51
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
52
|
Abstract
The presence of immune cells is a morphological hallmark of rapidly progressive glomerulonephritis, a disease group that includes anti-glomerular basement membrane glomerulonephritis, lupus nephritis, and anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. The cellular infiltrates include cells from both the innate and the adaptive immune responses. The latter includes CD4+ and CD8+ T cells. In the past, CD4+ T cell subsets were viewed as terminally differentiated lineages with limited flexibility. However, it is now clear that Th17 cells can in fact have a high degree of plasticity and convert, for example, into pro-inflammatory Th1 cells or anti-inflammatory Tr1 cells. Interestingly, Th17 cells in experimental GN display limited spontaneous plasticity. Here we review the literature of CD4+ T cell plasticity focusing on immune-mediated kidney disease. We point out the key findings of the past decade, in particular that targeting pathogenic Th17 cells by anti-CD3 injection can be a tool to modulate the CD4+ T cell response. This anti-CD3 treatment can trigger a regulatory phenotype in Th17 cells and transdifferentiation of Th17 cells into immunosuppressive IL-10-expressing Tr1 cells (Tr1exTh17 cells). Thus, targeting Th17 cell plasticity could be envisaged as a new therapeutic approach in patients with glomerulonephritis.
Collapse
|
53
|
Chen W, Su G, Xu Y, Guo W, Bhansali R, Pan B, Kong Q, Cheng H, Cao J, Qi K, Zhu F, Li M, Zhu S, Zeng L, Li Z, Wu Q, Xu K. Caspase-1 inhibition ameliorates murine acute graft versus host disease by modulating the Th1/Th17/Treg balance. Int Immunopharmacol 2021; 94:107503. [PMID: 33647825 DOI: 10.1016/j.intimp.2021.107503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our previous studies have implicated Caspase-1 signaling in driving the proinflammatory state of acute graft versus host disease (aGVHD). Therefore, we aimed to elucidate the mechanism of Caspase-1 in in murine models of aGVHD through specific inhibition of its activity with the decoy peptide Ac-YVAD-CMK. We transplanted bone marrow from donor C57BL/6 (H-2b) mice into recipient BALB/c (H-2Kd) mice and randomized the recipients into the following treatment cohorts: (1) allogeneic hematopoietic stem cell transplantation and splenic cell infusion control (PBS group); (2) low dose Ac-YVAD-CMK (AC low group); (3) and high dose Ac-YVAD-CMK (AC high group). Indeed, we observed that Caspase-1 inhibition by Ac-YVAD-CMK ameliorated pathological damage and inflammation in the liver, lungs, and colon elicited by aGVHD. This was associated with reduced mortality secondary to aGVHD. Mechanistically, we found that Caspase-1 inhibition modulated donor T cell expansion, restored the balance of Th1/Th17/Treg subsets, and markedly decreased serum levels and aGVHD target organ mRNA expression of IL-1β, IL-18, and HMGB1. Thus, we demonstrate that inhibition of Caspase-1 by Ac-YVAD-CMK mitigates murine aGVHD by regulating Th1/Th17/Treg balance and attenuating its characteristic proinflammatory state.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - GuiZhen Su
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; The Third People's Hospital of Bengbu, Bengbu, Anhui, China
| | - Yan Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wentong Guo
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rahul Bhansali
- Department of Medicine, Hospital of the University of Pennsylvania
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - QingLing Kong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Medicine, Hospital of the University of Pennsylvania
| | - Hai Cheng
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - KunMing Qi
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao Li
- Xuzhou Children's Hospital, Xuzhou, Jiangsu, China
| | - ShengYun Zhu
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - LingYu Zeng
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - ZhenYu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - KaiLin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
54
|
Hu X, Zhu Q, Wang Y, Wang L, Li Z, Mor G, Liao A. Newly characterized decidual Tim-3+ Treg cells are abundant during early pregnancy and driven by IL-27 coordinately with Gal-9 from trophoblasts. Hum Reprod 2021; 35:2454-2466. [PMID: 33107565 DOI: 10.1093/humrep/deaa223] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION What is the mechanism of Tim-3+ regulatory T (Treg)-cell accumulation in the decidua during early pregnancy and is its disruption associated with recurrent pregnancy loss (RPL)? SUMMARY ANSWER IL-27 and Gal-9 secreted by trophoblasts activate the Tim-3 signaling pathway in CD4+ T cells and Treg cells and so promote accumulation of Tim-3+ Treg cells, the abnormal expression of IL-27 and Gal-9 is associated with impaired immunologic tolerance in RPL patients. WHAT IS KNOWN ALREADY Tim-3+ Treg cells are better suppressors of Teff cell proliferation, and display higher proliferative activity than Tim-3- Treg cells. Tim-3+ Treg cells are tissue-specific promoters of T-cell dysfunction in many tumors. These cells express a unique factor that influences and shapes the tumor microenvironment. STUDY DESIGN, SIZE, DURATION The animal study included 80 normal pregnant mice. In human study, decidua tissues in the first trimester for flow cytometry analysis were collected from 32 normal pregnant women and 23 RPL patients. Placenta tissues for immunohistochemistry analysis were collected from 15 normal pregnant women. Placenta tissues for western blot analysis were collected from 5 normal pregnant women, 5 RPL patients and 5 women who have experienced one miscarriage. Blood samples for in vitro experiments were collected from 30 normal pregnant women. This study was performed between January 2017 and March 2019. PARTICIPANTS/MATERIALS, SETTING, METHODS In this study, we investigated the kinetics of Tim-3+ CD4+ T-cell accumulation, and the proportions of Tim-3+ Treg cells throughout murine pregnancies using flow cytometry. We compared Tim-3 expression on decidual CD4+ T cells and Treg cells during normal pregnancies with expression on the same cell populations in women suffering from RPL. IL-27 and Gal-9 transcription and protein expression in the placenta were determined by RT-PCR and western blot, respectively. An in vitro co-culture model consisting of peripheral CD4+ T cells and primary trophoblasts from early pregnancy was used to mimic the maternal-fetal environment. MAIN RESULTS AND THE ROLE OF CHANCE The percentage of Tim-3+ Treg cells present in mouse uteri fluctuates as gestation proceeds but does not change in the spleen. Levels of Tim3+ Treg cells in uteri peaked at pregnancy Day 6.5 (E 6.5), then progressively diminished, and fell to non-pregnant levels by E18.5. In pregnant mice, Tim-3+ Treg cells constituted 40-70% of Treg cells in uteri but were present at much lower abundance in spleens. About 60% of decidual Treg cells were Tim-3 positive at E6.5. Of these decidual Tim3+ Treg cells, nearly 90% were PD-1 positive. However, only about 16% of Tim3- Treg cells expressed PD-1. Blocking the Tim-3 signaling pathway decreased the proportion of Treg cells and led to embryo resorption. Moreover, much lower Tim-3 expression was observed on CD4+ T cells and Treg cells in women who had suffered from RPL at 6-9 gestational weeks compared with those who had normal pregnancies at matched gestations. In a normal pregnancy, Tim-3 expression on decidual CD4+ T cells is induced initially by IL-27. Then Gal-9-Tim-3 interaction promotes differentiation of decidual Tim-3+ CD4+ T cells into Treg cells. IL-27 and Gal-9 cooperatively induced Tim-3+ Treg cells in vitro. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION We did not investigate the kinetics of human decidual Tim-3+ CD4+ T and Tim-3+ Treg cell populations throughout pregnancy due to limited availability of second and third trimester decidua. In addition, functional suppressive data on the decidual Tim-3+ Treg cells are lacking due to limited and low quantities of these cells in decidua. WIDER IMPLICATIONS OF THE FINDINGS These findings might have therapeutic clinical implications in RPL. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by research grants from the National Natural Science Foundation of China (No. 81871186) and National Key Research & Developmental Program of China (2018YFC1003900, 2018YFC1003904). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Xiaohui Hu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhihui Li
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
55
|
Sharma P, Lee JYL, Tsai EM, Chang Y, Suen JL. n-Butyl Benzyl Phthalate Exposure Promotes Lesion Survival in a Murine Endometriosis Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073640. [PMID: 33807420 PMCID: PMC8036315 DOI: 10.3390/ijerph18073640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/02/2023]
Abstract
Endometriosis is an inflammatory and estrogen-dependent gynecological disease associated with exposure to environmental endocrine disruptors. n-Butyl benzyl phthalate (BBP), a ubiquitous plasticizer, has weak estrogenic activity, and exposure to BBP is associated with endometriosis. We aimed to elucidate the immunomodulatory effect of BBP on endometriosis development. We previously established a surgery-induced endometriosis-like murine model. In the present study, we exposed those mice to BBP 10 days prior to surgery and 4 weeks after surgery at physiologically relevant doses to mimic human exposure. Chronic exposure to BBP did not promote the growth of endometriotic lesions; however, the lesion survival rate in BBP-treated mice did increase significantly compared with control mice. Multiparametric flow cytometry showed that BBP exposure did not affect the homeostasis of infiltrated immune subsets in lesions but did enhance CD44 (adhesion marker) expression on plasmacytoid dendritic cells (pDCs). Blocking CD44 interactions locally inhibited endometriotic lesion growth. Immunofluorescence results further confirmed that CD44 blocking inhibited pDC infiltration and reduced the frequency of CD44+ pDCs in endometriotic tissues. BBP also disrupted the estrus cycle in these mice. This study suggests that chronic exposure to low-dose BBP may promote survival of endometriotic tissue through CD44-expressing pDCs.
