Indexed: 11/18/2022] Open
Abstract
A genome-wide screen of inbred Drosophila lines together with transcriptional network modeling reveals insights into the genetic bases of heritable aggression. Background Aggressive behavior is an important component of fitness in most animals. Aggressive behavior is genetically complex, with natural variation attributable to multiple segregating loci with allelic effects that are sensitive to the physical and social environment. However, we know little about the genes and genetic networks affecting natural variation in aggressive behavior. Populations of Drosophila melanogaster harbor quantitative genetic variation in aggressive behavior, providing an excellent model system for dissecting the genetic basis of naturally occurring variation in aggression. Results Correlating variation in transcript abundance with variation in complex trait phenotypes is a rapid method for identifying candidate genes. We quantified aggressive behavior in 40 wild-derived inbred lines of D. melanogaster and performed a genome-wide association screen for quantitative trait transcripts and single feature polymorphisms affecting aggression. We identified 266 novel candidate genes associated with aggressive behavior, many of which have pleiotropic effects on metabolism, development, and/or other behavioral traits. We performed behavioral tests of mutations in 12 of these candidate genes, and show that nine indeed affected aggressive behavior. We used the genetic correlations among the quantitative trait transcripts to derive a transcriptional genetic network associated with natural variation in aggressive behavior. The network consists of nine modules of correlated transcripts that are enriched for genes affecting common functions, tissue-specific expression patterns, and/or DNA sequence motifs. Conclusions Correlations among genetically variable transcripts that are associated with genetic variation in organismal behavior establish a foundation for understanding natural variation for complex behaviors in terms of networks of interacting genes.
Collapse
Affiliation(s)
- Alexis C Edwards
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
64
|
Marco EJ, Abidi FE, Bristow J, Dean WB, Cotter P, Jeremy RJ, Schwartz CE, Sherr EH. ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. BMJ Case Rep 2009; 2009:bcr06.2009.1999. [PMID: 21731583 DOI: 10.1136/bcr.06.2009.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We identified a female patient with mental retardation and sensory hyperarousal. She has a de novo paracentric inversion of one X chromosome with completely skewed inactivation of the normal X chromosome. We aimed to identify whether a single gene or gene region caused her cognitive and behavioural impairment and that of others. Fluorescent in situ hybridisation (FISH) showed that the centromeric breakpoint disrupts a single gene: ARHGEF9 (CDC42 guanine nucleotide exchange factor (GEF) 9). We also found that the levels of the ARHGEF9 transcript from the patient are 10-fold less than those found in control samples. ARHGEF9 encodes a RhoGEF family protein: collybistin (hPEM), which is highly expressed in the brain. Collybistin can regulate actin cytoskeletal dynamics and may also modulate GABAergic and glycinergic neurotransmission through binding of a scaffolding protein, gephyrin, at the synapse. This potential dual role may explain both the mental retardation and hyperarousal observed in our patient.
Collapse
Affiliation(s)
- E J Marco
- Department of Neurology, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Copy number variation analysis and sequencing of the X-linked mental retardation gene TSPAN7/TM4SF2 in patients with autism spectrum disorder. Psychiatr Genet 2009; 19:154-5. [PMID: 19339915 DOI: 10.1097/ypg.0b013e32832a4fe5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Gécz J, Shoubridge C, Corbett M. The genetic landscape of intellectual disability arising from chromosome X. Trends Genet 2009; 25:308-16. [PMID: 19556021 DOI: 10.1016/j.tig.2009.05.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 01/07/2023]
Abstract
X-linked mental retardation (XLMR) or intellectual disability (ID) is a common, clinically complex and genetically heterogeneous disease arising from many mutations along the X chromosome. It affects between 1/600-1/1000 males and a substantial number of females. Research during the past decade has identified >90 different XLMR genes, affecting a wide range of cellular processes. Many more genes remain uncharacterized, especially for the non-syndromic XLMR forms. Currently, approximately 11% of X-chromosome genes are implicated in XLMR; however, apart from a few notable exceptions, most contribute individually to <0.1% of the total landscape, which arguably remains only about half complete. There remain many hills to climb and valleys to cross before the ID landscape is fully triangulated.
Collapse
Affiliation(s)
- Jozef Gécz
- Molecular Pathology, SA Pathology at Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | | | | |
Collapse
|
67
|
Abstract
Despite high expression levels at the plasma membrane or in intracellular vesicles, tetraspanins remain among the most mysterious transmembrane molecules 20 years after their discovery. Several genetic studies in mammals and invertebrates have demonstrated key physiological roles for some of these tetraspanins, in particular in the immune response, sperm-egg fusion, photoreceptor function and the normal function of certain epithelia. Other studies have highlighted their ability to modulate cell migration and metastasis formation. Their role in the propagation of infectious agents has drawn recent attention, with evidence for HIV budding in tetraspanin-enriched plasma membrane domains. Infection of hepatocytic cells by two major pathogens, the hepatitis C virus and the malaria parasite, also requires the tetraspanin CD81. The function of tetraspanins is thought to be linked to their ability to associate with one another and a wealth of other integral proteins, thereby building up an interacting network or 'tetraspanin web'. On the basis of the biochemical dissection of the tetraspanin web and recent analysis of the dynamics of some of its constituents, we propose that tetraspanins tightly regulate transient interactions between a variety of molecules and as such favour the efficient assembly of specialized structures upon proper stimulation.
Collapse
|
68
|
Balanced translocations in mental retardation. Hum Genet 2009; 126:133-47. [PMID: 19347365 DOI: 10.1007/s00439-009-0661-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/23/2009] [Indexed: 12/13/2022]
Abstract
Over the past few decades, the knowledge on genetic defects causing mental retardation has dramatically increased. In this review, we discuss the importance of balanced chromosomal translocations in the identification of genes responsible for mental retardation. We present a database-search guided overview of balanced translocations identified in patients with mental retardation. We divide those in four categories: (1) balanced translocations that helped to identify a causative gene within a contiguous gene syndrome, (2) balanced translocations that led to the identification of a mental retardation gene confirmed by independent methods, (3) balanced translocations disrupting candidate genes that have not been confirmed by independent methods and (4) balanced translocations not reported to disrupt protein coding sequences. It can safely be concluded that balanced translocations have been instrumental in the identification of multiple genes that are involved in mental retardation. In addition, many more candidate genes were identified with a suspected but (as yet?) unconfirmed role in mental retardation. Some balanced translocations do not disrupt a protein coding gene and it can be speculated that in the light of recent findings concerning ncRNA's and ultra-conserved regions, such findings are worth further investigation as these potentially may lead us to the discovery of novel disease mechanisms.
