51
|
Mustafa E, Makinistian L, Luukkonen J, Juutilainen J, Naarala J. Do 50/60 Hz magnetic fields influence oxidative or DNA damage responses in human SH-SY5Y neuroblastoma cells? Int J Radiat Biol 2022; 98:1581-1591. [PMID: 35320060 DOI: 10.1080/09553002.2022.2055803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose: We investigated possible effects of 50 Hz and 60 Hz magnetic fields (MFs) on reactive oxygen species (ROS) production, DNA damage, DNA damage repair rate, as well as gene expression related to oxidative stress and DNA damage signaling.Materials and methods: Human SH-SY5Y neuroblastoma cells were sham-exposed or exposed to 100 µTRMS MFs for 24 h, then assayed or further treated with 100 µM menadione for 1 h before the assay. The levels of ROS and cytosolic superoxide anion (O2•-) were assayed fluorometrically. DNA damage and gene expression were assayed by comet assay and RT-qPCR, respectively. To examine whether MFs affected DNA damage repair rate, cells were allowed to repair their DNA for 1 or 2 h after menadione treatment and then assayed for DNA damage.Results: There was suggestive evidence of a general low-magnitude increase in the expression of ROS-related genes (primarily genes with antioxidant activity) when quantified immediately after MF exposure, suggesting a response to a small increase in ROS level. The possible upregulation of ROS-related genes is supported by the finding that the level of menadione-induced ROS was consistently decreased by 50 Hz MFs (not significantly by 60 Hz MFs) in several measurements 30 - 60 min after MF exposure. MF exposures did not affect cytosolic O2•- levels, DNA damage, or its repair rate. Changes in the expression of DNA damage-signaling genes in the MF-exposed cells did not exceed the expected rate of false positive findings. No firm evidence was found for differential effects from 50 Hz vs. 60 Hz MFs.Conclusions: While only weak effects were found on the endpoints measured, the results are consistent with MF effects on ROS signaling.
Collapse
Affiliation(s)
- Ehab Mustafa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leonardo Makinistian
- Department of Physics and Institute of Applied Physics (INFAP), Universidad Nacional de San Luis-CONICET, San Luis, Argentina
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
52
|
Yan L, Zhang Z, Liu Y, Ren S, Zhu Z, Wei L, Feng J, Duan T, Sun X, Xie T, Sui X. Anticancer Activity of Erianin: Cancer-Specific Target Prediction Based on Network Pharmacology. Front Mol Biosci 2022; 9:862932. [PMID: 35372513 PMCID: PMC8968680 DOI: 10.3389/fmolb.2022.862932] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Erianin is a major bisbenzyl compound extracted from Dendrobium chrysotoxum Lindl., an important traditional Chinese herb. In recent years, a growing body of evidence has proved the potential therapeutic effects of erianin on various cancers, including hepatoma, melanoma, non-small-cell lung carcinoma, myelogenous leukemia, breast cancer, and osteosarcoma. Especially, the pharmacological activities of erianin, such as antioxidant and anticancer activity, have been frequently demonstrated by plenty of studies. In this study, we firstly conducted a systematic review on reported anticancer activity of erianin. All updated valuable information regarding the underlying action mechanisms of erianin in specific cancer was recorded and summarized in this paper. Most importantly, based on the molecular structure of erianin, its potential molecular targets were analyzed and predicted by means of the SwissTargetPrediction online server (http://www.swisstargetprediction.ch). In the meantime, the potential therapeutic targets of 10 types of cancers in which erianin has been proved to have anticancer effects were also predicted via the Online Mendelian Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim). The overlapping targets may serve as valuable target candidates through which erianin exerts its anticancer activity. The clinical value of those targets was subsequently evaluated by analyzing their prognostic role in specific cancer using Kaplan-Meier plotter (http://Kmplot.com/analysis/) and Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/). To better assess and verify the binding ability of erianin with its potential targets, molecular flexible docking was performed using Discovery Studio (DS). The valuable targets obtained from the above analysis and verification were further mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) to explore the possible signaling pathways disturbed/regulated by erianin. Furthermore, the in silico prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of erianin was also performed and provided in this paper. Overall, in this study, we aimed at 1) collecting all experiment-based important information regarding the anticancer effect and pharmacological mechanism of erianin, 2) providing the predicted therapeutic targets and signaling pathways that erianin might act on in cancers, and 3) especially providing in silico ADMET properties of erianin.
Collapse
Affiliation(s)
- Lili Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, Hangzhou Orthopedic Institute, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfen Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shuyi Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhiyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lu Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| |
Collapse
|
53
|
Kamran S, Sinniah A, Chik Z, Alshawsh MA. Diosmetin Exerts Synergistic Effects in Combination with 5-Fluorouracil in Colorectal Cancer Cells. Biomedicines 2022; 10:biomedicines10030531. [PMID: 35327333 PMCID: PMC8945009 DOI: 10.3390/biomedicines10030531] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic medication commonly used to treat colorectal cancer (CRC); however, the drug-associated adverse effects and toxicity have greatly affected its clinical use. Exploring another therapeutic strategy that lowers the toxicity of 5-FU while having a synergistic effect against CRC is thus a viable option. Diosmetin, a natural flavonoid, has been shown to inhibit the proliferation of many cancer cells, including CRC cells. This study aims to investigate the synergistic effect of diosmetin and 5-FU on HCT116 and HT29 colorectal cancer cells and to explore the apoptotic activity of this combination. The MTT assay was used to assess the viability of cells treated with monotherapy and combination therapy. The combination index (CI) and dose reduction index (DRI) were calculated using the CompuSyn software (version 1.0). The SynergyFinder 2.0 software was used to calculate the synergy score, while the Combenefit software was employed to perform isobologram analysis and synergism determination. The AO/PI double staining technique was used to detect the apoptotic characteristics of cells, whereas the flow cytometry technique was used to investigate the apoptosis induction and cell cycle arrest in cells. The combination of 5-FU and diosmetin showed a synergistic effect in HCT116 cells with a mean CI value of 0.66 ± 0.4, and an additive effect in HT29 cells with a CI value of 1.0 ± 0.2. The DRI of 5-FU in HCT116 cells was three times lower in the combination therapy compared to monotherapy of 5-FU. AO/PI microscopic examination and Annexin V analysis revealed that the combination-treated cells had more apoptotic cells than the monotherapy-treated cells, which was activated mainly through intrinsic apoptosis pathway. HCT116 cell death was confirmed by mitotic arrest in the G2/M phase. Our findings suggest that 5-FU/diosmetin combination exhibits synergistic effect against HCT116 cancer cells, and potentially reduces the unfavorable adverse effect of 5-FU while enhancing the anticancer efficacy by inducing apoptosis and interrupting mitosis. Further research studies are needed to validate the combination’s anti-tumorigenic activities in a xenograft animal model.
Collapse
|
54
|
Hong J, Xie Z, Yang F, Jiang L, Jian T, Wang S, Guo Y, Huang X. Erianin suppresses proliferation and migration of cancer cells in a pyruvate carboxylase-dependent manner. Fitoterapia 2022; 157:105136. [PMID: 35093481 DOI: 10.1016/j.fitote.2022.105136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 01/04/2023]
Abstract
Erianin is a natural small molecule dibenzyl compound extracted from Dendrobium officinale or Dendrobium chrysotoxum. Studies show erianin has many pharmacological functions such as antioxidant, antibacterial, antiviral, improving diabetic nephropathy, relaxing bronchial smooth muscle and anti-tumor. However, the erianin-mediated molecular mechanism is elusive, and the target protein of erianin is not clear yet. Here, we screened and identified that the target protein of erianin in human hepatoma HepG2 cells is human pyruvate carboxylase, and explored the anti-tumor signal pathway regulated by erianin in several cell lines. Firstly, the interaction between human pyruvate carboxylase and erianin was studied by bioinformatics and biochemical methods. Secondly, in vitro, erianin can specifically inhibit the activity of human pyruvate carboxylase, and the purified human pyruvate carboxylase can specifically bind to the activity probe of erianin. Thirdly, human pyruvate carboxylase is highly expressed in a variety of malignant tumors, and the inhibitory effect of erianin on tumor cells is positively correlated with the expression of human pyruvate carboxylase, and erianin can selectively inhibit the activity of pyruvate carboxylase. Finally, erianin can regulate the pyruvate carboxylase-mediated Wnt/ β- Catenin pathway. All of which provide important data for the further study of the anticancer mechanism of erianin, and lay a solid foundation for the further development and utilization of erianin.
Collapse
Affiliation(s)
- Jing Hong
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Zeyu Xie
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Fangyao Yang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Lixiang Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Tiantian Jian
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Siyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China
| | - Yuanbiao Guo
- Medical Research Center, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 North 1st Section, 2nd Ring Road, Chengdu, Sichuan 610031, China.
| |
Collapse
|
55
|
The Improvement of Sepsis-Associated Encephalopathy by P2X7R Inhibitor through Inhibiting the Omi/HtrA2 Apoptotic Signaling Pathway. Behav Neurol 2022; 2022:3777351. [PMID: 35126784 PMCID: PMC8813303 DOI: 10.1155/2022/3777351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of sepsis-associated encephalopathy (SAE) involves many aspects, including intracellular peroxidative stress damage, mitochondrial dysfunction, and cell apoptosis. In this study, we mainly explored the influence of P2X7R on the cognitive function of SAE and its molecular mechanism. We established a sepsis model using lipopolysaccharide (LPS) stimulation, followed by an assessment of cognitive function using Morris water maze, and then Western Blot was used to analyze the expression of tight junction proteins ZO-1 and Occludin in the hippocampus of mice. TUNEL assay was used to analyze the apoptosis of brain cells in frozen brain slices of mice during sepsis. Human brain microvascular endothelial cells (HBMECs) were used to research the molecular mechanism of brain cell damage induced by P2X7R. The results showed that P2X7R inhibitors dramatically improved the survival rate of mice, relieved the cognitive dysfunction caused by LPS stimulation, and significantly reduced the brain cell apoptosis caused by LPS. In addition, the inhibition of P2X7R can also reduce the production and accumulation of reactive oxygen species (ROS) in HBMECs in vitro and inhibit the apoptosis signaling pathway associated with mitochondrial serine protease Omi/HtrA2 in HBMECs in vitro. These results suggest that P2X7R has strong value as a potential target for the treatment of SAE.
Collapse
|
56
|
Neferine increases sensitivities to multiple anticancer drugs via downregulation of Bcl-2 expression in renal cancer cells. Genes Genomics 2022; 44:165-173. [PMID: 35034280 DOI: 10.1007/s13258-021-01201-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neferine is the major alkaloid extracted from a seed embryo of Nelumbo nucifera and shows cytotoxic effects in various human cancer cells. However, no detailed studies have been reported on its antitumor efficacy of a combinational treatment in human renal cancer cells. OBJECTIVE This study evaluated the antitumor effects of a combination therapy of neferine and various drugs on renal cancer Caki-1 cells. METHODS Flow cytometry analysis was performed to evaluate the cell cycle analysis and apoptosis, respectively. Western blotting and reverse transcription polymerase chain reaction were performed to analyze the effect of neferine on the expression of apoptosis-related genes in Caki-1 cells. In addition, reactive oxygen species (ROS) generation was evaluated using flow cytometry. RESULTS Treatment with neferine dose-dependently induces apoptosis and Bcl-2 downregulation in Caki-1 cells. In addition, neferine triggers cell cycle arrest at the G2/M phase in Caki-1 cells. The neferine-induced apoptosis was mediated by ROS generation, and neferine-facilitated Bcl-2 downregulation was regulated at the transcriptional level through the suppression of p65 expression, resulting in inactivation of the NF-κB pathway in Caki-1 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), intensely reversed the effects of neferine on apoptosis and Bcl-2 downregulation. We determined that neferine markedly potentiates the antitumor effects of multiple anticancer drugs (cisplatin, silybin, and thapsigargin), and those effects can be reversed by Bcl-2 overexpression or NAC pretreatment in Caki-1 cells. CONCLUSION These results suggest that neferine can increase chemosensitivities to anticancer drugs via downregulation of Bcl-2 expression through ROS-dependent suppression of the NF-κB signaling pathway in human renal cancer cells.