Collapse
Affiliation(s)
- Pooja Sharma
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.S.); (J.-Y.L.L.); (E.-M.T.)
| | - Jo-Yu Lynn Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.S.); (J.-Y.L.L.); (E.-M.T.)
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.S.); (J.-Y.L.L.); (E.-M.T.)
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.S.); (J.-Y.L.L.); (E.-M.T.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence:
| |
Collapse
|
56
|
Modulation of the immune response and metabolism in germ-free rats colonized by the probiotic Lactobacillus salivarius LI01. Appl Microbiol Biotechnol 2021; 105:1629-1645. [PMID: 33507355 DOI: 10.1007/s00253-021-11099-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/06/2023]
Abstract
The gut microbiota plays an important role in multifaceted physiological functions in the host. Previous studies have assessed the probiotic effects of Lactobacillus salivarius LI01. In this study, we aimed to investigate the potential effects and putative mechanism of L. salivarius LI01 in immune modulation and metabolic regulation through the monocolonization of germ-free (GF) Sprague-Dawley (SD) rats with L. salivarius LI01. The GF rats were separated into two groups and administered a gavage of L. salivarius LI01 or an equal amount of phosphate-buffered saline. The levels of serum biomarkers, such as interleukin (IL)-1α, IL-5, and IL-10, were restored by L. salivarius LI01, which indicated the activation of Th0 cell differentiation toward immune homeostasis. L. salivarius LI01 also stimulated the immune response and metabolic process by altering transcriptional expression in the ileum and liver. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of the 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which indicated that L. salivarius LI01 exerts an effect on energy accumulation. The LI01 group showed alterations in fecal carbohydrates accompanied by an increased body weight gain. In addition, L. salivarius LI01 produced indole-3-lactic acid (ILA) and enhanced arginine metabolism by rebalancing the interconversion between arginine and proline. These findings provide evidence showing that L. salivarius LI01 can directly impact the host by modulating immunity and metabolism. KEY POINTS : • Lactobacillus salivarius LI01 conventionalizes the cytokine profile and activates the immune response. • LI01 modulates carbohydrate metabolism and arginine transaction. • LI01 generates tryptophan-derived indole-3-lactic acid. • The cytochrome P450 family contributes to the response to altered metabolites.
Collapse
|
57
|
Gastrospheres as a Model of Gastric Cancer Stem Cells Skew Th17/Treg Balance toward Antitumor Th17 Cells. J Immunol Res 2021; 2020:6261814. [PMID: 33426090 PMCID: PMC7775146 DOI: 10.1155/2020/6261814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022] Open
Abstract
Background Gastrosphere, an enriched cellular population with stem-like properties believed to be responsible for an escape from immune-mediated destruction. Th17 and Treg cells play a major role in gastric cancer; however, their interaction with gastrospheres remained elusive. Method Peripheral blood mononuclear cells were isolated from healthy donors and were cultured with conditioned media of MKN-45 (parental) cells as well as gastrospheres' conditioned media in the context of mixed lymphocyte reaction and in the presence of anti-CD3/CD28 beads. The proliferation was evaluated using CFSE staining; the percentages of CD4+CD25+FoxP3+ Treg and CD4+IL-17+ Th17 cells and IFN-γ+cells and the production of IL-17, TGF-β, and IL-10 were assessed by flow cytometry and ELISA, respectively. Finally, the cytotoxic potential of induced immune cells was measured by examining the secretion of lactate dehydrogenase from target cells. Results The results revealed a decreased expansion of PBMCs postexposure to gastrospheres' conditioned medium which was concomitant with an increased percentage of Th17 and an enhanced Th17 to Treg ratio. The conditioned media of gastrospheres enhanced the secretion of IL-10 and IL-17 and decreased TGF-β. Interestingly, immune cells induced by gastrospheres showed significant cytotoxicity in terms of producing IFN-γ and death induction in target cells. All these changes were related to the upregulation of IL-6, IL-10, and IL-22 in gastrospheres compared to parental cells. Conclusion Our study showed that the condition media of gastrospheres can potentially induce Th17 with increasing in their cytotoxic effect. Based on our knowledge, the present study is the first study that emphasizes the role of gastrospheres in the induction of antitumor Th17 cells. However, it should be confirmed with complementary studies in vivo.
Collapse
|
58
|
Mirlekar B, Pylayeva-Gupta Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel) 2021; 13:E167. [PMID: 33418929 PMCID: PMC7825035 DOI: 10.3390/cancers13020167] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The IL-12 family cytokines are a group of unique heterodimeric cytokines that include IL-12, IL-23, IL-27, IL-35 and, most recently, IL-39. Recent studies have solidified the importance of IL-12 cytokines in shaping innate and adaptive immune responses in cancer and identified multipronged roles for distinct IL-12 family members, ranging from effector to regulatory immune functions. These cytokines could serve as promising candidates for the development of immunomodulatory therapeutic approaches. Overall, IL-12 can be considered an effector cytokine and has been found to engage anti-tumor immunity by activating the effector Th1 response, which is required for the activation of cytotoxic T and NK cells and tumor clearance. IL-23 and IL-27 play dual roles in tumor immunity, as they can both activate effector immune responses and promote tumor growth by favoring immune suppression. IL-35 is a potent regulatory cytokine and plays a largely pro-tumorigenic role by inhibiting effector T cells. In this review, we summarize the recent findings on IL-12 family cytokines in the control of tumor growth with an emphasis primarily on immune regulation. We underscore the clinical implications for the use of these cytokines either in the setting of monotherapy or in combination with other conventional therapies for the more effective treatment of malignancies.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
59
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
60
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Martínez-Esparza M, Marín P, Machado-Linde F. Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum Reprod Update 2020; 26:214-246. [PMID: 32108227 DOI: 10.1093/humupd/dmz044] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota-immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Pilar Marín
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, Murcia, Spain
| |
Collapse
|
61
|
Yang M, Wang Y, Zhang Y, Li Y, Li Q, Tan J. Role of Interleukin-33 in Staphylococcus epidermidis-Induced Septicemia. Front Immunol 2020; 11:534099. [PMID: 33178181 PMCID: PMC7593707 DOI: 10.3389/fimmu.2020.534099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family, which plays an important role in inflammatory response. In this study, we evaluated the effect of IL-33 on septicemia and the underlying mechanisms by establishing a Staphylococcus epidermidis (S. epidermidis)-induced septicemic mouse model. The expression of IL-33, IL-1α, IL-1β, IL-6, IL-17A, IL-22, and PGE2 were measured by double antibody sandwich enzyme-linked immunosorbent assay, and bacterial colony formation in peripheral blood and kidneys were counted postinfection. The percentages of neutrophils, eosinophils, and inflammatory monocytes were evaluated by flow cytometry, and tissue damage was assessed by hematoxylin and eosin (H&E) staining. The survival of septicemic mice was monitored daily. IL-33 expression was significantly augmented following S. epidermidis infection. High IL-33 expression significantly decreased the survival of model mice, and aggravated the damage of lung, liver, and kidney tissues. However, administration of ST2 (receptor for IL-33) to the S. epidermidis-infected mice blocked the IL-33 signaling pathway, which elevated PGE2, IL-17A, and IL-22, and promoted healing of organ damage. In addition, ST2 suppressed the mobilization of inflammatory monocytes, but promoted the accumulation of neutrophils and eosinophils in S. epidermidis-infected mice. Inhibition of PGE2, IL-17A, and IL-22 facilitated the development of septicemia and organ damage in S. epidermidis-infected mice, as well as reducing their survival. Our findings reveal that IL-33 aggravates organ damage in septicemic mice by inhibiting PGE2, IL-17A, and IL-22 production.
Collapse
Affiliation(s)
- Min Yang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghong Zhang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjun Li
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Li
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jintong Tan
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
Pashizeh F, Mansouri R, Davari-Tanha F, Hosseini R, Asgari Z, Aghaei H, Najafi Arbastan F, Rajaei S. Alterations of CD4+T Cell Subsets in Blood and Peritoneal Fluid in Different Stages of Endometriosis. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:201-208. [PMID: 33098386 PMCID: PMC7604714 DOI: 10.22074/ijfs.2020.6127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/08/2020] [Indexed: 12/21/2022]
Abstract
Background Endometriosis is a chronic inflammatory disorder with known immune disturbances. The aim of this
study was to compare the frequency of different CD4+ T cells [T helper (Th)1, Th2, Th17 and regulatory T cells
(Tregs)] in peripheral blood (PB) and peritoneal fluid (PF) of patients that have early and advanced stages of endome-
triosis with a control group. Materials and Methods In this case control study, PB and PF samples were collected from women aged 24-40 years
who underwent laparoscopy procedures. The frequency of CD4+ T subsets were analysed by flow cytometry and com-
pared between three study groups; early endometriosis (stage I, II), advanced endometriosis (stage III, IV) and control
(no endometriosis). T cell numbers were compared between the PB and PF in each of the aforementioned groups. Results No statistically significant difference was found between the study groups regarding the numbers of Th1, Th2
and Th17 cells in PB. The PF of patients with advanced endometriosis had increased numbers of Th17 cells compared
to the control group (P=0.003), with P values of 0.059 and 0.045 in both menstrual phases. Increased numbers of Th2
cells in PF from early compared to advanced stages of endometriosis were detected exclusively in the luteal phase
(P=0.035).
