51
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
52
|
Puigdellívol M, Allendorf DH, Brown GC. Sialylation and Galectin-3 in Microglia-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2020; 14:162. [PMID: 32581723 PMCID: PMC7296093 DOI: 10.3389/fncel.2020.00162] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia are brain macrophages that mediate neuroinflammation and contribute to and protect against neurodegeneration. The terminal sugar residue of all glycoproteins and glycolipids on the surface of mammalian cells is normally sialic acid, and addition of this negatively charged residue is known as “sialylation,” whereas removal by sialidases is known as “desialylation.” High sialylation of the neuronal cell surface inhibits microglial phagocytosis of such neurons, via: (i) activating sialic acid receptors (Siglecs) on microglia that inhibit phagocytosis and (ii) inhibiting binding of opsonins C1q, C3, and galectin-3. Microglial sialylation inhibits inflammatory activation of microglia via: (i) activating Siglec receptors CD22 and CD33 on microglia that inhibit phagocytosis and (ii) inhibiting Toll-like receptor 4 (TLR4), complement receptor 3 (CR3), and other microglial receptors. When activated, microglia release a sialidase activity that desialylates both microglia and neurons, activating the microglia and rendering the neurons susceptible to phagocytosis. Activated microglia also release galectin-3 (Gal-3), which: (i) further activates microglia via binding to TLR4 and TREM2, (ii) binds to desialylated neurons opsonizing them for phagocytosis via Mer tyrosine kinase, and (iii) promotes Aβ aggregation and toxicity in vivo. Gal-3 and desialylation may increase in a variety of brain pathologies. Thus, Gal-3 and sialidases are potential treatment targets to prevent neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David H Allendorf
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
53
|
Srejovic I, Selakovic D, Jovicic N, Jakovljević V, Lukic ML, Rosic G. Galectin-3: Roles in Neurodevelopment, Neuroinflammation, and Behavior. Biomolecules 2020; 10:biom10050798. [PMID: 32455781 PMCID: PMC7277476 DOI: 10.3390/biom10050798] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
There is a plethora of evidence to suggest that Galectin-3 plays an important role in normal functions of mammalian cells, as well as in different pathogenic conditions. This review highlights recent data published by researchers, including our own team, on roles of Galectin-3 in the nervous system. Here, we discuss the roles of Galectin-3 in brain development, its roles in glial cells, as well as the interactions of glial cells with other neural and invading cells in pathological conditions. Galectin-3 plays an important role in the pathogenesis of neuroinflammatory and neurodegenerative disorders, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. On the other hand, there is also evidence of the protective role of Galectin-3 due to its anti-apoptotic effect in target cells. Interestingly, genetic deletion of Galectin-3 affects behavioral patterns in maturing and adult mice. The results reviewed in this paper and recent development of highly specific inhibitors suggests that Galectin-3 may be an important therapeutic target in pathological conditions including the disorders of the central nervous system.
Collapse
Affiliation(s)
- Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, 119146 Moscow, Russia
| | - Miodrag L. Lukic
- Department of Physiology—Molecular Medicine Unit, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Correspondence: (M.L.L.); (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac Serbia; (I.S.); (D.S.); (V.J.)
- Correspondence: (M.L.L.); (G.R.)
| |
Collapse
|
54
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
55
|
Ramírez Hernández E, Sánchez-Maldonado C, Mayoral Chávez MA, Hernández-Zimbrón LF, Patricio Martínez A, Zenteno E, Limón Pérez de León ID. The therapeutic potential of galectin-1 and galectin-3 in the treatment of neurodegenerative diseases. Expert Rev Neurother 2020; 20:439-448. [PMID: 32303136 DOI: 10.1080/14737175.2020.1750955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuroinflammation has been proposed as a common factor and one of the main inducers of neuronal degeneration. Galectins are a group of β-galactoside-binding lectins, that play an important role in the immune response, adhesion, proliferation, differentiation, migration and cell growth. Up to 15 members of the galectin's family have been identified; however, the expression of galectin-1 and galectin-3 has been considered a key factor in neuronal regeneration and modulation of the inflammatory response. Galectin-1 is necessary to stimulate the secretion of neurotrophic factors in astrocytes and promoting neuronal regeneration. In contrast, galectin-3 fosters the proliferation of microglial cells and modulates cellular apoptosis, therefore these proteins are considered a useful alternative for the treatment of degenerative diseases.Areas covered: This review describes the roles of galectin-1 and galectin-3 in the modulation of neuroinflammation and their potential as therapeutic targets in the treatment for neurodegenerative diseases.Expert opinion: Although data in the literature vary, the effects of galectin-1 and galectin-3 on the activation and modulation of astrocytes and microglia has been described. Due to its anti-inflammatory effects, galectin-1 is proposed as a molecule with therapeutic potential, whereas the inhibition of galectin-3 could contribute to reduce the neuroinflammatory response in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Claudia Sánchez-Maldonado
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel A Mayoral Chávez
- Centro de Investigaciones Médicas UNAM-UABJO, Facultad de Medicina, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,Departamento de Investigación, Asociación Para Evitar la Ceguera en México, "Hospital Dr. Luis Sánchez Bulnes", Ciudad de México, México
| | - Aleidy Patricio Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - I Daniel Limón Pérez de León
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
56
|
Traiffort E, Kassoussi A, Zahaf A, Laouarem Y. Astrocytes and Microglia as Major Players of Myelin Production in Normal and Pathological Conditions. Front Cell Neurosci 2020; 14:79. [PMID: 32317939 PMCID: PMC7155218 DOI: 10.3389/fncel.2020.00079] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Myelination is an essential process that consists of the ensheathment of axons by myelin. In the central nervous system (CNS), myelin is synthesized by oligodendrocytes. The proliferation, migration, and differentiation of oligodendrocyte precursor cells constitute a prerequisite before mature oligodendrocytes extend their processes around the axons and progressively generate a multilamellar lipidic sheath. Although myelination is predominately driven by oligodendrocytes, the other glial cells including astrocytes and microglia, also contribute to this process. The present review is an update of the most recent emerging mechanisms involving astrocyte and microglia in myelin production. The contribution of these cells will be first described during developmental myelination that occurs in the early postnatal period and is critical for the proper development of cognition and behavior. Then, we will report the novel findings regarding the beneficial or deleterious effects of astroglia and microglia, which respectively promote or impair the endogenous capacity of oligodendrocyte progenitor cells (OPCs) to induce spontaneous remyelination after myelin loss. Acute delineation of astrocyte and microglia activities and cross-talk should uncover the way towards novel therapeutic perspectives aimed at recovering proper myelination during development or at breaking down the barriers impeding the regeneration of the damaged myelin that occurs in CNS demyelinating diseases.