Collapse
|
69
|
Zheng YZ, Foster LJ. Biochemical and proteomic approaches for the study of membrane microdomains. J Proteomics 2009; 72:12-22. [DOI: 10.1016/j.jprot.2008.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/14/2008] [Accepted: 09/18/2008] [Indexed: 01/08/2023]
|
70
|
Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 2008; 29:1083-94. [PMID: 19075008 DOI: 10.1128/mcb.01163-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD63 is a member of the tetraspanin superfamily that constitutes a main component of the lysosomal membrane. In mice, two CD63 gene loci are present, with only one of these two being functional. We generated and analyzed mice deficient for active CD63. Disruption of CD63 results in a complete loss of CD63 protein expression. Despite its abundance in late endosomes/lysosomes, the lack of CD63 does not cause obvious endosomal/lysosomal abnormalities. CD63 knockout mice are viable and fertile without gross morphological abnormalities in the majority of tissues. No alterations in the populations of immune cells and only minor differences in platelet function were observed. This suggests that the lack of CD63 could be successfully compensated for, most likely by other tetraspanins. However, CD63 deficiency leads to an altered water balance. CD63 knockout mice show an increased urinary flow, water intake, reduced urine osmolality, and a higher fecal water content. In principle cells of the collecting duct of CD63-deficient mice, abnormal intracellular lamellar inclusions were observed. This indicates that the sorting of apical transport proteins might be impaired in these cells. CD63 knockout mice provide an important tool for analyzing the various postulated functions of CD63 in vivo.
Collapse
|
71
|
Cai G, Edelmann L, Goldsmith JE, Cohen N, Nakamine A, Reichert JG, Hoffman EJ, Zurawiecki DM, Silverman JM, Hollander E, Soorya L, Anagnostou E, Betancur C, Buxbaum JD. Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Med Genomics 2008; 1:50. [PMID: 18925931 PMCID: PMC2588447 DOI: 10.1186/1755-8794-1-50] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 10/16/2008] [Indexed: 11/10/2022] Open
Abstract
Background It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications. Methods In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region. Results MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, de novo duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include GABRB3 and ATP10A in one case, and MKRN3, MAGEL2 and NDN in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the ASPA gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the TM4SF2 gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the ASMT gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6–7% of the cases but in only 2% of controls (P = 0.003). Conclusion MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new de novo small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in TM4SF2 are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the ASMT locus indicate that further studies of the duplication of the ASMT gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods.
Collapse
Affiliation(s)
- Guiqing Cai
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Monnot S, Giuliano F, Massol C, Fossoud C, Cossée M, Lambert JC, Karmous-Benailly H. Partial Xp11.23-p11.4 duplication with random X inactivation: clinical report and molecular cytogenetic characterization. Am J Med Genet A 2008; 146A:1325-9. [PMID: 18412111 DOI: 10.1002/ajmg.a.32238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Partial duplications of the short arm of the X chromosome are relatively rare and have been described in males and females. We describe a 4 10/12-year-old girl presenting with developmental delay, severe language retardation and minor anomalies with slightly elevated head circumference (+1.8 SD), prominent forehead, wide palpebral fissures and anteverted nares. No pigmentary dysplasia of the skin was present. The external genitalia were normal. The karyotype completed by cytogenetic analysis with the Whole Chromosome Painting probe of chromosome X revealed a de novo partial duplication of the short arm of an X chromosome. In order to further characterize the duplicated segment, we used a series of BAC probes extending from band Xp11.22 to Xp22.1. BACs from Xp11.23 to Xp11.4 were duplicated. The karyotype was finally defined as 46,X,dup(X)(p11p11).ish dup(X)(p11.23p11.4)(WCPX+,RP11-416I6++,RP11-386N14++,RP11-466C12++). The X-inactivation status was studied using the human androgen receptor (HUMARA) and the FRAXA locus methylation assay. Unexpectedly, the two X chromosomes were found to be randomly inactivated, in the proband. Indeed, usually, in women with structurally abnormal X chromosome, the abnormal X chromosome is preferentially inactivated and those patients share an apparent normal phenotype. So, we speculate that in the present case, the phenotype of the patient could be explained by a functional disomy of the genes present in the duplicated region. We will discuss the possible implication of these genes on the observed phenotype.
Collapse
Affiliation(s)
- Sophie Monnot
- Department of Medical Genetics, Hospital Archet 2, CHU Nice, France.
| | | | | | | | | | | | | |
Collapse
|
73
|
Kulkarni S, Nagarajan P, Wall J, Donovan DJ, Donell RL, Ligon AH, Venkatachalam S, Quade BJ. Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am J Med Genet A 2008; 146A:1117-27. [PMID: 18386809 DOI: 10.1002/ajmg.a.32178] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein we characterize an apparently balanced de novo translocation, t(X;15)(p22.2;q26.1)dn, in a female patient with scoliosis, hirsutism, learning problems, and developmental delay (DGAP025). Other clinical findings include a high-arched palate, 2-3 syndactyly of the toes, and mildly elevated serum testosterone. No known or predicted genes are disrupted by the Xp22.2 breakpoint. The 15q26.1 breakpoint disrupts chromodomain helicase DNA binding protein 2 (CHD2). Another member of the chromatin-remodeling gene family, CHD7, has been associated with a defined constellation of congenital anomalies known as coloboma, heart anomaly, choanal atresia, mental retardation, genital and ear anomalies syndrome (CHARGE) and idiopathic scoliosis. Monosomy of 15q26 also has been associated with a spectrum of congenital abnormalities and growth retardation that overlaps with those of DGAP025. To provide a biological correlate, we characterized a mutant mouse model with Chd2 disruption that is associated with embryonic and perinatal lethality. Expression analysis indicated that Chd2 is expressed in the heart, forebrain, extremities, facial and dorsal regions during specific times of embryonic development. Chd2(+/m) mice showed pronounced lordokyphosis, reduced body fat, postnatal runting, and growth retardation. These data suggest that haploinsufficiency for CHD2 could result in a complex of abnormal human phenotypes that includes scoliosis and possibly features similar to CHARGE syndrome.