The control group had increased numbers of Treg and Th2 cells in the PF compared to PB (both, P value=0.046).
However, in the early stages of endometriosis there were more Th2, Th17 and Treg cells in the PF compared to PB (P
values: 0.005, 0.047 and 0.013, respectively), while the number of Th17 cells was higher in the PF compared with PB
in the advanced stages of endometriosis (P= 0.013). Conclusion There were increased numbers of Th17 cells in the PF of patients with advanced stages of endometriosis,
which could be related to the severity of this disease.
Collapse
Affiliation(s)
- Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Mansouri
- Department of Immunology, School of Medicine, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Davari-Tanha
- Department of Obstetrics and Gynaecology, Yas Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hosseini
- Department of Obstetrics and Gynaecology, Research Development Centre, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Asgari
- Department of Obstetrics and Gynaecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Aghaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farangis Najafi Arbastan
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
63
|
Ke JY, Yang J, Li J, Xu Z, Li MQ, Zhu ZL. Baicalein inhibits FURIN-MT1-MMP-mediated invasion of ectopic endometrial stromal cells in endometriosis possibly by reducing the secretion of TGFB1. Am J Reprod Immunol 2020; 85:e13344. [PMID: 32910833 DOI: 10.1111/aji.13344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Endometriosis (EMs) is characterized by the presence of endometrial stroma and glands outside the uterus. Our previous study showed that baicalein inhibited proliferation and induced apoptosis in EMs. However, the effects of baicalein on the invasiveness of ectopic endometrial stromal cells (EcESCs) remain unclear. The aim of this study was to assess the potential anti-invasive effect of baicalein and determine the underlying mechanism. METHODS The invasive and migratory properties of EcESCs were assessed in vitro using Transwell and wound healing assays. The expression of functional markers of EcESCs, including matrix metalloproteases (MMPs), FURIN, and TGFB1, was analyzed using WB and ELISA. Additionally, a mouse model of EMs was treated with baicalein (10 mg/kg/d and 35 mg/kg/d) for 4 weeks. The weight and number of ectopic lesions were determined, and the expression of markers was assessed using immunohistochemistry. RESULTS Baicalein inhibited the invasion of EcESCs and the expression of certain invasion-related proteins, including MMP9, MMP2, and MT1-MMP. Exposure to baicalein reduced the extracellular levels of TGFB1 in EcESCs and the reduced expression of TGFB1, resulting in decreased expression of FURIN in EcESCs, which serves a pivotal role in the transformation of pro-MT1-MMP to activated MT1-MMP. In the mouse model of EMs, intraperitoneal injection of baicalein inhibited the growth of ectopic lesions and reduced MT1-MMP, FURIN, and TGFB1 expression. CONCLUSIONS Baicalein reduced the invasion of EMs, potentially by restricting the FURIN-MT1-MMP-mediated cell invasion of EcESCs maybe through reduction of the autocrine of TGFB1.
Collapse
Affiliation(s)
- Jun-Ya Ke
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhen Xu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ming-Qing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Zhi-Ling Zhu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
64
|
Jafarzadeh A, Nemati M, Jafarzadeh S, Chauhan P, Saha B. The immunomodulatory potentials of interleukin-27 in airway allergies. Scand J Immunol 2020; 93:e12959. [PMID: 32797730 DOI: 10.1111/sji.12959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Allergic airway disorders such as asthma and allergic rhinitis are mainly caused by inhaled allergen-induced improper activation and responses of immune and non-immune cells. One important response is the production of IL-27 by macrophages and dendritic cells (DCs) during the early stage of airway allergies. IL-27 exerts powerful modulatory influences on the cells of innate immunity [eg neutrophils, eosinophils, mast cells, monocytes, macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), natural killer (NK) cells and NKT cells)] and adaptive immunity (eg Th1, Th2, Th9, Th17, regulatory T, CD8+ cytotoxic T and B cells). The IL-27-mediated signalling pathways may be modulated to attenuate asthma and allergic rhinitis. In this review, a comprehensive discussion concerning the roles carried out by IL-27 in asthma and allergic rhinitis was provided, while evidences are presented favouring the use of IL-27 in the treatment of airway allergies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India
| |
Collapse
|
65
|
Xu H, Agalioti T, Zhao J, Steglich B, Wahib R, Vesely MCA, Bielecki P, Bailis W, Jackson R, Perez D, Izbicki J, Licona-Limón P, Kaartinen V, Geginat J, Esplugues E, Tolosa E, Huber S, Flavell RA, Gagliani N. The induction and function of the anti-inflammatory fate of T H17 cells. Nat Commun 2020; 11:3334. [PMID: 32620760 PMCID: PMC7335205 DOI: 10.1038/s41467-020-17097-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/11/2020] [Indexed: 01/19/2023] Open
Abstract
TH17 cells exemplify environmental immune adaptation: they can acquire both a pathogenic and an anti-inflammatory fate. However, it is not known whether the anti-inflammatory fate is merely a vestigial trait, or whether it serves to preserve the integrity of the host tissues. Here we show that the capacity of TH17 cells to acquire an anti-inflammatory fate is necessary to sustain immunological tolerance, yet it impairs immune protection against S. aureus. Additionally, we find that TGF-β signalling via Smad3/Smad4 is sufficient for the expression of the anti-inflammatory cytokine, IL-10, in TH17 cells. Our data thus indicate a key function of TH17 cell plasticity in maintaining immune homeostasis, and dissect the molecular mechanisms explaining the functional flexibility of TH17 cells with regard to environmental changes. CD4+ T helper cells producing IL-17A (TH17 cells) can take on pathogenic or anti-inflammatory functions in context-specific manners. Here the authors show that the anti-inflammatory fate of TH17 cells contributes, via TGF-β signaling and induction of IL-10, to host immune tolerance, but also simultaneously dampens protective immunity against S. aureus.
Collapse
Affiliation(s)
- Hao Xu
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jun Zhao
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Babett Steglich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Piotr Bielecki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ruaidhri Jackson
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F, México
| | - Vesa Kaartinen
- Biologic and Material Sciences, University of Michigan, 1011N. University Ave, Ann Arbor, MI, 48109, USA
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy
| | - Enric Esplugues
- Laboratory of Molecular and Cellular Immunology, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. .,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. .,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
| |
Collapse
|
66
|
Boardman DA, Garcia RV, Ivison SM, Bressler B, Dhar TGM, Zhao Q, Levings MK. Pharmacological inhibition of RORC2 enhances human Th17‐Treg stability and function. Eur J Immunol 2020; 50:1400-1411. [DOI: 10.1002/eji.201948435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Dominic A. Boardman
- Department of SurgeryThe University of British ColumbiaColumbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| | - Rosa V. Garcia
- Department of SurgeryThe University of British ColumbiaColumbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| | - Sabine M. Ivison
- Department of SurgeryThe University of British ColumbiaColumbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| | - Brian Bressler
- Department of MedicineThe University of British Columbia Vancouver British Columbia Canada
| | - TG Murali Dhar
- Research and DevelopmentBristol–Myers Squibb Princeton NJ USA
| | - Qihong Zhao
- Research and DevelopmentBristol–Myers Squibb Princeton NJ USA
| | - Megan K. Levings
- Department of SurgeryThe University of British ColumbiaColumbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| |
Collapse
|
67
|
Brune Z, Rice MR, Barnes BJ. Potential T Cell-Intrinsic Regulatory Roles for IRF5 via Cytokine Modulation in T Helper Subset Differentiation and Function. Front Immunol 2020; 11:1143. [PMID: 32582209 PMCID: PMC7283537 DOI: 10.3389/fimmu.2020.01143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) is one of nine members of the IRF family of transcription factors. Although initially discovered as a key regulator of the type I interferon and pro-inflammatory cytokine arm of the innate immune response, IRF5 has now been found to also mediate pathways involved in cell growth and differentiation, apoptosis, metabolic homeostasis and tumor suppression. Hyperactivation of IRF5 has been implicated in numerous autoimmune diseases, chief among them systemic lupus erythematosus (SLE). SLE is a heterogeneous autoimmune disease in which patients often share similar characteristics in terms of autoantibody production and strong genetic risk factors, yet also possess unique disease signatures. IRF5 pathogenic alleles contribute one of the strongest risk factors for SLE disease development. Multiple models of murine lupus have shown that loss of Irf5 is protective against disease development. In an attempt to elucidate the regulatory role(s) of IRF5 in driving SLE pathogenesis, labs have begun to examine the function of IRF5 in several immune cell types, including B cells, macrophages, and dendritic cells. A somewhat untouched area of research on IRF5 is in T cells, even though Irf5 knockout mice were reported to have skewing of T cell subsets from T helper 1 (Th1) and T helper 17 (Th17) toward T helper 2 (Th2), indicating a potential role for IRF5 in T cell regulation. However, most studies attributed this T cell phenotype in Irf5 knockout mice to dysregulation of antigen presenting cell function rather than an intrinsic role for IRF5 in T cells. In this review, we offer a different interpretation of the literature. The role of IRF5 in T cells, specifically its control of T cell effector polarization and the resultant T cell-mediated cytokine production, has yet to be elucidated. A strong understanding of the regulatory role(s) of this key transcription factor in T cells is necessary for us to grasp the full picture of the complex pathogenesis of autoimmune diseases like SLE.