Collapse
Affiliation(s)
| | | | - Amina Zahaf
- U1195 Inserm, University Paris-Saclay, Kremlin-Bicêtre, France
| | - Yousra Laouarem
- U1195 Inserm, University Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
57
|
de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci 2020; 77:1289-1317. [PMID: 31628495 PMCID: PMC7113233 DOI: 10.1007/s00018-019-03327-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system with unknown etiology. Currently approved disease-modifying treatment modalities are immunomodulatory or immunosuppressive. While the applied drugs reduce the frequency and severity of the attacks, their efficacy to regenerate myelin membranes and to halt disease progression is limited. To achieve such therapeutic aims, understanding biological mechanisms of remyelination and identifying factors that interfere with remyelination in MS can give respective directions. Such a perspective is given by the emerging functional profile of galectins. They form a family of tissue lectins, which are potent effectors in processes as diverse as adhesion, apoptosis, immune mediator release or migration. This review focuses on endogenous and exogenous roles of galectins in glial cells such as oligodendrocytes, astrocytes and microglia in the context of de- and (re)myelination and its dysregulation in MS. Evidence is arising for a cooperation among family members so that timed expression and/or secretion of galectins-1, -3 and -4 result in modifying developmental myelination, (neuro)inflammatory processes, de- and remyelination. Dissecting the mechanisms that underlie the distinct activities of galectins and identifying galectins as target or tool to modulate remyelination have the potential to contribute to the development of novel therapeutic strategies for MS.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
58
|
Ronzano R, Thetiot M, Lubetzki C, Desmazieres A. Myelin Plasticity and Repair: Neuro-Glial Choir Sets the Tuning. Front Cell Neurosci 2020; 14:42. [PMID: 32180708 PMCID: PMC7059744 DOI: 10.3389/fncel.2020.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
The plasticity of the central nervous system (CNS) in response to neuronal activity has been suggested as early as 1894 by Cajal (1894). CNS plasticity has first been studied with a focus on neuronal structures. However, in the last decade, myelin plasticity has been unraveled as an adaptive mechanism of importance, in addition to the previously described processes of myelin repair. Indeed, it is now clear that myelin remodeling occurs along with life and adapts to the activity of neuronal networks. Until now, it has been considered as a two-part dialog between the neuron and the oligodendroglial lineage. However, other glial cell types might be at play in myelin plasticity. In the present review, we first summarize the key structural parameters for myelination, we then describe how neuronal activity modulates myelination and finally discuss how other glial cells could participate in myelinic adaptivity.
Collapse
Affiliation(s)
- Remi Ronzano
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
| | - Melina Thetiot
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
- Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Catherine Lubetzki
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Desmazieres
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
| |
Collapse
|
59
|
Abstract
Microglia are resident macrophages of the CNS that are involved in its development, homeostasis and response to infection and damage. Microglial activation is a common feature of neurological disorders, and although in some instances this activation can be damaging, protective and regenerative functions of microglia have been revealed. The most prominent example of the regenerative functions is a role for microglia in supporting regeneration of myelin after injury, a process that is critical for axonal health and relevant to numerous disorders in which loss of myelin integrity is a prevalent feature, such as multiple sclerosis, Alzheimer disease and motor neuron disease. Although drugs that are intended to promote remyelination are entering clinical trials, the mechanisms by which remyelination is controlled and how microglia are involved are not completely understood. In this Review, we discuss work that has identified novel regulators of microglial activation - including molecular drivers, population heterogeneity and turnover - that might influence their pro-remyelination capacity. We also discuss therapeutic targeting of microglia as a potential approach to promoting remyelination.
Collapse
|
60
|
Ijomone OK, Shallie PD, Naicker T. Oligodendrocytes Death Induced Sensorimotor and Cognitive Deficit in N-nitro-L-arginine methyl Rat Model of Pre-eclampsia. Neurochem Res 2020; 45:902-914. [PMID: 31983010 DOI: 10.1007/s11064-020-02969-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/17/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Pre-eclampsia (PE) is a pregnancy complicated syndrome that affects multiple organs including the brain that continue post- delivery in both mother and the offspring. We evaluated the expression of oligodendrocytes in the brain of PE rat model through development as well as the cognitive changes and other behavioural modifications that may occur later in the life of offspring of PE-like rat model. Pregnant rats divided into early-onset and late-onset groups were administered with N-nitro- L-arginine methyl (L-NAME) through drinking water at gestational days (GD) 8-17. Rats were allowed free access to water throughout the pregnancy. At GD 19, post-natal day (PND) 1 and 60, rats were sacrificed and brain excised for further analysis. The offspring were subjected to behavioural studies for cognitive and sensorimotor impairments before sacrificed at PND 60. Results showed significant down-regulation in the expression of OLIG2 in PE at GD 19 brain which persists till PND 60. Likewise, there was a significant increase in the latency to locate the platform in Morris water maze, time to traverse the balance beam and reduced hanging time on the wire test between the control and the PE treated. PE could lead to impaired neuronal signalling through demyelination which may contributes significantly to long-term sensorimotor and cognitive deficit.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Philemon Dauda Shallie
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
61
|
Lee J, Hamanaka G, Lo EH, Arai K. Heterogeneity of microglia and their differential roles in white matter pathology. CNS Neurosci Ther 2019; 25:1290-1298. [PMID: 31733036 PMCID: PMC6887901 DOI: 10.1111/cns.13266] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia are resident immune cells that play multiple roles in central nervous system (CNS) development and disease. Although the classical concept of microglia/macrophage activation is based on a biphasic beneficial‐versus‐deleterious polarization, growing evidence now suggests a much more heterogenous profile of microglial activation that underlie their complex roles in the CNS. To date, the majority of data are focused on microglia in gray matter. However, demyelination is a prominent pathologic finding in a wide range of diseases including multiple sclerosis, Alzheimer's disease, and vascular cognitive impairment and dementia. In this mini‐review, we discuss newly discovered functional subsets of microglia that contribute to white matter response in CNS disease onset and progression. Microglia show different molecular patterns and morphologies depending on disease type and brain region, especially in white matter. Moreover, in later stages of disease, microglia demonstrate unconventional immuno‐regulatory activities such as increased phagocytosis of myelin debris and secretion of trophic factors that stimulate oligodendrocyte lineage cells to facilitate remyelination and disease resolution. Further investigations of these multiple microglia subsets may lead to novel therapeutic approaches to treat white matter pathology in CNS injury and disease.
Collapse
Affiliation(s)
- Janice Lee
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
62
|
Thomas L, Pasquini LA. Galectin-3 Exerts a Pro-differentiating and Pro-myelinating Effect Within a Temporal Window Spanning Precursors and Pre-oligodendrocytes: Insights into the Mechanisms of Action. Mol Neurobiol 2019; 57:976-987. [PMID: 31654317 DOI: 10.1007/s12035-019-01787-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes (OLG) are the cells resident in the CNS responsible for myelination. OLG undergo a succession of morphological and molecular changes along several maturational stages. Galectin-3 (Gal-3) is a 25- to 35-KDa protein belonging to the family of carbohydrate-binding galectins, which bind to glycoconjugates containing β-galactosides. Gal-3 lacks a specific receptor and its binding is thus rather unspecific, as it depends on the cellular environment and the repertoire of glycomolecules at the time when Gal-3 is present. Our previous work revealed that recombinant Gal-3 (rGal-3)-treated OLG showed accelerated differentiation, evidenced by an increase in the number of mature cells to the detriment of immature ones and accelerated actin cytoskeleton dynamics. These changes were a consequence of rGal-3 influence on Akt, Erk 1/2, and β-catenin signaling pathways. Considering this previous evidence, the aim of this study was to identify the temporal window of rGal-3 action on the OLG lineage to induce OLG maturation by using specific single pulses of rGal-3 over the different maturational stages of OLG, and to unravel its main direct targets promoting OLG differentiation by mass spectrometry analysis. Our results reveal a key temporal window spanning between OPC and pre-OLG states in which rGal-3 action promotes OLG differentiation, and identify several targets for rGal-3 binding including proteins related to the cytoskeleton, signaling pathways, metabolism and intracellular trafficking, among others. These results highlight the relevance of Gal-3 in signaling pathways regulating oligodendroglial differentiation and support a potential therapeutic role for rGal-3 in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, Buenos Aires, Argentina.
| |
Collapse
|
63
|
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2019; 18:202-215. [PMID: 31622208 PMCID: PMC7327950 DOI: 10.2174/1570159x17666191016092221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.
