51
|
Abstract
In this study, high-throughput microRNA (miRNA) expression analysis revealed that the expression of miR-140 was associated with chemosensitivity in osteosarcoma tumor xenografts. Tumor cells ectopically transfected with miR-140 were more resistant to methotrexate and 5-fluorouracil (5-FU). Overexpression of miR-140 inhibited cell proliferation in both osteosarcoma U-2 OS (wt-p53) and colon cancer HCT 116 (wt-p53) cell lines, but less so in osteosarcoma MG63 (mut-p53) and colon cancer HCT 116 (null-p53) cell lines. miR-140 induced p53 and p21 expression accompanied with G(1) and G(2) phase arrest only in cell lines containing wild type of p53. Histone deacetylase 4 (HDAC4) was confirmed to be one of the important targets of miR-140. The expression of endogenous miR-140 was significantly elevated in CD133(+hi)CD44(+hi) colon cancer stem-like cells that exhibit slow proliferating rate and chemoresistance. Blocking endogenous miR-140 by locked nucleic acid-modified anti-miR partially sensitized resistant colon cancer stem-like cells to 5-FU treatment. Taken together, our findings indicate that miR-140 is involved in the chemoresistance by reduced cell proliferation through G(1) and G(2) phase arrest mediated in part through the suppression of HDAC4. miR-140 may be a candidate target to develop novel therapeutic strategy to overcome drug resistance.
Collapse
|
52
|
Warters RL, Gaffney DK, Kramer GF, Martinez JD, Cress AE. Transient dephosphorylation of p53 serine 376 as an early response to ionizing radiation. Radiat Res 2009; 171:725-34. [PMID: 19580479 DOI: 10.1667/rr1576.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In a previous paper we reported that the cytoplasmic sequestered p53 in cells of the SK-N-SH neuroblastoma cell line could be induced to translocate to the nucleus by exposure to ionizing radiation. We have extended these studies to determine the fate of p53 in HCT116 colorectal carcinoma cells where constitutive p53 protein resides in the nucleus. A continuous increase in the nuclear p53 protein was observed in irradiated cells beginning 1 h after irradiation that persisted for 8 h. Surprisingly, immunofluorescence microscopy revealed a transient, rapid and sensitive increase in a radiation-induced nuclear dephosphorylated p53 using antibody PAb421, which detects p53 when serine 376 is dephosphorylated. The PAb421 epitope was detectable after exposure to radiation doses as low as 0.5 cGy and was 10 to 20 times more sensitive compared to detection of p53 protein levels. The results are consistent with a radiation-induced, sensitive and rapid dephosphorylation of p53 at serine 376. The rapid increase in the nuclear PAb421 epitope was blocked by the protein serine phosphatase inhibitor calyculin A but was not blocked by the protein synthesis inhibitor cycloheximide, suggesting that serine 376 was dephosphorylated by protein serine phosphatase 1 or 2A acting on pre-existing p53 protein. The data suggest that dephosphorylation of serine 376 on constitutive nuclear p53 is a sensitive and early signaling event in the response of cells to DNA damage induced by ionizing radiation.
Collapse
Affiliation(s)
- Raymond L Warters
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | | | |
Collapse
|
53
|
Bilde A, von Buchwald C, Dabelsteen E, Therkildsen MH, Dabelsteen S. Molecular markers in the surgical margin of oral carcinomas. J Oral Pathol Med 2009; 38:72-8. [PMID: 19192052 DOI: 10.1111/j.1600-0714.2008.00715.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Local or regional lymph node recurrence is the most common pattern of treatment failure in oral squamous cell carcinoma (SCC). The local recurrence rate is 30% even when the surgical resection margin is diagnosed as tumour free. Accumulation of genetic changes in histologically normal epithelium in the surgical resection margin may explain the local recurrence rate. The purpose of this study is to investigate the presence of senescence markers, which may represent early malignant changes in the margin that in routine pathological evaluations are classified as histologically normal. METHODS Formalin-fixed, paraffin-embedded surgical specimens from 16 consecutive patients with oral SCC and a clear surgical margin were obtained. The margin was analysed by immunohistochemistry for p53, p16, Chk2, Laminin-5 and glycosylated oncofetal fibronectin. RESULTS Two patterns of p53 expression were found in the histologically normal epithelium in the surgical resection margin. One was characterized by no protein expression in the majority of cells, except for small clusters of basal and parabasal cells with nuclear staining. The other was characterized by p53 expression in the nuclei of most basal cells. The expression of p16 was confined to small groups of cells in the basal cell layer whereas Chk2 was only seen in one case. Upregulation of the stromal proteins, Laminin-5 or glycosylated oncofetal fibronectin, was only seen at regions of invasion. CONCLUSION Small groups of cells expressing p53 and p16 were found in the surgical resection margin that appeared to be histologically normal and may represent early malignant changes.
Collapse
Affiliation(s)
- Anders Bilde
- Department of Otolaryngology-Head & Neck Surgery, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
54
|
Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res 2008; 466:2114-30. [PMID: 18563507 PMCID: PMC2492997 DOI: 10.1007/s11999-008-0335-z] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/20/2008] [Indexed: 01/31/2023]
Abstract
Osteosarcoma is the most common nonhematologic malignancy of bone in children and adults. The peak incidence occurs in the second decade of life, with a smaller peak after age 50. Osteosarcoma typically arises around the growth plate of long bones. Most osteosarcoma tumors are of high grade and tend to develop pulmonary metastases. Despite clinical improvements, patients with metastatic or recurrent diseases have a poor prognosis. Here, we reviewed the current understanding of human osteosarcoma, with an emphasis on potential links between defective osteogenic differentiation and bone tumorigenesis. Existing data indicate osteosarcoma tumors display a broad range of genetic and molecular alterations, including the gains, losses, or arrangements of chromosomal regions, inactivation of tumor suppressor genes, and the deregulation of major signaling pathways. However, except for p53 and/or RB mutations, most alterations are not constantly detected in the majority of osteosarcoma tumors. With a rapid expansion of our knowledge about stem cell biology, emerging evidence suggests osteosarcoma should be regarded as a differentiation disease caused by genetic and epigenetic changes that interrupt osteoblast differentiation from mesenchymal stem cells. Understanding the molecular pathogenesis of human osteosarcoma could ultimately lead to the development of diagnostic and prognostic markers, as well as targeted therapeutics for osteosarcoma patients.
Collapse
|
55
|
Interferonα enhances etoposide-induced apoptosis in human osteosarcoma U2OS cells by a p53-dependent pathway. Life Sci 2008; 82:393-401. [DOI: 10.1016/j.lfs.2007.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 11/04/2007] [Accepted: 11/24/2007] [Indexed: 01/10/2023]
|
56
|
Kodani A, Sütterlin C. The Golgi protein GM130 regulates centrosome morphology and function. Mol Biol Cell 2007; 19:745-53. [PMID: 18045989 DOI: 10.1091/mbc.e07-08-0847] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Golgi apparatus (GA) of mammalian cells is positioned in the vicinity of the centrosome, the major microtubule organizing center of the cell. The significance of this physical proximity for organelle function and cell cycle progression is only beginning to being understood. We have identified a novel function for the GA protein, GM130, in the regulation of centrosome morphology, position and function during interphase. RNA interference-mediated depletion of GM130 from five human cell lines revealed abnormal interphase centrosomes that were mispositioned and defective with respect to microtubule organization and cell migration. When GM130-depleted cells entered mitosis, they formed multipolar spindles, arrested in metaphase, and died. We also detected aberrant centrosomes during interphase and multipolar spindles during mitosis in ldlG cells, which do not contain detectable GM130. Although GA proteins have been described to regulate mitotic centrosomes and spindle formation, this is the first report of a role for a GA protein in the regulation of centrosomes during interphase.
Collapse
Affiliation(s)
- Andrew Kodani
- Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | | |
Collapse
|
57
|
Yuan XW, Zhu XF, Huang XF, Sheng PY, He AS, Yang ZB, Deng R, Feng GK, Liao WM. Interferon-alpha enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. Acta Pharmacol Sin 2007; 28:1835-41. [PMID: 17959036 DOI: 10.1111/j.1745-7254.2007.00662.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To determine whether interferon-alpha(IFNalpha) can enhance doxorubicin sensitivity in osteosarcoma cells and its molecular mechanism. METHODS Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was studied using Flow cytometry analysis, Hoechst33258 staining, DNA fragmentation assay, as well as the activation of caspase-3 and poly (ADP-ribose) polymerase. Protein expression was detected by Western blotting. The dependence of p53 was determined using p53-siRNA transfection. RESULTS IFNalpha increased doxorubicin-induced cytotoxicity to a much greater degree through apoptosis in human osteosarcoma p53-wild U2OS cells, but not p53-mutant MG63 cells. IFNalpha markedly upregulated p53, Bax, Mdm2, and p21, downregulated Bcl-2, and activated caspase-3 and PARP cleavage in response to doxorubicin in U2OS cells. Moreover, the siRNA-mediated silencing of p53 significantly reduced the IFNalpha/doxorubicin combination-induced cytotoxicity and PARP cleavage. CONCLUSION IFNalpha enhances the sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. The proper combination with IFNalpha and conventional chemotherapeutic agents may be a rational strategy for improving the treatment of osteosarcoma with functional p53.