Collapse
|
57
|
Munipalle K, Kommalapati VK, Patel HK, Olanipekun BE, Tangutur AD, Ponnapalli MG. Targeting Neuroblastoma by Limonoids from the Underutilized Fruits of
Xylocarpus granatum. ChemistrySelect 2022. [DOI: 10.1002/slct.202103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kiran Munipalle
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vamsi Krishna Kommalapati
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
| | - Hemendra Kumar Patel
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Bolatito Eunice Olanipekun
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Chemistry Kwara State University Malete, PMB 1530 Kwara State Nigeria
| | - Anjana Devi Tangutur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
| | - Mangala Gowri Ponnapalli
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
58
|
Luo Q, Li X, Gan G, Yang M, Chen X, Chen F. PPT1 Reduction Contributes to Erianin-Induced Growth Inhibition in Oral Squamous Carcinoma Cells. Front Cell Dev Biol 2022; 9:764263. [PMID: 35004674 PMCID: PMC8740138 DOI: 10.3389/fcell.2021.764263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
The anticancer properties of erianin have been recently discovered. However, the antitumor effect of erianin in oral squamous cell carcinoma (OSCC) remains unclear. In this study, we demonstrated that erianin can hamper OSCC cells growth both in vitro and in vivo. Erianin induced obvious G2/M arrest as well as apoptosis and gasdermin E (GSDME)-dependent pyroptosis in OSCC cells. Moreover, erianin increased autophagosome formation but decreased autolysosome function. Further study indicated that erianin significantly suppressed the expression of protein-palmitoyl thioesterase 1 (PPT1) and mTOR signaling. PPT1 has been reported to be a critical regulator of cancer progression by its modulation of autophagy and mTOR signaling. According to online databases, higher expression of PPT1 has been observed in OSCC tissues and is associated with poorer patient prognosis. As overexpression of PPT1 significantly reversed erianin-induced growth inhibition in OSCC cells, we identified the importance of PPT1 reduction in erianin-induced growth suppression. With the xenograft model, we confirmed the antitumor effect of erianin in vivo. Erianin efficiently decreased the tumor sizes, together with visibly reduced expression of PPT1 and phosphorylation of mTOR in the xenograft tumor tissues. Therefore, the present study indicated that erianin may be potentially used in OSCC therapy.
Collapse
Affiliation(s)
- Qingqiong Luo
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Li
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guifang Gan
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yang
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
59
|
Feng Y, Lu Y, Li J, Zhang H, Li Z, Feng H, Deng X, Liu D, Shi T, Jiang W, He Y, Zhang J, Wang Z. Design, synthesis and biological evaluation of novel o-aminobenzamide derivatives as potential anti-gastric cancer agents in vitro and in vivo. Eur J Med Chem 2022; 227:113888. [PMID: 34628244 DOI: 10.1016/j.ejmech.2021.113888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Although gastric cancer has become a major public health problem, oral agents applied in clinics for gastric cancer therapy are scarce. Therefore, to explore new oral chemical entities with high efficiency and low toxicity, 41 o-aminobenzamide derivatives based on the scaffolds of MS-275 and SAHA were designed, synthesized, and evaluated for their anti-gastric cancer abilities in vitro and in vivo. Structure-activity relationships were discussed, leading to the identification of compounds F8 (IC50 = 0.28 μM against HGC-27 cell) and T9 (IC50 = 1.84 μM against HGC-27 cell) with improved cytotoxicity, anti-gastric cancer proliferation potency, induction of cell apoptosis and cell cycle arrest ability, inhibition of cell migration and invasion. What is worth mentioning is that compound F8 was more efficient and less toxic than the positive drug capecitabine in vivo on the HGC-27-xenograft model. Meanwhile, compound F8 exhibited suitable pharmacokinetic properties and less acute toxicity (LD50 > 1000 mg/kg). Besides, western blotting analysis, IHC analysis, differentially expressed proteins analysis and ABPP experiment indicated that compound F8 could modulate molecular pathways involved in apoptosis and cell cycle progression. Consequently, compound F8 is a strong candidate for the development of human gastric cancer therapy.
Collapse
Affiliation(s)
- Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhao Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Hanzhong Feng
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yongxing He
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
60
|
Xu JC, Tian XY, Han R, Huang QY, Zhou MY, Luo B, Chen XR. Erianin inhibits oral cancer cell growth, migration, and invasion via the Nrf2/HO-1/ GPX4 pathway. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.357743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
61
|
Ammar OA, El-Missiry MA, Othman AI, Amer ME. Melatonin is a potential oncostatic agent to inhibit HepG2 cell proliferation through multiple pathways. Heliyon 2022; 8:e08837. [PMID: 35141433 PMCID: PMC8814902 DOI: 10.1016/j.heliyon.2022.e08837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
CONTEXT Chemotherapy is a cornerstone in the treatment of hepatocellular carcinoma (HCC). Melatonin is a pineal hormone that targets various cancers, however, its antitumor pathways are still not fully elucidated. OBJECTIVE This study investigated melatonin's antitumor molecular mechanisms to inhibit the proliferation of HepG2 cells. MATERIALS AND METHODS HepG2 Cells were classified into cells without treatment as a control group and cells treated with melatonin (5.4 mmol/L) for 48 h. Proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 were estimated using immunohistochemical analysis. Apoptosis and cell cycle were evaluated using flow cytometric analysis. Apoptotic markers were detected using RT-qPCR assay. Antioxidants and oxidative stress biomarkers were performed using a colorimetric assay. RESULTS Melatonin produced a remarkable steady decrease in the viability of HepG2 cells at a concentration range between 5-20 mmol/L. Melatonin suppressed cell proliferation in the G2/M phase of the cell cycle (34.97 ± 0.92%) and induced apoptosis (12.43 ± 0.73%) through up-regulating p21 and p53 that was confirmed by the reduction of PCNA and Ki-67 expressions. Additionally, melatonin repressed angiogenesis evidenced by the down-regulation of angiopoietin-2, vascular endothelial growth factor receptor-2 expressions (0.42-fold change), and the level of CD133. Moreover, melatonin augmented the oxidative stress manifested by a marked increase of 4-hydroxynonenal levels with a reduction of glutathione content and superoxide dismutase activity. DISCUSSION AND CONCLUSION Melatonin inhibits proliferation and angiogenesis and induced apoptosis and oxidative stress in HepG2 cells. These results indicate the oncostatic effectiveness of melatonin on liver cancer.
Collapse
Affiliation(s)
- Omar A. Ammar
- Basic Science Department, Delta University for Science and Technology, Gamasa, Egypt
| | | | - Azza I. Othman
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| | - Maggie E. Amer
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
62
|
Sheng Y, Chen Y, Zeng Z, Wu W, Wang J, Ma Y, Lin Y, Zhang J, Huang Y, Li W, Zhu Q, Wei X, Li S, Wisanwattana W, Li F, Liu W, Suksamrarn A, Zhang G, Jiao W, Wang F. Identification of Pyruvate Carboxylase as the Cellular Target of Natural Bibenzyls with Potent Anticancer Activity against Hepatocellular Carcinoma via Metabolic Reprogramming. J Med Chem 2021; 65:460-484. [PMID: 34931827 DOI: 10.1021/acs.jmedchem.1c01605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer cell proliferation in some organs often depends on conversion of pyruvate to oxaloacetate via pyruvate carboxylase (PC) for replenishing the tricarboxylic acid cycle to support biomass production. In this study, PC was identified as the cellular target of erianin using the photoaffinity labeling-click chemistry-based probe strategy. Erianin potently inhibited the enzymatic activity of PC, which mediated the anticancer effect of erianin in human hepatocellular carcinoma (HCC). Erianin modulated cancer-related gene expression and induced changes in metabolic intermediates. Moreover, erianin promotes mitochondrial oxidative stress and inhibits glycolysis, leading to insufficient energy required for cell proliferation. Analysis of 14 natural analogs of erianin showed that some compounds exhibited potent inhibitory effects on PC. These results suggest that PC is a cellular target of erianin and reveal the unrecognized function of PC in HCC tumorigenesis; erianin along with its analogs warrants further development as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongqiu Zeng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuling Ma
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuan Lin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Sichuan Xincheng Biological Co., LTD, Chengdu 611731, China
| | - Jichao Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhua Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiyu Zhu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao Wei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wisanee Wisanwattana
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Wei Jiao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
63
|
Yu L, Chen Y, Yuan S, Cao Y, Bi Z. Peiminine Induces G0/G1-Phase Arrest, Apoptosis, and Autophagy via the ROS/JNK Signaling Pathway in Human Osteosarcoma Cells in Vitro and in Vivo. Front Pharmacol 2021; 12:770846. [PMID: 34867399 PMCID: PMC8633898 DOI: 10.3389/fphar.2021.770846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Aims: Peiminine has been reported to have various pharmacological properties, including anticancer activity. In this study, we investigated the effect of this alkaloid on osteosarcoma and explored the underlying mechanisms. Methods: To evaluate the antiosteosarcoma effects of peiminine in vitro, cell viability was assessed by CCK-8 and live/dead assays; the effects of the drug on apoptosis and the cell cycle were examined by flow cytometry; the effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively, while its effects on autophagy were observed by transmission electron microscopy and an LC3 fluorescent puncta formation assay. The role of autophagy in the peiminine-mediated effects in osteosarcoma cells was evaluated by CCK-8 assay and western blotting after the application of the autophagy inhibitor chloroquine. The effect of peiminine on reactive oxygen species (ROS) production was analyzed using fluorescence confocal microscopy and spectrophotometry. Additionally, peiminine-treated osteosarcoma cells were exposed to SP600125, a JNK inhibitor, and N-acetylcysteine, a ROS scavenger, after which the contribution of the ROS/JNK signaling pathway to osteosarcoma was assessed using cell viability and LC3 fluorescent puncta formation assays, flow cytometry, and western blotting. A xenograft mouse model of osteosarcoma was generated to determine the antitumor effects of peiminine in vivo. Results: Peiminine suppressed proliferation and metastasis and induced cell cycle arrest, apoptosis, and autophagy in osteosarcoma cells. These anticancer effects of peiminine were found to be dependent on intracellular ROS generation and activation of the JNK pathway. In line with these results, peiminine significantly inhibited xenograft tumor growth in vivo. Conclusions: Peiminine induced G0/G1-phase arrest, apoptosis, and autophagy in human osteosarcoma cells via the ROS/JNK signaling pathway both in vitro and in vivo. Our study may provide an experimental basis for the evaluation of peiminine as an alternative drug for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Northern Translational Medicine Research and Cooperation Center, Harbin Medical University, Harbin, China
| | - Yuxi Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaohui Yuan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
64
|
