51
|
Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans. Microorganisms 2020; 8:microorganisms8040585. [PMID: 32316661 PMCID: PMC7232333 DOI: 10.3390/microorganisms8040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Hepcidin 25 (hep 25) is a cysteine-rich 25-amino acid antimicrobial peptide containing the amino-terminal Cu(II)/Ni(II)-binding (ATCUN) motif. Upon metal binding, the ATCUN motif is known to be involved in the generation of reactive oxygen species (ROS), especially hydrogen peroxide and hydroxyl radicals, which act against different bacterial species. However, the antifungal activity and its correlation to the Cu(II)-ATCUN complex of Hep 25 are still poorly understood. Here, we found that ROS accumulation plays an important role in the fungicidal activity of hep 25 against Candida albicans. In addition, Annexin V-FITC staining and TUNEL assay results provide clues about the apoptosis induced by hep 25. Moreover, hep 25 also increases the generation of ROS, possibly because of copper binding to the ATCUN motif, which is relevant to its activity against C. albicans. Finally, the C. albicans killing action of hep 25 is an energy- and temperature-dependent process that does not involve targeting the membrane. Taken together, our results provide new insights into the mechanisms of hep 25 against C. albicans cells and the potential use of hep 25 and its derivatives as novel antifungal agents.
Collapse
|
52
|
Roy S, Singh M, Rawat A, Kumar D, Kaithwas G. Mitochondrial apoptosis and curtailment of hypoxia-inducible factor-1α/fatty acid synthase: A dual edge perspective of gamma linolenic acid in ER+ mammary gland cancer. Cell Biochem Funct 2020; 38:591-603. [PMID: 32207176 DOI: 10.1002/cbf.3513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Gamma linolenic acid is a polyunsaturated fatty acid having selective anti-tumour properties with negligible systemic toxicity. In the present study, the anti-cancer potential of gamma linolenic acid and its effects on mitochondrial as well as hypoxia-associated marker was evaluated. The effect of gamma linolenic acid was scrutinised against ER + MCF-7 cells by using fluorescence microscopy, JC-1 staining, dot plot assay and cell cycle analysis. The in vitro results were also confirmed using carcinogen (n-methyl-n-nitrosourea) induced in vivo model. The early and late apoptotic signals in the conjugation with mitochondrial depolarisation were found once scrutinised through mitochondrial membrane potential and life death staining after gamma linolenic acid treatment. Gamma linolenic acid arrested the cell cycle in G0/G1 phase with the majority of cell populations in the early apoptotic stage. The translocation of phosphatidylserine was studied through annexin-V FITC dot plot assay. The markers of cellular proliferation (decreased alveolar bud count, histopathological architecture restoration and loss of tumour micro-vessels) were diminished after gamma linolenic acid treatment. Gamma linolenic acid ameliorates the biological effects of n-methyl-n-nitrosourea persuading the mitochondrial mediated death pathway and impeding the hypoxic microenvironment to make a halt in palmitic acid synthesis. SIGNIFICANCE: The present study elaborates the effect of gamma linolenic acid on mammary gland cancer by following mitochondrial-mediated death apoptosis pathway. Gamma linolenic acid also inhibits cell-wall synthesis by the curtailment of HIF-1α and FASN level in mammary gland cancer.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Atul Rawat
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
53
|
Liu H, Zhang L, Li G, Gao Z. Xanthohumol protects against Azoxymethane-induced colorectal cancer in Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:136-144. [PMID: 31714664 DOI: 10.1002/tox.22849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC) is a major health problem and third most common deaths in western world. Dietary interventions together with modified dietary style can prevent the CRC in humans. Xanthohumol (XHA), a polyphenol isolated from Humulus lupulus L. contains many beneficial effects. The aim of the study is to analyze the effect of XHA on Azoxymethane (AOM)-induced experimental CRC in rats. Levels of MDA were increased and enzymic antioxidants levels were decreased in AOM-induced rats. However, these levels were reversed upon XHA treatment. Further, the mRNA expressions of iNOS and COX-2 were also downregulated in XHA treated rats compared to AOM-induced rats. Further, we found that administration of XHA suppressed the wnt/β-catenin signaling together with modulation of apoptotic proteins Bax, Bcl-2, and caspase 3. We conclude that XHA can able to quench the free radicals, inhibits cell proliferation and induces apoptosis, thus it can be a chemopreventive/therapeutic agent against CRC.