Collapse
Affiliation(s)
- Xiang-wei Yuan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Clark JCM, Dass CR, Choong PFM. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol 2007; 134:281-97. [PMID: 17965883 DOI: 10.1007/s00432-007-0330-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/08/2007] [Indexed: 12/11/2022]
Abstract
Traditional prognostic determinants in osteosarcoma have included demographics (age, sex), tumour size, site, stage, and the response to chemotherapy. Many of these are determined using varying techniques and units of measurement, which can make comparison between studies difficult. The absence of survival difference between limb sparing surgery and amputation has been repeatedly demonstrated in primary disease, and even in the setting of pathological fracture. On the other hand, there is still some controversy over the existence of increased local recurrence for limb-sparing surgery, and the implications of this. Commonly used prognostic determinants such as metastases, and response to chemotherapy enable a high degree of prognostic accuracy but usually at a late stage in the course of disease. Leading on from this, there is a need to uncover molecular pathways with specific influence over osteosarcoma progression to facilitate earlier treatment changes. Some important pathways are already being defined, for example the association of CXCR4 with metastases on presentation, the likelihood of doxorubicin resistance with positive P-glycoprotein, and the reduced survival prediction of over expressed survivin. It is anticipated that the future of osteosarcoma treatment will involve treatment tailored to the molecular profile of tumours at diagnosis, adjuvant therapy directed towards dysfunctional molecular pathways rather than the use of cytotoxics, and a more standardised approach to the measurement of clinical prognostic factors.
Collapse
Affiliation(s)
- Jonathan C M Clark
- Department of Orthopaedics, University of Melbourne, St. Vincent's Hospital, P.O. Box 2900, Fitzroy, Melbourne, VIC 3065, Australia
| | | | | |
Collapse
|
59
|
Montanaro L, Mazzini G, Barbieri S, Vici M, Nardi-Pantoli A, Govoni M, Donati G, Treré D, Derenzini M. Different effects of ribosome biogenesis inhibition on cell proliferation in retinoblastoma protein- and p53-deficient and proficient human osteosarcoma cell lines. Cell Prolif 2007; 40:532-49. [PMID: 17635520 PMCID: PMC6495848 DOI: 10.1111/j.1365-2184.2007.00448.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To evaluate the effects of rRNA synthesis inhibition on cell cycle progression and cell population growth according to the RB and p53 status. MATERIAL AND METHODS RB- and p53-proficient U2OS cells and the RB- and p53-deficient SAOS-2 cells were used, rRNA transcription hindered by actinomycin D, and cell cycle analysed by flow cytometry. RESULTS One hour of actinomycin D treatment induced in U2OS cells a block at the cell cycle checkpoints G(1)-S and G(2)-M, which was removed only after rRNA synthesis was resumed. rRNA synthesis inhibition did not influence cell cycle progression in SAOS-2 cells. No effect on cell cycle progression after actinomycin D-induced rRNA inhibition was also found in U2OS cells silenced for RB and p53 expression. A mild perturbation of cell cycle progression was observed in U2OS cells silenced for the expression of either RB or p53 alone. We also treated U2OS and SAOS-2 cells with actinomycin D for 1 h/day for 5 days. This treatment lightly reduced growth rate of the U2OS cell population, whereas cell population growth of SAOS-2 cells was completely inhibited. A marked reduction of ribosome content occurred in SAOS-2 cells after the long-term actinomycin D treatment, whereas no modification was observed in U2OS cells. CONCLUSIONS These results demonstrate that inhibition of ribosome biogenesis does not hinder cell cycle progression in RB- and p53-deficient cells. A daily-repeated transitory inhibition of ribosome biogenesis leads to a progressive reduction of ribosome content with the consequent extinction of cancer cell population lacking RB and p53.
Collapse
Affiliation(s)
- L Montanaro
- Dipartimento di Patologia Sperimentale, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Chipoy C, Brounais B, Trichet V, Battaglia S, Berreur M, Oliver L, Juin P, Rédini F, Heymann D, Blanchard F. Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53. Oncogene 2007; 26:6653-64. [PMID: 17471233 DOI: 10.1038/sj.onc.1210492] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncostatin M (OSM), a cytokine of the interleukin-6 family, induces growth arrest and differentiation of osteoblastic cells into glial-like/osteocytic cells. Here, we asked whether OSM regulates apoptosis of normal or transformed (osteosarcoma) osteoblasts. We show that OSM sensitizes cells to apoptosis induced by various death inducers such as staurosporine, ultraviolet or tumor necrosis factor-alpha. Apoptosis is mediated by the mitochondrial pathway, with release of cytochrome c from the mitochondria to the cytosol and activation of caspases-9 and -3. DNA micro-arrays revealed that OSM modulates the expression of Bax, Bad, Bnip3, Bcl-2 and Mcl-1. Pharmacological inhibitors, dominant-negative signal transducer and activator of transcriptions (STATs), stable RNA interference and knockout cells indicated that the transcription factors p53 and STAT5, which are activated by OSM, are implicated in the sensitization to apoptosis, being responsible for Bax induction and Bcl-2 reduction, respectively. These results indicate that, in addition to growth arrest and induced differentiation, OSM also sensitizes normal and transformed osteoblasts to apoptosis by a mechanism implicating (i) activation and nuclear translocation of STAT5 and p53 and (ii) an increased Bax/Bcl-2 ratio. Therefore, association of OSM with kinase inhibitors such as Sts represents new therapeutic opportunities for wild-type p53 osteosarcoma.
Collapse
|
61
|
Dowell JD, Tsai SC, Dias-Santagata DC, Nakajima H, Wang Z, Zhu W, Field LJ. Expression of a mutant p193/CUL7 molecule confers resistance to MG132- and etoposide-induced apoptosis independent of p53 or Parc binding. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:358-66. [PMID: 17229476 PMCID: PMC1876763 DOI: 10.1016/j.bbamcr.2006.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Revised: 11/17/2006] [Accepted: 11/30/2006] [Indexed: 11/21/2022]
Abstract
p193/CUL7 is an E3 ubiquitin ligase initially identified as an SV40 Large T Antigen binding protein. Expression of a dominant interfering variant of mouse p193/CUL7 (designated 1152stop) conferred resistance to MG132- and etoposide-induced apoptosis in U2OS cells. Immune precipitation/Western analyses revealed that endogenous p193/CUL7 formed a complex with Parc (a recently identified parkin-like ubiquitin ligase) and p53. Apoptosis resistance did not result from 1152stop-mediated disruption of the endogenous p193/CUL7 binding partners. Moreover, 1152stop molecule did not directly bind to endogenous p193/CUL7, Parc or p53. These data suggested a role for p193/CUL7 in the regulation of apoptosis independently of p53 and Parc activity.
Collapse
Affiliation(s)
- Joshua D Dowell
- Wells Center for Pediatric Research, Division of Pediatric Cardiology and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202-5225, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Zheng X, Rao XM, Snodgrass CL, McMasters KM, Zhou HS. Selective replication of E1B55K-deleted adenoviruses depends on enhanced E1A expression in cancer cells. Cancer Gene Ther 2006; 13:572-83. [PMID: 16341141 DOI: 10.1038/sj.cgt.7700923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
E1B55K-deleted dl1520 could selectively replicate in cancer cells and has been used in clinical trials as an antitumor agent. The mechanism of virus selective replication in cancer cells, including a possible role of p53, is unclear. Studies with established cancer cell lines have demonstrated that some cancer cells are resistant to dl1520 replication, regardless of the p53 status. Hep3B cells supported the E1b-deleted adenoviruses to replicate, whereas Saos2 cells were resistant to viral replication. We applied p53-null Hep3B and Saos2 cells as models to clarify the replication ability of E1B55K-deleted adenoviruses with different expression levels of E1a. We show that lower E1A expression in Saos2 may be the reason for the poor replication in some cancer cells due to the fact that E1a promoter was less activated in Saos2 than in Hep3B. We also demonstrate that the E1B55K protein can increase E1A expression in Saos2 cells for efficient virus replication. In addition, the upstream regions of the E1a promoter have transcriptional activity in Hep3B cells but not in Saos2 cells. The viral E1B55K protein may activate cancer cellular factor(s) that targets the upstream regions of the E1a gene to increase its expression. This is the first study demonstrating that E1B55K protein affects the E1A production levels that is related to cancer selective replication. Our studies have suggested that increase of E1A expression from E1b-deleted adenoviruses may enhance killing cancer cells that otherwise are resistant to viral replication.
Collapse
Affiliation(s)
- X Zheng
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
63
|
Harmston WR, Taddayon P, Kolman K, Chandar N. Effect of overexpression of estrogen receptors in osteoblasts. In Vitro Cell Dev Biol Anim 2006; 41:264-71. [PMID: 16409112 DOI: 10.1290/0503020.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our study focused on investigating the mechanism of action of estrogen in regulating p53 levels within osteoblasts. In the studies reported here, we attempted to understand the role of estrogen receptors, ER-alpha and ER-beta, in the regulation of p53 and osteoblast differentiation. We stably expressed ER-alpha and ER-beta in ROS 17/2.8 cells and isolated several single cell clones. These clones were initially characterized for expression of the exogenous receptors, and representative clones from each type were chosen for further analyses. Cell proliferation, alkaline phosphatase activity, and the viability of these clones in culture were tested. The cells expressing exogenous ER-alpha exhibited more differentiated characteristics than cells expressing ER-beta. Morphologically, ER-beta-overexpressing cells were more rounded than the ER-alpha-overexpressing cells, which were more elongated and fibroblastic in appearance. The ER-beta-expressing cells had a higher survival and growth rate when compared with ER-alpha cells. The ER-alpha clones were not as viable as ER-beta clones, and some of the ER-alpha cell lines showed signs of senescence, with an increase in senescence-associated (SA) galactosidase activity. The basal levels of p53 functional activity were higher in cells expressing ER-alpha as was protein expression of the p53-regulated gene p21. The significance of these receptors to osteoblast differentiation and p53 regulation is discussed.