Wang Y, Chu F, Lin J, Li Y, Johnson N, Zhang J, Gai C, Su Z, Cheng H, Wang L, Ding X. Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114399. [PMID: 34246740 DOI: 10.1016/j.jep.2021.114399] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium chrysotoxum Lindl, a well-known traditional Chinese medicinal herb used in the treatment of gastric disease, is distinguished as the first of the "nine immortal grasses". Dendrobium chrysotoxum Lindl and the traditional Chinese medicine prescriptions containing Dendrobium chrysotoxum Lindl are often prescribed clinically to treat chronic gastritis and precancerous lesions of gastric cancer (PLGC), showing favorable clinical effects and medicinal value in the prevention of gastric cancer. However, the effective ingredients and pharmacological mechanisms through which Dendrobium chrysotoxum Lindl prevents and treats PLGC have not been adequately identified or interpreted. AIM OF THE STUDY The present study aimed to evaluate the effective ingredients and pharmacological mechanisms of Dendrobium chrysotoxum Lindl in the prevention and treatment of PLGC using network pharmacology. In addition, in vitro verification was performed to evaluate the mechanism of action of Erianin, the main active ingredient in Dendrobium chrysotoxum Lindl, providing experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl in the treatment of PLGC. MATERIALS AND METHODS Using network pharmacology methods, the main ingredients in Dendrobium chrysotoxum Lindl were screened from the ETCM, BATMAN-TCM, and TCMID databases, and their potential targets were predicted using the Swiss Target Prediction platform. The targets related to PLGC were retrieved through the GeneCard database, and the targets common to the main ingredients of Dendrobium chrysotoxum Lindl and PLGC were analyzed. The protein-protein interaction (PPI) network was obtained via the STRING database and analyzed visually using Cytoscape 3.7.2. The underlying mechanisms of the common targets identified through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were analyzed using DAVID online. The "component-target-pathway" networks of Dendrobium chrysotoxum Lindl and Erianin were visually constructed by Cytoscape 3.7.2. The biological activity evaluation of Erianin's effect on PLGC was carried out using MC cell lines, the PLGC cell model established using MNNG to induce damage in normal gastric mucosal epithelial cell (GES-1). After the intervention of different concentrations of Erianin, MC cell viability was explored using the MTT assays, cell migration was determined by wound healing assays, the cell cycle and apoptosis were analyzed using flow cytometry, and the expression levels of related proteins and their phosphorylation in the HRAS-PI3K-AKT signaling pathway were detected by Western blot. RESULTS The "component-target-pathway" network constructed in this study showed 37 active ingredients from Dendrobium chrysotoxum Lindl and 142 overlapping targets related to both Dendrobium chrysotoxum Lindl and PLGC. The targets were associated with a variety of cancer-related signaling pathways, including Pathways in cancer, PI3K-Akt signaling pathway, Rap1 signaling pathway, Focal adhesion, Ras signaling pathway, and MAPK signaling pathway. Notably, the network showed that Erianin, the primary active ingredient from Dendrobium chrysotoxum Lindl and the component associated with the most targets, could regulate Pathways in cancer, PI3K-AKT signaling pathway, Focal adhesion, Rap1 signaling pathway, cell cycle, and RAS signaling pathway in the treatment of PLGC. Verification through in vitro experiments found that Erianin can significantly inhibit MC cell viability, inhibit cell migration, block the cell cycle in the G2/M phase, and induce cell apoptosis in a dose-dependent manner. The results of the Western blot experiment further showed that Erianin can significantly decrease the protein expression levels of HRAS, AKT, p-AKT, MDM2, Cyclin D1, and p-Gsk3β, and increase the protein expression level of p21, which suggests that Erianin can treat PLGC by regulating the HRAS-PI3K-AKT signaling pathway. CONCLUSION This study explained the positive characteristics of multi-component, multi-target, and multi-approach intervention with Dendrobium chrysotoxum Lindl in the treatment of PLGC. Our results suggest that Erianin may be a promising candidate in the development of prevention and treatment methods for PLGC. This study provided experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl to treat PLGC and prevent gastric cancer.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fuhao Chu
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Beijing, China; Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianglan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zeqi Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjie Cheng
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linheng Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
65
|
Zhang X, Hu L, Xu S, Ye C, Chen A. Erianin: A Direct NLRP3 Inhibitor With Remarkable Anti-Inflammatory Activity. Front Immunol 2021; 12:739953. [PMID: 34745110 PMCID: PMC8564113 DOI: 10.3389/fimmu.2021.739953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
Erianin (Eri) is the extract of Dendrobium chrysotoxum Lindl. The NLRP3 inflammasome is a multiprotein complex that plays key roles in a wide variety of chronic inflammation-driven human diseases. Nevertheless, little is known about the protection of Eri against NLRP3 inflammasome-related diseases. In this study, we demonstrated that Eri inhibited NLRP3 inflammasome activation in vitro and in vivo. Mechanistically, Eri directly interacted with NLRP3, leading to inhibition of NLRP3 inflammasome assembly. Eri associated with the Walker A motif in the NACHT domain and suppressed NLRP3 ATPase activity. In mouse models, Eri had therapeutic effects on peritonitis, gouty arthritis and type 2 diabetes, via NLRP3. More importantly, Eri was active ex vivo for synovial fluid cells and monocytes from patients with IAV infection and gout. Eri may serve as a potential novel therapeutic compound against NLRP3-driven diseases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Gouty/drug therapy
- Arthritis, Gouty/genetics
- Arthritis, Gouty/metabolism
- Bibenzyls/pharmacology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Dogs
- HEK293 Cells
- Humans
- Inflammasomes/antagonists & inhibitors
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Madin Darby Canine Kidney Cells
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Peritonitis/drug therapy
- Peritonitis/genetics
- Peritonitis/metabolism
- Phenol/pharmacology
- Protein Interaction Domains and Motifs
- THP-1 Cells
- Mice
Collapse
Affiliation(s)
- Xinyong Zhang
- Department of Neurology, Huaian Hospital Affiliated to Xuzhou Medical University, Huaian, China
- The Key Laboratory of Targeted Intervention of Clinical Disease, Collaborative Innovation Center of Translational Medicine for Clinical Disease, Nanjing Medical University, Nanjing, China
| | - Lei Hu
- Guiyang Women and Children’s Hospital, Guizhou Medical University, Guiyang, China
| | - Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ye
- The Key Laboratory of Targeted Intervention of Clinical Disease, Collaborative Innovation Center of Translational Medicine for Clinical Disease, Nanjing Medical University, Nanjing, China
| | - Aidong Chen
- The Key Laboratory of Targeted Intervention of Clinical Disease, Collaborative Innovation Center of Translational Medicine for Clinical Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
66
|
He D, Gao J, Zheng L, Liu S, Ye L, Lai H, Pan B, Pan W, Lou C, Chen Z, Fan S. TGF‑β inhibitor RepSox suppresses osteosarcoma via the JNK/Smad3 signaling pathway. Int J Oncol 2021; 59:84. [PMID: 34533199 PMCID: PMC8460063 DOI: 10.3892/ijo.2021.5264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and the long-term survival rates remain unsatisfactory. Transforming growth factor-β (TGF-β) has been revealed to play a crucial role in OS progression, and RepSox is an effective TGF-β inhibitor. In the present study, the effect of RepSox on the proliferation of the OS cell lines (HOS and 143B) was detected. The results revealed that RepSox effectively inhibited the proliferation of OS cells by inducing S-phase arrest and apoptosis. Moreover, the inhibitory effect of RepSox on cell migration and invasion was confirmed by wound-healing and Transwell assays. Furthermore, western blotting revealed that the protein levels of molecules associated with the epithelial-mesenchymal transition (EMT) phenotype, including E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase (MMP)-2 and MMP-9, were reduced by RepSox treatment. Concurrently, it was also revealed that the JNK and Smad3 signaling pathway was inhibited. Our in vivo findings using a xenograft model also revealed that RepSox markedly inhibited the growth of tumors. In general, our data demonstrated that RepSox suppressed OS proliferation, EMT and promoted apoptosis by inhibiting the JNK/Smad3 signaling pathway. Thus, RepSox may be a potential anti-OS drug.
Collapse
Affiliation(s)
- Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shijie Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Ye
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Hehuan Lai
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Bin Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Wenzheng Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
67
|
Trapika IGMGSC, Liu XT, Chung LH, Lai F, Xie C, Zhao Y, Cui S, Chen J, Tran C, Wang Q, Zhang S, Don AS, Li GQ, Hanrahan JR, Qi Y. Ceramide Regulates Anti-Tumor Mechanisms of Erianin in Androgen-Sensitive and Castration-Resistant Prostate Cancers. Front Oncol 2021; 11:738078. [PMID: 34604081 PMCID: PMC8484793 DOI: 10.3389/fonc.2021.738078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is the second most prevalent malignancy worldwide. In the early stages, the development of prostate cancer is dependent on androgens. Over time with androgen deprivation therapy, 20% of prostate cancers progress to a castration-resistant form. Novel treatments for prostate cancers are still urgently needed. Erianin is a plant-derived bibenzyl compound. We report herein that erianin exhibits anti-tumor effects in androgen-sensitive and castration-resistant prostate cancer cells through different mechanisms. Erianin induces endoplasmic reticulum stress-associated apoptosis in androgen-sensitive prostate cancer cells. It also triggers pro-survival autophagic responses, as inhibition of autophagy predisposes to apoptosis. In contrast, erianin fails to induce apoptosis in castration-resistant prostate cancer cells. Instead, it results in cell cycle arrest at the M phase. Mechanistically, C16 ceramide dictates differential responses of androgen-sensitive and castration-resistant prostate cancer cells to erianin. Erianin elevates C16 ceramide level in androgen-sensitive but not castration-resistant prostate cancer cells. Overexpression of ceramide synthase 5 that specifically produces C16 ceramide enables erianin to induce apoptosis in castration-resistant prostate cancer cells. Our study provides both experimental evidence and mechanistic data showing that erianin is a potential treatment option for prostate cancers.
Collapse
Affiliation(s)
- I Gusti Md Gde Surya C. Trapika
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Xin Tracy Liu
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Felcia Lai
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Chanlu Xie
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia,Chinese Medicine Anti-Cancer Evaluation Program, Central Clinical School, University of Sydney, Camperdown, NSW, Australia
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaohui Cui
- Key Laboratory of Biotechnology and Biorescources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Jinbiao Chen
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Collin Tran
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Qian Wang
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, UNSW, Sydney, NSW, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Biorescources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Anthony S. Don
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - George Qian Li
- School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Jane R. Hanrahan
- School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia,*Correspondence: Yanfei Qi, ; Jane R. Hanrahan,
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,*Correspondence: Yanfei Qi, ; Jane R. Hanrahan,
| |
Collapse
|
68
|
Liu Z, Huang L, Sun L, Nie H, Liang Y, Huang J, Wu F, Hu X. Ecust004 Suppresses Breast Cancer Cell Growth, Invasion, and Migration via EMT Regulation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3451-3461. [PMID: 34408399 PMCID: PMC8364433 DOI: 10.2147/dddt.s309132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Purpose Erianin is a small chemical compound extracted from Dendrobium chrysotoxum and has excellent antineoplastic effects against a variety of cancers. Combretastatin A-4 (CA4) is the most effective member of natural phenolic stilbene compounds isolated from the African willow tree Combretum caffrum. Ecust004 (Chemical Formula: C18H21NO7S) is a drug candidate optimized from structure–activity relationship studies of the sulfamate derivatives of Erianin and CA4, which has better bioavailability and pharmacokinetic profiles than Erianin and CA4. Methods To investigate the antitumor activity of Ecust004 in different types of breast cancer cells, MDA-MB-231 and MCF7 cells were treated with Ecust004. MTT and CCK8 were used to determine the effects of Ecust004 on cell proliferation. Wound-healing and Transwell assays were used to evaluate the migration and invasion level of cells treated with Ecust004. The expression of genes and proteins associated with epithelial–mesenchymal transition was detected by RT-PCR and Western blotting. In vivo studies further clarified the functional effects of Ecust004. Results Ecust004 treatment decreased the growth and proliferation of MDA-MB-231 and MCF7 cells at a lower dosage than Erianin. In addition, compared to Erianin and CA4, Ecust004 can better inhibit the invasion and migration of MDA-MB-231 and MCF7 cells. Accordingly, the expression of genes associated with epithelial–mesenchymal transition, such as E-cadherin and vinculin, was increased. Finally, compared with Erianin and CA4, Ecust004 exhibited a better anti-tumor activity in vivo. Conclusion Ecust004 inhibits the proliferation, invasion, and migration of breast cancer cells, and therefore represents a potential agent for development as an antitumor drug.