Collapse
Affiliation(s)
| | - Cauê Barbosa Coelho
- Programa de Pos-Graduacao em Ciencia e Tecnologia Ambiental para o Semiarido (PPGCTAS), State University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | |
Collapse
|
64
|
Al-Dalahmah O, Campos Soares L, Nicholson J, Draijer S, Mundim M, Lu VM, Sun B, Tyler T, Adorján I, O'Neill E, Szele FG. Galectin-3 modulates postnatal subventricular zone gliogenesis. Glia 2019; 68:435-450. [PMID: 31626379 PMCID: PMC6916335 DOI: 10.1002/glia.23730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
Postnatal subventricular zone (SVZ) neural stem cells generate forebrain glia, namely astrocytes and oligodendrocytes. The cues necessary for this process are unclear, despite this phase of brain development being pivotal in forebrain gliogenesis. Galectin‐3 (Gal‐3) is increased in multiple brain pathologies and thereby regulates astrocyte proliferation and inflammation in injury. To study the function of Gal‐3 in inflammation and gliogenesis, we carried out functional studies in mouse. We overexpressed Gal‐3 with electroporation and using immunohistochemistry surprisingly found no inflammation in the healthy postnatal SVZ. This allowed investigation of inflammation‐independent effects of Gal‐3 on gliogenesis. Loss of Gal‐3 function via knockdown or conditional knockout reduced gliogenesis, whereas Gal‐3 overexpression increased it. Gal‐3 overexpression also increased the percentage of striatal astrocytes generated by the SVZ but decreased the percentage of oligodendrocytes. These novel findings were further elaborated with multiple analyses demonstrating that Gal‐3 binds to the bone morphogenetic protein receptor one alpha (BMPR1α) and increases bone morphogenetic protein (BMP) signaling. Conditional knockout of BMPR1α abolished the effect of Gal‐3 overexpression on gliogenesis. Gain‐of‐function of Gal‐3 is relevant in pathological conditions involving the human forebrain, which is particularly vulnerable to hypoxia/ischemia during perinatal gliogenesis. Hypoxic/ischemic injury induces astrogliosis, inflammation and cell death. We show that Gal‐3 immunoreactivity was increased in the perinatal human SVZ and striatum after hypoxia/ischemia. Our findings thus show a novel inflammation‐independent function for Gal‐3; it is necessary for gliogenesis and when increased in expression can induce astrogenesis via BMP signaling.
Collapse
Affiliation(s)
- Osama Al-Dalahmah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Luana Campos Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - James Nicholson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Swip Draijer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Mayara Mundim
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Victor M Lu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - István Adorján
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
65
|
de Jong CGHM, Stancic M, Pinxterhuis TH, van Horssen J, van Dam AM, Gabius HJ, Baron W. Galectin-4, a Negative Regulator of Oligodendrocyte Differentiation, Is Persistently Present in Axons and Microglia/Macrophages in Multiple Sclerosis Lesions. J Neuropathol Exp Neurol 2019; 77:1024-1038. [PMID: 30252090 DOI: 10.1093/jnen/nly081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neuron-derived molecules are potent regulators of oligodendrocyte differentiation and myelination during brain development and upon demyelination. Their analysis will thus contribute to understanding remyelination failure in demyelinating diseases, such as multiple sclerosis (MS). Previously, we have identified neuronal galectin-4 as a novel negative soluble regulator in the timing of developmental myelination. Here, we investigated whether galectin-4 is re-expressed in axons upon demyelination to regulate the timing of remyelination. Our findings revealed that galectin-4 is transiently localized to axons in demyelinated areas upon cuprizone-induced demyelination. In contrast, in chronic demyelinated MS lesions, where remyelination fails, galectin-4 is permanently present on axons. Remarkably, microglia/macrophages in cuprizone-demyelinated areas also harbor galectin-4, as also observed in activated microglia/macrophages that are present in active MS lesions and in inflammatory infiltrates in chronic-relapsing experimental autoimmune encephalomyelitis. In vitro analysis showed that galectin-4 is effectively endocytosed by macrophages, and may scavenge galectin-4 from oligodendrocytes, and that endogenous galectin-4 levels are increased in alternatively interleukin-4-activated macrophages and microglia. Hence, similar to developmental myelination, the (re)expressed galectin-4 upon demyelination may act as factor in the timing of oligodendrocyte differentiation, while the persistent presence of galectin-4 on demyelinated axons may disrupt this fine-tuning of remyelination.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjana Stancic
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tineke H Pinxterhuis
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
66
|
Nishikawa H, Liu L, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, Okada T, Suzuki H. Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3. Stroke 2019; 49:2743-2751. [PMID: 30355205 DOI: 10.1161/strokeaha.118.021757] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- Plasma levels of galectin-3-a matricellular protein-are increased after aneurysmal subarachnoid hemorrhage (SAH), but the functional significance remains undetermined. This study was conducted to evaluate whether modified citrus pectin (MCP; galectin-3 inhibitor) prevents post-SAH early brain injury, focusing on blood-brain barrier disruption. Methods- C57BL/6 male adult mice (n=251) underwent sham or filament perforation SAH modeling, followed by a random intracerebroventricular injection of vehicle or drug at 30 minutes post-modeling. First, vehicle-treated and 0.8, 4, 16, or 32 µg MCP-treated mice were assessed by neuroscore and brain water content at 24 and 48 hours post-modeling. Second, Evans blue extravasation, Western blotting, coimmunoprecipitation and immunostaining were performed in vehicle-treated or 4 µg MCP-treated mice at 24 hours post-modeling. Third, vehicle or R-galectin-3 (recombinant galectin-3) was administered to SAH mice simultaneously with vehicle or MCP, and neuroscore and Evans blue extravasation were evaluated at 24 hours post-modeling. Fourth, vehicle or R-galectin-3 was administered to MCP-treated SAH mice at 24 hours, and neuroscore and IgG immunostaining were evaluated at 48 hours post-SAH. Results- Among tested dosages, 4 µg MCP showed the best neuroprotective effects as to preventing neurological impairments and brain edema at 24 to 48 hours post-SAH. Four micrograms MCP attenuated post-SAH blood-brain barrier disruption and galectin-3 upregulation in brain capillary endothelial cells, associated with inactivation of ERK (extracellular signal-related kinase) 1/2, STAT (signal transducer and activator of transcription)-3, and MMP (matrix metalloproteinase)-9, and the consequent preservation of a tight junction protein ZO-1 (zonula occludens-1). Coimmunoprecipitation assay demonstrated physical interactions between galectin-3 and TLR (Toll-like receptor) 4. R-galectin-3 blocked the neuroprotective effects of MCP. Conclusions- MCP prevents post-SAH blood-brain barrier disruption possibly by inhibiting galectin-3, of which the mechanisms may include binding to TLR4 and activating ERK1/2, STAT-3, and MMP-9. This study suggests galectin-3 to be a novel therapeutic target against post-SAH early brain injury.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
67
|
Wang Q, Gao R, Wang M, Chen Q, Xiao M, Li Z, Wang L, Chen C. Spatiotemporal expression patterns of Galectin-3 in perinatal rat hypoxic-ischemic brain injury model. Neurosci Lett 2019; 711:134439. [PMID: 31425825 DOI: 10.1016/j.neulet.2019.134439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
In this research, we intended to evaluate the expression pattern, distribution and sources of Galectin-3 (Gal-3) in perinatal hypoxic-ischemic brain injury rat model. Postnatal day 3 Sprague-Dawley rat pups were subjected to right carotid artery ligation followed by 2.5 h of hypoxia (6% oxygen). Expression and distribution of Gal-3 were evaluated by western blotting and immunofluorescence. Sources of Gal-3 were evaluated by double staining with neuronic, oligodendrocytic, astrocytic, microglial and endotheliocytic markers. Our results indicated Gal-3 significantly upregulated from 12 h and maintained an increasing tendency within 72 h post injury. Although the relative expression of Gal-3 decreased after 72 h, we detected significant differences until 14d. We found Gal-3 started to distribute in cortex and thalamus area and maintained an increasing tendency. Gal-3 could be detected in cortex, thalamus, corpus callosum and hippocampus area at 72 h post injury. After that, expression of Gal-3 in cortex and thalamus area downregulated, the expression in corpus callosum and hippocampus area vanished. We found astrocyte, microglia, neuron and endotheliocyte were sources of Gal-3 in cortex area; astrocyte, microglia and endotheliocyte were sources of Gal-3 in thalamus area; oligodendrocyte precursor cell and endotheliocyte were sources of Gal-3 in corpus callosum; neuron, microglia and endotheliocyte were sources of Gal-3 in hippocampus. In conclusion, we demonstrated spatiotemporal expression patterns of Galectin-3 post perinatal hypoxic-ischemic brain injury in this research.