Collapse
Affiliation(s)
- Zarina Brune
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew R. Rice
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
68
|
Sekulovski N, Whorton AE, Shi M, MacLean JA, Hayashi K. Endometriotic inflammatory microenvironment induced by macrophages can be targeted by niclosamide†. Biol Reprod 2020; 100:398-408. [PMID: 30329025 DOI: 10.1093/biolre/ioy222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
Endometriosis causes severe chronic pelvic pain and infertility. We have recently reported that niclosamide treatment reduces growth and progression of endometriosis-like lesions and inflammatory signaling (NF${\rm \small K}$B and STAT3) in a mouse model. In the present study, we examined further inhibitory mechanisms by which niclosamide affects endometriotic lesions using an endometriotic epithelial cell line, 12Z, and macrophages differentiated from a monocytic THP-1 cell line. Niclosamide dose dependently reduced 12Z viability, reduced STAT3 and NF${\rm \small K}$B activity, and increased both cleaved caspase-3 and cleaved PARP. To model the inflammatory microenvironment in endometriotic lesions, we exposed 12Z cells to macrophage conditioned media (CM). Macrophages were differentiated from THP-1 cells using 12-O-tetradecanoylphorbol-13-acetate as M0, and then M0 macrophages were polarized into M1 or M2 using LPS/IFNγ or IL4/IL13, respectively. Conditioned media from M0, M1, or M2 cultures increased 12Z viability. This effect was blocked by niclosamide, and cell viability returned to that of CM from cells treated with niclosamide alone. To assess proteins targeted by niclosamide in 12Z cells, CM from 12Z cells cultured with M0, M1, or M2 with/without niclosamide were analyzed by cytokine/chemokine protein array kits. Conditioned media from M0, M1, and/or M2 stimulated the secretion of cytokines/chemokines from 12Z cells. Production of most of these secreted cytokines/chemokines in 12Z cells was inhibited by niclosamide. Knockdown of each gene in 12Z cells using siRNA resulted in reduced cell viability. These results indicate that niclosamide can inhibit the inflammatory factors in endometriotic epithelial cells stimulated by macrophages by targeting STAT3 and/or NF${\rm \small K}$B signaling.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
69
|
Wei Y, Liang Y, Lin H, Dai Y, Yao S. Autonomic nervous system and inflammation interaction in endometriosis-associated pain. J Neuroinflammation 2020; 17:80. [PMID: 32145751 PMCID: PMC7060607 DOI: 10.1186/s12974-020-01752-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease. Pain is the most common symptom in endometriosis. Endometriosis-associated pain is caused by inflammation, and is related to aberrant innervation. Although the specific mechanism between endometriosis-associated pain and the interaction of aberrant innervation and inflammation remains unclear, many studies have confirmed certain correlations between them. In addition, we found that some chronic inflammatory autoimmune diseases (AIDs) such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) share similar characteristics: the changes in dysregulation of inflammatory factors as well as the function and innervation of the autonomic nervous system (ANS). The mechanisms underlying the interaction between the ANS and inflammation have provided new advances among these disorders. Therefore, the purpose of this review is to compare the changes in inflammation and ANS in endometriosis, IBD, and RA; and to explore the role and possible mechanism of sympathetic and parasympathetic nerves in endometriosis-associated inflammation by referring to IBD and RA studies to provide some reference for further endometriosis research and treatment.
Collapse
Affiliation(s)
- Yajing Wei
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Haishan Lin
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Yujing Dai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
70
|
Th17 Cells and IL-17 As Novel Immune Targets in Ovarian Cancer Therapy. JOURNAL OF ONCOLOGY 2020; 2020:8797683. [PMID: 32148497 PMCID: PMC7054820 DOI: 10.1155/2020/8797683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/29/2020] [Indexed: 01/12/2023]
Abstract
Ovarian cancer (OC) is usually diagnosed at an advanced stage and is related with poor prognosis. Despite numerous studies, the pathogenesis of OC is still unknown. Recent studies indicate the role of the immune system in the development and spread of OC. The identification of factors and mechanisms involved in that process and their modulation is crucial for creating effective antitumor therapy. We investigated the potential role of Th17 cells in OC patients (n = 71) by analyzing the frequencies of Th17 cells in three different environments, i.e., peripheral blood (PB), peritoneal fluid (PF), and tissue (Th17 infiltrating cells), and the concentration of IL-17A in plasma and PF of patients in terms of their clinical and prognostic significance. Th17 cells were analyzed by flow cytometry as a percentage of CD4+ lymphocytes that expressed intracellular expression of IL-17A. The level of IL-17A in plasma and PF were determined by ELISA. Our results showed accumulation of Th17 cells among tumor-infiltrating CD4+ lymphocytes (p < 0.001 in relation to PB). Moreover, the percentage of Th17 cells in both PB and PF of OC patients was significantly lower than that in benign tumors group (n = 35). There were no significant differences in the percentage of Th17 cells in PB, PF, and tissue in relation to clinicopathological characteristics of OC patients and survival. The lower percentage of Th17 cells in the PB and PF of OC patients may promote evasion of host immune response by cancer cells. The concentration of IL-17A in plasma of OC patients was higher (p < 0.0001) than that in both benign tumors and control group (n = 10). The PF IL-17A level in OC patients was higher (p < 0.0001) than that in women with benign ovarian tumors, indicating its synthesis in OC microenvironment. Higher IL-17A level in PF is correlated with longer (median: 36.5 vs. 27 months) survival of OC patients.
Collapse
|
71
|
Gu C, Yang H, Chang K, Zhang B, Xie F, Ye J, Chang R, Qiu X, Wang Y, Qu Y, Wang J, Li M. Melatonin alleviates progression of uterine endometrial cancer by suppressing estrogen/ubiquitin C/SDHB-mediated succinate accumulation. Cancer Lett 2020; 476:34-47. [PMID: 32061949 DOI: 10.1016/j.canlet.2020.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Succinate is an important intermediate of the tricarboxylic acid cycle. Recently discovered roles of succinate demonstrate its involvement in immunity and cancer biology; however, the precise underlying mechanisms of its involvement in these additional roles remain to be determined. In the present study, succinate dehydrogenase (SDH) B was decreased in uterine endometrial cancer cells (UECC) under negative regulation of estrogen. This decrease was the result of lower expression levels of ubiquitin C (UBC), which was associated with the activation of peroxisome proliferator-activated receptor gamma and specificity protein 1. The decreased levels of SDHB resulted in the accumulation of succinate in UECC, and thus, a decrease in the production of fumaric acid. Succinate downregulated voltage-gated potassium channel subfamily Q member 1 (KCNQ1) levels by activating serum/glucocorticoid regulated kinase 1 and promoted the growth of UECC in vitro and in vivo. Treatment with melatonin restricted estrogen/UBC/SDHB-induced succinate accumulation and upregulated expression of KCNQ1 and reduced the succinate-mediated growth of UECC in vitro and in vivo. Furthermore, overexpression of melatonin receptor 1B amplified the inhibitory effects of melatonin on succinate-mediated UECC growth. Together, the data in the present study suggest that melatonin suppresses UECC progression by inhibiting estrogen/UBC/SDHB-induced succinate accumulation. The present study provides a scientific basis for potential therapeutic strategies and targets in UEC, particularly for patients with abnormally low levels of SDHB.
Collapse
Affiliation(s)
- Chunjie Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China
| | - Huili Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China
| | - Kaikai Chang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Bing Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu Province, People's Republic of China
| | - Feng Xie
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China.
| | - Jiangfeng Ye
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Ruiqi Chang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China
| | - Xuemin Qiu
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China
| | - Yan Wang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China
| | - Yuqing Qu
- Department of Pathology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China
| | - Mingqing Li
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China; Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
72
|
Wu B, Wan Y. Molecular control of pathogenic Th17 cells in autoimmune diseases. Int Immunopharmacol 2020; 80:106187. [PMID: 31931372 DOI: 10.1016/j.intimp.2020.106187] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
IL-17A-producing CD4+ T helper cells (Th17) are crucial for the development of inflammatory and autoimmune diseases and thus are exploited for clinical immunotherapies. Emerging evidence suggests Th17 cells are heterogeneous and able to adopt both pathogenic and non-pathogenic phenotypes which are shaped by environmental and genetic factors. On one hand, IL-6 in concert with TGFβ1 can induce non-pathogenic Th17 cells (non-pTh17), which are not effective in inducing tissue inflammation. On the other hand, IL-6, IL-1β with IL-23 induce pathogenic Th17 cells (pTh17) to induce immune pathologies in various tissues. Th17 cells could be both pathogenic and non-pathogenic in a content-dependent manner in vivo. Understanding how the generation and pathogenicity of pTh17 cells are regulated will aid us to devise more effective immunotherapy. In this review, we summarize recent advances in the differentiation and regulation of Th17 cells especially pTh17 cells in vitro and in vivo. The emerging results revealing the specific molecular control of pTh17 cells are highlighted.