Collapse
Affiliation(s)
- Ziyu Liu
- The Laboratory of Cancer Biology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China.,Department of Biochemistry and Molecular Biology, School of Life Science, Jilin University, Changchun, Jilin, People's Republic of China
| | - Leilei Huang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai, People's Republic of China.,Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Liwei Sun
- The Laboratory of Cancer Biology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hui Nie
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai, People's Republic of China.,Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yuqi Liang
- The Laboratory of Cancer Biology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China.,Department of Biochemistry and Molecular Biology, School of Life Science, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinwen Huang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai, People's Republic of China.,Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai, People's Republic of China.,Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Xin Hu
- The Laboratory of Cancer Biology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
69
|
Chen Y, Li P, Peng Y, Xie X, Zhang Y, Jiang Y, Li T, Qin X, Li S, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells. Free Radic Biol Med 2021; 172:590-603. [PMID: 34242793 DOI: 10.1016/j.freeradbiomed.2021.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
Tumor microenvironments are characterized not only in terms of chemical composition, but also by physical properties such as stiffness, which influences morphology, proliferation, and fate of tumor cells. However, the underlying mechanisms between matrix stiffness and the apoptosis-autophagy balance remain largely unexplored. In this study, we cultured human breast cancer MDA-MB-231 cells on rigid (57 kPa), stiff (38 kPa) or soft (10 kPa) substrates and demonstrated that increasing autophagy levels and autophagic flux in the cells cultured on soft substrates partly attenuated soft substrate-induced apoptosis. Mechanistically, this protective autophagy is regulated by intracellular reactive oxygen species (ROS) accumulation, which triggers the downstream signals of JNK, Bcl-2 and Beclin-1. More importantly, soft substrate-induced activation of ROS/JNK signaling promotes cell apoptosis through the mitochondrial pathway, whereas it increases protective autophagy by suppressing the interaction of Bcl-2 and Beclin-1. Taken together, our data suggest that JNK is the mediator of soft substrate-induced breast cancer cell apoptosis and autophagy which is likely to be the mechanism that partly attenuates mitochondrial apoptosis. This study provides new insights into the molecular mechanism by which autophagy plays a protective role against soft substrate-induced apoptosis in human breast cancer cells.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
70
|
Liu X, Suo H, Zhou S, Hou Z, Bu M, Liu X, Xu W. Afatinib induces pro-survival autophagy and increases sensitivity to apoptosis in stem-like HNSCC cells. Cell Death Dis 2021; 12:728. [PMID: 34294686 PMCID: PMC8298552 DOI: 10.1038/s41419-021-04011-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Afatinib, a second-generation tyrosine kinase inhibitor (TKI), exerts its antitumor effects in head and neck squamous cell carcinoma (HNSCC) by inducing intrinsic apoptosis through suppression of mTORC1. However, the detailed mechanism and biological significance of afatinib-induced autophagy in HNSCC remains unclear. In the present study, we demonstrated that afatinib induced mTORC1 suppression-mediated autophagy in HNSCC cells. Further mechanistic investigation revealed that afatinib stimulated REDD1-TSC1 signaling, giving rise to mTORC1 inactivation and subsequent autophagy. Moreover, ROS generation elicited by afatinib was responsible for the induction of the REDD1-TSC1-mTORC1 axis. In addition, pharmacological or genetic inhibition of autophagy sensitized HNSCC cells to afatinib-induced apoptosis, demonstrating that afatinib activated pro-survival autophagy in HNSCC cells. Importantly, in vitro and in vivo assays showed that afatinib caused enhanced apoptosis but weaker autophagy in stem-like HNSCC cells constructed by CDH1 knockdown. This suggested that blocking autophagy has the potential to serve as a promising strategy to target HNSCC stem cells. In conclusion, our findings suggested that the combination treatment with afatinib and autophagy inhibitors has the potential to eradicate HNSCC cells, especially cancer stem cells in clinical therapy.
Collapse
Affiliation(s)
- Xianfang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Huiyuan Suo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Shengli Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Zhenxing Hou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Mingqiang Bu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, P.R. China
| | - Xiuxiu Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China.
| |
Collapse
|
71
|
Xu Y, Fang R, Shao J, Cai Z. Erianin induces triple-negative breast cancer cells apoptosis by activating PI3K/Akt pathway. Biosci Rep 2021; 41:BSR20210093. [PMID: 34036307 PMCID: PMC8202065 DOI: 10.1042/bsr20210093] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25-30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism. METHODS After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79. RESULTS Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin. CONCLUSIONS Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yonggang Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Rong Fang
- School of Medicine, Ningbo University, Ningbo 315020, P.R. China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
72
|
Yang A, Li MY, Zhang ZH, Wang JY, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Jin HL, Zuo HX, Ma J, Jin X. Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113598. [PMID: 33220359 DOI: 10.1016/j.jep.2020.113598] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium chrysotoxum Lindl is a cultivation of Dendrobium which belongs to the family of Orchidaceae. D. chrysotoxum Lindl is a traditional Chinese medicine with a wide range of clinical applications including tonic, astringent, analgesic and anti-inflammatory properties as early as the 28th century B.C. Erianin is a representative index component for the quality control of the D. chrysotoxum Lindl, which is included in the Pharmacopoeia of the People's Republic of China (2020 version). AIM OF THE STUDY To clarify the anti-tumour mechanisms of erianin in vitro and in vivo. MATERIALS AND METHODS We detected the anti-tumour activity of erianin using in vitro HeLa cell models and in vivo cervical cancer xenograft models. We performed MTT, western blot, RT-PCR, homology modeling, flow cytometry, and immunoprecipitation assays to study the proteins, genes, and pathways related to erianin's anti-tumour activity. LysoTracker Red staining was performed to detect lysosome function. Transwell, wound healing, tube formation, colony formation and EdU labelling assays were performed to determine cell proliferation, migration and invasion abilities, respectively. Cytotoxic T lymphocytes ability was confirmed using HeLa/T-cell co-culture model. RESULTS Experimental data demonstrated that erianin inhibited PD-L1 expression and induced the lysosomal degradation of PD-L1. Erianin suppressed HIF-1α synthesis through mTOR/p70S6K/4EBP1 pathway, and inhibited RAS/Raf/MEK/MAPK-ERK pathway. Immunoprecipitation experiments demonstrated that erianin reduced the interaction between RAS and HIF-1α. Experiments using a co-cultivation system of T cells and HeLa cells confirmed that erianin restored cytotoxic T lymphocytes ability to kill tumour cells. Erianin inhibited PD-L1-mediated angiogenesis, proliferation, invasion and migration. The anti-proliferative effects of erianin were supported using in vivo xenotransplantation experiments. CONCLUSIONS Collectively, these results revealed previously unknown properties of erianin and provided a new basis for improving the efficacy of immunotherapy against cervical cancer and other malignant tumours through PD-L1.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Bibenzyls/pharmacology
- Bibenzyls/therapeutic use
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Gene Expression Regulation/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lysosomes/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Docking Simulation
- Neovascularization, Pathologic/metabolism
- Phenol/pharmacology
- Phenol/therapeutic use
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- TOR Serine-Threonine Kinases/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- raf Kinases/metabolism
- ras Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Ao Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
73
|
Coronel-Hernández J, Salgado-García R, Cantú-De León D, Jacobo-Herrera N, Millan-Catalan O, Delgado-Waldo I, Campos-Parra AD, Rodríguez-Morales M, Delgado-Buenrostro NL, Pérez-Plasencia C. Combination of Metformin, Sodium Oxamate and Doxorubicin Induces Apoptosis and Autophagy in Colorectal Cancer Cells via Downregulation HIF-1α. Front Oncol 2021; 11:594200. [PMID: 34123772 PMCID: PMC8187873 DOI: 10.3389/fonc.2021.594200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/30/2021] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide in both sexes. Current therapies include surgery, chemotherapy, and targeted therapy; however, prolonged exposure to chemical agents induces toxicity in patients and drug resistance. So, we implemented a therapeutic strategy based on the combination of doxorubicin, metformin, and sodium oxamate called triple therapy (Tt). We found that Tt significantly reduced proliferation by inhibiting the mTOR/AKT pathway and promoted apoptosis and autophagy in CRC derived cells compared with doxorubicin. Several autophagy genes were assessed by western blot; ULK1, ATG4, and LC3 II were overexpressed by Tt. Interestingly, ULK1 was the only one autophagy-related protein gradually overexpressed during Tt administration. Thus, we assumed that there was a post-transcriptional mechanism mediating by microRNAs that regulate UKL1 expression during autophagy activation. Through bioinformatics approaches, we ascertained that ULK1 could be targeted by mir-26a, which is overexpressed in advanced stages of CRC. In vitro experiments revealed that overexpression of mir-26a decreased significantly ULK1, mRNA, and protein expression. Contrariwise, the Tt recovered ULK1 expression by mir-26a decrease. Due to triple therapy repressed mir-26a expression, we hypothesized this drug combination could be involved in mir-26a transcription regulation. Consequently, we analyzed the mir-26a promoter sequence and found two HIF-1α transcription factor recognition sites. We developed two different HIF-1α stabilization models. Both showed mir-26a overexpression and ULK1 reduction in hypoxic conditions. Immunoprecipitation experiments were performed and HIF-1α enrichment was observed in mir-26a promoter. Surprisingly, Tt diminished HIF-1α detection and restored ULK1 mRNA expression. These results reveal an important regulation mechanism controlled by the signaling that activates HIF-1α and that in turn regulates mir-26a transcription.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | - David Cantú-De León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | | | | | | | | | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico,*Correspondence: Carlos Pérez-Plasencia,
| |
Collapse
|
74
|
Xu G, Yan X, Hu Z, Zheng L, Ding K, Zhang Y, Qing Y, Liu T, Cheng L, Shi Z. Glucocappasalin Induces G2/M-Phase Arrest, Apoptosis, and Autophagy Pathways by Targeting CDK1 and PLK1 in Cervical Carcinoma Cells. Front Pharmacol 2021; 12:671138. [PMID: 34093198 PMCID: PMC8172611 DOI: 10.3389/fphar.2021.671138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Glucocappasalin (GCP), a natural product derived from the seeds of Descurainia sophia (L.) Webb. ex Prantl, exhibits potential antitumor activity in HeLa cervical carcinoma cells. In this study, we investigated the anti-cervical cancer property of GCP through the induction of cell cycle arrest, apoptosis, and autophagy in vitro and in vivo, and elucidated the underlying molecular mechanisms. We demonstrated that treatment with GCP inhibited the growth of HeLa, Siha, and Ca Ski cell lines in a dose-dependent manner, with HeLa cells displaying particular sensitivity to the GCP treatment. Subsequently, the expression of cyclin-dependent kinase 1 (CDK1) and polo like kinase 1 (PLK1) were evaluated in HeLa cells using the CDK1 kinase assay kit, the fluorescence polarization assay, real-time quantitative PCR, and western blotting. Our results demonstrate that GCP could be employed to attenuate the expression of CDK1 and PLK1 in a dose- and time-dependent manner. The complementary results obtained by flow cytometry and western blotting allowed us to postulate that GCP may exhibit its antitumor effects by inducing G2/M cell cycle arrest. Moreover, HeLa cells treated with GCP exhibited a loss in mitochondrial membrane potential, together with the activation of caspases 3 and 9, and poly ADP-ribose polymerase (PARP). Additionally, we found that GCP could increase the formation of acidic vesicular organelles (AVOs), as well as the levels of Beclin1, LC3-II, p62, and Atg5 proteins in HeLa cells. Further studies indicated that GCP triggered autophagy via the suppression of the PI3K/AKT/mTOR signaling pathways. The autophagy inhibitor 3-methyladenine (3-MA) was used to determine whether autophagy affects the apoptosis induced by GCP. Interestingly, the inhibition of autophagy attenuated apoptosis. In vivo anti-tumor experiments indicated that GCP (60 mg/kg, i.p.) markedly reduced the growth of HeLa xenografts in nude mice without apparent toxicity. Taken together, we demonstrate that GCP induces cell cycle G2/M-phase arrest, apoptosis, and autophagy by acting on the PI3K/AKT/mTOR signaling pathways in cervical carcinoma cells. Thus, GCP may represent a promising agent in the eradication of cervical cancer.