Collapse
Affiliation(s)
- Shashikant Kulkarni
- Division of Women's and Perinatal Pathology and Clinical Cytogenetics Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Dubos A, Pannetier S, Hanauer A. Inactivation of theCDKL3gene at 5q31.1 by a balanced t(X;5) translocation associated with nonspecific mild mental retardation. Am J Med Genet A 2008; 146A:1267-79. [DOI: 10.1002/ajmg.a.32274] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
Baptista J, Mercer C, Prigmore E, Gribble SM, Carter NP, Maloney V, Thomas NS, Jacobs PA, Crolla JA. Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 2008; 82:927-36. [PMID: 18371933 DOI: 10.1016/j.ajhg.2008.02.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/13/2008] [Accepted: 02/19/2008] [Indexed: 01/22/2023] Open
Abstract
We report the analyses of breakpoints in 31 phenotypically normal and 14 abnormal carriers of balanced translocations. Our study assesses the differences between balanced translocations in normal carriers and those in abnormal carriers, focusing on the presence of genomic imbalances at the breakpoints or elsewhere in the genome, presence of cryptic chromosome rearrangements, and gene disruption. Our hypothesis is that all four features will be associated with phenotypic abnormalities and absent or much less frequent in a normal population. In the normal cohort, we identified neither genomic imbalances at the breakpoints or elsewhere in the genome nor cryptic chromosome rearrangements. In contrast, we identified candidate disease-causing imbalances in 4/14 abnormal patients. These were three breakpoint associated deletions and three deletions unrelated to the breakpoints. All six de novo deletions originated on the paternally inherited chromosome. Additional complexity was also present in one of these cases. Gene disruption by the breakpoints was present in 16/31 phenotypically normal individuals and in 5/14 phenotypically abnormal patients. Our results show that translocations in phenotypically abnormal patients are molecularly distinct from those in normal individuals: the former are more likely to be associated with genomic imbalances at the breakpoints or elsewhere and with chromosomal complexity, whereas the frequency of gene disruption is similar in both normal and abnormal translocation carriers.
Collapse
|
76
|
Garcia-España A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R. Appearance of new tetraspanin genes during vertebrate evolution. Genomics 2008; 91:326-34. [PMID: 18291621 DOI: 10.1016/j.ygeno.2007.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 12/03/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
A detailed phylogenetic analysis of tetraspanins from 10 fully sequenced metazoan genomes and several fungal and protist genomes gives insight into their evolutionary origins and organization. Our analysis suggests that the superfamily can be divided into four large families. These four families-the CD family, CD63 family, uroplakin family, and RDS family-are further classified as consisting of several ortholog groups. The clustering of several ortholog groups together, such as the CD9/Tsp2/CD81 cluster, suggests functional relatedness of those ortholog groups. The fact that our studies are based on whole genome analysis enabled us to estimate not only the phylogenetic relationships among the tetraspanins, but also the first appearance in the tree of life of certain tetraspanin ortholog groups. Taken together, our data suggest that the tetraspanins are derived from a single (or a few) ancestral gene(s) through sequence divergence, rather than convergence, and that the majority of tetraspanins found in the human genome are vertebrate (21 instances), tetrapod (4 instances), or mammalian (6 instances) inventions.
Collapse
Affiliation(s)
- Antonio Garcia-España
- Research Unit, Universitat Rovira i Virgili, Hospital Joan XXIII, Pere Virgily Institute, Tarragona 43007, Spain.
| | | | | | | | | | | |
Collapse
|
77
|
Delbridge ML, McMillan DA, Doherty RJ, Deakin JE, Graves JAM. Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX). BMC Genomics 2008; 9:65. [PMID: 18248684 PMCID: PMC2276207 DOI: 10.1186/1471-2164-9-65] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/05/2008] [Indexed: 01/22/2023] Open
Abstract
Background The human X chromosome has a biased gene content. One group of genes that is over-represented on the human X are those expressed in the brain, explaining the large number of sex-linked mental retardation (MRX) syndromes. Results To determine if MRX genes were recruited to the X, or whether their brain-specific functions were acquired after relocation to the mammalian X chromosome, we examined the location and expression of their orthologues in marsupials, which diverged from human approximately 180 million years ago. We isolated and mapped nine tammar wallaby MRX homologues, finding that six were located on the tammar wallaby X (which represents the ancient conserved mammal X) and three on chromosome 5, representing the recently added region of the human X chromosome. The location of MRX genes within the same synteny groups in human and wallaby does not support the hypothesis that genes with an important function in the brain were recruited in multiple independent events from autosomes to the mammalian X chromosome. Most of the tammar wallaby MRX homologues were more widely expressed in tammar wallaby than in human. Only one, the tammar wallaby ARX homologue (located on tammar chromosome 5p), has a restricted expression pattern comparable to its pattern in human. The retention of the brain-specific expression of ARX over 180 million years suggests that this gene plays a fundamental role in mammalian brain development and function. Conclusion Our results suggest all the genes in this study may have originally had more general functions that became more specialised and important in brain function during evolution of humans and other placental mammals.
Collapse
Affiliation(s)
- Margaret L Delbridge
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
78
|
Guo M, Huang T, Cui Y, Pan B, Shen A, Sun Y, Yi Y, Wang Y, Xiao G, Sun G. PrPC interacts with tetraspanin-7 through bovine PrP154-182 containing alpha-helix 1. Biochem Biophys Res Commun 2007; 365:154-7. [PMID: 17981143 DOI: 10.1016/j.bbrc.2007.10.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/26/2007] [Indexed: 01/03/2023]
Abstract
The cellular prion protein (PrP(C)) is highly conserved in the evolution of mammals, and therefore, thought to have important cellular functions. Despite decades of intensive research, the physiological function of PrP(C) remains enigmatic. We carried out a yeast two-hybrid screen on a bovine brain cDNA expression library and identified the transmembrane protein tetraspanin-7 (CD231), as a PrP(C) interacting protein. We confirmed the interaction between PrP(C) and tetraspanin-7 by yeast two-hybrid assay, immunofluorescent co-localization, and immunocoprecipitation. Our mutational studies further demonstrated that PrP(C) specifically binds tetraspanin-7 through the region corresponding to bovine PrP(154-182) containing alpha-helix 1.