Collapse
Affiliation(s)
- Qian Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Ruiwei Gao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Minjie Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Qiufan Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Zhihua Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Laishuan Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China.
| |
Collapse
|
68
|
Gruchot J, Weyers V, Göttle P, Förster M, Hartung HP, Küry P, Kremer D. The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells 2019; 8:cells8080825. [PMID: 31382620 PMCID: PMC6721708 DOI: 10.3390/cells8080825] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Myelin sheaths in the central nervous system (CNS) insulate axons and thereby allow saltatory nerve conduction, which is a prerequisite for complex brain function. Multiple sclerosis (MS), the most common inflammatory autoimmune disease of the CNS, leads to the destruction of myelin sheaths and the myelin-producing oligodendrocytes, thus leaving behind demyelinated axons prone to injury and degeneration. Clinically, this process manifests itself in significant neurological symptoms and disability. Resident oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) are present in the adult brain, and can differentiate into mature oligodendrocytes which then remyelinate the demyelinated axons. However, for multiple reasons, in MS the regenerative capacity of these cell populations diminishes significantly over time, ultimately leading to neurodegeneration, which currently remains untreatable. In addition, microglial cells, the resident innate immune cells of the CNS, can contribute further to inflammatory and degenerative axonal damage. Here, we review the molecular factors contributing to remyelination failure in MS by inhibiting OPC and NSC differentiation or modulating microglial behavior.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
69
|
Bonsack F, Sukumari-Ramesh S. Differential Cellular Expression of Galectin-1 and Galectin-3 After Intracerebral Hemorrhage. Front Cell Neurosci 2019; 13:157. [PMID: 31156388 PMCID: PMC6530358 DOI: 10.3389/fncel.2019.00157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating sub-type of stroke with no proven treatment. Given the emerging role of Galectin-1 and Galectin-3 in neuroimmune responses, the objective of the current manuscript is to elucidate hemorrhagic-injury induced modulation and cellular expression of Galectin-1 and Galectin-3 in the brain in a pre-clinical model of ICH. To address this, ICH was induced in male CD1 mice by collagenase injection method. Western blotting as well as Immunofluorescence staining was performed to characterize the temporal expression pattern as well as cellular localization of Galectin-1 and Galectin-3 after ICH. Further, genetic studies were conducted to assess the functional role of Galectin-1 and Galectin-3 in inflammatory response employing a murine macrophage cell line, RAW 264.7. Galectin-1 and Galectin-3 exhibited very profound and increased expression from day 3 to day 7-post-injury, in the perihematomal brain region after ICH in comparison to Sham. Further, Galectin-1 expression was mostly observed in GFAP-positive astrocytes whereas Galectin-3 expression was observed mostly in Iba1-positive microglia/macrophages as well as CD16/32 (M1 microglial/macrophage marker)-positive cells. Moreover, genetic studies revealed a negative regulatory role of both Galectin-1 and Galectin-3 in the release of a proinflammatory cytokine, IL-6 from RAW 264.7 cells depending on the stimulus. Altogether, the present manuscript demonstrates for the first time, increased expression as well as cellular localization of Galectin-1 and Galectin-3 in the perihematomal brain regions after ICH. In addition, the manuscript raises the potential of Galectin-1 and Galectin-3 in modulating glial responses and thereby brain injury after ICH, warranting further investigation.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
70
|
Stajic D, Selakovic D, Jovicic N, Joksimovic J, Arsenijevic N, Lukic ML, Rosic G. The role of galectin-3 in modulation of anxiety state level in mice. Brain Behav Immun 2019; 78:177-187. [PMID: 30682502 DOI: 10.1016/j.bbi.2019.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Galectin-3 (Gal-3), a member of lectin family that binds to oligosaccharides, is involved in several biological processes, including maturation and function of nervous system. It had been reported that Gal-3 regulates oligodendrocytes differentiation and that Gal-3/Toll-like receptor-4 (TLR4) axis is involved in neuroinflammation. As both, central nervous system (CNS) maturation and neuroinflammation may affect behavior, the principle aim of this study was to examine the effects of Gal-3 gene deletion on behavior. Here we provide the evidence that Gal-3 deficiency shows clear anxiogenic effect in mature untreated animals (basal conditions). This was accompanied with lower interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) relative gene expression and hippocampal content, with no effect on TLR4 expression. Gal-3 deficiency was also accompanied with lower brain-derived neurotrophic factor (BDNF) relative gene expression and immunoreactivity in hippocampus (predominantly in CA1 region). Besides, the Gal-3 gene deletion resulted in attenuation of the hippocampal relative gene expression of GABA-A receptor subunits 2 and 5 (GABA-AR2S and GABA-AR5S), On the other hand, Gal-3 deficiency attenuates LPS-induced neuroinflammation. The anxiogenic effect of acute neuroinflammation was accompanied with increased hippocampal IL-6, TNF-α and TLR4 gene expression, as well as decreased gene and immunohistochemical BDNF expression in hippocampus, with significant decline in GABA-AR2S in wild type (WT) mice in comparison to basal conditions. Gal-3 gene deletion prevented the increase in IL-6, the decline in BDNF gene expression and immunoreactivity, and reduction in hippocampal GABA-AR2S, and therefore attenuated the anxiogenic effect of neuroinflammation. In summary, our data demonstrate that apparently opposite effects of Gal-3 deficiency on anxiety levels (anxiogenic effect under basal conditions and anxiolytic action during neuroinflammation) seem to be related to the shift in IL-6, TNF-α and hippocampal BDNF.
Collapse
Affiliation(s)
- Dalibor Stajic
- Department of Hygiene and Ecology, Faculty of Medical Sciences, University of Kragujevac, Serbia; Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| |
Collapse
|
71
|
|
72
|
Ramírez E, Sánchez-Maldonado C, Mayoral MA, Mendieta L, Alatriste V, Patricio-Martínez A, Limón ID. Neuroinflammation induced by the peptide amyloid-β (25-35) increase the presence of galectin-3 in astrocytes and microglia and impairs spatial memory. Neuropeptides 2019; 74:11-23. [PMID: 30795916 DOI: 10.1016/j.npep.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/05/2023]
Abstract
Galectins are animal lectins that bind to β-galactosides, such as lactose and N-acetyllactosamine, contained in glycoproteins or glycolipids. Galectin-1 (Gal-1) and Galectin-3 (Gal-3) are involved in pathologies associated with the inflammatory process, cell proliferation, adhesion, migration, and apoptosis. Recent evidence has shown that the administration of Amyloid-β 25-35 (Aβ25-35) into the hippocampus of rats increases the inflammatory response that is associated with memory impairment and neurodegeneration. Galectins could participate in the modulation of the neuroinflammation induced by the Aβ25-35. The aim of this study was to evaluate the presence of Gal-1 and Gal-3 in the neuroinflammation induced by administration of Aβ25-35 into the hippocampus and to examine spatial memory in the Morris water maze. After the administration of Aβ25-35, animals were tested for learning and spatial memory in the Morris water maze. Behavioral performance showed that Aβ25-35 didn't affect spatial learning but did impair memory, with animals taking longer to find the platform. On the day 32, hippocampus was examined for astrocytes (GFAP), microglia (Iba1), Gal-1 and Gal-3 via immunohistochemical analysis, and the cytokines IL-1β, TNF-α, IFN-γ by ELISA. This study's results showed a significant increase in the expression of Gal-3 in the microglia and astrocytes, while Gal-1 didn't increase in the dorsal hippocampus. The expression of galectins is associated with increased cytokines in the hippocampal formation of Aβ25-35 treated rats. These findings suggest that Gal-3 could participate in the inflammation induced by administration of Aβ25-35 and could be involved in the neurodegeneration progress and memory impairment.