Collapse
Affiliation(s)
- Bing Wu
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Yisong Wan
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
73
|
Fang D, Zhu J. Molecular switches for regulating the differentiation of inflammatory and IL-10-producing anti-inflammatory T-helper cells. Cell Mol Life Sci 2020; 77:289-303. [PMID: 31432236 PMCID: PMC11105075 DOI: 10.1007/s00018-019-03277-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
CD4 T-helper (Th) cells secret a variety of inflammatory cytokines and play critical roles in host defense against invading foreign pathogens. On the other hand, uncontrolled inflammatory responses mediated by Th cells may result in tissue damage and inflammatory disorders including autoimmune and allergic diseases. Thus, the induction of anti-inflammatory cytokine expression becomes an important "brake" to repress and/or terminate aberrant and/or unnecessary immune responses. Interleukin-10 (IL-10) is one of the most important anti-inflammatory cytokines to limit inflammatory Th cells and immunopathology and to maintain tissue homeostasis. Many studies have indicated that Th cells can be a major source of IL-10 under specific conditions both in mouse and human and that extracellular signals and cell intrinsic molecular switches are required to turn on and off Il10 expression in different Th cells. In this review, we will highlight the recent findings that have enhanced our understanding on the mechanisms of IL-10 induction in distinct Th-cell subsets, including Th1, Th2, and Th17 cells, as well as the importance of these IL-10-producing anti-inflammatory Th cells in immunity and inflammation.
Collapse
Affiliation(s)
- Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
74
|
Li C, Lu Z, Bi K, Wang K, Xu Y, Guo P, Chen Y, Zhou P, Wei Z, Jiang H, Cao Y. CD4 +/CD8 + mucosa-associated invariant T cells foster the development of endometriosis: a pilot study. Reprod Biol Endocrinol 2019; 17:78. [PMID: 31615517 PMCID: PMC6794756 DOI: 10.1186/s12958-019-0524-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Immune dysregulation is one of the mechanisms to promote endometriosis (EMS). Various T cell subpopulations have been reported to play different roles in the development of EMS. The mucosa-associated invariant T cell (MAIT) is an important T cell subset in the pathogenesis of various autoimmune diseases. Evidence has indicated that there are three functionally distinct MAIT subsets: CD4+, CD8+ and CD4/CD8-/- (double negative, DN) MAIT cells. Till now, the associations between endometriosis and MAIT have not been studied. Our research investigates different MAIT subpopulations in peripheral blood (PB) and peritoneal fluid (PF) from EMS patients. METHODS Thirty-two EMS patients and eighteen controls were included. PB and PF were collected. Tests of cytokines in plasma and PF were performed by ELISA kit. Characterisations of MAIT were done by flow cytometry. MAIT cells have been defined as CD3 + CD161 + Vα7.2+ cells. Based on CD4 and CD8 expression, they were divided into CD8+MAIT, CD4+MAIT and DN MAIT. RESULTS Enrichments of MAIT cells, especially CD4 and CD8 MAIT subsets were found. Moreover, CD8 MAIT cells had a high activation in the EMS group. EMS patients produced higher level of IL-8/12/17 as compared to these from controls. On the contrary, control patients exhibited an impressive upregulation of DN MAIT cells, however, these DN MAIT cells from controls showed a higher expression of PD-1. Lastly, we performed the relevance analysis, and discovered that the accumulation of PB MAIT cells positively correlated with an elevated level of serum CA125 production in EMS group. CONCLUSION These results suggest that different MAIT subsets play distinct roles in the progression of endometriosis.
Collapse
Affiliation(s)
- Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Kangxia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Ya Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, 230000, Hefei, People's Republic of China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, People's Republic of China.
| |
Collapse
|
75
|
Suen JL, Chang Y, Shiu YS, Hsu CY, Sharma P, Chiu CC, Chen YJ, Hour TC, Tsai EM. IL-10 from plasmacytoid dendritic cells promotes angiogenesis in the early stage of endometriosis. J Pathol 2019; 249:485-497. [PMID: 31418859 PMCID: PMC6899974 DOI: 10.1002/path.5339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
An elevated level of IL‐10 has been considered a critical factor for the development of endometriosis; however, its detailed mechanism and causal relationship remain unclear. This study explored the cellular source and angiogenic activity of local IL‐10 during the early stage of endometriosis. Using a surgical murine model, we found that localised treatment with exogenous recombinant IL‐10 on the day of surgery significantly enhanced endometriotic lesion growth and angiogenesis, whereas blocking local IL‐10 activity using mAbs significantly suppressed those effects. Adoptive transfer of Il10+/+ plasmacytoid dendritic cells into mice significantly enhanced lesion development, whereas Il10−/− plasmacytoid dendritic cells significantly inhibited lesion development. Furthermore, in vitro angiogenesis analyses demonstrated that the IL‐10 and IL‐10 receptor pathway stimulated the migratory and tube formation ability of HUVECs as well as ectopic endometrial mesenchymal stem cells through, at least in part, a VEGF‐dependent pathway. We also found that recombinant IL‐10 directly stimulated angiogenesis, based on a Matrigel plug assay as well as a zebrafish model. Pathological results from human endometrioma tissues showed the increased infiltration of CD123+ plasmacytoid dendritic cells and higher percentages of cells that express the IL‐10 receptor and CD31 as compared with the corresponding normal counterparts. Taken together, these results show that IL‐10 secreted from local plasmacytoid dendritic cells promotes endometriosis development through pathological angiogenesis during the early disease stage. This study provides a scientific basis for a potential therapeutic strategy targeting the IL‐10—IL‐10 receptor pathway in the endometriotic milieu. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Shiang Shiu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pooja Sharma
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Ju Chen
- Department of Anatomic Pathology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Tzyh-Chyuan Hour
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
76
|
Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update 2019; 25:564-591. [PMID: 31424502 PMCID: PMC6737540 DOI: 10.1093/humupd/dmz018] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometriosis, a common oestrogen-dependent inflammatory disorder in women of reproductive age, is characterized by endometrial-like tissue outside its normal location in the uterus, which causes pelvic scarring, pain and infertility. While its pathogenesis is poorly understood, the immune system (systemically and locally in endometrium, pelvic endometriotic lesions and peritoneal fluid) is believed to play a central role in its aetiology, pathophysiology and associated morbidities of pain, infertility and poor pregnancy outcomes. However, immune cell populations within the endometrium of women with the disease have had incomplete phenotyping, thereby limiting insight into their roles in this disorder. OBJECTIVE AND RATIONALE The objective herein was to determine reproducible and consistent findings regarding specific immune cell populations and their abundance, steroid hormone responsiveness, functionality, activation states, and markers, locally and systemically in women with and without endometriosis. SEARCH METHODS A comprehensive English language PubMed, Medline and Google Scholar search was conducted with key search terms that included endometriosis, inflammation, human eutopic/ectopic endometrium, immune cells, immune population, immune system, macrophages, dendritic cells (DC), natural killer cells, mast cells, eosinophils, neutrophils, B cells and T cells. OUTCOMES In women with endometriosis compared to those without endometriosis, some endometrial immune cells display similar cycle-phase variation, whereas macrophages (Mø), immature DC and regulatory T cells behave differently. A pro-inflammatory Mø1 phenotype versus anti-inflammatory Mø2 phenotype predominates and natural killer cells display abnormal activity in endometrium of women with the disease. Conflicting data largely derive from small studies, variably defined hormonal milieu and different experimental approaches and technologies. WIDER IMPLICATIONS Phenotyping immune cell subtypes is essential to determine the role of the endometrial immune niche in pregnancy and endometrial homeostasis normally and in women with poor reproductive history and can facilitate development of innovative diagnostics and therapeutics for associated symptoms and compromised reproductive outcomes.
Collapse
Affiliation(s)
- Júlia Vallvé-Juanico
- Department of Gynecology, IVI Barcelona S.L., 08017, Barcelona, Spain
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR) and University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| |
Collapse
|
77
|
Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ. Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 2019; 76:2111-2132. [PMID: 30826860 PMCID: PMC11105498 DOI: 10.1007/s00018-019-03056-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endometriosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
| | - Jun Shao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Reproductive Medicine Center, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, 215008, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
78
|
Mattos RMD, Machado DE, Perini JA, Alessandra-Perini J, Meireles da Costa NDO, Wiecikowski AFDRDO, Cabral KMDS, Takiya CM, Carvalho RS, Nasciutti LE. Galectin-3 plays an important role in endometriosis development and is a target to endometriosis treatment. Mol Cell Endocrinol 2019; 486:1-10. [PMID: 30753853 DOI: 10.1016/j.mce.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
This study aimed to analyze galectin-3 importance in endometriotic lesions development and the effect of recombinant Gal-3 carbohydrate recognition domain (Gal3C) in experimental endometriosis treatment. Experimental endometriosis was induced in WT and Gal-3-/- mice. Initially developed lesions were macroscopically and histologically analyzed, including immunohistochemical analysis. Then, WT mice were treated with Gal3C for 15 days. Gal-3 deficiency and Gal3C treatment significantly impaired endometriosis development. A significant decrease in lesions implantation and size, VEGF and VEGFR-2 expression, vascular density and macrophage distribution were observed in Gal-3 absence or inhibition. A greater presence of iNOS positive cells was observed in knockout mice lesions, while the presence of Arginase positive cells was higher in the WT animal lesions. In addition, COX-2 and TGFb1 were reduced by Gal3C treatment. Data showed here indicate a relevant role of Gal-3 in endometriosis development and highlight a target of endometriosis treatment using Gal-3 inhibitor.