Collapse
Affiliation(s)
- Hualin Liu
- Endoscopy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Lei Zhang
- Health Management Center, Qingdao Municipal Hospital, Qingdao City, Shandong Province, China
| | - Guanghua Li
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Zhuanglei Gao
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
54
|
Generation of Cellular Reactive Oxygen Species by Activation of the EP2 Receptor Contributes to Prostaglandin E2-Induced Cytotoxicity in Motor Neuron-Like NSC-34 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6101838. [PMID: 32411331 PMCID: PMC7201578 DOI: 10.1155/2020/6101838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/19/2019] [Accepted: 09/07/2019] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease characterized by progressive degeneration of motor neurons in the central nervous system. Prostaglandin E2 (PGE2) plays a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. We have shown previously that PGE2 directly induces neuronal death through activation of the E-prostanoid (EP) 2 receptor in differentiated NSC-34 cells, a motor neuron-like cell line. In the present study, to clarify the mechanisms underlying PGE2-induced neurotoxicity, we focused on generation of intracellular reactive oxygen species (ROS) and examined the effects of N-acetylcysteine (NAC), a cell-permeable antioxidant, on PGE2-induced cell death in differentiated NSC-34 cells. Dichlorofluorescein (DCF) fluorescence analysis of PGE2-treated cells showed that intracellular ROS levels increased markedly with time, and that this effect was antagonized by a selective EP2 antagonist (PF-04418948) but not a selective EP3 antagonist (L-798,106). Although an EP2-selective agonist, butaprost, mimicked the effect of PGE2, an EP1/EP3 agonist, sulprostone, transiently but significantly decreased the level of intracellular ROS in these cells. MTT reduction assay and lactate dehydrogenase release assay revealed that PGE2- and butaprost-induced cell death were each suppressed by pretreatment with NAC in a concentration-dependent manner. Western blot analysis revealed that the active form of caspase-3 was markedly increased in the PGE2- and butaprost-treated cells. These increases in caspase-3 protein expression were suppressed by pretreatment with NAC. Moreover, dibutyryl-cAMP treatment of differentiated NSC-34 cells caused intracellular ROS generation and cell death. Our data reveal the existence of a PGE2-EP2 signaling-dependent intracellular ROS generation pathway, with subsequent activation of the caspase-3 cascade, in differentiated NSC-34 cells, suggesting that PGE2 is likely a key molecule linking inflammation to oxidative stress in motor neuron-like NSC-34 cells.
Collapse
|
55
|
Elevated Bioactivity of Ruta graveolens against Cancer Cells and Microbes Using Seaweeds. Processes (Basel) 2020. [DOI: 10.3390/pr8010075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cancer and pathogenic microbes cause a significant number of deaths every year. Modulating current sources of natural products that control such diseases becomes essential. Natural algae, such as Ascophyllum nodosum and Ecklonia maxima, can modulate the metabolic processes as well the bioactivities of Ruta graveolens L. The R. graveolens plants were subjected to nine soil drenches of A. nodosum (7 mL L−1), E. maxima (7 mL L−1), or both extracts. Morphological performance, gas exchange parameters, and essential oils (EOs) composition (GC-MS) were studied and the bioactivity was assessed against several cancer cells and pathogenic bacteria or fungi. Treatment with A. nodosum + E. maxima seaweed extracts (SWE) led to the highest morphological performance and gas exchange parameters. The highest antiproliferative, apoptotic, and caspase-3/7 activities of EO were against HeLa in SWE mixture treated plants. The best EO antimicrobial activities were obtained against Staphylococcus aureus and Penicillium ochrochloron. SWE mixtures treated plants showed the best bioactivities against microbes and cancer cells. The highest abundance of 2-undecanone (62%) and 2-nonanone (18%) was found in plants treated with SWE mixtures and caused the best anticancer and antimicrobial effects. Seaweed mixtures act as natural elicitors of pharmaceutical industries and favored 2-undecanone and 2-nonanone in R. graveolens.
Collapse
|
56
|
Grossi S, Fenini G, Kockmann T, Hennig P, Di Filippo M, Beer HD. Inactivation of the Cytoprotective Major Vault Protein by Caspase-1 and -9 in Epithelial Cells during Apoptosis. J Invest Dermatol 2019; 140:1335-1345.e10. [PMID: 31877317 DOI: 10.1016/j.jid.2019.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022]
Abstract
Inflammasome activation induces caspase-1-dependent secretion of the proinflammatory cytokine IL-1β. In addition, caspase-1 activates the protein GSDMD in immune cells, causing pyroptosis, a lytic type of cell death. In contrast, UVB irradiation of human primary keratinocytes induces NLRP1 inflammasome activation, cytokine secretion, and caspase-1-dependent apoptosis, rather than pyroptosis. Here, we addressed the molecular mechanisms underlying the role of caspase-1 in UVB-induced cell death of human primary keratinocytes. We show that GSDMD is a poor substrate of caspase-1 in human primary keratinocytes and that its activation upon UVB irradiation supports secretion of IL-1β. We screened for novel substrates of caspase-1 by a mass spectrometry-based approach and identified the specific cleavage of the major vault protein (MVP) at D441 by caspase-1 and -9. MVP is the main component of vaults, highly conserved ribonucleoprotein particles, whose functions are poorly understood. Cleavage of MVP is a common event occurring in human primary keratinocytes and fibroblasts undergoing apoptosis induced by different stimuli. In contrast, MVP cleavage could not be detected in pyroptotic cells. Cleavage of MVP by caspase-1 and -9 inactivates this cytoprotective protein. These results demonstrate a proapoptotic activity of caspase-1 and a crosstalk with caspase-9 upon inactivation of the cytoprotective MVP in apoptotic epithelial cells.