Collapse
Affiliation(s)
- Eleazar Ramírez
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico
| | | | | | - Liliana Mendieta
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico
| | | | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico; Facultad de Ciencias Biológicas, BUAP, Puebla, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico.
| |
Collapse
|
73
|
Mathew MP, Donaldson JG. Glycosylation and glycan interactions can serve as extracellular machinery facilitating clathrin-independent endocytosis. Traffic 2019; 20:295-300. [PMID: 30706592 DOI: 10.1111/tra.12636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
Abstract
In contrast to clathrin-mediated endocytosis (CME) which is well characterized and understood, little is known about the regulation and machinery underlying clathrin-independent endocytosis (CIE). There is also a wide variation in the requirements each individual CIE cargo has for its internalization. Recent studies have shown that CIE is affected by glycosylation and glycan interactions. We briefly review these studies and explore how these studies mesh with one another. We then discuss what this sensitivity to glycan interactions could indicate for the regulation of CIE. We address the spectrum of responses CIE has been shown to have with respect to changes in glycan interactions and attempt to reconcile disparate observations onto a shared conceptual landscape. We focus on the mechanisms by which cells can alter the glycan interactions at the plasma membrane and propose that glycosylation and glycan interactions could provide cells with a tool box with which cells can manipulate CIE. Altered glycosylation is often associated with a number of diseases and we discuss how under different disease settings, glycosylation-based modulation of CIE could play a role in disease progression.
Collapse
Affiliation(s)
- Mohit P Mathew
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
74
|
Tong XK, Trigiani LJ, Hamel E. High cholesterol triggers white matter alterations and cognitive deficits in a mouse model of cerebrovascular disease: benefits of simvastatin. Cell Death Dis 2019; 10:89. [PMID: 30692517 PMCID: PMC6349936 DOI: 10.1038/s41419-018-1199-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Transgenic mice overexpressing transforming growth factor-β1 (TGF mice) display impaired cerebrovascular reactivity, cerebral hypoperfusion and neurovascular uncoupling, but no overt cognitive deficits until old age. Cardiovascular diseases are a major risk factor for vascular cognitive impairment and dementia (VCID). We investigated the impact of a high cholesterol diet (HCD) on cerebrovascular and cognitive function in adult (6 months) and aged (12 months) TGF mice, together with the potential benefit of simvastatin (SV), an anti-cholesterol drug with pleiotropic effects, in adult mice. HCD increased blood, but not brain, cholesterol levels in treated mice, which SV did not reduce. In WT mice, HCD induced small, albeit significant, impairment in endothelium-dependent dilatory function. In TGF mice, HCD worsened the established brain vessel dilatory dysfunction in an age-dependent manner and increased the number of string vessels in the white matter (WM), alterations respectively normalized and significantly countered by SV. HCD triggered cognitive decline only in TGF mice at both ages, a deficit prevented by SV. Concurrently, HCD upregulated galectin−3 immunoreactivity in WM microglial cells, a response significantly reduced in SV-treated TGF mice. Grey matter astrogliosis and microgliosis were not affected by HCD or SV. In the subventricular zone of adult HCD-treated TGF mice, SV promoted oligogenesis and migration of oligodendrocyte progenitor cells. The results demonstrate that an underlying cerebrovascular pathology increases vulnerability to cognitive failure when combined to another risk factor for dementia, and that WM alterations are associated with this loss of function. The results further indicate that myelin repair mechanisms, as triggered by SV, may bear promise in preventing or delaying cognitive decline related to VCID.
Collapse
Affiliation(s)
- Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Lianne J Trigiani
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada.
| |
Collapse
|
75
|
Santos J, Milthorpe BK, Padula MP. Proteomic Analysis of Cyclic Ketamine Compounds Ability to Induce Neural Differentiation in Human Adult Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030523. [PMID: 30691166 PMCID: PMC6387408 DOI: 10.3390/ijms20030523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Neural regeneration is of great interest due to its potential to treat traumatic brain injuries and diseases that impact quality of life. Growth factor mediated differentiation can take up to several weeks to months to produce the cell of interest whereas chemical stimulation may be as minimal as a few hours. The smaller time scale is of great clinical relevance. Adipose derived stem cells (ADSCs) were treated for up to 24 h with a novel differentiation media containing the cyclic ketamine compounds to direct neurogenic induction. The extent of differentiation was investigated by proteome changes occurring during the process. The treatments indicated the ADSCs responded favorably to the neurogenic induction media by presenting a number of morphological cues of neuronal phenotype previously seen and a higher cell population post induction compared to previous studies. Furthermore, approximately 3500 proteins were analyzed and identified by mass spectrometric iTRAQ analyses. The bioinformatics analyses revealed hundreds of proteins whose expression level changes were statistically significant and biologically relevant to neurogenesis and annotated as being involved in neurogenic development. Complementing this, the Bioplex cytokine assay profiles present evidence of decreased panel of stress response cytokines and a relative increase in those involved in neurogenesis.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- CIRIMAT, Paul Sabatier, University of Toulouse 3 (INPT), 118 Route de Narbonne, 31062 Toulouse, France.
| | - Bruce Kenneth Milthorpe
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| |
Collapse
|
76
|
Thomas L, Pasquini LA. Galectin-3 prospects as a therapeutic agent for multiple sclerosis. Neural Regen Res 2019; 14:1380-1382. [PMID: 30964061 PMCID: PMC6524501 DOI: 10.4103/1673-5374.253521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
77
|
Sekiya K, Nishihara T, Abe N, Konishi A, Nandate H, Hamada T, Ikemune K, Takasaki Y, Tanaka J, Asano M, Yorozuya T. Carbon monoxide poisoning-induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia-induced brain damage. Brain Res 2018; 1710:22-32. [PMID: 30578768 DOI: 10.1016/j.brainres.2018.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 11/15/2022]
Abstract
Carbon monoxide (CO) causes not only acute fatal poisoning but also may cause a delayed neurologic syndrome called delayed encephalopathy (DE), which occasionally occurs after an interval of several days to several weeks post-exposure. However, the mechanisms of DE have not been fully elucidated. This study aimed to clarify the pathophysiology of CO-induced DE and its distinctive features compared with hypoxemic hypoxia. Rats were randomly assigned to three groups; the air group, the CO group (exposed to CO), and the low O2 group (exposed to low concentration of O2). Impairment of memory function was observed only in the CO group. The hippocampus tissues were collected and analyzed for assessment of CO-induced changes and microglial reaction. Demyelination was observed only in the CO group and it was more severe and persisted longer than that observed in the low O2 group. Moreover, in the CO group, decreased in microglial cell numbers were observed using flow cytometry, and microglia with detached branches were observed were observed using immunohistochemistry. Conversely, microglial cells with shortened branches and enlarged somata were observed in the low O2 group. Furthermore, mRNAs encoding several neurotrophic factors expressed by microglia were decreased in the CO group but were increased in the low O2 group. Thus, CO-induced DE displayed distinctive pathological features from those of simple hypoxic insults: prolonged demyelination accompanying a significant decrease in microglial cells. Decreased neurotrophic factor expression by microglial cells may be one of the causes of CO-induced DE.