Collapse
Affiliation(s)
- Mingxiong Guo
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Lazo PA. Functional implications of tetraspanin proteins in cancer biology. Cancer Sci 2007; 98:1666-77. [PMID: 17727684 PMCID: PMC11159418 DOI: 10.1111/j.1349-7006.2007.00584.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/30/2007] [Accepted: 07/03/2007] [Indexed: 12/25/2022] Open
Abstract
Human tetraspanin proteins are a group of 33 highly hydrophobic membrane proteins that can form complexes in cholesterol-rich microdomains, distinct from lipid rafts, on the cell surface in a dynamic and reversible way. These complexes are composed of a core of several tetraspanin proteins that organize other membrane proteins such as integrins, human leukocyte antigen (HLA) antigens and some growth factor receptors. Although most tetraspanin proteins have been studied individually, tetraspanin proteins and their complexes can have effects on cellular adhesion and motility, interactions with stroma or affect signaling by growth factors, and for most of them no ligand has been identified. Functionally these proteins have been mostly studied in cells of lymphoid lineage, but they are present in all cell types. Data is also available for some tumors, where some tetraspanins have been identified as metastasis suppressors, but their significance is still not clear. Some of their implications in tumor biology and the areas that deserve further study are outlined.
Collapse
Affiliation(s)
- Pedro A Lazo
- Programa de Oncología Translacional, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, E-37007, Spain.
| |
Collapse
|
80
|
Polymorphic assemblies and crystalline arrays of lens tetraspanin MP20. J Mol Biol 2007; 376:380-92. [PMID: 18166196 DOI: 10.1016/j.jmb.2007.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/29/2007] [Accepted: 09/03/2007] [Indexed: 01/11/2023]
Abstract
Members of the tetraspanin superfamily function as transmembrane scaffold proteins that mediate the assembly of membrane proteins into specific signaling complexes. Tetraspanins also interact with each other and concentrate membrane proteins into tetraspanin-enriched microdomains (TEMs). Here we report that lens-specific tetraspanin MP20 can form multiple types of higher-order assemblies and we present crystalline arrays of MP20. When isolated in the absence of divalent cations, MP20 is solubilized predominantly in tetrameric form, whereas the presence of divalent cations during solubilization promotes the association of MP20 tetramers into higher-order species. This effect only occurs when divalent cations are present during solubilization but not when divalent cations are added to solubilized tetrameric MP20, suggesting that other factors may also be involved. When purified MP20 tetramers are reconstituted with native lens lipids in the presence of magnesium, MP20 forms two-dimensional (2D) crystals. A projection map at 18 A resolution calculated from negatively stained 2D crystals showed that the building block of the crystal is an octamer consisting of two tetramers related to each other by 2-fold symmetry. In addition to 2D crystals, reconstitution of MP20 with native lipids also produced a variety of large protein-lipid complexes, and we present three-dimensional (3D) reconstructions of the four most abundant of these complexes in negative stain. The various complexes formed by MP20 most likely reflect the many ways in which tetraspanins can interact with each other to allow formation of TEMs.
Collapse
|
81
|
Caplan MJ, Kamsteeg EJ, Duffield A. Tetraspan proteins: regulators of renal structure and function. Curr Opin Nephrol Hypertens 2007; 16:353-8. [PMID: 17565278 DOI: 10.1097/mnh.0b013e328177b1fa] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Members of the tetraspan family are widely expressed and poorly understood. An emerging literature suggests that through their interactions with other membrane proteins they play central or regulatory roles in a wide variety of physiological processes. This review will discuss selected tetraspan complexes and highlight their relevance to epithelial cells and the kidney. RECENT FINDINGS Tetraspans regulate the signaling and trafficking properties of their partner proteins. Tetraspan complexes with integrin molecules, for example, modulate cell adhesion and mobility. Perturbations of tetraspan-integrin assemblies can have dramatic impacts on renal tissue morphogenesis, resulting in a disruption of normal glomerular architecture and selectivity. Tetraspan interactions with renal ion transport proteins appear to affect transporter function by enhancing or inhibiting the endocytic internalization of their transport protein partners. SUMMARY Tetraspans constitute a novel class of proteins whose capacity to alter the cell biological and functional properties of their membrane protein partners is likely to have wide ranging and important physiological ramifications.
Collapse
Affiliation(s)
- Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06525-8026, USA.
| | | | | |
Collapse
|
82
|
Liu J, Lewohl JM, Harris RA, Dodd PR, Mayfield RD. Altered gene expression profiles in the frontal cortex of cirrhotic alcoholics. Alcohol Clin Exp Res 2007; 31:1460-6. [PMID: 17625000 DOI: 10.1111/j.1530-0277.2007.00444.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cirrhosis is the result of chronic liver disease that causes scarring and dysfunction of the liver. The disease is a common concomitant condition resulting from sustained exposure to alcohol. Heavy alcohol use results in brain damage that is generally more severe in cirrhotic compared with noncirrhotic alcoholics. We examined, at the cellular level, gene expression in the frontal cortex of cirrhotic alcoholics. METHODS Gene expression profiles were compared between cirrhotic and noncirrhotic alcoholics using approximately 47,000 element cDNA microarrays. RESULTS Widespread differences in transcriptome patterns were observed in cirrhotic compared with noncirrhotic alcoholics and these differences in gene expression accurately distinguished cirrhotic from noncirrhotic alcoholics. Functionally related groups of genes were identified that are involved in cell adhesion, mitochondrial function, synaptic transmission, apoptosis, and cell proliferation. Both astrocytes and neuronal cells were affected at the transcriptional level. The regulated genes are involved in neurite growth, neuronal cell adhesion, synaptic vesicle release, and postsynaptic neurotransmission. CONCLUSIONS These changes in the transcriptome likely contribute to the more severe brain dysfunction in cirrhotic alcoholics.
Collapse
Affiliation(s)
- Jianwen Liu
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
83
|
Zhang L, Jie C, Obie C, Abidi F, Schwartz CE, Stevenson RE, Valle D, Wang T. X chromosome cDNA microarray screening identifies a functional PLP2 promoter polymorphism enriched in patients with X-linked mental retardation. Genome Res 2007; 17:641-8. [PMID: 17416750 PMCID: PMC1855181 DOI: 10.1101/gr.5336307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
X-linked Mental Retardation (XLMR) occurs in 1 in 600 males and is highly genetically heterogeneous. We used a novel human X chromosome cDNA microarray (XCA) to survey the expression profile of X-linked genes in lymphoblasts of XLMR males. Genes with altered expression verified by Northern blot and/or quantitative PCR were considered candidates. To validate this approach, we documented the expected changes of expression in samples from a patient with a known X chromosome microdeletion and from patients with multiple copies of the X chromosome. We used our XCA to survey lymphoblast RNA samples from 43 unrelated XLMR males and found 15 genes with significant (>or=1.5-fold) reduction in expression in at least one proband. Of these, subsequent analysis confirmed altered expression in 12. We followed up one, PLP2, at Xp11.23, which exhibits approximately fourfold decreased expression in two patients. Sequencing analysis in both patients revealed a promoter variant, -113C>A, that alters the core-binding site of the transcription factor ELK1. We showed that PLP2-(-113C>A) is sufficient to cause reduced expression using a luciferase reporter system and is enriched in a cohort of males with probable XLMR (14 of 239, 5.85%) as compared to normal males (9 of 577, 1.56%) (chi2=11.07, P<0.001). PLP2 is expressed abundantly in the pyramidal cells of hippocampus and granular cells of the cerebellum in the brain. We conclude that our XCA screening is an efficient strategy to identify genes that show significant changes in transcript abundance as candidate genes for XLMR.