Collapse
Affiliation(s)
- W R Harmston
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, USA
| | | | | | | |
Collapse
|
64
|
Koyama T, Mikami T, Koyama T, Imakiire A, Yamamoto K, Toyota H, Mizuguchi J. Apoptosis induced by chemotherapeutic agents involves c-Jun N-terminal kinase activation in sarcoma cell lines. J Orthop Res 2006; 24:1153-62. [PMID: 16705697 DOI: 10.1002/jor.20176] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular mechanisms underlying chemotherapeutic agent-induced apoptosis in sarcoma cells are not well known. Induction of apoptosis is regulated by several components including mitogen-activated protein kinases (MAPKs) comprising ERK, p38MAPKs, and c-Jun N-terminal kinase (JNK). In the present study, we examined whether activation of JNK is induced by the chemotherapeutic agents cis-diaminedichloroplatinum (cisplatin, CDDP) or doxorubicin (DXR), and whether the ectopic expression of constitutively active (MKK7-JNK1) or dominant-negative form of JNK (dnJNK) influenced apoptosis in response to the CDDP or DXR in sarcoma cell lines MG-63 and SaOS-2. The CDDP or DXR induced JNK activation in the both cell lines, as assessed by Western blotting using phosphospecific antibodies. A transient expression of the activated form of JNK sensitized the MG-63 and SaOS-2 cells to the drug-induced apoptosis, while dnJNK1 reduced the proportion of apoptotic cell death. Apoptosis was determined by flow cytometry using annexin-V Cy5. Collectively, our results indicate that JNK activation is involved in apoptotic cell death in sarcoma cell lines following stimulation with CDDP or DXR.
Collapse
Affiliation(s)
- Takaaki Koyama
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402 Japan
| | | | | | | | | | | | | |
Collapse
|
65
|
Nishio J, Gentry JD, Neff JR, Nelson M, Daniels W, Perry D, Gatalica Z, Bridge JA. Monoallelic deletion of the p53 gene through chromosomal translocation in a small cell osteosarcoma. Virchows Arch 2006; 448:852-6. [PMID: 16596382 DOI: 10.1007/s00428-006-0181-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Small cell osteosarcoma is a rare bone tumor of high-grade malignancy that most often arises in the metaphysis of long bones in the second decade of life. Cytogenetic and molecular genetic findings in small cell osteosarcoma are poorly defined. Conventional cytogenetic analysis of a small cell osteosarcoma arising in the proximal tibia of a 9-year-old male revealed a diploid chromosomal complement with complex structural rearrangements involving chromosomes 6, 16, and 17. Immunohistochemical assessment of p53 protein expression revealed nuclear p53 immunoreactivity in approximately 15% of the neoplastic cells. Subsequent fluorescence in situ hybridization (FISH) analyses confirmed loss of the p53 gene locus on the derivative chromosome 17 homolog and were negative for amplification of the MDM2, CDK4, c-MYC, HER-2/neu, CCND1, and COPS3 gene loci. To the best of our knowledge, this represents the first demonstration of monoallelic deletion of p53 in small cell osteosarcoma, suggesting that p53 alterations may play an important role in the development of small cell osteosarcoma as well as conventional osteosarcoma.
Collapse
Affiliation(s)
- Jun Nishio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Lim MJ, Min SH, Lee JJ, Kim IC, Kim JT, Lee DC, Kim NS, Jeong S, Kim MN, Kim KD, Lim JS, Han SB, Kim HM, Heo DS, Yeom YI. Targeted therapy of DNA tumor virus-associated cancers using virus-activated transcription factors. Mol Ther 2006; 13:899-909. [PMID: 16461008 DOI: 10.1016/j.ymthe.2005.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/21/2005] [Accepted: 11/29/2005] [Indexed: 12/16/2022] Open
Abstract
DNA tumor virus-mediated tumorigenic processes typically involve functional inactivation of cellular tumor suppressors pRB and p53 by viral oncoproteins, with concomitant activation of oncogenic transcription factors such as E2Fs. This feature could be exploited to design a treatment for corresponding malignancies. Here, we report a gene therapy strategy for DNA tumor virus-associated cancers using a synthetic, E2F-regulated gene expression system named pESM6. This system contains multimerized E2F-responsive elements in combination with the binding sites for ubiquitous transcription factors Sp1 and CTF/NF1. pESM6 could drive a high-level transgene expression comparable to that of the CMV IE promoter and exert constitutive activity in cells expressing DNA tumor viral oncogenes. In contrast, it was effectively repressed by pRB and thus only minimally active in nontransformed cells. Expression of cytosine deaminase from pESM6 resulted in a highly efficient and specific killing of HPV-transformed fibroblasts (C3) after treatment with the prodrug 5-fluorocytosine. Also, an effective tumor mass reduction was observed when the vector was injected directly into C3 tumors implanted in C57BL/6 mice. pESM6 showed a superior performance throughout these experiments compared to the previously known E2F-regulated gene vector. These results clearly demonstrate the potential usability of pESM6 for the gene therapy of DNA tumor virus-associated cancers.
Collapse
Affiliation(s)
- Mi Jung Lim
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yusong-gu, Taejon 305-333, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zhu JJ, Li FB, Zhu XF, Liao WM. The p33ING1b tumor suppressor cooperates with p53 to induce apoptosis in response to etoposide in human osteosarcoma cells. Life Sci 2006; 78:1469-77. [PMID: 16325212 DOI: 10.1016/j.lfs.2005.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Accepted: 07/12/2005] [Indexed: 02/03/2023]
Abstract
p33ING1b induces cell cycle arrest and stimulates DNA repair, apoptosis and chemosensitivity. The magnitude of some p33ING1b effects may be due to activation of the tumor suppressor p53. To investigate if the p33ING1b protein affected chemosensitivity of osteosarcoma cells, we overexpressed p33ING1b in p53+/+ U2OS cells or in p53-mutant MG63 cells, and then assessed for growth arrest and apoptosis after treatment with etoposide. p33ING1b increased etoposide-induced growth inhibition and apoptosis to a much greater degree in p53+/+ U2OS cells than in p53-mutant MG63 cells. Moreover, ectopic expression of p33ING1b markedly upregulated p53, p21WAF1 and bax protein levels and activated caspase-3 protein kinase in etoposide-treated U2OS cells. Together, our data indicate that p33ING1b prominently enhances etoposide-induced apoptosis through p53-dependent pathways in human osteosarcoma cells. p33ING1b may be an important marker and/or therapeutic target in the prevention and treatment of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Jin-Jun Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | | | | | | |
Collapse
|
68
|
Oh JH, Kim HS, Kim HH, Kim WH, Lee SH. Aberrant methylation of p14ARF gene correlates with poor survival in osteosarcoma. Clin Orthop Relat Res 2006; 442:216-22. [PMID: 16394764 DOI: 10.1097/01.blo.0000188063.56091.69] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
UNLABELLED We studied the methylation status of the CpG promoter regions of the p16 and p14 genes, mutations of four exons of the CDKN2A gene, and expressions of their corresponding proteins. Thirty-two frozen osteosarcoma tissues were used for methylation-specific polymerase chain reaction and sequence analysis. Immunohistochemical staining for p16 and p14 proteins was done. The histologic and clinical data were analyzed to find their prognostic implications. The promoter of p16 gene was methylated in 16%, and p14 in 47%. Poor survival was related to methylation of p14. The methylation of p14 correlated with down-regulation of its protein expression. The methylation of p14 showed the highest hazard ratio by multivariate survival analysis. Our data suggest methylation of the CDKN2A gene is the main mechanism of its protein repression. For the p14 gene, methylation of the promoter region was related to repression of p14 protein and poor prognosis. LEVEL OF EVIDENCE Prognostic study, Level II (retrospective study). See the Guidelines for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
69
|
Chandar N, Swindle J, Szajkovics A, Kolman K. Relationship of bone morphogenetic protein expression during osteoblast differentiation to wild type p53. J Orthop Res 2005; 23:1345-53. [PMID: 15994055 DOI: 10.1016/j.orthres.2005.04.010.1100230616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 04/27/2005] [Indexed: 02/04/2023]
Abstract
We have previously shown p53 to have a specific role in osteoblast differentiation by its ability to regulate expression of certain bone specific proteins. In this study, we show mineralized matrix formation in vivo to be directly related to the presence of wild type p53 in osteoblastic osteosarcoma cells. In order to further understand the importance of p53 in differentiation, we investigated the relationship between p53 and Bone Morphogenetic Proteins (BMPs) (BMP 1, 2, 3A, 3B (GDF-10), 4, 5, 6, 7, 8A and 8B) during osteoblast differentiation. The expression of several BMPs were tested using RNase Protection Assay in differentiating ROS17/2.8 osteoblastic osteosarcoma cells. The expression of BMPs 1, 2, 3a, 3b and 7 showed time dependent modulation during in vitro differentiation. In order to determine if p53 has a role in this process, we used a murine osteosarcoma cell line stably expressing a temperature sensitive p53. Cells were exposed to ascorbic acid and glycerophosphates to hasten in vitro osteoblast differentiation and maintained either at 32 or 37 degrees C for expression of the wild type or mutant p53 phenotype. The expression of BMP-2, BMP-4 and BMP-7 were modulated in a p53 dependent fashion. We were able to confirm the p53 dependency of BMP-2 independently by RT-PCR. While BMP-2 expression was evident in the presence of both wild type and mutant p53, regulated expression was seen only in cells expressing wild type p53. Transient over expression of wild type p53 did not result in the same BMP-2 response as stable expression showing that the presence of p53 may be important for an orderly development of osteoblast differentiation rather than a direct effect on gene expression. The functional relationship between p53 and these bone specific markers is discussed.
