51
|
Changes in Glucose Breath Test in Cystic Fibrosis Patients Treated With 1 Month of Lumacaftor/Ivacaftor. J Pediatr Gastroenterol Nutr 2022; 75:42-47. [PMID: 35442228 DOI: 10.1097/mpg.0000000000003459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Alteration of the airway microbiota is a hallmark of cystic fibrosis (CF) pulmonary disease. Dysfunction of cystic fibrosis transmembrane regulator (CFTR) in the intestine also promotes changes in local microbiota such as small intestinal bacterial overgrowth (SIBO), which is common in CF. We evaluated whether therapy with the CFTR modulator combination lumacaftor/ivacaftor (luma/iva) has a beneficial impact on SIBO as measured by breath testing (BT). METHODS A multicenter longitudinal study of CFTR-dependent disease profiling (NCT02477319) included a prospective evaluation for SIBO by BT. Tidal breath samples were collected after fasting and 15, 30, 45, 60, 90, and 120 minutes after ingestion of glucose, before and 1 month after subjects initiated luma + iva. RESULTS Forty-two subjects enrolled in the sub-study (mean age = 23.3 years; 51% female; 9.5% Latinx); 38 completed a hydrogen BT at both time points, of which 73.7% had a positive BT before luma/iva (baseline) and 65.8% had a positive test after luma/iva ( P = 0.44); shifts from negative to positive were also seen. Use of azithromycin (63.1%) and inhaled antibiotics (60.5%) were not associated with positive BT. Acid-blocking medications were taken by 73% of those with a negative BT at baseline and by 35% with a positive baseline BT ( P = 0.04). CONCLUSION We found a high rate of positive hydrogen breath tests in individuals with CF, confirming that SIBO is common. One month of luma/iva did not significantly change the proportion of those with positive breath hydrogen measurements.
Collapse
|
52
|
Ronan NJ, Einarsson GG, Deane J, Fouhy F, Rea M, Hill C, Shanahan F, Elborn JS, Ross RP, McCarthy M, Murphy DM, Eustace JA, Mm T, Stanton C, Plant BJ. Modulation, microbiota and inflammation in the adult CF gut: A prospective study. J Cyst Fibros 2022; 21:837-843. [PMID: 35764510 DOI: 10.1016/j.jcf.2022.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) has prominent gastrointestinal and pancreatic manifestations. The aim of this study was to determine the effect of Cystic fibrosis transmembrane conductance regulator (CFTR) modulation on, gastrointestinal inflammation, pancreatic function and gut microbiota composition in people with cystic fibrosis (CF) and the G551D-CFTR mutation. METHODS Fourteen adult patients with the G551D-CFTR mutation were assessed clinically at baseline and for up to 1 year after treatment with ivacaftor. The change in gut inflammatory markers (calprotectin and lactoferrin), exocrine pancreatic status and gut microbiota composition and structure were assessed in stool samples. RESULTS There was no significant change in faecal calprotectin nor lactoferrin in patients with treatment while all patients remained severely pancreatic insufficient. There was no significant change in gut microbiota diversity and richness following treatment. CONCLUSION There was no significant change in gut inflammation after partial restoration of CFTR function with ivacaftor, suggesting that excess gut inflammation in CF is multi-factorial in aetiology. In this adult cohort, exocrine pancreatic function was irreversibly lost. Longer term follow-up may reveal more dynamic changes in the gut microbiota and possible restoration of CFTR function.
Collapse
Affiliation(s)
- N J Ronan
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork
| | - G G Einarsson
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - J Deane
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Fouhy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - C Hill
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - J S Elborn
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - R P Ross
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M McCarthy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - D M Murphy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - J A Eustace
- HRB Clinical research facility, University College Cork
| | - Tunney Mm
- Halo Research Group, Queen's University Belfast, Belfast, UK; School of Pharmacy, Queen's University Belfast, Belfast, UK; HRB Clinical research facility, University College Cork
| | - C Stanton
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - B J Plant
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland.