Collapse
Affiliation(s)
- Serena Grossi
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
57
|
Madadi Z, Akbari-Birgani S, Monfared PD, Mohammadi S. The non-apoptotic role of caspase-9 promotes differentiation in leukemic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118524. [DOI: 10.1016/j.bbamcr.2019.118524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022]
|
58
|
Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 201:111624. [DOI: 10.1016/j.jphotobiol.2019.111624] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
|
59
|
Singh M, Kasna S, Roy S, Aldosary S, Saeedan AS, Ansari MN, Kaithwas G. Repurposing mechanistic insight of PDE-5 inhibitor in cancer chemoprevention through mitochondrial-oxidative stress intervention and blockade of DuCLOX signalling. BMC Cancer 2019; 19:996. [PMID: 31651285 PMCID: PMC6814136 DOI: 10.1186/s12885-019-6152-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study evaluates the anti-cancer effects of Tadalafil (potent PDE-5 inhibitor) in female albino wistar rats against n-methyl n-nitrosourea induced mammary gland carcinogenesis. METHODS The animals were selected and randomly divided among four groups and each group contains six animals per group. The animal tissue and serum samples were evaluated for the presence of antioxidant parameters and the cellular morphology was studied using carminic staining, haematoxylin staining and scanning electron microscopy followed by immunoblotting analysis. RESULTS On the grounds of hemodynamic recordings and morphology, n-methyl n-nitrosourea treated group showed distorted changes along with distorted morphological parameters. For morphological analysis, the mammary gland tissues were evaluated using scanning electron microscopy, whole mount carmine staining, haematoxylin and eosin staining. The serum samples were evaluated for the evaluation of oxidative stress markers and inflammatory markers. The level of caspase 3 and 8 were also evaluated for the estimation of apoptosis. The fatty acid profiling of mammary gland tissue was evaluated using fatty acid methyl esters formation. The mitochondrial mediated apoptosis and inflammatory markers were evaluated using immunoblotting assay. CONCLUSION The results confirm that Tadalafil treatment restored all the biological markers to the normal and its involvement in mitochondrial mediated death apoptosis pathway along with inhibition of inflammatory markers.
Collapse
Affiliation(s)
- Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sweta Kasna
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohd. Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| |
Collapse
|
60
|
Li Y, Zhu L, Shi F, Li R, Chen X, Zheng Z, Qiu B, Hou L. Modified Liangfu granule exhibits anti-cancer effects in gastric cancer by regulating apoptosis-related proteins and genes. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
61
|
Dronc-independent basal executioner caspase activity sustains Drosophila imaginal tissue growth. Proc Natl Acad Sci U S A 2019; 116:20539-20544. [PMID: 31548372 PMCID: PMC6789915 DOI: 10.1073/pnas.1904647116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caspase is the enzyme involved in cell death, and its activation via the apoptosome is thought to represent irreversible cellular destruction. Furthermore, accumulating evidence suggests increasingly diverse functions of caspase beyond apoptosis. Here, using Drosophila wing as a model, we reveal that the specific executioner caspases, Dcp-1 and Decay, promote, rather than suppress by inducing apoptosis, tissue growth. These executioner caspases act independently of initiator caspase Dronc and apoptosis. We further show that the caspase-mediated cleavage of Acinus is important for sustaining tissue growth. Our research highlights the importance of executioner caspase-mediated basal proteolytic cleavage of substrates during tissue growth, and the findings hint at the original function of caspase—not apoptosis, but basal proteolytic cleavages for cell vigor. Caspase is best known as an enzyme involved in programmed cell death, which is conserved among multicellular organisms. In addition to its role in cell death, caspase is emerging as an indispensable enzyme in a wide range of cellular functions, which have recently been termed caspase-dependent nonlethal cellular processes (CDPs). In this study, we examined the involvement of cell death signaling in tissue-size determination using Drosophila wing as a model. We found that the Drosophila executioner caspases Dcp-1 and Decay, but not Drice, promoted wing growth independently of apoptosis. Most of the reports on CDPs argue the importance of the spatiotemporal regulation of the initiator caspase, Dronc; however, this sublethal caspase function was independent of Dronc, suggesting a more diverse array of CDP regulatory mechanisms. Tagging of TurboID, an improved promiscuous biotin ligase that biotinylates neighboring proteins, to the C terminus of caspases revealed the differences among the neighbors of executioner caspases. Furthermore, we found that the cleavage of Acinus, a substrate of the executioner caspase, was important in promoting wing growth. These results demonstrate the importance of executioner caspase-mediated basal proteolytic cleavage of substrates in sustaining tissue growth. Given the existence of caspase-like DEVDase activity in a unicellular alga, our results likely highlight the original function of caspase—not cell death, but basal proteolytic cleavages for cell vigor.
Collapse
|
62
|
Sipahi R, Zupanc GKH. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. J Theor Biol 2019; 445:151-165. [PMID: 29477556 DOI: 10.1016/j.jtbi.2018.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/05/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems.