Collapse
Affiliation(s)
- Rômulo Medina de Mattos
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; University Center IBMR, Laureate Universities, Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Daniel Escorsim Machado
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; Research Laboratory of Pharmaceutical Sciences, West Zone State University - UEZO, Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Research Laboratory of Pharmaceutical Sciences, West Zone State University - UEZO, Rio de Janeiro, RJ, Brazil; Program of Post-graduation in Public Health and Environment, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Jéssica Alessandra-Perini
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; Research Laboratory of Pharmaceutical Sciences, West Zone State University - UEZO, Rio de Janeiro, RJ, Brazil
| | | | | | - Katia Maria Dos Santos Cabral
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renato Sampaio Carvalho
- Laboratory of Molecular Targets, Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
79
|
Pro-endometriotic niche in endometriosis. Reprod Biomed Online 2019; 38:549-559. [DOI: 10.1016/j.rbmo.2018.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
|
80
|
Lei S, Cao Y, Sun J, Li M, Zhao D. H 2S promotes proliferation of endometrial stromal cells via activating the NF-κB pathway in endometriosis. Am J Transl Res 2018; 10:4247-4257. [PMID: 30662667 PMCID: PMC6325523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is substantially converted from cysteine by the enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). H2S can profoundly affect most organ systems in animals and humans by inducing a wide range of physiological functions. However, the roles of H2S in the progression of endometriosis remain unknown. The aim of the current study was to test the hypothesis that H2S might play a role in the pathogenesis of endometriosis via modulating the biological behavior of endometrial stromal cells (ESCs). First, we explored the expression level of CBS and CSE in ESCs via immunohistochemistry and immunocytochemistry. Second, cell Count Kit-8 (CCK-8) assays were utilized to investigate the cell viability of human ESCs (HESCs) in vitro. Third, we studied the potential effects of H2S in a rodent model of endometriosis. Both CBS and CSE were overexpressed in endometriotic lesions. Exogenous and endogenous H2S could promote HESC proliferation in vitro. Furthermore, this pro-proliferation effect could be reversed by treating with inhibitors of CBS, CSE, or the NF-κB pathway. In vivo, we uncovered that inhibitors of CBS and CSE could remarkably reduce the number and weight of mouse endometriotic lesions. These data suggested that H2S promotes ESC proliferation via activation of the NF-κB pathway, which provides a scientific basis for the clinical application of blocking H2S to treat endometriosis.
Collapse
Affiliation(s)
- Shating Lei
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai, People’s Republic of China
| | - Yanling Cao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai, People’s Republic of China
| | - Jing Sun
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai, People’s Republic of China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan UniversityShanghai, People’s Republic of China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan UniversityShanghai, People’s Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai, People’s Republic of China
| | - Dong Zhao
- Department of Cervical Disease, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai, People’s Republic of China
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, People’s Republic of China
| |
Collapse
|
81
|
Kamali AN, Noorbakhsh SM, Hamedifar H, Jadidi-Niaragh F, Yazdani R, Bautista JM, Azizi G. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol 2018; 105:107-115. [PMID: 30502718 DOI: 10.1016/j.molimm.2018.11.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
The T helper 17 (Th17) cells contain a dynamic subset of CD4+ T-cells that are able to develop into other different lineage subsets, including the Th1-like Th17 cells. These cells co-express retinoic acid-related orphan receptor gamma t (RORγt) and transcription factor T-box-expressed-in-T-cells (T-bet) and produce both interleukin (IL)-17 and interferon (IFN)-γ. Recent reports have shown that Th1-like Th17 cells play crucial roles in the pathogenesis of autoimmune diseases such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, as well as, some primary immunodeficiency with autoimmune features. Here, the actual mechanisms for Th17 cells plasticity to Th1-like Th17 cells are discussed and reviewed in association to the role that Th1-like Th17 cells have on inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - José M Bautista
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Faculty of Veterinary Sciences, 28040, Madrid, Spain; Research Institute Hospital 12 de Octubre, Madrid, 28041, Spain
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
82
|
Asghari S, Valizadeh A, Aghebati-Maleki L, Nouri M, Yousefi M. Endometriosis: Perspective, lights, and shadows of etiology. Biomed Pharmacother 2018; 106:163-174. [DOI: 10.1016/j.biopha.2018.06.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
|
83
|
Yang HL, Chang KK, Mei J, Zhou WJ, Liu LB, Yao L, Meng Y, Wang MY, Ha SY, Lai ZZ, Ye JF, Li DJ, Li MQ. Estrogen restricts the apoptosis of endometrial stromal cells by promoting TSLP secretion. Mol Med Rep 2018; 18:4410-4416. [PMID: 30152851 PMCID: PMC6172381 DOI: 10.3892/mmr.2018.9428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
Endometriosis (EMS) is a female hormone‑ dependent disease with controversial reports of its etiology and pathogenesis. Apoptosis is particularly important in the human endometrium due to the dynamic cycles of proliferation and shedding. Estrogen possessed antiapoptotic effects on endometrial stromal cells (ESCs), which appears to be exacerbated in women with EMS; however, the underlying mechanism of the antiapoptotic effects of estrogen on ESC remains unknown. The present study aimed to determine whether estrogen regulates the apoptosis of ESCs via thymic stromal lymphopoietin (TSLP) and the associated mechanism. An ELISA was conducted to detect TSLP content in the ESC culture medium treated with estrogen. Subsequently, the early apoptotic rate and expression of B‑cell lymphoma (Bcl‑2) of ESCs were analyzed by flow cytometry in the presence of recombinant human TSLP, anti‑human TSLP neutralizing antibody or estrogen. In the present study, it was reported that ESCs exhibited basal TSLP secretion in the absence of estrogen as reported in previous studies, and that estrogen promoted TSLP secretion of ESCs in a dose‑dependent manner. The results demonstrated that estrogen suppressed the apoptosis of ESCs associated with the promotion of Bcl‑2 expression, which may be partly reversed by inhibiting TSLP. Therefore, the findings of the present study revealed a novel mechanism of estrogen‑dependent apoptotic suppression of ESCs associated with TSLP secretion and Bcl‑2 regulation. Endogenous and estrogen‑induced endometrial TSLP may promote the initiation and development of EMS via the inhibition of apoptosis.
Collapse
Affiliation(s)
- Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, Jiangsu 210000, P.R. China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People's Hospital, Affiliated with Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Li Yao
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Yi Meng
- Department of Clinical Laboratory, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Ming-Yan Wang
- Department of Clinical Laboratory, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Jiang-Feng Ye
- Department of Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| |
Collapse
|
84
|
Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, Tayade C. The Immunopathophysiology of Endometriosis. Trends Mol Med 2018; 24:748-762. [PMID: 30054239 DOI: 10.1016/j.molmed.2018.07.004] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Endometriosis is a chronic, inflammatory, estrogen-dependent disease characterized by the growth of endometrial tissue outside of the uterine cavity. Although the etiology of endometriosis remains elusive, immunological dysfunction has been proposed as a critical facilitator of ectopic lesion growth following retrograde menstruation of endometrial debris. However, it is not clear whether this immune dysfunction is a cause or consequence of endometriosis. Thus, here we provide in-depth insights into our current understanding of the immunopathophysiology of endometriosis and highlight challenges and opportunities for future research. With the explosion of successful immune-based therapies targeting various chronic inflammatory conditions, it is crucial to determine whether immune dysfunction can be therapeutically targeted in endometriosis.
Collapse
Affiliation(s)
- Lindsey K Symons
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Vanessa R Kay
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Ryan M Marks
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kiera Liblik
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, Ontario, K7L 2V7, Canada; Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
85
|
Mei J, Zhou WJ, Zhu XY, Lu H, Wu K, Yang HL, Fu Q, Wei CY, Chang KK, Jin LP, Wang J, Wang YM, Li DJ, Li MQ. Suppression of autophagy and HCK signaling promotes PTGS2 high FCGR3 - NK cell differentiation triggered by ectopic endometrial stromal cells. Autophagy 2018; 14:1376-1397. [PMID: 29962266 DOI: 10.1080/15548627.2018.1476809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Impaired NK cell cytotoxic activity contributes to the local dysfunctional immune environment in endometriosis (EMS), which is an estrogen-dependent gynecological disease that affects the function of ectopic endometrial tissue clearance. The reason for the impaired cytotoxic activity of NK cells in an ectopic lesion microenvironment (ELM) is largely unknown. In this study, we show that the macroautophagy/autophagy level of endometrial stromal cells (ESCs) from EMS decreased under negative regulation of estrogen. The ratio of peritoneal FCGR3- NK to FCGR3+ NK cells increases as EMS progresses. Moreover, the autophagy suppression results in the downregulation of HCK (hematopoietic cellular kinase) by inactivating STAT3 (signal transducer and activator of transcription 3), as well as the increased secretion of the downstream molecules CXCL8/IL8 and IL23A by ESCs, and this increase induced the upregulation of FCGR3- NK cells and decline of cytotoxic activity in ELM. This process is mediated through the depression of microRNA MIR1185-1-3p, which is associated with the activation of the target gene PTGS2 in NK cells. FCGR3- NK with a phenotype of PTGS2/COX2high IFNGlow PRF1low GZMBlow induced by hck knockout (hck-/-) or 3-methyladenine (3-MA, an autophagy inhibitor)-stimulated ESCs accelerates ESC's growth both in vitro and in vivo. These results suggest that the estrogen-autophagy-STAT3-HCK axis participates in the differentiation of PTGS2high IFNGlow PRF1low GZMBlow FCGR3- NK cells in ELM and contributes to the development of EMS. This result provides a scientific basis for potential therapeutic strategies to treat diseases related to impaired NK cell cytotoxic activity. ABBREVIATIONS anti-FCGR3: anti-FCGR3 with neutralizing antibody; Ctrl-ESC: untreated ESCs; CXCL8: C-X-C motif chemokine ligand 8; ectoESC: ESCs from ectopic lesion; ELM: ectopic lesion microenvironment; EMS: endometriosis; ESCs: endometrial stromal cells; eutoESC:eutopic ESCs; HCK: hematopoietic cellular kinase; HCK(OE): overexpression of HCK; IFNG: interferon gamma; IL23A (OE): overexpression of IL23A; KLRK1: Killer cell lectin like receptor K1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3 -MA: 3-methyladenine; 3-MA-ESC: 3-MA-treated ESCs; MIR1185-1-3p+: overexpression of HsMIR1185-1-3p; NK: natural killer; normESCs: normal ESCs; Rap-ESC:rapamycin-treated ESCs; PCNA: proliferating cell nuclear antigen; PF: peritoneal fluid; SFKs: SRC family of cytoplasmic tyrosine kinases; si-HCK: silencing of HCK; siIL23A: silencing of IL23A; USCs: uterus stromal cells.