Collapse
Affiliation(s)
- Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Amane Konishi
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Hideyuki Nandate
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Taisuke Hamada
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Keizo Ikemune
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Yasushi Takasaki
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Migiwa Asano
- Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
78
|
Wellman SM, Cambi F, Kozai TD. The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials 2018; 183:200-217. [PMID: 30172245 PMCID: PMC6469877 DOI: 10.1016/j.biomaterials.2018.08.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes and their precursors are critical glial facilitators of neurophysiology, which is responsible for cognition and behavior. Devices that are used to interface with the brain allow for a more in-depth analysis of how neurons and these glia synergistically modulate brain activity. As projected by the BRAIN Initiative, technologies that acquire a high resolution and robust sampling of neural signals can provide a greater insight in both the healthy and diseased brain and support novel discoveries previously unobtainable with the current state of the art. However, a complex series of inflammatory events triggered during device insertion impede the potential applications of implanted biosensors. Characterizing the biological mechanisms responsible for the degradation of intracortical device performance will guide novel biomaterial and tissue regenerative approaches to rehabilitate the brain following injury. Glial subtypes which assist with neuronal survival and exchange of electrical signals, mainly oligodendrocytes, their precursors, and the insulating myelin membranes they produce, are sensitive to inflammation commonly induced from insults to the brain. This review explores essential physiological roles facilitated by oligodendroglia and their precursors and provides insight into their pathology following neurodegenerative injury and disease. From this knowledge, inferences can be made about the impact of device implantation on these supportive glia in order to engineer effective strategies that can attenuate their responses, enhance the efficacy of neural interfacing technology, and provide a greater understanding of the challenges that impede wound healing and tissue regeneration during pathology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, USA; NeuroTech Center, University of Pittsburgh Brain Institute, USA.
| |
Collapse
|
79
|
Thomas L, Pasquini LA. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front Cell Neurosci 2018; 12:297. [PMID: 30258354 PMCID: PMC6143789 DOI: 10.3389/fncel.2018.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3-/- mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
80
|
Cell- and stage-specific localization of galectin-3, a β-galactoside-binding lectin, in a mouse model of experimental autoimmune encephalomyelitis. Neurochem Int 2018; 118:176-184. [PMID: 29920290 DOI: 10.1016/j.neuint.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease in which pathogenic T cells play an important role, and an experimental autoimmune encephalomyelitis (EAE) is used as an animal model of MS. Galectins are β-galactoside-binding lectins and involved in various physiological and pathological events. Among fifteen members of galectins, galectin-1, -8, and -9 play immunosuppressive roles in MS and EAE; however, the role of galectin-3 (gal-3) is complex and controversial. We examined expression of gal-3 in the spinal cord and nerve roots of EAE mice. No immunohistochemical signals were detected in naïve mice, whereas gal-3 appeared at lower lumbar levels of the spinal cord and nerve roots in EAE mice. In the spinal cord, gal-3-positive cells were activated microglia and/or infiltrating macrophages, which were round in shape and intensified for the lysosomal enzyme, cathepsin D, indicating elevated phagocytic activity. Gal-3-positive cells in the spinal cord were most abundant during the peak symptomatic period. In the recovery period, they disappeared from the spinal parenchyma but remained at moderate levels in the pia mater. Interestingly, gal-3-positive cells selectively appeared in ventral, but not dorsal, nerve roots running through the spinal canal, with expression peaking during the recovery period. In ventral nerve roots, the major cell type expressing gal-3 was a specific population of Schwann cells that surround unmyelinated axons and express the biosynthetic enzyme for l-serine, a potent neurotrophic amino acid. Gal-3 was also induced in Iba1/F4/80-positive macrophages, which engulf damaged myelin and axon debris. Thus, gal-3 is induced in distinct cell types that are engaged in removal of damaged axons and cell debris and axon regeneration and remyelination, suggesting a potential neuroprotective role of gal-3 in EAE mice.
Collapse
|
81
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
82
|
Siew JJ, Chern Y. Microglial Lectins in Health and Neurological Diseases. Front Mol Neurosci 2018; 11:158. [PMID: 29867350 PMCID: PMC5960708 DOI: 10.3389/fnmol.2018.00158] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery. Most importantly, multiple studies have reported dysregulation of lectins in neurological disorders. Here, we reviewed recent studies on microglial lectins and their functions in CNS health and disease, and suggest that these lectin families are novel, potent therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Jian Jing Siew
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
83
|
Extracellular Galectin-3 Induces Accelerated Oligodendroglial Differentiation Through Changes in Signaling Pathways and Cytoskeleton Dynamics. Mol Neurobiol 2018; 56:336-349. [DOI: 10.1007/s12035-018-1089-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
|
84
|
Possible Role of Inflammation and Galectin-3 in Brain Injury after Subarachnoid Hemorrhage. Brain Sci 2018; 8:brainsci8020030. [PMID: 29414883 PMCID: PMC5836049 DOI: 10.3390/brainsci8020030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is known as one of the most devastating diseases in the central nervous system. In the past few decades, research on SAH has focused on cerebral vasospasm to prevent post-SAH delayed cerebral ischemia (DCI) and to improve outcomes. However, increasing evidence has suggested that early brain injury (EBI) is an important mechanism contributing to DCI, cerebral vasospasm as well as poor outcomes. Though the mechanism of EBI is very complex, inflammation is thought to play a pivotal role in EBI. Galectin-3 is a unique chimera type in the galectin family characterized by its β-galactoside-binding lectin, which mediates various pathologies, such as fibrosis, cell adhesion, and inflammation. Recently, two clinical studies revealed galectin-3 to be a possible prognostic biomarker in SAH patients. In addition, our recent report suggested that higher acute-stage plasma galectin-3 levels correlated with subsequent development of delayed cerebral infarction that was not associated with vasospasm in SAH patients. We review the possible role and molecular mechanisms of inflammation as well as galectin-3 in brain injuries, especially focusing on EBI after SAH, and discuss galectin-3 as a potential new therapeutic or research target in post-SAH brain injuries.
Collapse
|
85
|
Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci 2018; 19:ijms19020379. [PMID: 29373564 PMCID: PMC5855601 DOI: 10.3390/ijms19020379] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) regulates basic cellular functions such as cell-cell and cell-matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Luca Lavra
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Morgante
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Ulivieri
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Fiorenza Magi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Gian Paolo De Francesco
- Department of Oncological Science, Breast Unit, St Andrea University Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Carlo Bellotti
- Operative Unit Surgery of Thyroid and Parathyroid, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Leila B Salehi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
86
|
Boziki M, Polyzos SA, Deretzi G, Kazakos E, Katsinelos P, Doulberis M, Kotronis G, Giartza-Taxidou E, Laskaridis L, Tzivras D, Vardaka E, Kountouras C, Grigoriadis N, Thomann R, Kountouras J. A potential impact of Helicobacter pylori-related galectin-3 in neurodegeneration. Neurochem Int 2017; 113:137-151. [PMID: 29246761 DOI: 10.1016/j.neuint.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Neurodegeneration represents a component of the central nervous system (CNS) diseases pathogenesis, either as a disability primary source in the frame of prototype neurodegenerative disorders, or as a secondary effect, following inflammation, hypoxia or neurotoxicity. Galectins are members of the lectin superfamily, a group of endogenous glycan-binding proteins, able to interact with glycosylated receptors expressed by several immune cell types. Glycan-lectin interactions play critical roles in the living systems by involving and mediating a variety of biologically important normal and pathological processes, including cell-cell signaling shaping cell communication, proliferation and migration, immune responses and fertilization, host-pathogen interactions and diseases such as neurodegenerative disorders and tumors. This review focuses in the role of Galectin-3 in shaping responses of the immune system against microbial agents, and concretely, Helicobacter pylori (Hp), thereby potentiating effect of the microbe in areas distant from the ordinary site of colonization, like the CNS. We hereby postulate that gastrointestinal Hp alterations in terms of immune cell functional phenotype, cytokine and chemokine secretion, may trigger systemic responses, thereby conferring implications for remote processes susceptible in immunity disequilibrium, namely, the CNS inflammation and/or neurodegeneration.