Collapse
Affiliation(s)
- Lilei Zhang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
| | - Chunfa Jie
- Microarray Core Facility, Johns Hopkins University School of Medicine, Baltimore , Maryland
| | - Cassandra Obie
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
| | - Fatima Abidi
- Greenwood Genetic Center, Greenwood 29646, South Carolina
| | | | | | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
- Corresponding author.E-mail ; fax (443) 955-7397
| |
Collapse
|
84
|
Yamamoto Y, Grubisic K, Oelgeschläger M. Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo. Differentiation 2007; 75:235-45. [PMID: 17359299 DOI: 10.1111/j.1432-0436.2006.00134.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tetraspanin family of four-pass transmembrane proteins has been implicated in fundamental biological processes, including cell adhesion, migration, and proliferation. Tetraspanins interact with various transmembrane proteins, establishing a network of large multimolecular complexes that allows specific lateral secondary interactions. Here we report the identification and functional characterization of Xenopus Tetraspanin-1 (xTspan-1). At gastrula and neurula, xTspan-1 is expressed in the dorsal ectoderm and neural plate, respectively, and in the hatching gland, cement gland, and posterior neural tube at tailbud stages. The expression of xTspan-1 in the early embryo is negatively regulated by bone morphogenetic protein (BMP) and stimulated by Notch signals. Microinjection of xTspan-1 mRNA interfered with gastrulation movements and reduced ectodermal cell adhesion in a cadherin-dependent manner. Morpholino knock-down of endogenous xTspan-1 protein revealed a requirement of xTspan-1 for gastrulation movements and primary neurogenesis. Our data suggest that xTspan-1 could act as a molecular link between BMP signalling and the regulation of cellular interactions that are required for gastrulation movements and neural differentiation in the early Xenopus embryo.
Collapse
Affiliation(s)
- Yukiyo Yamamoto
- Max-Planck Institute of Immunobiology, Stübeweg 51, Freiburg D-79108, Germany
| | | | | |
Collapse
|
85
|
Kalscheuer VM, FitzPatrick D, Tommerup N, Bugge M, Niebuhr E, Neumann LM, Tzschach A, Shoichet SA, Menzel C, Erdogan F, Arkesteijn G, Ropers HH, Ullmann R. Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation. Hum Genet 2007; 121:501-9. [PMID: 17211639 DOI: 10.1007/s00439-006-0284-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/16/2006] [Indexed: 01/11/2023]
Abstract
We report on three unrelated mentally disabled patients, each carrying a de novo balanced translocation that truncates the autism susceptibility candidate 2 (AUTS2) gene at 7q11.2. One of our patients shows relatively mild mental retardation; the other two display more profound disorders. One patient is also physically disabled, exhibiting urogenital and limb malformations in addition to severe mental retardation. The function of AUTS2 is presently unknown, but it has been shown to be disrupted in monozygotic twins with autism and mental retardation, both carrying a translocation t(7;20)(q11.2;p11.2) (de la Barra et al. in Rev Chil Pediatr 57:549-554, 1986; Sultana et al. in Genomics 80:129-134, 2002). Given the overlap of this autism/mental retardation (MR) phenotype and the MR-associated disorders in our patients, together with the fact that mapping of the additional autosomal breakpoints involved did not disclose obvious candidate disease genes, we ascertain with this study that AUTS2 mutations are clearly linked to autosomal dominant mental retardation.
Collapse
Affiliation(s)
- Vera M Kalscheuer
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Honda S, Hayashi S, Kato M, Niida Y, Hayasaka K, Okuyama T, Imoto I, Mizutani S, Inazawa J. Clinical and molecular cytogenetic characterization of two patients with non-mutational aberrations of theFMR2 gene. Am J Med Genet A 2007; 143A:687-93. [PMID: 17343270 DOI: 10.1002/ajmg.a.31638] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on two patients; a female having mild mental retardation (MR) with a balanced translocation, 46,XX,t(X;15)(q28;p11.2), and a male diagnosed as having mucopolysaccharidosis type II (MPS II or Hunter syndrome) with atypical early-onset MR and a normal male karyotype. Molecular cytogenetic analyses, including fluorescence in situ hybridization and array-based comparative genomic hybridization using an in-house X-tiling array, revealed that first patient to have a breakpoint at Xq28 lying within the FMR2 gene and the second to have a small deletion at Xq28 including part of FMR2 together with the IDS gene responsible for MPS II. In Patient 1, X-chromosome inactivation predominantly occurred in the normal X in her lymphocytes, suggesting that her MR might be explained by a disruption of the FMR2 gene on der(X) t(X;15) concomitant with the predominant inactivation of the intact FMR2 gene in another allele. We compared phenotypes of Patient 2 with those of MPS II cases with deletion of the IDS gene alone reported previously, suggesting that the early-onset MR might be affected by the additional deletion of FMR2.