Collapse
Affiliation(s)
- Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
63
|
Lin CW, Yang CM, Yang CH. Effects of the Emitted Light Spectrum of Liquid Crystal Displays on Light-Induced Retinal Photoreceptor Cell Damage. Int J Mol Sci 2019; 20:ijms20092318. [PMID: 31083373 PMCID: PMC6539598 DOI: 10.3390/ijms20092318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
Liquid crystal displays (LCDs) are used as screens in consumer electronics and are indispensable in the modern era of computing. LCDs utilize light-emitting diodes (LEDs) as backlight modules and emit high levels of blue light, which may cause retinal photoreceptor cell damage. However, traditional blue light filters may decrease the luminance of light and reduce visual quality. We adjusted the emitted light spectrum of LED backlight modules in LCDs and reduced the energy emission but maintained the luminance. The 661W photoreceptor cell line was used as the model system. We established a formula of the ocular energy exposure index (OEEI), which could be used as the indicator of LCD energy emission. Cell viability decreased and apoptosis increased significantly after exposure to LCDs with higher emitted energy. Cell damage occurred through the induction of oxidative stress and mitochondrial dysfunction. The molecular mechanisms included activation of the NF-κB pathway and upregulation of the expression of proteins associated with inflammation and apoptosis. The effect was correlated with OEEI intensity. We demonstrated that LCD exposure-induced photoreceptor damage was correlated with LCD energy emission. LCDs with lower energy emission may, therefore, serve as suitable screens to prevent light-induced retinal damage and protect consumers’ eye health.
Collapse
Affiliation(s)
- Chao-Wen Lin
- Departments of Ophthalmology, National Taiwan University Hospital, No.7, Zhongshan South Road, Taipei 100, Taiwan.
| | - Chung-May Yang
- Departments of Ophthalmology, National Taiwan University Hospital, No.7, Zhongshan South Road, Taipei 100, Taiwan.
| | - Chang-Hao Yang
- Departments of Ophthalmology, National Taiwan University Hospital, No.7, Zhongshan South Road, Taipei 100, Taiwan.
| |
Collapse
|
64
|
Rebellato P, Kaczynska D, Kanatani S, Rayyes IA, Zhang S, Villaescusa C, Falk A, Arenas E, Hermanson O, Louhivuori L, Uhlén P. The T-type Ca 2+ Channel Ca v3.2 Regulates Differentiation of Neural Progenitor Cells during Cortical Development via Caspase-3. Neuroscience 2019; 402:78-89. [PMID: 30677486 DOI: 10.1016/j.neuroscience.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Abstract
Here we report that the low-voltage-dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. Cells exhibiting robust spontaneous Ca2+ signaling had increased caspase-3 activity unrelated to apoptosis. Inhibition of Cav3.2 by drugs or viral CACNA1H knock down resulted in decreased caspase-3 activity followed by suppressed neurogenesis. In contrast, when CACNA1H was overexpressed, increased neurogenesis was detected. Cortical slices from Cacna1h knockout mice showed decreased spontaneous Ca2+ activity, a significantly lower protein level of cleaved caspase-3, and microanatomical abnormalities in the subventricular/ventricular and cortical plate zones when compared to their respective embryonic controls. In summary, we demonstrate a novel relationship between Cav3.2 and caspase-3 signaling that affects neurogenesis in the developing brain.
Collapse
Affiliation(s)
- Paola Rebellato
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Dagmara Kaczynska
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Songbai Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Carlos Villaescusa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
65
|
Shoorei H, Khaki A, Khaki AA, Hemmati AA, Moghimian M, Shokoohi M. The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomed Pharmacother 2019; 111:568-578. [DOI: 10.1016/j.biopha.2018.12.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
|
66
|
Kaakati R, Zhao R, Bao X, Lee AK, Liu X, Li F, Li CY. Non-apoptotic Roles of Caspases in Stem Cell Biology, Carcinogenesis, and Radiotherapy. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0151-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
67
|
Elansary HO, Szopa A, Kubica P, A Al-Mana F, Mahmoud EA, Zin El-Abedin TKA, A Mattar M, Ekiert H. Phenolic Compounds of Catalpa speciosa, Taxus cuspidate, and Magnolia acuminata have Antioxidant and Anticancer Activity. Molecules 2019; 24:E412. [PMID: 30678123 PMCID: PMC6384650 DOI: 10.3390/molecules24030412] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Tree bark represents an important source of medicinal compounds that may be useful for cancer therapy. In the current study, high-performance liquid chromatography with diode-array detection (HPLC-DAD) was used to determine the profile of the phenolic compounds of Catalpa speciosa, Taxus cuspidata, and Magnolia acuminata bark extracts. The antioxidant and anticancer bioactivities against different cancer cell lines were investigated. M. acuminata exerted significantly higher antioxidant activities in the diphenyl picrylhydrazine and β-carotene-linoleic acid assays than the other species. In C. speciosa, novel profiles of phenolic acids (ferulic acid was the predominant compound) and catechin were detected. In T. cuspidata, six phenolic acids were detected; the predominant compounds were hydroxycaffeic acid and protocatechuic acid. In M. acuminata, two phenolic acids and three catechins were detected; catechin was the predominant compound. The three species exerted clear anticancer activity against MCF-7, HeLa, Jurkat, T24, and HT-29 cells, with the strongest activity found in the extracts from M. acuminata. No antiproliferative activity against normal cells was found. Flow cytometry revealed greater accumulation of necrotic and early/late apoptotic cells in various treated cancer cells than in untreated control cells, and protocatechuic acid induced a similar accumulation of necrotic cells to that of the bark extracts. Caspase-3 and -7 activity was increased in cancer cells treated with different bark extracts; the highest activity was found in the M. acuminata treatment. Our results suggested that the treatment of cancer cells with bark extracts of M. acuminata, C. speciosa, and T. cuspidata, and protocatechuic acid induced apoptosis, suggesting an association between anticancer activities and individual phenolic compounds.