| |
Collapse
|
53
|
Mainz JG, Zagoya C, Polte L, Naehrlich L, Sasse L, Eickmeier O, Smaczny C, Barucha A, Bechinger L, Duckstein F, Kurzidim L, Eschenhagen P, Caley L, Peckham D, Schwarz C. Elexacaftor-Tezacaftor-Ivacaftor Treatment Reduces Abdominal Symptoms in Cystic Fibrosis-Early results Obtained With the CF-Specific CFAbd-Score. Front Pharmacol 2022; 13:877118. [PMID: 35721187 PMCID: PMC9203829 DOI: 10.3389/fphar.2022.877118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The novel and highly effective CFTR modulator combination of elexacaftor-tezacaftor-ivacaftor (ETI) has been shown to improve lung function and body weight in people with Cystic Fibrosis (pwCF) carrying a F508del mutation. However, the impact of these modulators on gastrointestinal (GI) symptoms is relatively unknown. Therefore, the CFAbd-Score was developed and validated following FDA recommendations for development of a PROM including focus groups, multidisciplinary CF specialists, people with CF and their families. The aim of this study was to assess effects of ETI on GI symptoms using the CFAbd-Score. Methods: Gastrointestinal symptoms were prospectively assessed in pwCF using the CFAbd-Score before and up to 26 weeks during therapy. The CFAbd-Score was also administered to a healthy control (HC) group. The one-sided questionnaire includes 28 items grouped in five domains. Data analysis included calculation of scores with a weighting tool, developed according to FDA recommendations. Results: A total of 107 pwCF attended in four CF centres in Germany and four centres in the UK completed the CFAbd-Score on at least two occasions. Results were compared to those obtained from the questionnaire of 45 HCs. Despite differences in demographics, age and proportion of pancreatic insufficiency between German and UK patients, analyses based on linear mixed-effects models at week 24 of ETI therapy revealed that estimated marginal means (EMMs) of total CFAbd-Scores significantly reduced (mean ± SE: 14.9 ± 1.2→10.6 ± 1.4; p < 0.01). Also EMMs of all five domains significantly declined ("pain" 16.3 ± 1.6→10.2 ± 2.3, "GERD" 15.8 ± 1.8→8.2 ± 1.9, "disorders of bowel movement" 20.9 ± 1.5→16.0 ± 1.7, "disorders of appetite" 7.9 ± 1.1→2.6 ± 1.1 and "quality of life impairment" 10.1 ± 1.92→3.9 ± 1.9). However, during 24 weeks, CF participants' symptoms mostly still did not reach the reference levels of HCs. Discussion: Using the CFAbd-Score, the first PROM specifically developed for assessment of CF-related abdominal symptoms, we demonstrate comprehensive improvements in GI symptoms after initiation of the highly effective modulator therapy ETI.
Collapse
Affiliation(s)
- Jochen G. Mainz
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Carlos Zagoya
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Louise Polte
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Lenny Sasse
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Olaf Eickmeier
- Christiane Herzog CF-Zentrum Frankfurt am Main, Universitätsklinikum Frankfurt am Main CF-Zentrum, Frankfurt am Main, Germany
| | - Christina Smaczny
- Christiane Herzog CF-Zentrum Frankfurt am Main, Universitätsklinikum Frankfurt am Main CF-Zentrum, Frankfurt am Main, Germany
| | - Anton Barucha
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Lilith Bechinger
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Franziska Duckstein
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Ludwik Kurzidim
- Cystic Fibrosis Center, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
- CF-Zentrum Westbrandenburg, Campus Potsdam, Klinikum Westbrandenburg, Potsdam, Germany
| | - Patience Eschenhagen
- CF-Zentrum Westbrandenburg, Campus Potsdam, Klinikum Westbrandenburg, Potsdam, Germany
| | - Laura Caley
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Carsten Schwarz
- CF-Zentrum Westbrandenburg, Campus Potsdam, Klinikum Westbrandenburg, Potsdam, Germany
| |
Collapse
|
54
|
Bhattacharya R, Blankenheim Z, Scott PM, Cormier RT. CFTR and Gastrointestinal Cancers: An Update. J Pers Med 2022; 12:868. [PMID: 35743652 PMCID: PMC9224611 DOI: 10.3390/jpm12060868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is a disease caused by mutations in the CFTR gene that severely affects the lungs as well as extra-pulmonary tissues, including the gastrointestinal (GI) tract. CFTR dysfunction resulting from either mutations or the downregulation of its expression has been shown to promote carcinogenesis. An example is the enhanced risk for several types of cancer in patients with CF, especially cancers of the GI tract. CFTR also acts as a tumor suppressor in diverse sporadic epithelial cancers in many tissues, primarily due to the silencing of CFTR expression via multiple mechanisms, but especially due to epigenetic regulation. This review provides an update on the latest research linking CFTR-deficiency to GI cancers, in both CF patients and in sporadic GI cancers, with a particular focus on cancer of the intestinal tract. It will discuss changes in the tissue landscape linked to CFTR-deficiency that may promote cancer development such as breakdowns in physical barriers, microbial dysbiosis and inflammation. It will also discuss molecular pathways and mechanisms that act upstream to modulate CFTR expression, such as by epigenetic silencing, as well as molecular pathways that act downstream of CFTR-deficiency, such as the dysregulation of the Wnt/β-catenin and NF-κB signaling pathways. Finally, it will discuss the emerging CFTR modulator drugs that have shown promising results in improving CFTR function in CF patients. The potential impact of these modulator drugs on the treatment and prevention of GI cancers can provide a new example of personalized cancer medicine.
Collapse
Affiliation(s)
| | | | - Patricia M. Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA or (R.B.); (Z.B.)