Collapse
Affiliation(s)
- Nalini Chandar
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, 555, 31st Street, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
70
|
Okamura H, Yoshida K, Morimoto H, Haneji T. PTEN expression elicited by EGR-1 transcription factor in calyculin A-induced apoptotic cells. J Cell Biochem 2005; 94:117-25. [PMID: 15517593 DOI: 10.1002/jcb.20283] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PTEN is a tumor suppressor gene encoding a phosphatase that negatively regulates cell survival mediated by the PI3-kinase-Akt pathway. The gene for transcription factor EGR-1 is an early response gene essential for cellular growth, proliferation, and differentiation. Protein phosphatase inhibitors including calyculin A and okadaic acid are potent inducers of apoptosis in several cell lines; however, the molecular mechanisms underlying their action are unknown. The purpose of this study was to examine the expression of PTEN and EGR-1 and the phosphorylation status of EGR-1 and Akt in calyculin A-treated human squamous carcinoma cells (SCCTF). Phosphorylation of EGR-1 and upregulation of PTEN expression were observed to occur in SCCTF cells treated with calyculin A in time- and dose-dependent fashions. The level of phosphorylated Akt decreased as the expression of PTEN protein increased in the calyculin A-treated SCCTF cells. Calyculin A-stimulated expression of EGR-1 and PTEN might be p53 independent, because the expression of them was also detected in p53-null Saos-2 cells. RNA interference using double-stranded RNA specific for the EGR-1 gene inhibited not only EGR-1 expression but also PTEN expression in SCCTF cells treated or not with calyculin A. Calyculin A induced nuclear fragmentation and chromatin condensation in SCCTF cells. The present results suggest that the level of PTEN expression and the phosphorylation status of Akt were associated with apoptosis induced by calyculin A. These observations also support the view that EGR-1 regulates PTEN expression in the initial steps of the apoptotic pathway.
Collapse
Affiliation(s)
- Hirohiko Okamura
- Department of Histology and Oral Histology, School of Dentistry, The University of Tokushima, Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | |
Collapse
|
71
|
Hofer-Warbinek R, Schmid JA, Mayer H, Winsauer G, Orel L, Mueller B, Wiesner C, Binder BR, de Martin R. A highly conserved proapoptotic gene, IKIP, located next to the APAF1 gene locus, is regulated by p53. Cell Death Differ 2005; 11:1317-25. [PMID: 15389287 DOI: 10.1038/sj.cdd.4401502] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We describe here the identification and initial characterization of a novel human gene termed IKIP (I kappa B kinase interacting protein) that is located on chromosome 12 in close proximity to APAF1 (apoptotic protease-activating factor-1). IKIP and APAF1 share a common 488 bp promoter from which the two genes are transcribed in opposite directions. Three IKIP transcripts are generated by differential splicing and alternative exon usage that do not show significant homology to other genes in the databases. Similar to APAF1, expression of IKIP is enhanced by X-irradiation, and both genes are dependent on p53. Moreover, IKIP promotes apoptosis when transfected into endothelial cells. We conclude that IKIP is a novel p53 target gene with proapoptotic function.
Collapse
Affiliation(s)
- R Hofer-Warbinek
- Competence Center Biomolecular Therapeutics GmbH, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Kaplan BLF, Moore TV, Schreiber K, Callender GG, Schreiber H, Nishimura MI. A new murine tumor model for studying HLA-A2-restricted anti-tumor immunity. Cancer Lett 2005; 224:153-66. [PMID: 15911111 DOI: 10.1016/j.canlet.2004.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/23/2004] [Accepted: 11/01/2004] [Indexed: 11/28/2022]
Abstract
HLA-A2/K(b) transgenic mice have been powerful tools for studying HLA-A2-restricted anti-tumor immunity. Two tumor lines were established from an aged HLA-A2/K(b) transgenic mouse that developed spontaneous tumors in the right limb and lung. Histopathologic analysis of the tumor was consistent with an osteosarcoma that had metastasized to the lung. The cells from the primary tumor and the lung metastasis were adapted to culture and are designated Ag201P and Ag201M, respectively. Both Ag201P and Ag201M induced tumors in mice, indicating that the established cell lines are tumorigenic. Both tumor lines expressed HLA-A2/K(b) as assessed by RT-PCR and immunofluorescence analysis. Furthermore, the HLA-A2/K(b) molecules were functional on both tumor lines as demonstrated by their ability to present exogenously loaded HLA-A2-restricted peptides to human HLA-A2-restricted T cells. More importantly, endogenously expressed HLA-A2-restricted epitopes were processed and presented in the context of HLA-A2/K(b) in Ag201P and Ag201M cells to human HLA-A2-restricted T cells. Thus, Ag201P and Ag201M are two new murine tumor lines that express functional HLA-A2/K(b), and represent potentially invaluable tools to study HLA-A2-restricted anti-tumor immunity in mice.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Department of Surgery, University of Chicago, 5841 S. Maryland Avenue, MC 5031, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
73
|
Li WD, Wang MJ, Ding F, Yin DL, Liu ZH. Cytotoxic effect of a non-peptidic small molecular inhibitor of the p53-HDM2 interaction on tumor cells. World J Gastroenterol 2005; 11:2927-31. [PMID: 15902730 PMCID: PMC4305661 DOI: 10.3748/wjg.v11.i19.2927] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate if non-peptidic small molecular inhibitors of the p53-HDM2 interaction could restore p53 function and kill tumor cells.
METHODS: A series of non-peptidic small HDM2 inhibitors were designed by computer-aided model and synthesized by chemical method. Syl-155 was one of these inhibitors. Cytotoxic effect of syl-155 on three tumor cell lines with various states of p53, HT1080 (wild-type p53), KYSE510 (mutant p53), MG63 (p53 deficiency) was evaluated by MTT assay, Western blot and flow cytometry.
RESULTS: Syl-155 stimulated the accumulation of p53 and p21 protein in HT1080 cells expressing wild-type p53, but not in KYSE510 and MG63 cells. Consequently, syl-155 induced cell cycle arrest and apoptosis in HT1080 cells.
CONCLUSION: Non-peptidic small molecular inhibitors of the p53-HDM2 interaction show promise in treatment of tumors expressing wild-type p53.
Collapse
Affiliation(s)
- Wen-Dong Li
- National Laboratory of Molecular Oncology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | |
Collapse
|
74
|
Hellwinkel OJC, Müller J, Pollmann A, Kabisch H. Osteosarcoma cell lines display variable individual reactions on wildtype p53 and Rb tumour-suppressor transgenes. J Gene Med 2004; 7:407-19. [PMID: 15538723 DOI: 10.1002/jgm.684] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most widely studied gene therapeutic strategies for cancer is the introduction of tumour-suppressor genes-generally p53-into the target cells. As the genes of p53 and/or retinoblastoma (Rb) are mutated in the major part of osteosarcomas (OS), we aimed to study the effect of p53 and Rb transgenes on a panel of five different osteosarcoma cell lines. METHODS OS cell lines were transduced by adenoviral vectors delivering the transcription units of the wildtype p53 and the Rb gene. Effects of the transgenes alone and at additional cytostatic stress were studied by proliferation, alive/dead and cell cycle assays. RESULTS The individual cells lines displayed divergent reactions to p53- or Rb-transgene delivery reaching from cell death (SaOs-2, U2OS at p53 transduction) over stopped or lowered cell division (MG-63, K-HOS, SJSA-1 at p53 and Rb transduction) to nearly unhindered cell growth (U2OS at Rb transduction). In those OS cell lines reacting with lowered cell division to p53 or Rb delivery, cytostatics only moderately intensified the transgene effects. Surprisingly, these reactions were apparently not dependent on the functional status of the cellular p53 and/or Rb genes or on differences in the infectability of the cell lines by the adenoviral vectors. Most interestingly, the respective effects of the p53 or Rb transgenes were not multiplied by simultaneous transduction of both tumour-suppressor genes. CONCLUSIONS The application of wildtype tumour-suppressor gene therapy on genetically variable osteosarcomas may be efficient only in yet not identified genetic subgroups of this tumour entity. Hyperactive tumour-suppressor transgenes could be an alternative.
Collapse
Affiliation(s)
- Olaf J C Hellwinkel
- Department of Pediatric Hematology and Oncology, Clinic of Children's Health, University-Hospital Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
75
|
Wong LY, Matchett GA, Wilson AC. Transcriptional activation by the Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen is facilitated by an N-terminal chromatin-binding motif. J Virol 2004; 78:10074-85. [PMID: 15331740 PMCID: PMC514975 DOI: 10.1128/jvi.78.18.10074-10085.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 03/10/2004] [Indexed: 11/20/2022] Open
Abstract
In immunocompromised patients, infection with Kaposi's sarcoma-associated herpesvirus (KSHV) can give rise to Kaposi's sarcoma and several lymphoproliferative disorders. In these tumors, KSHV establishes a latent infection in many of the rapidly proliferating and morphologically abnormal cells. Only a few viral gene products are expressed by the latent virus, and one of the best characterized is the latency-associated nuclear antigen (LANA), a nuclear protein required for the maintenance of viral episomal DNA in the dividing host cell. LANA can also activate or repress an assortment of cellular and viral promoters and may contribute to pathogenesis by allowing the proliferation and survival of host cells. Here we show that activation of the human E2F1 and cyclin-dependent kinase-2 (CDK2) promoters requires elements from both the N- and C-terminal regions of LANA. Deletion of the first 22 amino acids, which are necessary for episome tethering, does not affect nuclear localization but significantly reduces transactivation. Within the deleted peptide, we have identified a short sequence, termed the chromatin-binding motif (CBM), that binds tightly to interphase and mitotic chromatin. A second chromatin-binding activity resides in the C terminus but is not sufficient for optimal transactivation. Alanine substitutions within the CBM reveal a close correlation between the transactivation and chromatin binding activities, implying a mechanistic link. In contrast to promoter activation, we find that the 223 amino acids of the LANA C terminus are sufficient to inhibit p53-mediated activation of the human BAX promoter, indicating that the CBM is not required for all transcription-related functions.