Collapse
Affiliation(s)
- Jie Mei
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China.,b Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medicine School , Nanjing , People's Republic of China
| | - Wen-Jie Zhou
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Xiao-Yong Zhu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China.,c Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School , Fudan University , Shanghai , People's Republic of China
| | - Han Lu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Ke Wu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Hui-Li Yang
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Qiang Fu
- d Department of Immunology , Binzhou Medical College , Yantai , People's Republic of China
| | - Chun-Yan Wei
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Kai-Kai Chang
- b Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medicine School , Nanjing , People's Republic of China
| | - Li-Ping Jin
- e Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Jian Wang
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Yong-Ming Wang
- f State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences , Fudan University , Shanghai , People's Republic of China
| | - Da-Jin Li
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Ming-Qing Li
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| |
Collapse
|
86
|
Králíčková M, Fiala L, Losan P, Tomes P, Vetvicka V. Altered Immunity in Endometriosis: What Came First? Immunol Invest 2018; 47:569-582. [DOI: 10.1080/08820139.2018.1467926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine, Charles University, Plzen, Czech Republic
- Department of Obstetrics and Gynecology, University Hospital, Faculty of Medicine, Charles University, Plzen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Ludek Fiala
- Institute of Sexology First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Petr Losan
- Department of Histology and Embryology, Faculty of Medicine, Charles University, Plzen, Czech Republic
| | - Pavel Tomes
- Department of Obstetrics and Gynecology, University Hospital, Faculty of Medicine, Charles University, Plzen, Czech Republic
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
87
|
Wu X, Tian J, Wang S. Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Front Immunol 2018; 9:1112. [PMID: 29892286 PMCID: PMC5985293 DOI: 10.3389/fimmu.2018.01112] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Th17 cells are generally considered to be positive regulators of immune responses because they produce pro-inflammatory cytokines, including IL-17A, IL-17F, and IL-22. Cytokine production not only promotes accumulation of immune cells, such as macrophages, neutrophils and lymphocytes, at inflammatory sites but can also cause tissue pathologies. Conversely, certain Th17 cells can also negatively regulate immune responses by secreting immunosuppressive factors, such as IL-10; these cells are termed non-pathogenic Th17 cells. In this review, we summarize recent advances in the development and regulatory functions of non-pathogenic Th17 cells in autoimmune diseases.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
88
|
Zhang B, Zhou WJ, Gu CJ, Wu K, Yang HL, Mei J, Yu JJ, Hou XF, Sun JS, Xu FY, Li DJ, Jin LP, Li MQ. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis 2018; 9:574. [PMID: 29760378 PMCID: PMC5951853 DOI: 10.1038/s41419-018-0581-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
Endometriosis (EMS) is an estrogen-dependent gynecological disease with a low autophagy level of ectopic endometrial stromal cells (eESCs). Impaired NK cell cytotoxic activity is involved in the clearance obstruction of the ectopic endometrial tissue in the abdominopelvic cavity. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides, which have profound biological functions, such as anti-cancer activities. However, the role and mechanism of ginsenosides and metabolites in endometriosis are completely unknown. Here, we found that the compounds PPD, PPT, ginsenoside-Rg3 (G-Rg3), ginsenoside-Rh2 (G-Rh2), and esculentoside A (EsA) led to significant decreases in the viability of eESCs, particularly PPD (IC50 = 30.64 µM). In vitro and in vivo experiments showed that PPD promoted the expression of progesterone receptor (PR) and downregulated the expression of estrogen receptor α (ERα) in eESCs. Treatment with PPD obviously induced the autophagy of eESCs and reversed the inhibitory effect of estrogen on eESC autophagy. In addition, eESCs pretreated with PPD enhanced the cytotoxic activity of NK cells in response to eESCs. PPD decreased the numbers and suppressed the growth of ectopic lesions in a mouse EMS model. These results suggest that PPD plays a role in anti-EMS activation, possibly by restricting estrogen-mediated autophagy regulation and enhancing the cytotoxicity of NK cells. This result provides a scientific basis for potential therapeutic strategies to treat EMS by PPD or further structural modification.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Ke Wu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Jie Mei
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Jia-Jun Yu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Xiao-Fan Hou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 330022, Jiangxi, Nanchang, China
| | - Feng-Yuan Xu
- Wallace H.Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 200040, Shanghai, China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China.
| |
Collapse
|
89
|
O DF, Flores I, Waelkens E, D'Hooghe T. Noninvasive diagnosis of endometriosis: Review of current peripheral blood and endometrial biomarkers. Best Pract Res Clin Obstet Gynaecol 2018; 50:72-83. [PMID: 29778458 DOI: 10.1016/j.bpobgyn.2018.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
A noninvasive biomarker-based test could help shorten the diagnostic delay for endometriosis. The most investigated biomarker sources are peripheral blood and endometrium. Discovery of endometriosis biomarkers is often hypothesis-driven, i.e. when one or a few biomarkers are investigated based on their role in the disease pathogenesis. Alternatively, a hypothesis-generating approach has been followed using the "omics" technologies. A variety of biomarkers for endometriosis have been investigated, but no biomarker has been validated for clinical use. Many challenges lie ahead in the endometriosis biomarker field. In the future, harmonized collection and reporting methods should allow large-scale international collaboration for highly powered studies.
Collapse
Affiliation(s)
- Dorien F O
- KU Leuven, Department of Development and Regeneration, Organ Systems, Leuven, Belgium; Department of Obstetrics and Gynaecology, Leuven University Fertility Centre, University Hospital Leuven, Leuven, Belgium
| | - Idhaliz Flores
- Department of Basic Sciences, Ponce Health Sciences University - School of Medicine & Ponce Research Institute, Ponce, PR, USA; Department of Ob-Gyn, Ponce Health Sciences University - School of Medicine & Ponce Research Institute, Ponce, PR, USA
| | - Etienne Waelkens
- KU Leuven, Department of Cellular and Molecular Medicine, Campus Gasthuisberg, Leuven, Belgium; SyBioMa, Interfaculty Centre for Systems Biology Based Mass Spectrometry, Campus Gasthuisberg, Leuven, Belgium
| | - Thomas D'Hooghe
- KU Leuven, Department of Development and Regeneration, Organ Systems, Leuven, Belgium; Global Medical Affairs Fertility, Research and Development, Healthcare, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
90
|
Cho YJ, Lee SH, Park JW, Han M, Park MJ, Han SJ. Dysfunctional signaling underlying endometriosis: current state of knowledge. J Mol Endocrinol 2018; 60:R97-R113. [PMID: 29330150 DOI: 10.1530/jme-17-0227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Endometriosis is defined as the presence of endometrial tissue outside the uterine cavity. It affects approximately 5-10% of women of reproductive age. Endometriosis is associated with dysmenorrhea, dyspareunia and, often, severe pelvic pain. In addition to pain, women with endometriosis often experience infertility. Defining the molecular etiology of endometriosis is a significant challenge for improving the quality of women's lives. Unfortunately, the pathophysiology of endometriosis is not well understood. Here, we summarize the potential causative factors of endometriosis in the following three categories: (1) dysregulation of immune cells in the peritoneal fluid and endometriotic lesions; (2) alteration of apoptotic signaling in retrograde menstrual tissue and cytotoxic T cells involved in endometriosis progression and (3) dysregulation of oxidative stress. Determining the molecular etiology of these dysregulated cellular signaling pathways should provide crucial clues for understanding initiation and progression of endometriosis. Moreover, improved understanding should suggest new molecular therapeutic targets that could improve the specificity of endometriosis treatments and reduce the side effects associated with current approaches.