Collapse
Affiliation(s)
- Guangya Xu
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Yan
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhongjia Hu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Lulu Zheng
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ke Ding
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yi Qing
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Tao Liu
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijia Cheng
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College, Affiliated Hospital and College of Basic Medicine and School of Pharmacy and School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
75
|
Peng SY, Tang JY, Li RN, Huang HW, Wu CY, Chiu CC, Chang FR, Zhang HW, Lee YJ, Sheu JH, Chang HW. Oxidative Stress-Dependent Synergistic Antiproliferation, Apoptosis, and DNA Damage of Ultraviolet-C and Coral-Derived Sinularin Combined Treatment for Oral Cancer Cells. Cancers (Basel) 2021; 13:cancers13102450. [PMID: 34070049 PMCID: PMC8158103 DOI: 10.3390/cancers13102450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Combined treatment is increasingly used to improve cancer therapy. Non-ionizing radiation ultraviolet-C (UVC) and sinularin, a coral Sinularia flexibilis-derived cembranolide, were separately reported to provide an antiproliferation function to some kinds of cancer cells. However, an antiproliferation function using the combined treatment of UVC/sinularin has not been investigated as yet. This study aimed to examine the combined antiproliferation function and explore the combination of UVC/sinularin in oral cancer cells compared to normal oral cells. Regarding cell viability, UVC/sinularin displays the synergistic and selective killing of two oral cancer cell lines, but remains non-effective for normal oral cell lines compared to treatments in terms of MTS and ATP assays. In tests using the flow cytometry, luminescence, and Western blotting methods, UVC/sinularin-treated oral cancer cells exhibited higher reactive oxygen species production, mitochondrial superoxide generation, mitochondrial membrane potential destruction, annexin V, pan-caspase, caspase 3/7, and cleaved-poly (ADP-ribose) polymerase expressions than that in normal oral cells. Accordingly, oxidative stress and apoptosis are highly induced in a combined UVC/sinularin treatment. Moreover, UVC/sinularin treatment provides higher G2/M arrest and γH2AX/8-hydroxyl-2'deoxyguanosine-detected DNA damages in oral cancer cells than in the separate treatments. A pretreatment can revert all of these changes of UVC/sinularin treatment with the antioxidant N-acetylcysteine. Taken together, UVC/sinularin acting upon oral cancer cells exhibits a synergistic and selective antiproliferation ability involving oxidative stress-dependent apoptosis and cellular DNA damage with low toxic side effects on normal oral cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ruei-Nian Li
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Hong-Wei Zhang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yun-Jou Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
76
|
Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi AZ, Eissa SI, Mehany ABM, Beauchemin AM. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem 2021; 112:104965. [PMID: 34020238 DOI: 10.1016/j.bioorg.2021.104965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Thirty-five new colchicine binding site inhibitors have been designed and synthesized based on the 1,2,4-triazin-3(2H)-one nucleus. Such molecules were synthesized through a cascade reaction between readily accessible α-amino ketones and phenyl carbazate as a masked N-isocyanate precursor. The synthesized derivatives are cisoid restricted combretastatin A4 analogues containing 1,2,4-triazin-3(2H)-one in place of the olefinic bond, and they have the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesized compounds were evaluated in vitro for their antiproliferative activities against a panel of three human cancer cell lines (MCF-7, HepG-2, and HCT-116), using colchicine as a positive control. Among them, two compounds 5i and 6i demonstrated a significant antiproliferative effect against all cell lines with IC50 ranging from 8.2 - 18.2 µM. Further investigation was carried out for the most active cytotoxic agents as tubulin polymerization inhibitors. Compounds 5i and 6i effectively inhibited microtubule assembly with IC50 values ranging from 3.9 to 7.8 µM. Tubulin polymerization assay results were found to be comparable with the cytotoxicity results. The cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 5i in HepG-2 cells. The most active compounds 4i, 4j, 5 g, 5i and 6i did not induce significant cell death in normal human lung cells Wl-38, suggesting their selectivity against cancer cells. Also, These compounds upregulated the level of active caspase-3 and boosted the levels of the pro-apoptotic protein Bax by five to seven folds in comparison to the control. Moreover, apoptosis analyses were conducted for compound 5i to evaluate its apoptotic potential. Finally, in silico studies were conducted to reveal the probable interaction with the colchicine binding site. ADME prediction study of the designed compounds showed that they are not only with promising tubulin polymerization inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt; Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada.
| | - Mohamed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of pharmacology and toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sally I Eissa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
77
|
Shang ZZ, Xu TT, Wang CQ, Li QM, Zha XQ, Pan LH, Luo JP. Bioactivity-guided investigation for isolation and immunoregulatory potential of polysaccharides from Dendrobium chrysotoxum stems. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
78
|
Ahlam AA, Shaniba VS, Jayasree PR, Manish Kumar PR. Spondias pinnata (L.f.) Kurz Leaf Extract Derived Zinc Oxide Nanoparticles Induce Dual Modes of Apoptotic-Necrotic Death in HCT 116 and K562 Cells. Biol Trace Elem Res 2021; 199:1778-1801. [PMID: 32761516 DOI: 10.1007/s12011-020-02303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
This study evaluates the effects of phyto-derived zinc oxide nanoparticles (ZnONPs) on human cancer cells, colon carcinoma HCT 116, and chronic myelogenous leukemic K562, along with normal lymphocytes/erythrocytes. The commercial, chemically synthesized ZnONPs (cZnONPs) were also assessed in parallel. Using an eco-friendly approach devoid of harmful chemicals, biogenic nanoparticles were synthesized from aqueous leaf extract of Spondias pinnata (SpLZnONPs) by a sol-gel method. Optical, structural, and elemental characterization of both particle types were carried out deploying UV-Vis/photoluminescence spectroscopy, FTIR, XRD, FESEM, HRTEM, and EDX. Both SpLZnONPs and cZnONPs displayed hexagonal wurtzite structure with particle sizes averaging 30 and 48.5 nm, respectively. SpLZnONPs were found to be cytotoxic to both cancer cell types while cZnONPs exhibited toxicity only against HCT 116 cells. Interestingly, the cytomorphological changes and analysis of DNA laddering pattern observed in these treated cells were indicative of simultaneous induction of dual modes of death involving apoptosis and necrosis. Flow cytometric analysis of cell-cycle distribution, clonogenic, wound healing, and comet assays provided evidences of the antiproliferative potential of the tested nanoparticles. Apoptosis induction via oxidative stress-mediated Ca2+ release, ROS generation, loss of mitochondrial membrane potential, and externalization of phosphatidylserine was also determined biochemically. Relative expression of apoptotic genes was quantified using RT-qPCR and Western blot analysis. Mitotic index analysis, MTT, and hemolytic assays on lymphocytes and erythrocytes clearly revealed the absence of any deleterious effect(s) of SpLZnONPs in these cells compared with the toxicity of the chemically derived cZnONPs, thereby attesting to the biocompatibility and selective action of the biogenic nanoparticles.
Collapse
Affiliation(s)
- Abdul Aziz Ahlam
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - V S Shaniba
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Kerala, 673635, India
| | - P R Manish Kumar
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India.
| |
Collapse
|
79
|
Taritla S, Kumari M, Kamat S, Bhat SG, Jayabaskaran C. Optimization of PhysicoChemical Parameters for Production of Cytotoxic Secondary Metabolites and Apoptosis Induction Activities in the Culture Extract of a Marine Algal-Derived Endophytic Fungus Aspergillus sp. Front Pharmacol 2021; 12:542891. [PMID: 33981211 PMCID: PMC8108993 DOI: 10.3389/fphar.2021.542891] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/17/2021] [Indexed: 01/20/2023] Open
Abstract
The endophytic fungal community in the marine ecosystem has been demonstrated to be relevant source of novel and pharmacologically active secondary metabolites. The current study focused on the evaluation of cytotoxic and apoptosis induction potential in the culture extracts of endophytic fungi associated with Sargassum muticum, a marine brown alga. The cytotoxicity of the four marine endophytes, Aspergillus sp., Nigrospora sphaerica, Talaromyces purpureogenus, and Talaromyces stipitatus, was evaluated by the MTT assay on HeLa cells. Further, several physicochemical parameters, including growth curve, culture media, and organic solvents, were optimized for enhanced cytotoxic activity of the selected extract. The Aspergillus sp. ethyl acetate extract (ASE) showed maximum cytotoxicity on multiple cancer cell lines. Chemical investigation of the metabolites by gas chromatography–mass spectroscopy (GC-MS) showed the presence of several compounds, including quinoline, indole, 2,4-bis(1,1-dimethylethyl) phenol, and hexadecenoic acid, known to be cytotoxic in ASE. The ASE was then tested for cytotoxicity in vitro on a panel of six human cancer cell lines, namely, HeLa (cervical adenocarcinoma), MCF-7 (breast adenocarcinoma), Hep G2 (hepatocellular carcinoma), A-549 (lung carcinoma), A-431 (skin/epidermis carcinoma), and LN-229 (glioblastoma). HeLa cells were most vulnerable to ASE treatment with an IC50 value of 24 ± 2 μg/ml. The mechanism of cytotoxicity exhibited by the ASE was further investigated on Hela cells. The results showed that the ASE was capable of inducing apoptosis in HeLa cells through production of reactive oxygen species, depolarization of mitochondrial membrane, and activation of the caspase-3 pathway, which shows a possible activation of the intrinsic apoptosis pathway. It also arrested the HeLa cells at the G2/M phase of the cell cycle, eventually leading to apoptosis. Through this study, we add to the knowledge about the marine algae associated with fungal endophytes and report its potential for purifying specific compounds responsible for cytotoxicity.