Collapse
Affiliation(s)
- Lai-Yee Wong
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | | | | |
Collapse
|
76
|
Chandar N, Logan D, Szajkovics A, Harmston W. Gene expression changes accompanying p53 activity during estrogen treatment of osteoblasts. Life Sci 2004; 75:2045-55. [PMID: 15312749 DOI: 10.1016/j.lfs.2004.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/24/2004] [Indexed: 11/15/2022]
Abstract
Estrogen is known to be anabolic for bone and we have used estrogen treatment as a paradigm to understand how p53 may affect osteoblast differentiation. In previous studies we have shown estrogen treatment to increase p53 functional activity in osteoblasts. Estrogen has been suggested to inhibit apoptosis in osteoblasts. Since the significance of a p53 increase during estrogen treatment is not apparent, we investigated the environment within osteoblasts after treatment with estrogen. We observed two peaks of p53 activity during continuous treatment of 17-[beta]-estradiol (E2) for 72h. The gene expression profile of different cell cycle regulators and apoptosis related genes at different times during treatment with 17-[beta]-estradiol were tested using gene arrays. There was an early increase in expression of several genes involved in apoptosis. This was followed by changes in expression of several genes involved in cell survival and stress response. The second peak of activity was associated with increase in expression of cell cycle regulators. Our results suggest that p53 activity may be a result of activation of several signaling pathways involving apoptosis, cell survival and cell cycle arrest. P53 may have a role in integrating these responses, which eventually results in cell cycle arrest and expression of differentiation markers.
Collapse
Affiliation(s)
- Nalini Chandar
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, 555, 31st street, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
77
|
Tanimoto Y, Yokozeki M, Hiura K, Matsumoto K, Nakanishi H, Matsumoto T, Marie PJ, Moriyama K. A soluble form of fibroblast growth factor receptor 2 (FGFR2) with S252W mutation acts as an efficient inhibitor for the enhanced osteoblastic differentiation caused by FGFR2 activation in Apert syndrome. J Biol Chem 2004; 279:45926-34. [PMID: 15310757 DOI: 10.1074/jbc.m404824200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apert syndrome is an autosomal dominant disease characterized by craniosynostosis and bony syndactyly associated with point mutations (S252W and P253R) in the fibroblast growth factor receptor (FGFR) 2 that cause FGFR2 activation. Here we investigated the role of the S252W mutation of FGFR2 on osteoblastic differentiation. Osteoblastic cells derived from digital bone in two Apert patients with the S252W mutation showed more prominent alkaline phosphatase activity, osteocalcin and osteopontin mRNA expression, and mineralized nodule formation compared with the control osteoblastic cells derived from two independent non-syndromic polydactyly patients. Stable clones of the human MG63 osteosarcoma cells (MG63-Ap and MG63-IIIc) overexpressing a splice variant form of FGFR2 with or without the S252W mutation (FGFR2IIIcS252W and FGFR2IIIc) showed a higher RUNX2 mRNA expression than parental MG63 cells. Furthermore MG63-Ap exhibited a higher osteopontin mRNA expression than did MG63-IIIc. The enhanced osteoblastic marker gene expression and mineralized nodule formation of the MG63-Ap was inhibited by the conditioned medium from the COS-1 cells overexpressing the soluble FGFR2IIIcS252W. Furthermore the FGF2-induced osteogenic response in the mouse calvarial organ culture system was blocked by the soluble FGFR2IIIcS252W. These results show that the S252W mutation in the FGFR2 gene enhances the osteoblast phenotype in human osteoblasts and that a soluble FGFR2 with the S252W mutation controls osteoblast differentiation induced by the S252W mutation through a dominant negative effect on FGFR2 signaling in Apert syndrome.
Collapse
Affiliation(s)
- Yukiho Tanimoto
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Uramoto H, Hackzell A, Wetterskog D, Ballági A, Izumi H, Funa K. pRb, Myc and p53 are critically involved in SV40 large T antigen repression of PDGF beta-receptor transcription. J Cell Sci 2004; 117:3855-65. [PMID: 15265983 DOI: 10.1242/jcs.01228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the PDGF beta-receptor is tightly regulated during a normal cell cycle. c-Myc and p73alpha repress transcription of the receptor through interaction with NF-Y. In ST15A cells which stably express the temperature-sensitive SV40 large T antigen (LT) the receptor expression and ligand binding decreased under the permissive condition. Transient expression of the LT, but not small t, decreased the endogenous receptor expression at mRNA and protein levels in NIH3T3 cells but not in the myc-null HO15.19 cells. The wild-type LT, but not the various pRb or p53 binding defective LT mutants, represses the PDGF beta-receptor promoter activity. Moreover, the inability of the LT-mediated repression in the myc-null cells, the Rb-null 3T3 cells, and the Saos-2 cells lacking pRb and p53, indicates that Myc, pRb and p53 are all necessary elements. PDGF beta-receptor promoter-luciferase assays revealed that the CCAAT motif is important for the repression. Furthermore, p53 was found to increase the promoter activity mainly via the upstream Sp1 binding sites together with the CCAAT motif in the NIH 3T3 cells. This was confirmed by Schneider's Drosophila line (SL2) cells deficient in both endogenous NF-Y and Sp1. Chromatin immunoprecipitation using ST15A cells revealed that both LT and p53 bound the PDGF beta-receptor promoter and the binding of p53 diminished when LT was expressed in the permissive condition. However, LT binds the promoter in the absence of pRb and p53 in Saos-2 cells stably expressing LT. These results suggest that LT binds the promoter and interferes with NF-Y and Sp1 to repress it in the presence of Myc, pRb and p53.
Collapse
Affiliation(s)
- Hidetaka Uramoto
- Department of Cell Biology, Institute of Anatomy and Cell Biology, Göteborg University, Box 420, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
79
|
Funato N. Basic Helix-Loop-Helix (bHLH) Factors in Osteoblast Differentiation. J Oral Biosci 2004. [DOI: 10.1016/s1349-0079(04)80002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
80
|
Naganuma A, Dansako H, Nakamura T, Nozaki A, Kato N. Promotion of microsatellite instability by hepatitis C virus core protein in human non-neoplastic hepatocyte cells. Cancer Res 2004; 64:1307-14. [PMID: 14973066 DOI: 10.1158/0008-5472.can-03-2992] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatitis C virus proteins exert an effect on a variety of cellular functions, including gene expression, signal transduction, and apoptosis, and because they possess oncogenic potentials, they have also been suggested to play an important role in hepatocarcinogenesis. Although the mechanisms of hepatocarcinogenesis remain poorly understood, we hypothesized that the disease may arise because of a disturbance of the DNA repair system by hepatitis C virus proteins. To test this hypothesis, we developed a reproducible microsatellite instability assay system for mismatch-repair using human-cultured cells transducted with pCXpur retrovirus expression vector, in which the puromycin resistance gene was rendered out-of-frame by insertion of a (CA)(17) dinucleotide repeat tract immediately following the ATG start codon. Using several human cancer cell lines known to be replication error positive or negative, we demonstrated that this assay system was useful for monitoring the propensity for mismatch-repair in the cells. This assay system was applicable to non-neoplastic human PH5CH8 hepatocytes, which could support hepatitis C virus replication. Using PH5CH8 cells, in which hepatitis C virus proteins were stably expressed by the retrovirus-mediated gene transfer, we found that the core protein promoted microsatellite instability in PH5CH8 cells. Interestingly, such promotion by the core protein only occurred in cells having the core protein belonging to genotype 1b or 2a and did not occur in cells having the core protein belonging to genotype 1a, 2b, or 3a. This is the first report to demonstrate that the core protein may disturb the DNA repair system.
Collapse
Affiliation(s)
- Atsushi Naganuma
- Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | |
Collapse
|
81
|
Abstract
Under normal circumstances, adhered cells die of anoikis when detached from their extracellular matrix (ECM). Resistance to anoikis has been implicated in the progression of many human malignancies by affording an increased survival time in the absence of matrix attachment, facilitating the migration and eventual colonisation of distant sites. In this study, an anoikis-resistant variant of the human osteosarcoma cell line, SAOS-2 (SAOSar), was generated by sequential cycles of culturing under adhered and suspended conditions. It was also shown that although parental SAOS (SAOSp) cells are a heterogeneous population with varying levels of sensitivity to anoikis, the establishment of anoikis-resistant clones was not necessarily the result of mere selection of a previously resistant subpopulation. Anoikis-resistant cells were also derived from anoikis-sensitive SAOS clones by exposure to anoikis-inducing culture conditions. This suggests that lack of the normal signalling generated by attachment to the ECM could represent a driving force towards anoikis resistance. Resistance to anoikis could not be attributed to a general defect in the apoptotic pathway since apoptosis in both sensitive and resistant populations was induced after treatment with staurosporine, cycloheximide and hydrogen peroxide. This suggests that the apoptotic machinery is intact in both anoikis-sensitive and -resistant SAOS cells and that the death signal in anoikis-sensitive cells is generated by the lack of attachment, most probably by unligated integrins. Anoikis-resistant cells have circumvented this death signal and remain viable despite suspended conditions.