Collapse
Affiliation(s)
- Hosam O Elansary
- Plant production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
- Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture, Alexandria University, Alexandria 00203, Egypt.
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus (APK) Campus, Johannesburg 2006, South Africa.
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - Paweł Kubica
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - Fahed A Al-Mana
- Plant production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Eman A Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt.
| | - Tarek K Ali Zin El-Abedin
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohamed A Mattar
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
68
|
Kulkarni M, Stolp ZD, Hardwick JM. Targeting intrinsic cell death pathways to control fungal pathogens. Biochem Pharmacol 2019; 162:71-78. [PMID: 30660496 DOI: 10.1016/j.bcp.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Fungal pathogens pose an increasing threat to public health. Limited clinical drug regimens and emerging drug-resistant isolates challenge infection control. The global burden of human fungal pathogens is estimated at 1 billion infections and 1.5 million deaths annually. In addition, plant fungal pathogens increasingly threaten global food resources. Novel strategies are needed to combat emerging fungal diseases and pan-resistant fungi. An untapped mechanistically novel approach is to pharmacologically activate the intrinsic cell death pathways encoded by pathogenic fungi. This strategy is analogous to new anti-cancer therapeutics now entering the clinic. Here we summarize the best understood examples of cell death mechanisms encoded by pathogenic fungi, contrast these to mammalian cell death pathways, and highlight the gaps in knowledge towards identifying potential death effectors as druggable targets.
Collapse
Affiliation(s)
- Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - Zachary D Stolp
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
69
|
Kim HY, Kim SY, Lee HY, Lee JH, Rho GJ, Lee HJ, Lee HC, Byun JH, Oh SH. Oxygen-Releasing Microparticles for Cell Survival and Differentiation Ability under Hypoxia for Effective Bone Regeneration. Biomacromolecules 2019; 20:1087-1097. [DOI: 10.1021/acs.biomac.8b01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - So Young Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hye-Young Lee
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
70
|
Putinski C, Abdul-Ghani M, Brunette S, Burgon PG, Megeney LA. Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy. J Am Heart Assoc 2018; 7:e010404. [PMID: 30486716 PMCID: PMC6405540 DOI: 10.1161/jaha.118.010404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase‐directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late‐stage caspase‐mediated cleavage of gelsolin. The requirement of caspase‐mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy‐related transcription activity. The in vivo impact of caspase‐mediated cleavage was investigated by echo‐guided intramyocardial injection of adenoviral‐expressed gelsolin. Expression of the N‐terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end‐stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.
Collapse
Affiliation(s)
- Charis Putinski
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
| | - Mohammad Abdul-Ghani
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
| | - Steve Brunette
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada
| | - Patrick G Burgon
- 2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada.,3 Department of Medicine University of Ottawa Ontario Canada.,4 University of Ottawa Heart Institute Ottawa Ontario Canada
| | - Lynn A Megeney
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada.,3 Department of Medicine University of Ottawa Ontario Canada
| |
Collapse
|
71
|
Best AM, Abu Kwaik Y. Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila. Cell Microbiol 2018; 21:e12971. [PMID: 30370624 DOI: 10.1111/cmi.12971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
Collapse
Affiliation(s)
- Ashley M Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
72
|
Raschellà G, Melino G, Gambacurta A. Cell death in cancer in the era of precision medicine. Genes Immun 2018; 20:529-538. [PMID: 30341419 DOI: 10.1038/s41435-018-0048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Tumors constitute a large class of diseases that affect different organs and cell lineages. The molecular characterization of cancers of a given type has revealed an extraordinary heterogeneity in terms of genetic alterations and DNA mutations; heterogeneity that is further highlighted by single-cell DNA sequencing of individual patients. To address these issues, drugs that specifically target genes or altered pathways in cancer cells are continuously developed. Indeed, the genetic fingerprint of individual tumors can direct the modern therapeutic approaches to selectively hit the tumor cells while sparing the healthy ones. In this context, the concept of precision medicine finds a vast field of application. In this review, we will briefly list some classes of target drugs (Bcl-2 family modulators, Tyrosine Kinase modulators, PARP inhibitors, and growth factors inhibitors) and discuss the application of immunotherapy in tumors (T cell-mediated immunotherapy and CAR-T cells) that in recent years has drastically changed the prognostic outlook of aggressive cancers. We will also consider how apoptosis could represent a primary end point in modern cancer therapy and how "classic" chemotherapeutic drugs that induce apoptosis are still utilized in therapeutic schedules that involve the use of target drugs or immunotherapy to optimize the antitumor response.