Collapse
Affiliation(s)
- Sidhartha Taritla
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
80
|
Almasi S, Crawford Parks TE, Ravel-Chapuis A, MacKenzie A, Côté J, Cowan KN, Jasmin BJ. Differential regulation of autophagy by STAU1 in alveolar rhabdomyosarcoma and non-transformed skeletal muscle cells. Cell Oncol (Dordr) 2021; 44:851-870. [PMID: 33899158 DOI: 10.1007/s13402-021-00607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Recent work has highlighted the therapeutic potential of targeting autophagy to modulate cell survival in a variety of diseases including cancer. Recently, we found that the RNA-binding protein Staufen1 (STAU1) is highly expressed in alveolar rhabdomyosarcoma (ARMS) and that this abnormal expression promotes tumorigenesis. Here, we asked whether STAU1 is involved in the regulation of autophagy in ARMS cells. METHODS We assessed the impact of STAU1 expression modulation in ARMS cell lines (RH30 and RH41), non-transformed skeletal muscle cells (C2C12) and STAU1-transgenic mice using complementary techniques. RESULTS We found that STAU1 silencing reduces autophagy in the ARMS cell lines RH30 and RH41, while increasing their apoptosis. Mechanistically, this inhibitory effect was found to be caused by a direct negative impact of STAU1 depletion on the stability of Beclin-1 (BECN1) and ATG16L1 mRNAs, as well as by an indirect inhibition of JNK signaling via increased expression of Dual specificity phosphatase 8 (DUSP8). Pharmacological activation of JNK or expression silencing of DUSP8 was sufficient to restore autophagy in STAU1-depleted cells. By contrast, we found that STAU1 downregulation in non-transformed skeletal muscle cells activates autophagy in a mTOR-dependent manner, without promoting apoptosis. A similar effect was observed in skeletal muscles obtained from STAU1-overexpressing transgenic mice. CONCLUSIONS Together, our data indicate an effect of STAU1 on autophagy regulation in ARMS cells and its differential role in non-transformed skeletal muscle cells. Our findings suggest a cancer-specific potential of targeting STAU1 for the treatment of ARMS.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alex MacKenzie
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Endocrinology, Department of Paediatric, CHEO, University of Ottawa, Ottawa, ON, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyle N Cowan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,Division of Paediatric Surgery, Department of Surgery, CHEO, University of Ottawa, Ottawa, ON, Canada.,Molecular Biomedicine Program, CHEO, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada. .,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
81
|
Dahou H, Minati MA, Jacquemin P, Assi M. Genetic Inactivation of Peroxiredoxin-I Impairs the Growth of Human Pancreatic Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10040570. [PMID: 33917763 PMCID: PMC8068151 DOI: 10.3390/antiox10040570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with few therapeutic options. The identification of new promising targets is, therefore, an urgent need. Using available transcriptomic datasets, we first found that Peroxiredoxin-1 gene (PRDX1) expression was significantly increased in human pancreatic tumors, but not in the other gastrointestinal cancers; its high expression correlated with shortened patient survival. We confirmed by immunostaining on mouse pancreata the increased Peroxiredoxin-I protein (PRX-I) expression in pancreatic neoplastic lesions and PDAC. To question the role of PRX-I in pancreatic cancer, we genetically inactivated its expression in multiple human PDAC cell lines, using siRNA and CRISPR/Cas9. In both strategies, PRX-I ablation led to reduced survival of PDAC cells. This was mainly due to an increase in the production of reactive oxygen species (ROS), accumulation of oxidative DNA damage (i.e., 8-oxoguanine), and cell cycle blockade at G2/M. Finally, we found that PRX-I ablation disrupts the autophagic flux in PDAC cells, which is essential for their survival. This proof-of-concept study supports a pro-oncogenic role for PRX-I in PDAC.
Collapse
Affiliation(s)
| | | | | | - Mohamad Assi
- Correspondence: (P.J.); (M.A.); Tel.: +32-2764-75-31 (P.J. & M.A.)
| |
Collapse
|
82
|
Zheng K, Dong Y, Yang R, Liang Y, Wu H, He Z. Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol Res 2021; 168:105580. [PMID: 33781874 DOI: 10.1016/j.phrs.2021.105580] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent regulated cell death that has been implicated in various diseases, such as cancer, neurodegeneration and stroke. The biosynthesis of phospholipids, coenzyme Q10, and glutathione, and the metabolism of iron, amino acids and polyunsaturated fatty acid, are tightly associated with cellular sensitivity to ferroptosis. Up to now, only limited drugs targeting ferroptosis have been documented and exploring novel effective ferroptosis-modulating compound is needed. Natural bioactive products are conventional resources for drug discovery, and some of them have been clinically used against cancers and neurodegenerative diseases as dietary supplements or pharmaceutic agents. Notably, increasing evidence demonstrates that natural compounds, such as saponins, flavonoids and isothiocyanates, can either induce or inhibit ferroptosis, further expanding their therapeutic potentials. In this review, we highlight current advances of the emerging molecular mechanisms and disease relevance of ferroptosis. We also systematically summarize the regulatory effects of natural phytochemicals on ferroptosis, and clearly indicate that saponins, terpenoids and alkaloids induce ROS- and ferritinophagy-dependent ferroptosis, whereas flavonoids and polyphenols modulate iron metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling to inhibit ferroptosis. Finally, we explore their clinical applications in ferroptosis-related diseases, which may facilitate the development of their dietary usages as nutraceuticals.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Rong Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Youfang Liang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
83
|
Ergul M, Bakar-Ates F. Investigation of molecular mechanisms underlying the antiproliferative effects of colchicine against PC3 prostate cancer cells. Toxicol In Vitro 2021; 73:105138. [PMID: 33684465 DOI: 10.1016/j.tiv.2021.105138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
This work examined the cytotoxic effects of colchicine on PC3 cells and elucidated the possible underlying mechanisms of its cytotoxicity. The cells were exposed to colchicine at different concentrations ranging from 1 to 100 ng/mL for 24 h, and it showed considerable cytotoxicity with an IC50 value of 22.99 ng/mL. Mechanistic studies also exhibited that colchicine treatment results in cell cycle arrest at the G2/M phase as well as decreased mitochondrial membrane potential and increased early and late apoptotic cells. The apoptotic and DNA-damaging effects of colchicine have also been verified by fluorescence imaging and ELISA experiments, and they revealed that while colchicine treatment significantly modulated expression as increases in Bax, cleaved caspase 3, cleaved PARP, and 8-hydroxy-desoxyguanosine levels and as a decrease of BCL-2 protein expression. Besides, colchicine treatment significantly increased the total oxidant (TOS) level, which is a signal of oxidative stress and potential cause of DNA damage. Finally, the results of quantitative real-time PCR experiments demonstrated that colchicine treatment concentration-dependently suppressed MMP-9 mRNA expression. Overall, colchicine provides meaningful cytotoxicity on PC3 cells due to induced oxidative stress, reduced mitochondrial membrane potential, increased DNA damage, and finally increased apoptosis in PC3 cells. Nevertheless, further research needs to be conducted to assess the potential of colchicine as an anticancer drug for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
84
|
Zhao Q, Sun X, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J Nanobiotechnology 2021; 19:8. [PMID: 33407527 PMCID: PMC7789287 DOI: 10.1186/s12951-020-00738-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-Hodgkin's lymphoma (NHL) possesses great heterogeneity in cytogenetics, immunophenotype and clinical features, and chemotherapy currently serves as the main treatment modality. Although employing monoclonal antibody targeted drugs has significantly improved its overall efficacy, various patients continue to suffer from drug resistance or recurrence. Chinese medicine has long been used in the treatment of malignant tumors. Therefore, we constructed a low pH value sensitivity drug delivery system based on the cancer cell membrane modified mesoporous silica nanoparticles loaded with traditional Chinese medicine, which can reduce systemic toxicity and improve the therapeutic effect for the targeted drug delivery of tumor cells. RESULTS Accordingly, this study put forward the construction of a nano-platform based on mesoporous silica nanoparticles (MSNs) loaded with the traditional Chinese medicine isoimperatorin (ISOIM), which was camouflaged by the cancer cell membrane (CCM) called CCM@MSNs-ISOIM. The proposed nano-platform has characteristics of immune escape, anti-phagocytosis, high drug loading rate, low pH value sensitivity, good biocompatibility and active targeting of the tumor site, blocking the lymphoma cell cycle and promoting mitochondrial-mediated apoptosis. CONCLUSIONS Furthermore, this study provides a theoretical basis in finding novel clinical treatments for lymphoma.
Collapse
Affiliation(s)
- Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Xiaoying Sun
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, People's Republic of China
- Department of Emergency, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Bin Wu
- Department of Transfusion Medicine, Tongji Medical College, Wuhan Hospital of Traditional Chinese and Western Medicine, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
85
|
Xie H, Feng S, Farag MA, Sun P, Shao P. Synergistic cytotoxicity of erianin, a bisbenzyl in the dietetic Chinese herb Dendrobium against breast cancer cells. Food Chem Toxicol 2021; 149:111960. [PMID: 33385512 DOI: 10.1016/j.fct.2020.111960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Erianin (ER), a dietary compound extracted from Dendrobium, a traditional Chinese medicinal edible herb, is well recognized for its potential anti-cancer activity. Nevertheless, its limitations, regarding its complex isolation procedure, low yield and low water solubility, limit large scale application. Combinatorial therapeutic regimen that combines several drugs to target different pathways in a characteristically synergistic manner at lower doses of drugs proved effective in several diseases treatment. Besides, new knowledge aimed at improving drug delivery into the intracellular environment is essential. In this study, ER was assessed for its cytotoxic effect in combination with doxorubicin hydrochloride (DOX·HCl) against breast cancer cells. Drug synergy was calculated by using combination index (CI) index and we discovered that they had positive effects. To ensure uniform delivery of both drugs to cells for a desired synergistic action, a dual drug loaded liposomes was developed using thin-film dispersion, and coated by a layer of folate-chitosan. Cytotoxicity and cell proliferation based assays revealed the increase of cell inhibition rate by more than 30% compared with free drugs. Fluorescence imaging revealed that liposomes can aid faster drugs accumulate in cancer cells. The study presented a novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | | | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China.
| |
Collapse
|
86
|
Ergul M, Bakar-Ates F. A specific inhibitor of polo-like kinase 1, GSK461364A, suppresses proliferation of Raji Burkitt's lymphoma cells through mediating cell cycle arrest, DNA damage, and apoptosis. Chem Biol Interact 2020; 332:109288. [PMID: 33075310 DOI: 10.1016/j.cbi.2020.109288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023]
Abstract
Polo-like kinase 1 (PLK1) is a prominent mediatory player during the cell cycle, mitosis, and cytokinesis in eukaryotic cells. Besides its physiological roles, PLK1 expression is upregulated in a wide range of human malignant tumors and its overexpression worsens prognosis, therefore, specific inhibition of PLK1 in tumor cells is a fascinating approach for the development of novel chemotherapeutics. The present study elucidated the potential cytotoxic effects of a PLK1 inhibitor, GSK461364A, in five cancer cell lines including Raji, K562, PC3, MCF-7, MDA-MB-231, along with noncancerous L929 cells by XTT assay. The cells were treated for 24 h with GSK461364A at different concentrations ranged between 0.5 and 40 μM and significant cytotoxicity was observed in all treated groups with the IC50 values between 2.36 and 4.08 μM. GSK461364A was also found to be safer with lower cytotoxicity against L929 cells and the IC50 value was found to be greater than 40 μM. Raji cells were identified as the most sensitive cell line against GSK461364A with the lowest IC50 values, hence it was selected for further studies to evaluate the underlying mechanism of cytotoxic activity. The treatment of Raji cells with GSK461364A caused a cell cycle arrest at the G2/M phase, also altered TOS, which is an indicator of oxidative stress, and DNA damage response, significantly. The Annexin V binding assay revealed that GSK461364A treatment significantly increased in the percentage of early and late apoptotic cells. Fluorescence imaging also showed that GSK461364A treatment significantly induced apoptosis of Raji cells. The apoptotic effect of the compound has also been confirmed by increased expressions of Bax and cleaved caspase 3 and along with the decreased expression of BCL-2. The results demonstrated that GSK461364A induced anticancer effects which was mainly promoted by cell cycle arrest, oxidative stress, DNA damage, and finally apoptosis in Burkitt's lymphoma cells. Taken together, the present results emphasized that GSK461364A could be a useful therapeutic agent in patients with Burkitt's lymphoma. However, further studies are required to consolidate the anticancer activity of this promising compound.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
87
|
Wang S, Lin B, Liu W, Wei G, Li Z, Yu N, Xue X, Ji G. Acacetin Induces Apoptosis in Human Osteosarcoma Cells by Modulation of ROS/JNK Activation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5077-5085. [PMID: 33239866 PMCID: PMC7680676 DOI: 10.2147/dddt.s275148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Purpose The long-term survival rate of osteosarcoma, which is the most common type of primary malignant bone tumor, has stagnated in past decades. Acacetin is a natural flavonoid compound that has antioxidative and anti-inflammatory effects and exhibits extensive therapeutic effects on various cancers. In this study, the anticancer potential of acacetin and the underlying molecular mechanisms were examined in human osteosarcoma cells (SJSA and HOS). Materials and Methods HOS and SJSA cell lines were exposed to different concentrations of acacetin. Cell proliferation and viability were assessed by CCK-8 and colony-formation assays. Hoechst 33258 fluorescent staining was employed to detect apoptosis. Cell apoptosis was measured by an annexin V-FITC/PI assay by flow cytometry. The alteration in the mitochondrial membrane potential was detected by a JC-1 Assay Kit. Apoptosis-related protein expression was determined by Western blotting. Intracellular reactive oxygen species (ROS) production was detected by fluorescence microscopy and flow cytometry. Subsequently, the activation of the ROS/JNK signaling pathway was investigated. Results Acacetin could inhibit proliferation and induce apoptosis in SJSA and HOS cells. The acacetin treatment resulted in the activation of caspase-3, −8, and −9 and cleaved PARP. Further studies showed that acacetin-induced apoptosis was attributed to ROS. In addition, we found that acacetin induced the activation of the downstream c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, after treatment with the ROS scavenger GSH and the JNK inhibitor SP600125, the apoptosis-inducing effect triggered by acacetin was significantly attenuated. Conclusion The results of the present study indicate that acacetin may induce apoptosis to inhibit cell growth by activating the ROS/JNK signaling pathway in SJSA and HOS cells, suggesting that acacetin may be a promising candidate for the management of osteosarcomas.