Collapse
Affiliation(s)
- Shozo Honda
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Miller G, Wang EL, Nassar KL, Peter AK, Crosbie RH. Structural and functional analysis of the sarcoglycan-sarcospan subcomplex. Exp Cell Res 2006; 313:639-51. [PMID: 17223103 PMCID: PMC3855351 DOI: 10.1016/j.yexcr.2006.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 12/26/2022]
Abstract
Sarcospan is a component of the dystrophin-glycoprotein complex that forms a tight subcomplex with the sarcoglycans. The sarcoglycan-sarcospan subcomplex functions to stabilize alpha-dystroglycan at the plasma membrane and perturbations of this subcomplex are associated with autosomal recessive limb-girdle muscular dystrophy. In order to characterize protein interactions within this subcomplex, we first demonstrate that sarcospan forms homo-oligomers within the membrane. Experiments with a panel of site-directed mutants reveal that proper structure of the large extracellular loop is an important determinant of oligo formation. Furthermore, the intracellular N- and C-termini contribute to stability of sarcospan-mediated webs. Point mutation of each cysteine residue reveals that Cys 162 and Cys 164 within the large extracellular loop form disulfide bridges, which are critical for proper sarcospan structure. The extracellular domain of sarcospan also forms the main binding site for the sarcoglycans. We propose a model whereby sarcospan forms homo-oligomers that cluster the components of the dystrophin-glycoprotein complex within the membrane.
Collapse
Affiliation(s)
- Gaynor Miller
- Department of Physiological Science, University of California, Los Angeles, CA 90095
| | - Emily L. Wang
- Department of Physiological Science, University of California, Los Angeles, CA 90095
| | - Karin L. Nassar
- Department of Physiological Science, University of California, Los Angeles, CA 90095
| | - Angela K. Peter
- Department of Physiological Science, University of California, Los Angeles, CA 90095
| | - Rachelle H. Crosbie
- Department of Physiological Science, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
88
|
Abstract
Genetic abnormalities frequently give rise to a mental retardation phenotype. Recent advances in resolution of comparative genomic hybridization and genomic sequence annotation has identified new syndromes at chromosome 3q29 and 9q34. The finding of a significant number of copy number polymorphisms in the genome in the normal population, means that assigning pathogenicity to deletions and duplications in patients with mental retardation can be difficult but has been identified for duplications of MECP2 and L1CAM. Novel autosomal genes that cause mental retardation have been identified recently including CC2D1A identified by homozygosity mapping. Several new genes and pathways have been identified in the field of X-linked mental retardation but many more still await identification. Analysis of families where only a single male is affected reveals that the chance of this being due to a single X-linked gene abnormality is significantly less than would be expected if the excess of males in the population is entirely due to X-linked disease. Recent identification of novel X-linked mental retardation genes has identified components of the post-synaptic density and multiple zinc finger transcription factors as disease causing suggesting new mechanisms of disease causation. The first therapeutic treatments of animal models of mental retardation have been reported, a Drosophila model of Fragile X syndrome has been treated with lithium or metabotropic glutamate receptor (mGluR) antagonists and a mouse model of NF1 has been treated with the HMG-CoA reductase inhibitor lavastatin, which improves the learning and memory skills in these models.
Collapse
Affiliation(s)
- F Lucy Raymond
- Department of Medical Genetics, Cambridge Institute of Medical Research, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 2XY, UK.
| | | |
Collapse
|
89
|
de Brouwer APM, van Bokhoven H, Kremer H. Comparison of 12 reference genes for normalization of gene expression levels in Epstein-Barr virus-transformed lymphoblastoid cell lines and fibroblasts. Mol Diagn Ther 2006; 10:197-204. [PMID: 16771605 DOI: 10.1007/bf03256458] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCLs) and skin fibroblasts are often used to establish or confirm the effect of mutations on gene expression levels. Relative quantification of gene expression is usually achieved by comparison of the expression level of a gene of interest with that of a suitable reference gene. Hence, the choice of reference gene is critical in all experiments that require normalization of expression data. METHODS For normalization of gene expression levels in both EBV-LCLs and skin fibroblasts, we compared six common reference genes (ACTB, GAPDH, GUSB, HPRT1, PPIB, and TFRC) with six alternative reference genes (CLK2, COPS5, PCYT1A, RAD51L1, RNF10, and RNF111). The alternative genes were selected on the basis of their stability in expression levels in EBV-LCLs according to microarray data. The 12 genes were ranked according to stability in expression levels based on the standard deviation (SD) of the cycle threshold (Ct), geNorm, NormFinder, and the SD of the comparative cycle threshold (DeltaDeltaCt). In addition, we predicted the validity of an observed difference in expression level of a gene of interest between two samples when a specific reference gene is used. RESULTS AND CONCLUSIONS In our dataset, GUSB and CLK2 were the best choices as reference genes for EBV-LCLs and fibroblasts, respectively. For almost all reference genes, expression level differences of <2-fold between two samples were most likely not significant (p > 0.05). GAPDH for EBV-LCLs and GAPDH and HPRT1 for fibroblasts should not be used for normalization in these cell lines because of their variability in expression levels.
Collapse
Affiliation(s)
- Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
90
|
Bahi-Buisson N, Chelly J, des Portes V. [Update on the genetics of X-linked mental retardation]. Rev Neurol (Paris) 2006; 162:952-63. [PMID: 17028563 DOI: 10.1016/s0035-3787(06)75105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mutations in X-linked genes are likely to account for the observation that more males than females are affected with mental retardation. Causative mutations have been identified in both syndromic XLMR and in the genetically heterogeneous non-syndromic forms of XLMR, without a clear clinical phenotype other than cognitive deficit. Progress in genome analysis and the establishment of large collaborations between clinical and molecular research teams, especially the European XLMR consortium, have led to the identification of 20 non-syndromic XLMR genes and 25 syndromic XLMR genes. Given the extensive heterogeneity of non syndromic XLMR, different strategies are used for the identification of new genes: linkage analysis, studies of balanced chromosomal rearrangements (X-autosome translocations, microdeletions) and candidate genes strategies by mutation screening in regions of the X chromosome known to be involved in neuronal development and function. Delineating the monogenic causes of XLMR and their molecular and cellular consequences will provide insight into the mechanisms that are required for normal development of cognitive function in humans. Non syndromic XLMR proteins include 5 distinct classes: transmembrane receptors, small GTPases effectors or regulators, enzymes and translational regulators.
Collapse
Affiliation(s)
- N Bahi-Buisson
- Département de Pédiatrie, Service de Neuropédiatrie et Maladies Métaboliques, Hôpital Necker, and Université René Descartes, Paris, France.
| | | | | |
Collapse
|
91
|
Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ, Sonnenberg A. Kidney failure in mice lacking the tetraspanin CD151. ACTA ACUST UNITED AC 2006; 175:33-9. [PMID: 17015618 PMCID: PMC2064491 DOI: 10.1083/jcb.200603073] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin α3β1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking the integrin α3 subunit die neonatally because of severe abnormalities in the lung and kidney epithelia. We report the generation of Cd151-null mice that recapitulate the renal pathology of human patients, i.e., with age they develop massive proteinuria caused by focal glomerulosclerosis, disorganization of the glomerular basement membrane, and tubular cystic dilation. However, neither skin integrity nor hearing ability are impaired in the Cd151-null mice. Furthermore, we generated podocyte-specific conditional knockout mice for the integrin α3 subunit that show renal defects similar to those in the Cd151 knockout mice. Our results support the hypothesis that CD151 plays a key role in strengthening α3β1-mediated adhesion in podocytes.