Collapse
Affiliation(s)
- Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, 00123, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, University of Cambridge, Leicester, LE1 9HN, UK
| | - Alessandra Gambacurta
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
73
|
Morgan JE, Prola A, Mariot V, Pini V, Meng J, Hourde C, Dumonceaux J, Conti F, Relaix F, Authier FJ, Tiret L, Muntoni F, Bencze M. Necroptosis mediates myofibre death in dystrophin-deficient mice. Nat Commun 2018; 9:3655. [PMID: 30194302 PMCID: PMC6128848 DOI: 10.1038/s41467-018-06057-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 08/10/2018] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe degenerative disorder caused by mutations in the dystrophin gene. Dystrophin-deficient muscles are characterised by progressive myofibre necrosis in which inflammation plays a deleterious role. However, the molecular mechanisms underlying inflammation-induced necrosis in muscle cells are unknown. Here we show that necroptosis is a mechanism underlying myofibre death in dystrophin-deficient muscle. RIPK1, RIPK3 and MLKL are upregulated in dystrophic mouse myofibres. In human DMD samples, there is strong immunoreactivity to RIPK3 and phospho-MLKL in myofibres. In vitro, TNFα can elicit necroptosis in C2C12 myoblasts, and RIPK3 overexpression sensitises myoblasts to undergo TNF-induced death. Furthermore, genetic ablation of Ripk3 in mdx mice reduces myofibre degeneration, inflammatory infiltrate, and muscle fibrosis, and eventually improves muscle function. These findings provide the first evidence of necroptotic cell death in a disease affecting skeletal muscle and identify RIPK3 as a key player in the degenerative process in dystrophin-deficient muscles.
Collapse
Affiliation(s)
- Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
| | - Alexandre Prola
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, ENVA, EFS, Créteil, 94000, France
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London, WC1N 1EH, UK
| | - Veronica Pini
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Christophe Hourde
- Inter-University Laboratory of Human Movement Biology (LIBM)-EA7424, Université Savoie Mont Blanc, Campus Scientifique Technolac, 73376, Le Bourget du Lac Cedex, France
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London, WC1N 1EH, UK
| | - Francesco Conti
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Frederic Relaix
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, ENVA, EFS, Créteil, 94000, France.,Nord/Est/Ile-de-France Reference Centre for Neuromuscular Diseases, Henri Mondor University Hospital (APHP), 94000, Créteil, France
| | - Francois-Jerôme Authier
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, ENVA, EFS, Créteil, 94000, France.,Nord/Est/Ile-de-France Reference Centre for Neuromuscular Diseases, Henri Mondor University Hospital (APHP), 94000, Créteil, France
| | - Laurent Tiret
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, ENVA, EFS, Créteil, 94000, France
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Maximilien Bencze
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK. .,U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, ENVA, EFS, Créteil, 94000, France.
| |
Collapse
|
74
|
Tang HM, Tang HL. Anastasis: recovery from the brink of cell death. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180442. [PMID: 30839720 PMCID: PMC6170572 DOI: 10.1098/rsos.180442] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
Anastasis is a natural cell recovery phenomenon that rescues cells from the brink of death. Programmed cell death such as apoptosis has been traditionally assumed to be an intrinsically irreversible cascade that commits cells to a rapid and massive demolition. Interestingly, recent studies have demonstrated recovery of dying cells even at the late stages generally considered immutable. Here, we examine the evidence for anastasis in cultured cells and in animals, review findings illuminating the potential mechanisms of action, discuss the challenges of studying anastasis and explore new strategies to uncover the function and regulation of anastasis, the identification of which has wide-ranging physiological, pathological and therapeutic implications.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
75
|
Feiz MS, Meshkini A. Targeted delivery of adenosine 5'-triphosphate using chitosan-coated mesoporous hydroxyapatite: A theranostic pH-sensitive nanoplatform with enhanced anti-cancer effect. Int J Biol Macromol 2018; 129:1090-1102. [PMID: 30170062 DOI: 10.1016/j.ijbiomac.2018.08.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
In this Study, a pH-sensitive nanoplatform made up of chitosan (Cs) and mesoporous hydroxyapatite (HAP) was synthesized and employed for delivering of adenosine 5'-triphosphate (ATP). The fabricated system was decorated with folic acid (FA), providing both tumor targeting and imaging. The FA.Cs.ATP@HAP nanoparticles displayed enhanced colloidal stability and controlled drug release. In vitro biological experiments revealed that FA.Cs.ATP@HAP was internalized into the tumor cells with a high efficiency in a time-dependent manner and exhibited strong fluorescence within the cells. Compared with free ATP, the FA.Cs.ATP@HAP nanoparticles exhibited a significant inhibition effect against the proliferation of the tumor cells (Saos-2, T47D, and MCF7) in a dose-dependent manner, while no significant cytotoxic effect was observed in the normal cells (HEK-293), indicating the selective cytotoxicity of the fabricated nanosystem against the tumor cells. Also, the mechanism of action of FA.Cs.ATP@HAP was investigated, and it was found that it induces a high rate of apoptosis in the tumor cells through a decrease in mitochondrial membrane potential and caspase activation. Based on these findings, FA.Cs.ATP@HAP is a novel biomedical material with targeting, imaging, and high anticancer properties against tumor cells, and it could be considered as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Mohadeseh S Feiz