Collapse
Affiliation(s)
- Shubin Wang
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| | - Binhui Lin
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| | - Wei Liu
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| | - Guojun Wei
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| | - Zongguang Li
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| | - Naichun Yu
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| | - Xiang Xue
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| | - Guangrong Ji
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, Xiamen City, Fujian, People's Republic of China
| |
Collapse
|
88
|
Wang M, Yu H, Wu R, Chen ZY, Hu Q, Zhang YF, Gao SH, Zhou GB. Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells. Int J Mol Med 2020; 46:1816-1826. [PMID: 32901853 PMCID: PMC7521584 DOI: 10.3892/ijmm.2020.4714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to identify natural compounds that bear significant anti‑tumor activity. Thus, the effects of 63 small molecules that were isolated from traditional Chinese medicinal herbs on A549 human non‑small cell lung cancer (NSCLC) and MCF‑7 breast cancer cells were examined. It was found that ursolic acid (UA), a natural pentacyclic triterpenoid, exerted significant inhibitory effect on these cells. Further experiments revealed that UA inhibited the proliferation of various lung cancer cells, including the NSCLC cells, H460, H1975, A549, H1299 and H520, the human small cell lung cancer (SCLC) cells, H82 and H446, and murine Lewis lung carcinoma (LLC) cells. UA induced the apoptosis and autophagy of NSCLC cells. The inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, but not the activation of the extracellular signal‑regulated kinase 1/2 (ERK1/2) signaling pathway contributed to the UA‑induced autophagy of NSCLC cells. Moreover, the inhibition of autophagy by chloroquine (CQ) or siRNA for autophagy‑related gene 5 (ATG5) enhanced the UA‑induced inhibition of cell proliferation and promotion of apoptosis, indicating that UA‑induced autophagy is a pro‑survival mechanism in NSCLC cells. On the whole, these findings suggest that combination treatment with autophagy inhibitors may be a novel strategy with which enhance the antitumor activity of UA in lung cancer.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan 450052
| | - Hong Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Ran Wu
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Zhen-Yin Chen
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Qian Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - San-Hui Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| |
Collapse
|
89
|
Vo TTT, Liu JF, Wu CZ, Lin WN, Chen YL, Lee IT. Surfactin from Bacillus subtilis induces apoptosis in human oral squamous cell carcinoma through ROS-regulated mitochondrial pathway. J Cancer 2020; 11:7253-7263. [PMID: 33193889 PMCID: PMC7646178 DOI: 10.7150/jca.50835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Recently, ambient air particulate matter (PM) has been shown to increase the risk of oral cancer. The most common malignant tumor in the oral cavity is oral squamous cell carcinoma (OSCC). Recent studies have revealed that surfactin, a cyclic lipopeptide generated by Bacillus subtilis, has anti-inflammatory and anti-cancer properties. However, the exact anti-cancer effects of surfactin on human OSCC and underlying molecular mechanisms remain largely unknown. In the present study, we found that treatment of SCC4 and SCC25 cells (human OSCC cell lines) with surfactin reduced the viability of SCC4 and SCC25 cells by induction of apoptosis. Surfactin-induced apoptosis was associated with caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage and was regulated by the mitochondrial pathway, exemplified by mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS) production, cytochrome c release, up-regulation of Bad and Bax, and down-regulation of Bcl-2. Surfactin induced NADPH oxidase-dependent ROS generation, which appeared essential for the activation of the mitochondrial pathway. Surfactin-induced mitochondrial-derived ROS generation was associated with JNK1/2 activation. After treatment with surfactin, ROS caused JNK1/2-dependent cell death of SCC4 and SCC25 cells. Taken together, our findings suggest that surfactin induces mitochondria associated apoptosis of human OSCC cell lines, and surfactin may be a potential chemotherapeutic agent for future OSCC treatment.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
90
|
Dong H, Wang M, Chang C, Sun M, Yang F, Li L, Feng M, Zhang L, Li Q, Zhu Y, Qiao Y, Xie T, Chen J. Erianin inhibits the oncogenic properties of hepatocellular carcinoma via inducing DNA damage and aberrant mitosis. Biochem Pharmacol 2020; 182:114266. [PMID: 33035506 DOI: 10.1016/j.bcp.2020.114266] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023]
Abstract
Natural compounds have been confirmed as one of the most feasible solutions for hard-to-treat cancers such as hepatocellular carcinoma (HCC). Erianin, a natural bibenzyl compound from Dendrobium chrysotoxum, has been recently discovered with anticancer property in cancer cells. However, the roles and the molecular mechanisms of erianin in HCC remain unknown. The present study evaluates the effect of erianin on human HCC cells by inhibiting cell proliferation, inducing apoptotic-related cell death and hampering tumorigenicity. Furthermore, it was found that erianin could cause irreparable DNA damage, induce G2/M arrest and deregulate mitotic regulators. It was also observed that many cells with damaged DNA induced by erianin could overcome G2/M arrest and enter mitosis, leading to abnormal mitosis, and subsequently mitotic catastrophe and apoptotic-related cell death. The present study confirmed that erianin could be a potential antitumor agent for HCC clinical treatment.
Collapse
Affiliation(s)
- Heng Dong
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Menglan Wang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cunjie Chang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fan Yang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lina Li
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Feng
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou 310003, China
| | - Qian Li
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yannan Zhu
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou 310003, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jianxiang Chen
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.
| |
Collapse
|
91
|
Li X, Wang Y, Chen Y, Zhou P, Wei K, Wang H, Wang J, Fang H, Zhang S. Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials 2020; 257:120253. [DOI: 10.1016/j.biomaterials.2020.120253] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
|
92
|
The HDAC Inhibitor Domatinostat Promotes Cell-Cycle Arrest, Induces Apoptosis, and Increases Immunogenicity of Merkel Cell Carcinoma Cells. J Invest Dermatol 2020; 141:903-912.e4. [PMID: 33002502 DOI: 10.1016/j.jid.2020.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive skin cancer for which immune modulation by immune checkpoint inhibitors shows remarkable response rates. However, primary or secondary resistance to immunotherapy prevents benefits in a significant proportion of patients. For MCC, one immune escape mechanism is insufficient for recognition by T cells owing to the downregulation of major histocompatibility complex I surface expression. Histone deacetylase inhibitors have been demonstrated to epigenetically reverse the low major histocompatibility complex I expression caused by the downregulation of the antigen-processing machinery. Domatinostat, an orally available small-molecule inhibitor targeting histone deacetylase class I, is currently in clinical evaluation to overcome resistance to immunotherapy. In this study, we present preclinical data on domatinostat's efficacy and mode of action in MCC. Single-cell RNA sequencing revealed a distinct gene expression signature of antigen processing and presentation, cell-cycle arrest, and execution phase of apoptosis on treatment. Accordingly, functional assays showed that domatinostat induced G2M arrest and apoptosis. In the surviving cells, antigen-processing machinery component gene transcription and translation were upregulated, consequently resulting in increased major histocompatibility complex I surface expression. Altogether, domatinostat not only exerts direct antitumoral effects but also restores HLA class I surface expression on MCC cells, therefore, restoring surviving MCC cells' susceptibility to recognition and elimination by cognate cytotoxic T cells.