Collapse
Affiliation(s)
- Yeon Jean Cho
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Seung Hyun Lee
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
| | - Jung Woo Park
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
| | - Myoungseok Han
- Department of Obstetrics and Gynecology, Dong-A University, College of Medicine, Busan, Republic of Korea
| | - Mi Jin Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
91
|
Arlıer S, Kayışlı ÜA, Arıcı A. Tumor necrosis factor alfa and interleukin 1 alfa induced phosphorylation and degradation of inhibitory kappa B alpha are regulated by estradiol in endometrial cells. Turk J Obstet Gynecol 2018; 15:50-59. [PMID: 29662717 PMCID: PMC5894537 DOI: 10.4274/tjod.47700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: When bound to the inhibitory kappa B (IкB) protein, the transcription factor nuclear factor kappa B (NF-кB) remains inactively in the cytoplasm. Activated NF-кB upregulates the gene expression of many chemokines including monocyte chemoattractant protein-1 and interleukin (IL)-8. We hypothesized that estrogen may regulate IкB phosphorylation and degradation thus influencing NF-кB-dependent gene expression. Regulation of chemokines by estrogen is different in uterine endometrial cells when compared to ectopic endometrial cells of endometriosis. Materials and Methods: We investigated the in vivo expression of IкB in normal endometrium and in eutopic and ectopic endometrium of women with endometriosis. We then studied in cultured endometrial cells to assess the effects of estradiol on IкB and NF-кB function. Results: Normal endometrium from mid-late proliferative phase revealed the strongest IкB immunoreactivity throughout the cycle (p<0.05). When compared to paired homologous eutopic endometrium, ectopic endometrium revealed significantly less immunoreactivity for IкB (p<0.05). Moreover, estradiol induced a decrease in tumor necrosis factor-and IL-1-induced IкB phosphorylation, and also decreased the levels of active-NF-кB (p<0.05). Conclusion: Our results support the conclusion that one pathway for estradiol-mediated NF-кB inhibition occurs through the down-regulation of IкB phosphorylation. We propose that the estradiol-induced regulation of IкB and consequent reduction in active-NF-кB may affect inflammatory responses in human endometrial cells.
Collapse
Affiliation(s)
- Sefa Arlıer
- University of South Florida Faculty of Medicine, Department of Obstetrics and Gynecology, Tampa, USA.,University of Health Sciences, Adana Numune Training and Research Hospital, Clinic of Obstetrics and Gynecology, Adana, Turkey
| | - Ümit Ali Kayışlı
- University of South Florida Faculty of Medicine, Department of Obstetrics and Gynecology, Tampa, USA
| | - Aydın Arıcı
- Yale University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New Haven, USA.,Anadolu Medical Center, Clinic of Reproductive Endocrinology and Infertility, İstanbul, Turkey
| |
Collapse
|
92
|
Induction of Interleukin 10 by Borrelia burgdorferi Is Regulated by the Action of CD14-Dependent p38 Mitogen-Activated Protein Kinase and cAMP-Mediated Chromatin Remodeling. Infect Immun 2018; 86:IAI.00781-17. [PMID: 29311239 DOI: 10.1128/iai.00781-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022] Open
Abstract
Host genotype influences the severity of murine Lyme borreliosis, caused by the spirochetal bacterium Borrelia burgdorferi C57BL/6 (B6) mice develop mild Lyme arthritis, whereas C3H/HeN (C3H) mice develop severe Lyme arthritis. Differential expression of interleukin 10 (IL-10) has long been associated with mouse strain differences in Lyme pathogenesis; however, the underlying mechanism(s) of this genotype-specific IL-10 regulation remained elusive. Herein we reveal a cAMP-mediated mechanism of IL-10 regulation in B6 macrophages that is substantially diminished in C3H macrophages. Under cAMP and CD14-p38 mitogen-activated protein kinase (MAPK) signaling, B6 macrophages stimulated with B. burgdorferi produce increased amounts of IL-10 and decreased levels of arthritogenic cytokines, including tumor necrosis factor (TNF). cAMP relaxes chromatin, while p38 increases binding of the transcription factors signal transducer and activator of transcription 3 (STAT3) and specific protein 1 (SP1) to the IL-10 promoter, leading to increased IL-10 production in B6 bone marrow-derived monocytes (BMDMs). Conversely, macrophages derived from arthritis-susceptible C3H mice possess significantly less endogenous cAMP, produce less IL-10, and thus are ill equipped to mitigate the damaging consequences of B. burgdorferi-induced TNF. Intriguingly, an altered balance between anti-inflammatory and proinflammatory cytokines and CD14-dependent regulatory mechanisms also is operative in primary human peripheral blood-derived monocytes, providing potential insight into the clinical spectrum of human Lyme disease. In line with this notion, we have demonstrated that cAMP-enhancing drugs increase IL-10 production in myeloid cells, thus curtailing inflammation associated with murine Lyme borreliosis. Discovery of novel treatments or repurposing of FDA-approved cAMP-modulating medications may be a promising avenue for treatment of patients with adverse clinical outcomes, including certain post-Lyme complications, in whom dysregulated immune responses may play a role.
Collapse
|
93
|
Yang HL, Zhou WJ, Gu CJ, Meng YH, Shao J, Li DJ, Li MQ. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am J Reprod Immunol 2018; 80:e12839. [PMID: 29493042 DOI: 10.1111/aji.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Melatonin is a neurohormone synthesized from the aromatic amino acid tryptophan mainly by the pineal gland of mammals. Melatonin acts as a broad-spectrum antioxidant, powerful free radical scavenger, anti-inflammatory agent, anticarcinogenic factor, sleep inducer and regulator of the circadian rhythm, and potential immunoregulator. Melatonin and reproductive system are interrelated under both physiological and pathological conditions. Oxidative stress, inflammation, and immune dysregulation are associated with the pathogenesis of the female reproductive system which causes endometriosis (EMS), recurrent spontaneous abortion (RSA), and polycystic ovary syndrome (PCOS). Accumulating studies have indicated that melatonin plays pleiotropic and essential roles in these obstetrical and gynecological disorders and would be a candidate therapeutic drug to regulate inflammation and immune function and protect special cells or organs. Here, we systematically review the pleiotropic roles of melatonin in EMS, RSA, and PCOS to explore its pathological implications and treatment potential.
Collapse
Affiliation(s)
- Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Han Meng
- Reproductive Medical Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
94
|
Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87:69-81. [DOI: 10.1016/j.jaut.2017.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
|
95
|
Zhou WJ, Chang KK, Wu K, Yang HL, Mei J, Xie F, Li DJ, Li MQ. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27-Stimulated Cytotoxicity of NK Cells. Neoplasia 2017; 20:69-79. [PMID: 29195127 PMCID: PMC5724748 DOI: 10.1016/j.neo.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC) in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC) are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC) lines (Ishikawa, RL95-2 and KLE) led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130) on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Kai-Kai Chang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Ke Wu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Medical Center of Diagnosis and Treatment for Cervical Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China.
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
96
|
IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Sci Rep 2017; 7:16547. [PMID: 29185463 PMCID: PMC5707351 DOI: 10.1038/s41598-017-16702-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/13/2017] [Indexed: 12/05/2022] Open
Abstract
IL-27 and IL-35 are heterodimeric cytokines, members of the IL-12 family and considered to have immunomodulatory properties. Their role during neuroinflammation had been investigated using mutant mice devoid of either one of their subunits or lacking components of their receptors, yielding conflicting results. We sought to understand the therapeutic potential of IL-27 and IL-35 delivered by gene therapy in neuroinflammation. We constructed lentiviral vectors expressing IL-27 and IL-35 from a single polypeptide chain, and we validated in vitro their biological activity. We injected IL-27 and IL-35-expressing lentiviral vectors into the cerebrospinal fluid (CSF) of mice affected by experimental neuroinflammation (EAE), and performed clinical, neuropathological and immunological analyses. Both cytokines interfere with neuroinflammation, but only IL-27 significantly modulates disease development, both clinically and neuropathologically. IL-27 protects from autoimmune inflammation by inhibiting granulocyte macrophages colony-stimulating factor (GM-CSF) expression in CD4+ T cells and by inducing program death-ligand 1 (PD-L1) expression in both CNS-resident and CNS-infiltrating myeloid cells. We demonstrate here that IL-27 holds therapeutic potential during neuroinflammation and that IL-27 inhibits GM-CSF and induces pd-l1 mRNA in vivo.
Collapse
|
97
|
Yang HL, Zhou WJ, Chang KK, Mei J, Huang LQ, Wang MY, Meng Y, Ha SY, Li DJ, Li MQ. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction 2017; 154:815-825. [PMID: 28971893 DOI: 10.1530/rep-17-0342] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 02/04/2023]
Abstract
The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviors in vitro were analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cells in vitro These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.
Collapse
Affiliation(s)
- Hui-Li Yang
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Reproduction Regulation of NPFPCSIPPR, IRD, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jie Zhou
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Reproduction Regulation of NPFPCSIPPR, IRD, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai, People's Republic of China
| | - Kai-Kai Chang
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jie Mei
- Reproductive Medicine CenterDepartment of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, People's Republic of China
| | - Li-Qing Huang
- Department of Statistics and PsychologyCollege of Letters and Science, University of California Davis, Davis, California, USA
| | - Ming-Yan Wang
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Yi Meng
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Si-Yao Ha
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Reproduction Regulation of NPFPCSIPPR, IRD, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China .,Key Laboratory of Reproduction Regulation of NPFPCSIPPR, IRD, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai, People's Republic of China
| |
Collapse
|
98
|
Increased IL-6 expression on THP-1 by IL-34 stimulation up-regulated rheumatoid arthritis Th17 cells. Clin Rheumatol 2017; 37:127-137. [DOI: 10.1007/s10067-017-3746-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/16/2023]
|