Collapse
Affiliation(s)
- C M Díaz-Montero
- Department of Immunology, Unit 102, The University of Texas M.D. Anderson Cancer Center, PO Box 301402, Houston, TX 77030-1903, USA
| | | |
Collapse
|
82
|
Aoyagi M, Higashino F, Yasuda M, Takahashi A, Sawada Y, Totsuka Y, Kohgo T, Sano H, Kobayashi M, Shindoh M. Nuclear export of adenovirus E4orf6 protein is necessary for its ability to antagonize apoptotic activity of BH3-only proteins. Oncogene 2003; 22:6919-27. [PMID: 14534539 DOI: 10.1038/sj.onc.1206743] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenovirus E4orf6 is a viral oncoprotein known to cooperate with the E1A gene product in transforming primary murine cells. It has been shown to inhibit the apoptotic activities of p53 and p73 through direct binding to these proteins. Here, we demonstrate that the adenovirus E4orf6 protein inhibits apoptosis mediated by BNIP3 and Bik, which are BH3-only proteins of the Bcl-2 family. This activity was not mediated by p53 and p73 because E4orf6 had the same effect on the apoptosis in Saos-2 cells that do not express p53-related genes. It was also ascertained that E4orf6 could change the mitochondrial localization of BNIP3 and Bik. A mutant lacking the nuclear export signal of E4orf6 failed to inhibit apoptosis and to translocate BNIP3 protein from the mitochondria. Moreover, it was also established that E4orf6 was able to interact with BNIP3 and Bik. In BNIP3 protein, the region required for the interaction included the transmembrane domain, which is required for the localization of BNIP3 to the mitochondria. These results suggest that E4orf6 is exported from the nucleus to the cytoplasm, enabling it to interact with BH3-only proteins, eventually leading to the inhibition of apoptotic activity.
Collapse
Affiliation(s)
- Mariko Aoyagi
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, N13, W7, Kita-ku, Sapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Magae J, Hoshi Y, Furukawa C, Kawakami Y, Ogata H. Quantitative Analysis of Biological Responses to Ionizing Radiation, Including Dose, Irradiation Time, and Dose Rate. Radiat Res 2003; 160:543-8. [PMID: 14565828 DOI: 10.1667/rr3071] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Because biological responses to radiation are complex processes that depend on both irradiation time and total dose, consideration of both dose and dose rate is necessary to predict the risk from long-term irradiations at low dose rates. Here we mathematically and statistically analyzed the quantitative relationships between dose, dose rate and irradiation time using micronucleus formation and inhibition of proliferation of human osteosarcoma cells as indicators of biological response. While the dose-response curves did not change with exposure times of less than 20 h, at a given dose, both biological responses clearly were reduced as exposure time increased to more than 8 days. These responses became dependent on dose rate rather than on total dose when cells were irradiated for 20 to 27 days. Mathematical analysis demonstrates that the relationship between effective dose and dose rate is well described by an exponential function when the logarithm of effective dose is plotted as a function of the logarithm of dose rate. These results suggest that our model, the modified exponential (ME) model, can be applied to predict the risk from exposure to low-dose/low-dose-rate radiation.
Collapse
Affiliation(s)
- Junji Magae
- Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan.
| | | | | | | | | |
Collapse
|
84
|
Hirose T, Sowa Y, Takahashi S, Saito S, Yasuda C, Shindo N, Furuichi K, Sakai T. p53-independent induction of Gadd45 by histone deacetylase inhibitor: coordinate regulation by transcription factors Oct-1 and NF-Y. Oncogene 2003; 22:7762-73. [PMID: 14586402 DOI: 10.1038/sj.onc.1207091] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 08/06/2003] [Accepted: 08/07/2003] [Indexed: 11/09/2022]
Abstract
Histone deacetylase (HDAC) inhibitors cause growth arrest at the G1 and/or G2/M phases, and induce differentiation and/or apoptosis in a wide variety of tumour cells. The growth arrest at G1 phase by HDAC inhibitors is thought to be highly dependent on the upregulation of p21/WAF1, but the precise mechanism by which HDAC inhibitors cause G2/M arrest or apoptosis in tumour cells is unknown. Gadd45 causes cell cycle arrest at the G2/M phase transition and participates in genotoxic stress-induced apoptosis. We show here that it is also induced by a typical HDAC inhibitor, trichostatin A (TSA), through its promoter, in a p53-independent manner. To identify the mechanism of activation of the gadd45 promoter, we performed luciferase reporter analyses and electrophoretic mobility shift assays. These revealed that both the Oct-1 and CCAAT sites are needed for the full activation by TSA. We also found that the transcription factors Oct-1 and NF-Y specifically bind to each site. Thus, HDAC inhibitors can induce Gadd45 through its promoter without the need for functional p53, and both the Oct-1 and NF-Y concertedly participate in TSA-induced activation of the gadd45 promoter.
Collapse
Affiliation(s)
- Tohru Hirose
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Hotta T, Suzuki H, Nagai S, Yamamoto K, Imakiire A, Takada E, Itoh M, Mizuguchi J. Chemotherapeutic agents sensitize sarcoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand-induced caspase-8 activation, apoptosis and loss of mitochondrial membrane potential. J Orthop Res 2003; 21:949-57. [PMID: 12919886 DOI: 10.1016/s0736-0266(03)00062-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemotherapeutic agents have been used for the treatment of patients with osteosarcoma (OS). However, inherent or acquired resistance to these agents is a serious problem in the management of OS patients. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to induce apoptosis in a variety of cancer cells but not normal cells. In the present study, we examined whether chemotherapeutic agents enhance TRAIL-induced apoptosis in the sarcoma cell lines MG-63 and SaOS-2. Pretreatment with sub-toxic or slightly toxic concentrations of chemotherapeutic agents (cis-diammine dichloroplatinum, CDDP and doxorubicin, DXR) sensitized both cell lines to TRAIL-induced apoptosis, as assessed by the propidium iodide or Annexin V-Cy5 staining method. These cell lines expressed death receptors TRAIL-receptor 1 (TRAIL-R1) and TRAIL-R2, which were unaltered by treatment with CDDP, as assessed by flow cytometry. The decoy receptors TRAIL-R3 and -R4 were barely detected in both cell lines. CDDP down-regulated c-FLIP, tending to lower the activation threshold required for TRAIL-induced caspase-8 activation. The CDDP-pretreated cells indeed demonstrated more increased TRAIL-mediated caspase-8 activation, loss of mitochondrial membrane potential (DeltaPsi(m)), and apoptosis than untreated cells. Consequently, the activated caspase-8 might lead to either activation of effector caspases such as caspase-3 or loss in DeltaPsi(m). Both the increased caspase activation and mitochondrial dysfunction induced by combination of CDDP and TRAIL would contribute to enhanced apoptotic cell death. The results of the present study would be valuable for the design of novel treatment modalities for patients with OS.
Collapse
Affiliation(s)
- Takahito Hotta
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0165-4608(03)00105-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
87
|
Al-Romaih K, Bayani J, Vorobyova J, Karaskova J, Park PC, Zielenska M, Squire JA. Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. CANCER GENETICS AND CYTOGENETICS 2003; 144:91-9. [PMID: 12850370 DOI: 10.1016/s0165-4608(02)00929-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mechanism that generates the extreme aneuploidy that characterizes osteosarcoma (OS) is poorly understood. In this study, interphase fluorescence in situ hybridization (FISH) analysis was used to enumerate cell-to-cell variation of several different chromosomes. We also investigated whether there was an association between TP53 mutation and centrosome aberrations in the generation of chromosomal aneuploidy in OS in four OS cell lines (HOS, SAOS2, U2OS, and MG63) and in a subset of seven tumors. Our analysis showed that there was a wide range of numerical changes affecting multiple chromosomes in OS cell lines and tumors. These data suggest that chromosomal instability (CIN) could be responsible for the extensive aneuploidy associated with this tumor. The results also showed an increased frequency of atypical mitotic figures in three OS cell lines with defective TP53, function and significantly, a more marked CIN phenotype was present in these lines. Furthermore, numerical aberrations of centrosomes were also present in these three OS cell lines with TP53 mutations. In two of three OS patients' tumors there was a large increase in the percentage of abnormal centrosome numbers. We conclude that CIN is a consistent feature of OS and that an intrinsic disturbance of the chromosomal segregation mechanisms is likely associated with centrosome aberrations.
Collapse
Affiliation(s)
- K Al-Romaih
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
88
|
Meyer T, Xu L, Chang J, Liu ET, Craven RJ, Cance WG. Breast cancer cell line proliferation blocked by the Src-related Rak tyrosine kinase. Int J Cancer 2003; 104:139-46. [PMID: 12569567 DOI: 10.1002/ijc.10925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rak is a 54 kDa protein tyrosine kinase originally isolated from breast cancer cells and expressed in epithelial cells. It resembles the protooncogene Src structurally but lacks an amino-terminal myristylation site and localizes to the nuclear and perinuclear regions of the cell. We report here that expression of Rak in 2 different breast cancer cell lines inhibits growth and causes G(1) arrest of the cell cycle. This growth inhibition is kinase-dependent but does not require the Rak SH2 or SH3 domain. Rak also binds to the pRb tumor-suppressor protein but inhibits growth even in cells that lack pRb. These results suggest that Rak regulates cell growth by phosphorylating perinuclear proteins and has a function that is distinct from the Src-related kinase family.