Collapse
Affiliation(s)
- Norman Sachs
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
92
|
Ropers HH. X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev 2006; 16:260-9. [PMID: 16647850 DOI: 10.1016/j.gde.2006.04.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/18/2006] [Indexed: 11/26/2022]
Abstract
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR is very heterogeneous, and about two-thirds of patients have clinically indistinguishable non-syndromic (NS-XLMR) forms, which has greatly hampered their molecular elucidation. A few years ago, international consortia overcame this impasse by collecting DNA and cell lines from large cohorts of XLMR families, thereby paving the way for the systematic study of the molecular causes of XLMR. Mutations in known genes might already account for 50% of the families with NS-XLMR, and various genes have been pinpointed that seem to be of particular diagnostic importance. Eventually, even therapy of XLMR might become possible, as suggested by the unexpected plasticity of the neuronal wiring in the brain, and the recent successful drug treatment of a fly model for fragile X syndrome.
Collapse
Affiliation(s)
- Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| |
Collapse
|
93
|
Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 2006; 24:269-81. [PMID: 16546096 DOI: 10.1016/j.immuni.2006.01.012] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 11/15/2022]
Abstract
The transcription factor Pax5 represses lineage-inappropriate genes and activates B cell-specific genes in B lymphocytes. By identifying 110 Pax5-repressed genes, we now demonstrate that Pax5 downregulates diverse biological activities including receptor signaling, cell adhesion, migration, transcriptional control, and cellular metabolism at B cell commitment. The T lymphoid or myeloid expression of these genes demonstrates that Pax5(-/-) pro-B cells and common lymphoid progenitors display lymphoid and myeloid promiscuity of gene expression. These lineage-inappropriate genes require continuous Pax5 activity for their repression, as they are reactivated in committed pro-B cells and mature B cells following conditional Pax5 deletion. Pax5-repressed genes are also reexpressed in plasma cells, which depend for normal function on Cd28 and Ccr2 reactivation. The loss of Pax5 during terminal differentiation thus contributes to the plasma cell transcription program. Finally, ectopic expression of the Pax5-repressed chemokine gene Ccl3 in B cells results in increased osteoclast formation and bone loss, demonstrating that Pax5-mediated gene repression is essential for normal homeostasis of hematopoietic development.
Collapse
Affiliation(s)
- Alessio Delogu
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
94
|
Strefford JC, Lane TM, Hill A, LeRoux L, Foot NJ, Shipley J, Oliver RTD, Lu YJ, Young BD. Molecular characterisation of the t(1;15)(p22;q22) translocation in the prostate cancer cell line LNCaP. Cytogenet Genome Res 2006; 112:45-52. [PMID: 16276089 DOI: 10.1159/000087512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 04/27/2005] [Indexed: 02/04/2023] Open
Abstract
Although chromosome translocations are well-documented recurrent events in hematological malignancies and soft tissue sarcomas, their significance in carcinomas is less clear. We report here the molecular characterization of the reciprocal translocation t(1;15)(p22;q22) in the prostate carcinoma cell line, LNCaP. The chromosome 1 breakpoint was localized to a single BAC clone, RP11-290M5, by sequential FISH analysis of clones selected from the NCBI chromosome 1 map. This was further refined to a 580-bp region by Southern blot analysis. A 2.85-kb fragment spanning the der(1) breakpoint was amplified by long-range inverse PCR. The breakpoint on chromosome 1 was shown to lie between the CYR61 and the DDAH1 genes with the der(1) junctional sequence linking the CYR61 gene to the TSPAN3 (TM4SF8) gene on chromosome 15. Confirmatory PCR and FISH mapping of the der(15) showed loss of chromosome material proximal to the breakpoint on chromosome 15, containing the PSTPIP1 and RCN2 genes. On the available evidence we conclude that this translocation does not result in an in-frame gene fusion. Comparative expressed sequence hybridization (CESH) and comparative genomic hybridization (CGH) analysis, showed relative down-regulation of gene expression surrounding the breakpoint, but no gross change in genomic copy number. Real-time quantitative RT-PCR for genes around the breakpoint supported the CESH data. Therefore, here we may have revealed a gene down-regulation mechanism associated with a chromosome translocation, either through small deletion at the breakpoint or through another means of chromosome domain related gene regulation.
Collapse
Affiliation(s)
- J C Strefford
- Cancer Research UK Medical Oncology Unit, Queen Mary and Westfield College, Charterhouse Square, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Yokota T, Kouno J, Adachi K, Takahashi H, Teramoto A, Matsumoto K, Sugisaki Y, Onda M, Tsunoda T. Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, alpha-PIX and sorcin. Acta Neuropathol 2006; 111:29-38. [PMID: 16320026 DOI: 10.1007/s00401-005-1085-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM), the most malignant class of glial neoplasm (grade IV in WHO criteria), carries the worst clinical prognosis among primary brain tumors in adults. To identify a set of genes involved in the tumorigenesis of GBM, we evaluated expression profiles of GBM tissues from 11 patients using a cDNA microarray representing 25,344 human genes. By comparing the profiles with those of normal brain tissue, we identified a number of differentially expressed genes: 54 with increased expression and 45 with reduced expression in GBMs. Semi-quantitative RT-PCR experiments with 6 of those genes confirmed higher expression of DNCH2, ARHGEF6, NPM1 and SRI and lower expression of NRGN and TM4SF2 in GBM tumors. Immunohistochemical staining for 3 of the respective gene products, dynein (product of DNCH2), alpha-PIX (product of ARHGEF6), and sorcin (product of SRI) indicated that this technique might be useful for histological grading of glial tumors. To establish criteria for this diagnostic approach, we scored glial tumor tissues of different histological grades according to the staining results; the scores were significantly higher in anaplastic astrocytomas and GBMs than in diffuse astrocytomas or normal brain tissues. These findings indicated that levels of these three proteins might serve as histological markers for malignant glioma classification.