Collapse
Affiliation(s)
- Marina Boziki
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Multiple Sclerosis Unit, Papageorgiou Hospital, Thessaloniki, Greece
| | - Evangelos Kazakos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Katsinelos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Michael Doulberis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Georgios Kotronis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Evaggelia Giartza-Taxidou
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Leonidas Laskaridis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitri Tzivras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Elisabeth Vardaka
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Constantinos Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| |
Collapse
|
87
|
Venkatraman A, Hardas S, Patel N, Singh Bajaj N, Arora G, Arora P. Galectin-3: an emerging biomarker in stroke and cerebrovascular diseases. Eur J Neurol 2017; 25:238-246. [PMID: 29053903 DOI: 10.1111/ene.13496] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The carbohydrate-binding molecule galectin-3 has garnered significant attention recently as a biomarker for various conditions ranging from cardiac disease to obesity. Although there have been several recent studies investigating its role in stroke and other cerebrovascular diseases, awareness of this emerging biomarker in the wider neurology community is limited. We performed a systematic search in PubMed, Embase, Scopus, CINAHL, Clinicaltrials.gov and the Cochrane library in November and December 2016 for articles related to galectin-3 and cerebrovascular disease. We included both human and pre-clinical studies in order to provide a comprehensive view of the state of the literature on this topic. The majority of the relevant literature focuses on stroke, cerebral ischemia and atherosclerosis, but some recent attention has also been devoted to intracranial and subarachnoid hemorrhage. Higher blood levels of galectin-3 correlate with worse outcomes in atherosclerotic disease as well as in intracranial and subarachnoid hemorrhage in human studies. However, experimental evidence supporting the role of galectin-3 in these phenotypes is not as robust. It is likely that the role of galectin-3 in the inflammatory cascade within the central nervous system following injury is responsible for many of its effects, but its varied physiological functions and multiple sites of expression mean that it may have different effects depending on the nature of the disease condition and the time since injury. In summary, experimental and human research raises the possibility that galectin-3, which is closely linked to the inflammatory cascade, could be of value as a prognostic marker and therapeutic target in cerebrovascular disease.
Collapse
Affiliation(s)
- A Venkatraman
- Department of Neurology, Massachusetts General Hospital/Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - S Hardas
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - N Patel
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - N Singh Bajaj
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - G Arora
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - P Arora
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
88
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
89
|
Chen YC, Ma YL, Lin CH, Cheng SJ, Hsu WL, Lee EHY. Galectin-3 Negatively Regulates Hippocampus-Dependent Memory Formation through Inhibition of Integrin Signaling and Galectin-3 Phosphorylation. Front Mol Neurosci 2017; 10:217. [PMID: 28744198 PMCID: PMC5504160 DOI: 10.3389/fnmol.2017.00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/20/2017] [Indexed: 01/06/2023] Open
Abstract
Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO) enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK) levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
- Yan-Chu Chen
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipei, Taiwan
| | - Yun-Li Ma
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | | | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan.,Neuroscience Program in Academia SinicaTaipei, Taiwan
| | - Wei-Lun Hsu
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Eminy H-Y Lee
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipei, Taiwan.,Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
90
|
Vinnai JR, Cumming RC, Thompson GJ, Timoshenko AV. The association between oxidative stress-induced galectins and differentiation of human promyelocytic HL-60 cells. Exp Cell Res 2017; 355:113-123. [DOI: 10.1016/j.yexcr.2017.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022]
|
91
|
Neuroanatomical distribution of galectin-3 in the adult rat brain. J Mol Histol 2017; 48:133-146. [DOI: 10.1007/s10735-017-9712-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 01/11/2023]
|
92
|
Ercan E, Han JM, Di Nardo A, Winden K, Han MJ, Hoyo L, Saffari A, Leask A, Geschwind DH, Sahin M. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med 2017; 214:681-697. [PMID: 28183733 PMCID: PMC5339668 DOI: 10.1084/jem.20160446] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/09/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Disruption of myelination during development has been implicated in a range of neurodevelopmental disorders including tuberous sclerosis complex (TSC). TSC patients with autism display impairments in white matter integrity. Similarly, mice lacking neuronal Tsc1 have a hypomyelination phenotype. However, the mechanisms that underlie these phenotypes remain unknown. In this study, we demonstrate that neuronal TSC1/2 orchestrates a program of oligodendrocyte maturation through the regulated secretion of connective tissue growth factor (CTGF). We characterize oligodendrocyte maturation both in vitro and in vivo. We find that neuron-specific Tsc1 deletion results in an increase in CTGF secretion that non-cell autonomously stunts oligodendrocyte development and decreases the total number of oligodendrocytes. Genetic deletion of CTGF from neurons, in turn, mitigates the TSC-dependent hypomyelination phenotype. These results show that the mechanistic target of rapamycin (mTOR) pathway in neurons regulates CTGF production and secretion, revealing a paracrine mechanism by which neuronal signaling regulates oligodendrocyte maturation and myelination in TSC. This study highlights the role of mTOR-dependent signaling between neuronal and nonneuronal cells in the regulation of myelin and identifies an additional therapeutic avenue for this disease.
Collapse
Affiliation(s)
- Ebru Ercan
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Juliette M Han
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Alessia Di Nardo
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Kellen Winden
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Min-Joon Han
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115.,Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Leonie Hoyo
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115.,Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Afshin Saffari
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Andrew Leask
- Department of Dentistry, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, Ontario N6A 5C1, Canada
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095.,Semel Institute, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095.,Department of Human Genetics, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095
| | - Mustafa Sahin
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 .,Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
93
|
Chip S, Fernández-López D, Li F, Faustino J, Derugin N, Vexler ZS. Genetic deletion of galectin-3 enhances neuroinflammation, affects microglial activation and contributes to sub-chronic injury in experimental neonatal focal stroke. Brain Behav Immun 2017; 60:270-281. [PMID: 27836669 PMCID: PMC7909718 DOI: 10.1016/j.bbi.2016.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023] Open
Abstract
The pathophysiology of neonatal stroke and adult stroke are distinct in many aspects, including the inflammatory response. We previously showed endogenously protective functions of microglial cells in acute neonatal stroke. We asked if galectin-3 (Gal3), a pleotropic molecule that mediates interactions between microglia/macrophages and the extracellular matrix (ECM), plays a role in early injury after transient middle cerebral occlusion (tMCAO) in postnatal day 9-10 mice. Compared to wild type (WT) pups, in Gal3 knockout pups injury was worse and cytokine/chemokine production altered, including further increase of MIP1α and MIP1β levels and reduced IL6 levels 72h after tMCAO. Lack of Gal3 did not affect morphological transformation or proliferation of microglia but markedly attenuated accumulation of CD11b+/CD45med-high cells after injury, as determined by multi-color flow cytometry. tMCAO increased expression of αV and β3 integrin subunits in CD11b+/CD45low microglial cells and cells of non-monocyte lineage (CD11b-/CD45-), but not in CD11b+/CD45med-high cells within injured regions of WT mice or Gal3-/- mice. αV upregulated in areas occupied and not occupied by CD68+ cells, most prominently in the ECM, lining blood vessels, with expanded αV coverage in Gal3-/- mice. Cumulatively, these data show that lack of Gal3 worsens subchronic injury after neonatal focal stroke, likely by altering the neuroinflammatory milieu, including an imbalance between pro- and anti-inflammatory molecules, effects on microglial activation, and deregulation of the composition of the ECM.