Collapse
Affiliation(s)
- Tanya Meyer
- Department of Surgery, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
89
|
Funato N, Ohyama K, Kuroda T, Nakamura M. Basic helix-loop-helix transcription factor epicardin/capsulin/Pod-1 suppresses differentiation by negative regulation of transcription. J Biol Chem 2003; 278:7486-93. [PMID: 12493738 DOI: 10.1074/jbc.m212248200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epicardin/capsulin/Pod-1, expressed in skeletal myoblasts within brachial arches and in the condensing mesenchyme, is a member of the basic helix-loop-helix (bHLH) transcription factor family that is involved in various cell differentiation processes. In this study, we examined the functional properties of epicardin/capsulin/Pod-1 in differentiation. The yeast and mammalian two-hybrid systems showed physical associations between epicardin/capsulin/Pod-1 and E2A, both of which were present in the nuclei. The bHLH domains mediated this association. Ectopic expression of epicardin/capsulin/Pod-1 inhibited E2A-dependent activation of the exogenous and endogenous expression of the cyclin-dependent kinase inhibitor, p21(WAF1/Cip1) gene, and the muscle creatine kinase gene that encodes the predominant creatine kinase isoform expressed in mammalian skeletal muscle. Transfection with epicardin/capsulin/Pod-1 small interfering RNA abolished the epicardin/capsulin/Pod-1-mediated suppression of E12-dependent activation of the p21 promoter. Chromatin immunoprecipitation assay showed that epicardin/capsulin/Pod-1 was physically associated with the muscle creatine kinase promoter in vivo. Moreover, terminal differentiation of C2C12 myoblasts was inhibited by exogenous introduction of epicardin/capsulin/Pod-1. These inhibitory functions of epicardin/capsulin/Pod-1 closely resemble those of the bHLH inhibitor Twist protein. These results indicate that epicardin/capsulin/Pod-1 functions as a negative regulator of differentiation of myoblasts through transcription in at least two distinct steps, cell growth arrest and lineage-specific differentiation.
Collapse
Affiliation(s)
- Noriko Funato
- Human Gene Sciences Center and Maxillofacial Orthognathics Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
90
|
Chowdhury IH, Wang XF, Landau NR, Robb ML, Polonis VR, Birx DL, Kim JH. HIV-1 Vpr activates cell cycle inhibitor p21/Waf1/Cip1: a potential mechanism of G2/M cell cycle arrest. Virology 2003; 305:371-7. [PMID: 12573582 DOI: 10.1006/viro.2002.1777] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a 14-kDa protein that prevents cell proliferation by causing arrest in the G2/M phase of the cell cycle. Here we report the first evidence that Vpr activates the expression and transcription of the cyclin-dependent kinase inhibitor p21/Waf1/Cip1 (hereafter p21), an inhibitor of the G1 and G2/M phase transitions in T lymphoid and myeloid cells. Vpr activated p21 protein expression in a dose-dependent manner. Vpr also caused a three- to eightfold induction of the p21 promoter. This induction was dose- and time-dependent and was comparable to levels of p21 induction induced by p53. Of note, Vpr activated p21 transcription in endogenous p53 positive cells, but not in p53-deleted or p53 nonfunctional cells. Vpr and p53 had an additive effect on p21 transcription. Mutational analysis indicated that wt Vpr, but not cell cycle inactive Vpr mutants, activated the p21 promoter. These data demonstrate that HIV-1 Vpr utilizes the cyclin-dependent kinase inhibitor p21, in addition to cdc2, to arrest cells in G2/M.
Collapse
Affiliation(s)
- Iqbal H Chowdhury
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Davies JH, Evans BAJ, Jenney MEM, Gregory JW. In vitro effects of combination chemotherapy on osteoblasts: implications for osteopenia in childhood malignancy. Bone 2002; 31:319-26. [PMID: 12151085 DOI: 10.1016/s8756-3282(02)00822-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Clinical studies suggest that combination chemotherapy adversely affects bone metabolism and in vitro studies have demonstrated that a reduction in osteoblast numbers results in diminished bone formation. The aim of this study was to investigate the in vitro effects of combinations of chemotherapeutic agents on primary human osteoblast-like (hOB) cell numbers and apoptosis, and to assess the ability of hOBs and osteoprogenitor (HCC1) cells to recover from prior treatment with chemotherapy. As glucocorticoids are frequently administered during treatment with cytotoxic agents, we evaluated whether glucocorticoids influence the chemosensitivity of hOB and human osteosarcoma (MG63) cells. Culture with clinically relevant concentrations of the individual chemotherapeutic agents reduced hOB cell numbers compared with control (p < 0.01) and also increased the numbers of apoptotic cells (p < 0.05). Potentiation of cytotoxicity was observed when agents were given in combination, thus further reducing cell numbers, and this effect was greatest when vincristine was given in combination with asparaginase. Following culture with a chemotherapeutic agent, there was greater recovery of hOB compared with HCC1 cell numbers (p < 0.01). Pretreatment with glucocorticoids ameliorated the adverse effects of chemotherapeutic agents on hOB and MG63 cell numbers and apoptosis (p < 0.05). We conclude that the use of combination chemotherapy contributes to osteopenia in childhood malignancy by a reduction in osteoblast numbers. However, this effect may be attenuated by the concomitant use of glucocorticoids.
Collapse
Affiliation(s)
- J H Davies
- Department of Child Health, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
92
|
Evdokiou A, Bouralexis S, Atkins GJ, Chai F, Hay S, Clayer M, Findlay DM. Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRAIL-induced apoptosis. Int J Cancer 2002; 99:491-504. [PMID: 11992538 DOI: 10.1002/ijc.10376] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Apo2L/TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines that induces death of cancer cells but not normal cells. Its potent apoptotic activity is mediated through its cell surface death domain-containing receptors, DR4 and DR5. Apo2L/TRAIL interacts also with 3 "decoy" receptors that do not induce apoptosis, DcR1, DcR2, which lack functional death domains, and osteoprotegerin (OPG). The aim of our study was to investigate the cytotoxic activity of Apo2L/TRAIL on established osteogenic sarcoma cell lines (BTK-143, HOS, MG-63, SJSA-1, G-292 and SAOS2) and in primary cultures of normal human bone (NHB) cells. When used alone, Apo2L/TRAIL at 100 ng/ml for 24 hr induced greater than 80% cell death in only 1 (BTK-143) of the 6 osteogenic sarcoma cell lines. In contrast, Apo2L/TRAIL-resistant cells were susceptible to Apo2L/TRAIL-mediated apoptosis in the presence of the anticancer drugs, Doxorubicin (DOX), Cisplatin (CDDP) and Etoposide (ETP) but not Methotrexate (MTX) or Cyclophosphamide (CPM). Importantly, neither Apo2L/TRAIL alone nor in combination with any of these drugs affected primary normal human bone cells under equivalent conditions. Apo2L/TRAIL-induced apoptosis, and its augmentation by chemotherapy in the resistant cell lines was mediated through caspase-8 and caspase-3 activation. Furthermore, Apo2L/TRAIL-induced apoptosis and its augmentation by chemotherapy was effectively inhibited by caspase-8 zIETD-fmk and caspase-3 zDEVD-fmk protease inhibitors and by the pan-caspase inhibitor zVAD-fmk. The pattern of basal Apo2L/TRAIL receptor mRNA expression, or expression of the intracellular caspase inhibitor FLICE-inhibitory protein, FLIP, could not be readily correlated with resistance or sensitivity to Apo2L/TRAIL-induced apoptosis. However, the augmentation of Apo2L/TRAIL effects by chemotherapy was associated with drug-induced up-regulation of death receptors DR4 and DR5 mRNA and protein. No obvious correlation was seen between the expression of OPG mRNA or protein and susceptibility of cells to Apo2L/TRAIL-induced apoptosis. Stable over-expression of a dominant negative form of the Fas-associated death domain protein (FADD) in the Apo2L/TRAIL-sensitive BTK-143 cells completely inhibited Apo2L/TRAIL-induced cell death. Our results indicate that chemotherapy and Apo2L/TRAIL act synergistically to kill cancer cells but not normal bone-derived osteoblast-like cells, which has implications for future therapy of osteosarcoma.
Collapse
Affiliation(s)
- Andreas Evdokiou
- Department of Orthopaedics, Level 4 Bice Building, Royal Adelaide Hospital, North Terrace, Adelaide 5000, South Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
93
|
Heessen S, Leonchiks A, Issaeva N, Sharipo A, Selivanova G, Masucci MG, Dantuma NP. Functional p53 chimeras containing the Epstein-Barr virus Gly-Ala repeat are protected from Mdm2- and HPV-E6-induced proteolysis. Proc Natl Acad Sci U S A 2002; 99:1532-7. [PMID: 11805282 PMCID: PMC122225 DOI: 10.1073/pnas.022306499] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Indexed: 01/18/2023] Open
Abstract
Functional inactivation of the tumor suppressor protein p53 by accelerated ubiquitin/proteasome-dependent proteolysis is a common event in tumor progression. Proteasomal degradation is inhibited by the Gly-Ala repeat (GAr) of the Epstein-Barr virus nuclear antigen-1, which acts as a transferable element on a variety of proteasomal substrates. We demonstrate that p53 chimeras containing GAr domains of different lengths and positions within the protein are protected from proteolysis induced by the ubiquitin ligases murine double minute 2 and E6-associated protein but are still ubiquitinated and retain the capacity to interact with the S5a ubiquitin-binding subunit of the proteasome. The GAr chimeras transactivate p53 target genes, induce cell cycle arrest and apoptosis, and exhibit improved growth inhibitory activity in tumor cells with impaired endogenous p53 activity.