Collapse
|
93
|
El-Daly SM, Gouhar SA, Gamal-Eldeen AM, Abdel Hamid FF, Ashour MN, Hassan NS. Synergistic Effect of α-Solanine and Cisplatin Induces Apoptosis and Enhances Cell Cycle Arrest in Human Hepatocellular Carcinoma Cells. Anticancer Agents Med Chem 2020; 19:2197-2210. [PMID: 31566136 DOI: 10.2174/1871520619666190930123520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023]
Abstract
AIM The clinical application of cisplatin is limited by severe side effects associated with high applied doses. The synergistic effect of a combination treatment of a low dose of cisplatin with the natural alkaloid α-solanine on human hepatocellular carcinoma cells was evaluated. METHODS HepG2 cells were exposed to low doses of α-solanine and cisplatin, either independently or in combination. The efficiency of this treatment modality was evaluated by investigating cell growth inhibition, cell cycle arrest, and apoptosis enhancement. RESULTS α-solanine synergistically potentiated the effect of cisplatin on cell growth inhibition and significantly induced apoptosis. This synergistic effect was mediated by inducing cell cycle arrest at the G2/M phase, enhancing DNA fragmentation and increasing apoptosis through the activation of caspase 3/7 and/or elevating the expression of the death receptors DR4 and DR5. The induced apoptosis from this combination treatment was also mediated by reducing the expression of the anti-apoptotic mediators Bcl-2 and survivin, as well as by modulating the miR-21 expression. CONCLUSION Our study provides strong evidence that a combination treatment of low doses of α-solanine and cisplatin exerts a synergistic anticancer effect and provides an effective treatment strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Amira M Gamal-Eldeen
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki 12622, Cairo, Egypt.,Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt.,Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, At Taif 26521, Saudi Arabia
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magdi N Ashour
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Nahla S Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
94
|
Sun Y, Li G, Zhou Q, Shao D, Lv J, Zhou J. Dual Targeting of Cell Growth and Phagocytosis by Erianin for Human Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3301-3313. [PMID: 32848368 PMCID: PMC7429191 DOI: 10.2147/dddt.s259006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Objective To investigate the effect of erianin on tumor growth and immune response in human colorectal cancer cells (CRC). Methods The effect of erianin on tumor growth was determined by CCK8 and colony formation assay. Western blotting was used to evaluate the expression levels of relevant proteins and qRT-PCR was used to evaluate the mRNA level of the relevant gene. The transcriptional activity of β-catenin was determined by dual-luciferase reporter assay. Cellular thermal shift assay was used to quantify drug–target interactions. The cell surface CD47 was assessed by flow cytometry. The enrichment of H3K27 acetyl marks on CD47 promoter was evaluated by chromatin immunoprecipitation assay. Phagocytosis assay was used to determine the phagocytic activity of macrophage. In vivo role of erianin was studied on xenograft models. Results We found that erianin significantly decreased cell survival, colony formation, induced cell cycle arrest, and led to cell apoptosis in SW480 and HCT116 cells. Mechanism analysis demonstrated that erianin inhibited the nuclear translocation and transcriptional activity of β-catenin, which might result from erianin-β-catenin interaction. In addition, the downstream gene expressions, such as c-Myc and cyclin D1, was decreased. More interestingly, erianin decreased the expression of CD47 by regulating H3K27 acetyl marks enrichment on CD47 promoter. Consequently, macrophage-mediated phagocytosis was increased. Our in vivo experiments further confirmed the inhibitory effect of erianin on tumor growth. Conclusion In summary, erianin could inhibit CRC cells growth and promoted phagocytosis, which suggested erianin as a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Yihan Sun
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Guofeng Li
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Qi Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Danyue Shao
- Second School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Jianhua Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| |
Collapse
|
95
|
Lim GH, Kim SW, Ryu J, Kang SY, Kim JB, Kim SH. Upregulation of the MYB2 Transcription Factor Is Associated with Increased Accumulation of Anthocyanin in the Leaves of Dendrobium bigibbum. Int J Mol Sci 2020; 21:ijms21165653. [PMID: 32781758 PMCID: PMC7460623 DOI: 10.3390/ijms21165653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Orchids with colorful leaves and flowers have significant ornamental value. Here, we used γ-irradiation-based mutagenesis to produce a Dendrobium bigibbum mutant that developed purple instead of the normal green leaves. RNA sequencing of the mutant plant identified 2513 differentially expressed genes, including 1870 up- and 706 downregulated genes. The purple leaf color of mutant leaves was associated with increased expression of genes that encoded key biosynthetic enzymes in the anthocyanin biosynthetic pathway. In addition, the mutant leaves also showed increased expression of several families of transcription factors including the MYB2 gene. Transient overexpression of D. biggibumMYB2 in Nicotiana benthamiana was associated with increased expression of endogenous anthocyanin biosynthesis genes. Interestingly, transient overexpression of orthologous MYB2 genes from other orchids did not upregulate expression of endogenous anthocyanin biosynthesis genes. Together, these results suggest that the purple coloration of D. biggibum leaves is at least associated with increased expression of the MYB2 gene, and the MYB2 orthologs from orchids likely function differently, regardless of their high level of similarity.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Se Won Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
- Correspondence: ; Tel.: +82-63-570-3318; Fax: +82-63-570-3811
| |
Collapse
|
96
|
Hao Y, Huang Y, Chen J, Li J, Yuan Y, Wang M, Han L, Xin X, Wang H, Lin D, Peng F, Yu F, Zheng C, Shen C. Exopolysaccharide from Cryptococcus heimaeyensis S20 induces autophagic cell death in non-small cell lung cancer cells via ROS/p38 and ROS/ERK signalling. Cell Prolif 2020; 53:e12869. [PMID: 32597573 PMCID: PMC7445402 DOI: 10.1111/cpr.12869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Cryptococcus heimaeyensis S20 is found in Antarctica and can produce exopolysaccharides (CHEPS). Here, we explore the anti-tumour effects of CHEPS on non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Cell viability was assessed by CCK8 and colony formation assays. Flow cytometry was used to analyse the cell cycle, cell apoptosis and reactive oxygen species (ROS). Cell autophagy was detected by EGFP-LC3 puncta assay, Lyso-Tracker Red staining and transmission electron microscopy. mRNA and protein levels were analysed by qRT-PCR and Western blot. Related mechanisms were confirmed using appropriate inhibitors or shRNA. In vitro results were further confirmed by a tumour xenograft study. RESULTS CHEPS inhibited the proliferation of NSCLC cells by inducing S- and G2/M-phase arrest and autophagic cell death, but not apoptosis. CHEPS was less toxic to normal human embryonic lung fibroblasts. CHEPS activated the MAPK pathway in NSCLC cells, and p38 and ERK promoted CHEPS-induced cell death. Further studies showed that p38 and ERK promoted CHEPS-induced NSCLC cell autophagy and ERK promoted CHEPS-induced S- and G2/M-phase arrest. ROS were induced by CHEPS. A ROS scavenger attenuated CHEPS-induced p38 and ERK activation, autophagy and cell death. Finally, CHEPS reduced orthotopic lung tumour growth without organ-related toxicity. CHEPS also induced ROS, activated p38 and ERK, and triggered autophagy in vivo. CONCLUSIONS CHEPS induces autophagic cell death and S- and G2/M-phase arrest in NSCLC cells via ROS/p38 and ROS/ERK signalling.
Collapse
Affiliation(s)
- Yao Hao
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yao Huang
- College of Life SciencesWuhan UniversityWuhanChina
| | - Jingyi Chen
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Jiadai Li
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yuncong Yuan
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Mingzhen Wang
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Lingling Han
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and EngineeringJiangxi Agricultural UniversityNanchangChina
| | - Hailong Wang
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
| | - Danqing Lin
- College of Life SciencesWuhan UniversityWuhanChina
| | - Fang Peng
- College of Life SciencesWuhan UniversityWuhanChina
- China Center for Type Culture CollectionWuhan UniversityWuhanChina
| | - Fang Yu
- Department of PathologyZhongnan HospitalWuhan University
| | - Congyi Zheng
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
- China Center for Type Culture CollectionWuhan UniversityWuhanChina
| | - Chao Shen
- State Key Laboratory of VirologyCollege of Life SciencesWuhan UniversityWuhanChina
- China Center for Type Culture CollectionWuhan UniversityWuhanChina
| |
Collapse
|
97
|
Miller M, Mellul A, Braun M, Sherill-Rofe D, Cohen E, Shpilt Z, Unterman I, Braitbard O, Hochman J, Tshuva EY, Tabach Y. Titanium Tackles the Endoplasmic Reticulum: A First Genomic Study on a Titanium Anticancer Metallodrug. iScience 2020; 23:101262. [PMID: 32585595 PMCID: PMC7322074 DOI: 10.1016/j.isci.2020.101262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
PhenolaTi is an advanced non-toxic anticancer chemotherapy; this inert bis(phenolato)bis(alkoxo) Ti(IV) complex demonstrates the intriguing combination of high and wide efficacy with no detected toxicity in animals. Here we unravel the cellular pathways involved in its mechanism of action by a first genome study on Ti(IV)-treated cells, using an attuned RNA sequencing-based available technology. First, phenolaTi induced apoptosis and cell-cycle arrest at the G2/M phase in MCF7 cells. Second, the transcriptome of the treated cells was analyzed, identifying alterations in pathways relating to protein translation, DNA damage, and mitochondrial eruption. Unlike for common metallodrugs, electrophoresis assay showed no inhibition of DNA polymerase activity. Reduced in vitro cytotoxicity with added endoplasmic reticulum (ER) stress inhibitor supported the ER as a putative cellular target. Altogether, this paper reveals a distinct ER-related mechanism by the Ti(IV) anticancer coordination complex, paving the way for wider applicability of related techniques in mechanistic analyses of metallodrugs.
Collapse
Affiliation(s)
- Maya Miller
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anna Mellul
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Braun
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zohar Shpilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
98
|
An K, Zhang Y, Liu Y, Yan S, Hou Z, Cao M, Liu G, Dong C, Gao J, Liu G. Neferine induces apoptosis by modulating the ROS‑mediated JNK pathway in esophageal squamous cell carcinoma. Oncol Rep 2020; 44:1116-1126. [PMID: 32705225 PMCID: PMC7388582 DOI: 10.3892/or.2020.7675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Current treatments for esophageal squamous cell carcinoma (ESCC) have limited efficacy. Therefore, the development of novel therapeutic targets to effectively manage the disease and boost survival rates is imperative Neferine, a natural product extracted from Nelumbo nucifera (lotus) leaves, has been revealed to inhibit the growth of hepatocarcinoma, breast cancer and lung cancer cells. However, its effect on ESCC is unknown. In the present study, it was revealed that neferine exerted anti‑proliferative effects in ESCC. It was also revealed that it triggered arrest of the G2/M phase and enhanced apoptosis of ESCC cell lines. Moreover, its ability to trigger accumulation of reactive oxygen species (ROS) and activate the c‑Jun N‑terminal kinase (JNK) pathway was demonstrated. Further study revealed how N‑acetyl cysteine (NAC), a ROS inhibitor, attenuated these effects, demonstrating that ROS and JNK inhibitors mediated a marked reversal of neferine‑triggered cell cycle arrest and apoptosis in ESCC cells. Finally, it was revealed that neferine was involved in the inhibition of Nrf2, an antioxidant factor. Collectively, these findings demonstrated the antitumor effect of neferine in ESCC, through the ROS‑mediated JNK pathway and inhibition of Nrf2, indicating its potential as a target for development of novel and effective therapeutic agents against ESCC.
Collapse
Affiliation(s)
- Kang An
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yuehan Zhang
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yingjiao Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shengxi Yan
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhaowei Hou
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Meng Cao
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guangkuo Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Congcong Dong
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Juncha Gao
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
99
|
Song C, Jiao C, Jin Q, Chen C, Cai Y, Lin Y. Metabolomics analysis of nitrogen-containing metabolites between two Dendrobium plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1425-1435. [PMID: 32647459 PMCID: PMC7326750 DOI: 10.1007/s12298-020-00822-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen-containing compounds especially alkaloids are important medicinal ingredients in caulis dendrobii plants. Using solid-phase extraction coupled with liquid chromatography tandem mass spectrometry and multivariate data analysis methods, metabolic profiling of the nitrogen-containing compounds was established to distinguish Dendrobium huoshanense and Dendrobium officinale. Hundreds of nitrogen-containing compounds from the two caulis dendrobii were purified by the MCX cartridges. Some compounds were identified by high-resolution tandem mass spectrometry technology. Together with multivariate data analysis methods, comparative analysis of the metabolic profiling from two caulis dendrobii was conducted. A total of 133 nitrogen-containing compounds were identified, including amino acids, pyrrolidines, tropanes, pyrimidines, purines, indoles, piperidines, guanidines, quinolines, isoquinolines and terpenoids. Metabolic profiling analysis showed that the composition and contents of these chemical components were significantly different between D. huoshanense and D. officinale. Moreover, some components were species-specific, distributed in the two caulis dendrobii, such as pilosine, ternatusine, etc. Because alkaloids are mainly derived from amino acids via multistep biochemical reactions, the correlation analysis suggested that amino acids were partially associated with several types of components and significantly correlated with certain alkaloids. Arginine was extremely correlated with guanidines. Pyrimidines, purines and niacin-nicotinamide metabolic intermediates were associated with three independent networks. The results further enriched the chemical components currently identified from caulis dendrobii and provided a technical reference for detecting nitrogen-containing compounds in other medicinal plants.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, West Moon Island, Yunlu Bridge, Luan, 237012 Anhui People’s Republic of China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Luan, People’s Republic of China
| | - Chunyan Jiao
- Department of Biology and Pharmaceutical Engineering, College of Life Science, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Qing Jin
- Department of Biology and Pharmaceutical Engineering, College of Life Science, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, West Moon Island, Yunlu Bridge, Luan, 237012 Anhui People’s Republic of China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Luan, People’s Republic of China
| | - Yongping Cai
- Department of Biology and Pharmaceutical Engineering, College of Life Science, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yi Lin
- Department of Biology and Pharmaceutical Engineering, College of Life Science, Anhui Agricultural University, Hefei, People’s Republic of China
| |
Collapse
|
100
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|