Collapse
Affiliation(s)
| | | | | | | | | | - Zinaida S. Vexler
- Corresponding author at: University California San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158-0663, USA. (Z.S. Vexler)
| |
Collapse
|
94
|
Mehta P, Piao X. Adhesion G-protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Dev Dyn 2017; 246:275-284. [PMID: 27859941 DOI: 10.1002/dvdy.24473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large family of transmembrane proteins that play important roles in many processes during development, primarily through cell-cell and cell-extracellular matrix (ECM) interactions. In the nervous system, they have been linked to the complex process of myelination, both in the central and peripheral nervous system. GPR126 is essential in Schwann cell-mediated myelination in the peripheral nervous system (PNS), while GPR56 is involved in oligodendrocyte development central nervous system (CNS) myelination. VLGR1 is another aGPCR that is associated with the expression of myelin-associated glycoprotein (MAG) which has inhibitory effects on the process of nerve repair. The ECM is composed of a vast array of structural proteins, three of which interact specifically with aGPCRs: collagen III/GPR56, collagen IV/GPR126, and laminin-211/GPR126. As druggable targets, aGPCRs are valuable in their ability to unlock treatment for a wide variety of currently debilitating myelin disorders. Developmental Dynamics 246:275-284, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paulomi Mehta
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
95
|
Higuero AM, Díez-Revuelta N, Abad-Rodríguez J. The sugar code in neuronal physiology. Histochem Cell Biol 2016; 147:257-267. [PMID: 27999993 DOI: 10.1007/s00418-016-1519-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Carbohydrate-related interactions are necessary for the correct development and function of the nervous system. As we illustrate with several examples, those interactions are controlled by carbohydrate-modifying enzymes and by carbohydrate-binding proteins that regulate a plethora of complex axonal processes. Among others, glycan-related proteins as sialidase Neu3 or galectins-1, -3, and -4 play central roles in the determination of axonal fate, axon growth, guidance and regeneration, as well as in polarized axonal glycoprotein transport. In addition, myelination is also highly dependent on glycans, and the stabilization of myelin architecture requires the interaction of the myelin-associated glycoprotein (siglec-4) with gangliosides in the axonal membrane. The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system. New specific applications in diagnosis as well as the definition of new molecular targets to treat neurological diseases related to lectins and/or glycans are envisioned in the future.
Collapse
Affiliation(s)
- Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
96
|
Rinaldi M, Thomas L, Mathieu P, Carabias P, Troncoso MF, Pasquini JM, Rabinovich GA, Pasquini LA. Galectin-1 circumvents lysolecithin-induced demyelination through the modulation of microglial polarization/phagocytosis and oligodendroglial differentiation. Neurobiol Dis 2016; 96:127-143. [PMID: 27612409 DOI: 10.1016/j.nbd.2016.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/08/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, binds to the common disaccharide [Galβ(1-4)-GlcNAc] on both N- and O-glycans decorating cell surface glycoconjugates. Current evidence supports a role for Gal-1 in the pathophysiology of multiple sclerosis (MS), one of the most prevalent chronic inflammatory diseases. Previous studies showed that Gal-1 exerts neuroprotective effects by promoting microglial deactivation in a model of autoimmune neuroinflammation and induces axonal regeneration in spinal cord injury. Seeking a model that could link demyelination, oligodendrocyte (OLG) responses and microglial activation, here we used a lysolecithin (LPC)-induced demyelination model to evaluate the ability of Gal-1 to preserve myelin without taking part in T-cell modulation. Gal-1 treatment after LPC-induced demyelination promoted a significant decrease in the demyelinated area and fostered more efficient remyelination, concomitantly with an attenuated oligodendroglial progenitor response reflecting less severe myelination damage. These results were accompanied by a decrease in the area of microglial activation with a shift toward an M2-polarized microglial phenotype and diminished astroglial activation. In vitro studies further showed that, mechanistically, Gal-1 targets activated microglia, promoting an increase in their myelin phagocytic capacity and their shift toward an M2 phenotype, and leads to oligodendroglial differentiation. Therefore, this study supports the use of Gal-1 as a potential treatment for demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Mariana Rinaldi
- Department of Biological Chemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | - Laura Thomas
- Department of Biological Chemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | - Patricia Mathieu
- Department of Biological Chemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | - Pablo Carabias
- Department of Biological Chemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | - Maria F Troncoso
- Department of Biological Chemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | - Juana M Pasquini
- Department of Biological Chemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME; CONICET), C1428 Buenos Aires, Argentina; Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, C1428, Buenos Aires, Argentina
| | - Laura A Pasquini
- Department of Biological Chemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina.
| |
Collapse
|
97
|
Hillis JM, Davies J, Mundim MV, Al-Dalahmah O, Szele FG. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation 2016; 13:190. [PMID: 27550173 PMCID: PMC4994223 DOI: 10.1186/s12974-016-0651-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 07/04/2016] [Indexed: 12/04/2022] Open
Abstract
Background Cuprizone leads to demyelination of the corpus callosum (CC) and activates progenitor cells in the adjacent subventricular zone (SVZ), a stem cell niche which contributes to remyelination. The healthy SVZ contains semi-activated microglia and constitutively expresses the pro-inflammatory molecule galectin-3 (Gal-3) suggesting the niche uniquely regulates inflammation. Methods We studied the inflammatory response to cuprizone in the SVZ and CC in Gal-3 knockout mice using immunohistochemistry and with the in vitro neurosphere assay. Results Cuprizone caused loss of myelin basic protein (MBP) immunofluorescence in the CC suggesting demyelination. Cuprizone increased the density of CD45+/Iba1+ microglial cells and also increased Gal-3 expression in the CC. Surprisingly, the number of Gal-3+ and CD45+ cells decreased in the SVZ after cuprizone, suggesting inflammation was selectively reduced therein. Inflammation can regulate SVZ proliferation and indeed the number of phosphohistone H3+ (PHi3+) cells decreased in the SVZ but increased in the CC in both genotypes after cuprizone treatment. BrdU+ SVZ cell numbers also decreased in the SVZ after cuprizone, and this effect was significantly greater at 3 weeks in Gal-3−/− mice compared to WT, suggesting Gal-3 normally limits SVZ cell emigration following cuprizone treatment. Conclusions This study reveals a uniquely regulated inflammatory response in the SVZ and shows that Gal-3 participates in remyelination in the cuprizone model. This contrasts with more severe models of demyelination which induce SVZ inflammation and suggests the extent of demyelination affects the SVZ neurogenic response. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0651-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James M Hillis
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Julie Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Mayara Vieira Mundim
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.,Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Osama Al-Dalahmah
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
98
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016; 4:71. [PMID: 27551677 PMCID: PMC4923166 DOI: 10.3389/fcell.2016.00071] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
99
|
Quintá HR, Wilson C, Blidner AG, González-Billault C, Pasquini LA, Rabinovich GA, Pasquini JM. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth. Exp Neurol 2016; 283:165-78. [PMID: 27296316 DOI: 10.1016/j.expneurol.2016.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/08/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. SIGNIFICANCE STATEMENT Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel therapeutic modality for promoting nerve repair and preventing axonal loss.
Collapse
Affiliation(s)
- Héctor R Quintá
- Departamento de Química Biológica, Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Carlos Wilson
- Laboratory of Cell and Neuronal Dymanics, Faculty of Sciences, Universidad de Chile. Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. The Buck Institute for Research on Aging, Novato, USA
| | - Ada G Blidner
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires C1428, Argentina
| | - Christian González-Billault
- Laboratory of Cell and Neuronal Dymanics, Faculty of Sciences, Universidad de Chile. Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. The Buck Institute for Research on Aging, Novato, USA
| | - Laura A Pasquini
- Departamento de Química Biológica, Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires C1428, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
| | - Juana M Pasquini
- Departamento de Química Biológica, Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
100
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016. [PMID: 27551677 DOI: 10.3389/fcell.2016.00071.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|