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| |
Collapse
|
76
|
Gorelick-Ashkenazi A, Weiss R, Sapozhnikov L, Florentin A, Tarayrah-Ibraheim L, Dweik D, Yacobi-Sharon K, Arama E. Caspases maintain tissue integrity by an apoptosis-independent inhibition of cell migration and invasion. Nat Commun 2018; 9:2806. [PMID: 30022065 PMCID: PMC6052023 DOI: 10.1038/s41467-018-05204-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/22/2018] [Indexed: 11/15/2022] Open
Abstract
Maintenance of tissue integrity during development and homeostasis requires the precise coordination of several cell-based processes, including cell death. In animals, the majority of such cell death occurs by apoptosis, a process mediated by caspase proteases. To elucidate the role of caspases in tissue integrity, we investigated the behavior of Drosophila epithelial cells that are severely compromised for caspase activity. We show that these cells acquire migratory and invasive capacities, either within 1–2 days following irradiation or spontaneously during development. Importantly, low levels of effector caspase activity, which are far below the threshold required to induce apoptosis, can potently inhibit this process, as well as a distinct, developmental paradigm of primordial germ cell migration. These findings may have implications for radiation therapy in cancer treatment. Furthermore, given the presence of caspases throughout metazoa, our results could imply that preventing unwanted cell migration constitutes an ancient non-apoptotic function of these proteases. In addition to regulating programmed cell death, caspases also have non-apoptotic roles. Here, the authors show that low level caspase activity prevents cell migration to maintain tissue integrity.
Collapse
Affiliation(s)
| | - Ron Weiss
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lena Sapozhnikov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602-2607, USA
| | | | - Dima Dweik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
77
|
Sadat Shandiz SA, Montazeri A, Abdolhosseini M, Hadad Shahrestani S, Hedayati M, Moradi-Shoeili Z, Salehzadeh A. Functionalization of Ag Nanoparticles by Glutamic Acid and Conjugation of Ag@Glu by Thiosemicarbazide Enhances the Apoptosis of Human Breast Cancer MCF-7 Cells. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1424-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Aouacheria A, Cunningham KW, Hardwick JM, Palková Z, Powers T, Severin FF, Váchová L. Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death". Science 2018; 360:360/6395/eaar6910. [PMID: 29930109 DOI: 10.1126/science.aar6910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Shlezinger et al (Reports, 8 September 2017, p. 1037) report that the common fungus Aspergillus fumigatus, a cause of aspergillosis, undergoes caspase-dependent apoptosis-like cell death triggered by lung neutrophils. However, the technologies they used do not provide reliable evidence that fungal cells die via a protease signaling cascade thwarted by a fungal caspase inhibitor homologous to human survivin.
Collapse
Affiliation(s)
- Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA.
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
79
|
Spead O, Verreet T, Donelson CJ, Poulain FE. Characterization of the caspase family in zebrafish. PLoS One 2018; 13:e0197966. [PMID: 29791492 PMCID: PMC5965869 DOI: 10.1371/journal.pone.0197966] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022] Open
Abstract
First discovered for their role in mediating programmed cell death and inflammatory responses, caspases have now emerged as crucial regulators of other cellular and physiological processes including cell proliferation, differentiation, migration, and survival. In the developing nervous system, for instance, the non-apoptotic functions of caspases have been shown to play critical roles in the formation of neuronal circuits by regulating axon outgrowth, guidance and pruning. How caspase activity is spatially and temporally maintained at sub-lethal levels within cells remains however poorly understood, especially in vivo. Thanks to its transparency and accessibility, the zebrafish offers the unique ability to directly visualize caspase activation in vivo. Yet, detailed information about the caspase family in zebrafish is lacking. Here, we report the identification and characterization of 19 different caspase genes in zebrafish, and show that caspases have diverse expression profiles from cleavage to larval stages, suggesting highly specialized and/or redundant functions during embryonic development.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Tine Verreet
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Cory J. Donelson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Fabienne E. Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
80
|
Liu Q, Cao Y, Zhou P, Gui S, Wu X, Xia Y, Tu J. Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells. Biomol Ther (Seoul) 2018; 26:328-334. [PMID: 29301388 PMCID: PMC5933901 DOI: 10.4062/biomolther.2017.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an IC50 of 15 μM and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of p21WAF1/Cip1 and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.