Collapse
Affiliation(s)
- Stijn Heessen
- Microbiology and Tumor Biology Center, and Cancer Center Karolinska, Karolinska Institute, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
94
|
Sanchez-Prieto R, Sanchez-Arevalo VJ, Servitja JM, Gutkind JS. Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene 2002; 21:974-9. [PMID: 11840343 DOI: 10.1038/sj.onc.1205134] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Revised: 10/19/2001] [Accepted: 10/31/2001] [Indexed: 12/17/2022]
Abstract
p73 is a novel member of the p53 family of tumor suppressor proteins which is involved in cellular differentiation, tumor suppression, and the response to genotoxic stress. The molecular mechanisms regulating p73 activity are still poorly understood. Recently, p73 was found to be a target of the enzymatic activity of c-Abl, a non-receptor tyrosine kinase that potently activated in response to DNA damage. Here, we present evidence that c-Abl induces the phosphorylation of p73 in threonine residues adjacent to prolines, and that the p38 MAP kinase pathway mediates this response. Furthermore, we found that activation of p38 is sufficient to enhance the stability of p73, and that the transcriptional activation of p73 by c-Abl requires the activity of p38. These findings indicate that members of the MAP kinases superfamily of signaling molecules can regulate p73, and support a role for the p38 MAP kinase in a novel biochemical pathway by which c-Abl regulates this p53-related molecule.
Collapse
Affiliation(s)
- Ricardo Sanchez-Prieto
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4330, USA
| | | | | | | |
Collapse
|
95
|
Funato N, Ohtani K, Ohyama K, Kuroda T, Nakamura M. Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol Cell Biol 2001; 21:7416-28. [PMID: 11585922 PMCID: PMC99914 DOI: 10.1128/mcb.21.21.7416-7428.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular differentiation entails the coordination of cell cycle arrest and tissue-specific gene expression. We investigated the involvement of basic helix-loop-helix (bHLH) factors in differentiation of osteoblasts using the human osteoblastic cell line MG63. Serum starvation induced growth arrest at G1 phase, accompanied by expression of cyclin-dependent kinase inhibitor p21(WAF1/Cip1). Reporter assays with the p21 gene promoter demonstrated that the combination of E2A (E12 or E47) and coactivator CBP was responsible for p21 induction independent of p53. Twist inhibited E2A-CBP-dependent activation of the exogenous and endogenous p21 promoters. Ids similarly inhibited the exogenously transfected p21 promoter; however less antagonistic effect on the endogenous p21 promoter was observed. Twist was predominantly present in nuclei in MG63 cells growing in complete medium, while it localized mainly in the cytoplasm after serum starvation. The fibroblast growth factor receptor 3 gene (FGFR3), which generates signals leading to differentiation of osteoblasts, was found to be controlled by the same transcriptional regulation as the p21 gene. E2A and Twist influenced alkaline phosphatase expression, a consensus marker of osteoblast differentiation. Expression of E2A and FGFR3 was seen at the location of osteoblast differentiation in the calvaria of mouse embryos, implicating bHLH molecules in physiological osteoblast differentiation. These results demonstrate that a common regulatory system is involved in at least two distinct steps in osteoblastic differentiation. Our results also provide the molecular basis of Saethre-Chotzen syndrome, caused by mutations of the TWIST and FGFR3 genes.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Basic Helix-Loop-Helix Transcription Factors
- Blotting, Western
- Bromodeoxyuridine/metabolism
- Cell Differentiation
- Cell Division
- Cell Line
- Culture Media, Serum-Free/pharmacology
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/genetics
- Cyclins/metabolism
- Cytoplasm/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- G1 Phase
- Genes, Reporter
- Helix-Loop-Helix Motifs
- Humans
- Immunohistochemistry
- Microscopy, Fluorescence
- Models, Biological
- Models, Genetic
- Mutation
- Nuclear Proteins/metabolism
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
- Skull/embryology
- Skull/pathology
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Twist-Related Protein 1
Collapse
Affiliation(s)
- N Funato
- Human Gene Sciences Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
96
|
Abstract
An essential nutrient selenium has been reported to be a potential cancer preventive and inhibitory agent, although no exact mechanism has yet been proposed. Since little is known about the anti-proliferative effect of selenium on osteosarcoma, this issue was addressed in the present study in vitro using three osteosarcoma cell lines, and in vivo using an osteosarcoma transplantable to nude mice. Selenium inhibited the tumor growth in vitro and morphological changes indicative of apoptosis were demonstrated. Osteosarcomas in nude mice were inhibited in growth by selenium with no cytotoxic change in normal tissues. The findings suggested that selenium may offer a novel therapeutic modality for osteosarcoma.
Collapse
Affiliation(s)
- K Hiraoka
- Department of Orthopaedic Surgery, Kurume University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
97
|
Galbiati F, Volonté D, Liu J, Capozza F, Frank PG, Zhu L, Pestell RG, Lisanti MP. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 2001; 12:2229-44. [PMID: 11514613 PMCID: PMC58591 DOI: 10.1091/mbc.12.8.2229] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Revised: 04/10/2001] [Accepted: 04/30/2001] [Indexed: 01/14/2023] Open
Abstract
Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G(0)/G(1) phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G(0)/G(1) phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G(0)/G(1) phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G(0)/G(1) phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G(0)/G(1) population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo.
Collapse
Affiliation(s)
- F Galbiati
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Tasheva ES, Maki CG, Conrad AH, Conrad GW. Transcriptional activation of bovine mimecan by p53 through an intronic DNA-binding site. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1517:333-8. [PMID: 11342211 DOI: 10.1016/s0167-4781(00)00288-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mimecan is a small leucine-rich proteoglycan that can occur as either keratan sulfate proteoglycan in the cornea or as glycoprotein in many connective tissues. As yet, there is no information on its transcriptional regulation. Recently we demonstrated the presence of eight mimecan mRNA transcripts generated by alternative transcription initiation, alternative polyadenylation, and differential splicing, all of which encode an identical protein. Here we report a conserved consensus p53-binding DNA sequence in the first intron of bovine and human mimecan genes and show that wild-type p53 binds to this sequence in vitro. Co-transfections of Saos-2, HeLa, NIH 3T3, and primary bovine corneal keratocytes with bovine mimecan promoter/luciferase reporter constructs in combination with p53 expression vectors activate the second mimecan promoter through the p53-binding sequence. In addition, we show absence of mimecan expression in different tumors and cancer cell lines, where p53 frequently is inactivated/mutated. Thus, this work provides novel information that links mimecan to the p53 network.
Collapse
Affiliation(s)
- E S Tasheva
- Division of Biology, Kansas State University, Manhattan 66506-4901, USA.
| | | | | | | |
Collapse
|
99
|
Yu R, Heaney AP, Lu W, Chen J, Melmed S. Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J Biol Chem 2000; 275:36502-5. [PMID: 11013229 DOI: 10.1074/jbc.c000546200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pituitary tumor transforming gene, PTTG, is abundantly expressed in several neoplasms. We recently showed that PTTG overexpression is associated with apoptosis and therefore have now studied the role of p53 in this process. In MCF-7 breast cancer cells that express wild type p53, PTTG overexpression caused apoptosis. p53 was translocated to the nuclei in cells expressing PTTG. Overexpression of p53, along with PTTG, augmented apoptosis, whereas expression of the human papillomavirus E6 protein inhibited PTTG-induced apoptosis. In MG-63 osteosarcoma cells that are deficient in p53, PTTG caused cell cycle arrest and subsequent apoptosis that was inhibited by caspase inhibitors. A proteasome inhibitor augmented PTTG expression in stable PTTG transfectants, suggesting that down-regulated PTTG expression is required for cell survival. Finally, MG-63 cells expressing PTTG showed signs of aneuploidy including the presence of micronuclei and multiple nuclei. These results indicate that PTTG overexpression causes p53-dependent and p53-independent apoptosis. In the absence of p53, PTTG causes aneuploidy. These results may provide a mechanism for PTTG-induced tumorigenesis whereby PTTG mediates aneuploidy and subsequent cell transformation.
Collapse
Affiliation(s)
- R Yu
- Cedars-Sinai Research Institute, UCLA School of Medicine, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
100
|
Doostzadeh-Cizeron J, Yin S, Goodrich DW. Apoptosis induced by the nuclear death domain protein p84N5 is associated with caspase-6 and NF-kappa B activation. J Biol Chem 2000; 275:25336-41. [PMID: 10840029 DOI: 10.1074/jbc.m000793200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the mechanisms involved in responses to extracellular or mitochondrial apoptotic signals have received considerable attention, the mechanisms utilized within the nucleus to transduce apoptotic signals are not well understood. We have characterized apoptosis induced by the nuclear death domain-containing protein p84N5. Adenovirus-mediated N5 gene transfer or transfection of p84N5 expression vectors induces apoptosis in tumor cell lines with nearly 100% efficiency as indicated by cellular morphology, DNA fragmentation, and annexin V staining. Using peptide substrates and Western blotting, we have determined that N5-induced apoptosis is initially accompanied by activation of caspase-6. Activation of caspases-3 and -9 does not peak until 3 days after the peak of caspase-6 activity. Expression of p84N5 also leads to activation of NF-kappaB as indicated by nuclear translocation of p65RelA and transcriptional activation of a NF-kappaB-dependent reporter promoter. Changes in the relative expression level of Bcl-2 family proteins, including Bak and Bcl-Xs, are also observed during p84N5-induced apoptosis. Finally, we demonstrate that p84N5-induced apoptosis does not require p53 and is not inhibited by p53 coexpression. We propose that p84N5 is involved in an apoptotic pathway distinct from those triggered by death domain-containing receptors or by p53.
Collapse
Affiliation(s)
- J Doostzadeh-Cizeron
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|