Collapse
Affiliation(s)
- Takashi Yokota
- Department of Molecular Biology, Institute of Gerontology. Nippon Medical School, 1-396, Kosugi-cho, Nakahara-ku, 211-8533, Kawasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Cell-surface proteins of the tetraspanin family are small, and often hidden by a canopy of tall glycoprotein neighbours in the cell membrane. Consequently, tetraspanins have been understudied and underappreciated, despite their presence on nearly all cell and tissue types. Important new genetic evidence has now emerged, and is bolstered by new insights into the cell biology, signalling and biochemistry of tetraspanins. These new findings provide a framework for better understanding of these mysterious molecules in the regulation of cellular processes, from signalling to motility.
Collapse
Affiliation(s)
- Martin E Hemler
- Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
97
|
Wen G, Ramser J, Taudien S, Gausmann U, Blechschmidt K, Frankish A, Ashurst J, Meindl A, Platzer M. Validation of mRNA/EST-based gene predictions in human Xp11.4 revealed differences to the organization of the orthologous mouse locus. Mamm Genome 2005; 16:934-41. [PMID: 16341673 DOI: 10.1007/s00335-005-0090-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Careful manual annotation of the human reference sequence provides a solid basis for the identification of disease-associated genes. Toward this end, we focused on a medically relevant 2.6-Mb region of the human chromosome Xp11.4 between markers DXS9851 and DXS9751 and identified 16 transcription units according to the Vertebrate Genome Annotation (Vega) rules. In order to validate these annotations, we performed a comprehensive RT-PCR expression analysis and a human-mouse comparison. This revealed, despite the high overall genomic conservation of the region, remarkable differences of the gene content between human and mouse. Whereas 12 of 16 annotations were confirmed by RT-PCR in human tissues, for only seven genes mouse orthologs could be identified and found to be expressed. This indicates that a comprehensive and experimentally supported annotation effort of the human genome simultaneously highlights regions with striking differences in gene organization to other species and may indicate evolutionary events specific to the human lineage demanding further functional analyses.
Collapse
Affiliation(s)
- Gaiping Wen
- Genome Analysis, Institute of Molecular Biotechnology, Beutenbergstr. 11, 07745, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Shoichet SA, Duprez L, Hagens O, Waetzig V, Menzel C, Herdegen T, Schweiger S, Dan B, Vamos E, Ropers HH, Kalscheuer VM. Truncation of the CNS-expressed JNK3 in a patient with a severe developmental epileptic encephalopathy. Hum Genet 2005; 118:559-67. [PMID: 16249883 DOI: 10.1007/s00439-005-0084-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 09/13/2005] [Indexed: 11/24/2022]
Abstract
We have investigated the breakpoints in a male child with pharmacoresistant epileptic encephalopathy and a de novo balanced translocation t(Y;4)(q11.2;q21). By fluorescence in situ hybridisation, we have identified genomic clones from both chromosome 4 and chromosome Y that span the breakpoints. Precise mapping of the chromosome 4 breakpoint indicated that the c-Jun N-terminal kinase 3 (JNK3) gene is disrupted in the patient. This gene is predominantly expressed in the central nervous system, and it plays an established role in both neuronal differentiation and apoptosis. Expression studies in the patient lymphoblastoid cell line show that the truncated JNK3 protein is expressed, i.e. the disrupted transcript is not immediately subject to nonsense-mediated mRNA decay, as is often the case for truncated mRNAs or those harbouring premature termination codons. Over-expression studies with the mutant protein in various cell lines, including neural cells, indicate that both its solubility and cellular localisation differ from that of the wild-type JNK3. It is plausible, therefore, that the presence of the truncated JNK3 disrupts normal JNK3 signal transduction in neuronal cells. JNK3 is one of the downstream effectors of the GTPase-regulated MAP kinase cascade, several members of which have been implicated in cognitive function. In addition, two known JNK3-interacting proteins, beta-arrestin 2 and JIP3, play established roles in neurite outgrowth and neurological development. These interactions are likely affected by a truncated JNK3 protein, and thereby provide an explanation for the link between alterations in MAP kinase signal transduction and brain disorders.
Collapse
Affiliation(s)
- Sarah A Shoichet
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Martin F, Roth DM, Jans DA, Pouton CW, Partridge LJ, Monk PN, Moseley GW. Tetraspanins in viral infections: a fundamental role in viral biology? J Virol 2005; 79:10839-51. [PMID: 16103137 PMCID: PMC1193642 DOI: 10.1128/jvi.79.17.10839-10851.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- F Martin
- Academic Neurology Unit, Division of Genomic Medicine, University of Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
100
|
Subramanian S, West RB, Marinelli RJ, Nielsen TO, Rubin BP, Goldblum JR, Patel RM, Zhu S, Montgomery K, Ng TL, Corless CL, Heinrich MC, van de Rijn M. The gene expression profile of extraskeletal myxoid chondrosarcoma. J Pathol 2005; 206:433-44. [PMID: 15920699 DOI: 10.1002/path.1792] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a soft tissue tumour that occurs primarily in the extremities and is characterized by a balanced translocation most commonly involving t(9;22) (q22;q12). The morphological spectrum of EMC is broad and thus a diagnosis based on histology alone can be difficult. Currently, no systemic therapy exists that improves survival in patients with EMC. In the present study, gene expression profiling has been performed to discover new diagnostic markers and potential therapeutic targets for this tumour type. Global gene expression profiling of ten EMCs and 26 other sarcomas using 42,000 spot cDNA microarrays revealed that the cases of EMC were closely related to each other and distinct from the other tumours profiled. Significance analysis of microarrays (SAM) identified 86 genes that distinguished EMC from the other sarcomas with 0.25% likelihood of false significance. NMB, DKK1, DNER, CLCN3, and DEF6 were the top five genes in this analysis. In situ hybridization for NMB gene expression on tissue microarrays (TMAs) containing a total of 1164 specimens representing 62 different sarcoma types and 15 different carcinoma types showed that NMB was highly expressed in 17 of 22 EMC cases and very rarely expressed in other tumours and thus could function as a novel diagnostic marker. High levels of expression of PPARG and the gene encoding its interacting protein, PPARGC1A, in most EMCs suggest activation of lipid metabolism pathways in this tumour. Small molecule inhibitors for PPARG exist and PPARG could be a potential therapeutic target for EMC.
Collapse
Affiliation(s)
- Subbaya Subramanian
- Department of Pathology, Stanford University Medical Center, Stanford, CA 94035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|