Collapse
Affiliation(s)
- Qiuming Liu
- Department of Breast Surgery, Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Yali Cao
- Department of Breast Surgery, Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Ping Zhou
- Department of Breast Surgery, Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Shimin Gui
- Department of Breast Surgery, Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Xiaobo Wu
- Department of Breast Surgery, Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Yong Xia
- Department of Breast Surgery, Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Jianhong Tu
- Department of Breast Surgery, Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang 330009, China
| |
Collapse
|
81
|
Li Q, Wang BL, Sun FR, Li JQ, Cao XP, Tan L. The role of UNC5C in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:178. [PMID: 29951500 DOI: 10.21037/atm.2018.04.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease in adults characterized by the deposition of extracellular plaques of β-amyloid protein (Aβ), intracellular neurofibrillary tangles (NFTs), synaptic loss and neuronal apoptosis. AD has a strong and complex genetic component that involving into multiple genes. With recent advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS) technology, UNC5C was identified to have association with AD. Emerging studies on cell and animal models identified that aberrant UNC5C may contribute to AD by activating death-associated protein kinase 1 (DAPK1) which is a new component involved in AD pathogenesis with an extensive involvement in aberrant tau, Aβ and neuronal apoptosis/autophagy. In this review, we briefly summarize the biochemical properties, genetics, epigenetics, and the speculative role of UNC5C in AD. We hope our review would bring comprehensive understandings of AD pathogenesis and provide new therapeutic targets for AD.
Collapse
Affiliation(s)
- Quan Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Bai-Ling Wang
- Department of Geriatrics, Qingdao Mental Health Center, Qingdao 266034, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
82
|
Yosefzon Y, Soteriou D, Feldman A, Kostic L, Koren E, Brown S, Ankawa R, Sedov E, Glaser F, Fuchs Y. Caspase-3 Regulates YAP-Dependent Cell Proliferation and Organ Size. Mol Cell 2018; 70:573-587.e4. [DOI: 10.1016/j.molcel.2018.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
|
83
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
84
|
Burgon PG, Megeney LA. Caspase signaling, a conserved inductive cue for metazoan cell differentiation. Semin Cell Dev Biol 2017; 82:96-104. [PMID: 29129746 DOI: 10.1016/j.semcdb.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Caspase signaling pathways were originally discovered as conveyors of programmed cell death, yet a compendium of research over the past two decades have demonstrated that these same conduits have a plethora of physiologic functions. Arguably the most extensive non-death activity that has been attributed to this protease clade is the capacity to induce cell differentiation. Caspase control of differentiation is conserved across diverse metazoan organisms from flies to humans, suggesting an ancient origin for this form of cell fate control. Here we discuss the mechanisms by which caspase enzymes manage differentiation, the targeted substrates that may be common across cell lineages, and the countervailing signals that may be essential for these proteases to 'execute' this non-death cell fate.
Collapse
Affiliation(s)
- Patrick G Burgon
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
85
|
Weaver BP, Han M. Tag team: Roles of miRNAs and Proteolytic Regulators in Ensuring Robust Gene Expression Dynamics. Trends Genet 2017; 34:21-29. [PMID: 29037438 DOI: 10.1016/j.tig.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
Lack of prominent developmental defects arising from loss of many individual miRNAs is consistent with the observations of collaborative networks between miRNAs and roles for miRNAs in regulating stress responses. However, these characteristics may only partially explain the seemingly nonessential nature of many miRNAs. Non-miRNA gene expression regulatory mechanisms also collaborate with miRNA-induced silencing complex (miRISC) to support robust gene expression dynamics. Genetic enhancer screens have revealed roles of miRNAs and other gene repressive mechanisms in development or other cellular processes that were masked by genetic redundancy. Besides discussing the breadth of the non-miRNA genes, we use LIN-28 as an example to illustrate how distinct regulatory systems, including miRNAs and multiple protein stability mechanisms, work at different levels to target expression of a given gene and provide tissue-specific and stage-specific regulation of gene expression.
Collapse
Affiliation(s)
- Benjamin P Weaver
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Min Han
- The Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
86
|
Up-regulation of TRAF2 Suppresses Neuronal Apoptosis after Rat Spinal Cord Injury. Tissue Cell 2017; 49:589-596. [DOI: 10.1016/j.tice.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022]
|
87
|
Rønning SB, Andersen PV, Pedersen ME, Hollung K. Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed. PLoS One 2017; 12:e0182928. [PMID: 28792534 PMCID: PMC5549745 DOI: 10.1371/journal.pone.0182928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023] Open
Abstract
Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis) to be important in the very early period of converting muscle into meat. The dynamic balance that occurs between anti-apoptotic members, such as Bcl-2, and pro-apoptotic members (Bid, Bim) helps determine whether the cell initiates apoptosis. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to investigate if apoptosis is induced when oxygen is removed from the growth medium. Primary bovine muscle cells were differentiated to form myotubes, and anoxia was induced for 6h. The anoxic conditions significantly increased (P<0.05) the relative gene expression of anti- and pro-apoptotic markers (Aif, Bcl-2, Bid and Bim), and the PARK7 (P<0.05) and Grp75 (Hsp70) protein expressions were transiently increased. The anoxic conditions also led to a loss of mitochondrial membrane potential, which is an early apoptotic event, as well as cytochrome c release from the mitochondria. Finally, reorganization and degradation of cytoskeletal filaments occurred. These results suggest that muscle cells enters apoptosis via the intrinsic pathway rapidly when available oxygen in the muscle diminishes post-mortem.
Collapse
|