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA or (R.B.); (Z.B.)
| |
Collapse
|
55
|
Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J Cyst Fibros 2022; 21:265-271. [PMID: 34862121 PMCID: PMC9999463 DOI: 10.1016/j.jcf.2021.11.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Though weight gain has been reported in some clinical trials of CFTR modulators, the effect of elexacaftor-tezacaftor-ivacaftor on body weight, body mass index (BMI), blood pressure, lipids and glycemic control in the real-world setting remains incompletely described. METHODS We performed a single-center, retrospective, observational analysis of the effect of elexacaftor-tezacaftor-ivacaftor on body weight and cardiometabolic parameters in 134 adult CF patients of the Washington University Adult Cystic Fibrosis Center. Body weight, BMI, and blood pressure were extracted from outpatient clinic visits for the year preceding and the period following the initiation of elexacaftor-tezacaftor-ivacaftor. Other metabolic parameters were extracted at baseline and at latest available follow-up. RESULTS A mean of 12.2 months of follow-up data was available for analysis. The mean rate of change in BMI was 1.47 kg/m2/yr (95% CI, 1.08 to 1.87) greater after initiation of elexacaftor-tezacaftor-ivacaftor. Significant increases in blood pressure were observed. In those without CFRD, random blood glucose and hemoglobin A1c were decreased after elexacaftor-tezacaftor-ivacaftor initiation. In those with CFRD, elexacaftor-tezacaftor-ivacaftor increased serum total cholesterol, HDL-cholesterol, and LDL-cholesterol. CONCLUSIONS In this single-center, retrospective, observational study of 134 adults with CF, initiation of elexacaftor-tezacaftor-ivacaftor was associated with increases in BMI at a mean follow up of 12.2 months. Changes in other cardiometabolic risk factors were also observed. Widespread use of elexacaftor-tezacaftor-ivacaftor may be expected to increase the incidence of overnutrition in the CF population.
Collapse
|
56
|
Gabel ME, Fox CK, Grimes RA, Lowman JD, McDonald CM, Stallings VA, Michel SH. Overweight and cystic fibrosis: An unexpected challenge. Pediatr Pulmonol 2022; 57 Suppl 1:S40-S49. [PMID: 34738328 DOI: 10.1002/ppul.25748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Achieving a healthy weight balance has been a central focus of care for people who have cystic fibrosis (CF). Over the years, the emphasis has primarily been on promoting weight gain to optimize pulmonary outcomes. With continued improvements in CF care, including highly effective CF modulators available for many people, the CF community is now experiencing a new challenge: addressing the concern that some people are gaining weight excessively. While at this time, we do not know to what extent overweight and obesity will affect health outcomes for people with CF, it is likely that excessive weight gain may have negative health impacts similar to those seen in the general population. In this paper, we review the history of nutritional guidelines for people with CF, as well as more recent trends toward overweight and obesity for some. A multidisciplinary approach is needed to collaboratively start the oftentimes difficult conversation regarding excessive weight gain, and to identify resources to help people achieve and maintain a healthy weight through diet, exercise, and behavioral modification.
Collapse
Affiliation(s)
- Megan E Gabel
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Claudia K Fox
- Department of Pediatrics, Center for Pediatric Obesity Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rachel A Grimes
- Department of Psychiatry, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - John D Lowman
- Department of Physical Therapy, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catherine M McDonald
- Department of Clinical Nutrition, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Virginia A Stallings
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Suzanne H Michel
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
57
|
Tam RY, van Dorst JM, McKay I, Coffey M, Ooi CY. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J Clin Med 2022; 11:jcm11030649. [PMID: 35160099 PMCID: PMC8836727 DOI: 10.3390/jcm11030649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting autosomal recessive multisystem disease. While its burden of morbidity and mortality is classically associated with pulmonary disease, CF also profoundly affects the gastrointestinal (GI) tract. Chronic low-grade inflammation and alterations to the gut microbiota are hallmarks of the CF intestine. The etiology of these manifestations is likely multifactorial, resulting from cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, a high-fat CF diet, and the use of antibiotics. There may also be a bidirectional pathophysiological link between intestinal inflammation and changes to the gut microbiome. Additionally, a growing body of evidence suggests that these GI manifestations may have significant clinical associations with growth and nutrition, quality of life, and respiratory function in CF. As such, the potential utility of GI therapies and long-term GI outcomes are areas of interest in CF. Further research involving microbial modulation and multi-omics techniques may reveal novel insights. This article provides an overview of the current evidence, pathophysiology, and future research and therapeutic considerations pertaining to intestinal inflammation and alterations in the gut microbiota in CF.
Collapse
Affiliation(s)
- Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Isabelle McKay
- Wagga Wagga Base Hospital, Wagga Wagga, NSW 2650, Australia;
| | - Michael Coffey
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
- Correspondence:
| |
Collapse
|
58
|
Scheers I, Berardis S. Congenital etiologies of exocrine pancreatic insufficiency. Front Pediatr 2022; 10:909925. [PMID: 35935370 PMCID: PMC9354839 DOI: 10.3389/fped.2022.909925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital exocrine pancreatic insufficiency is a rare condition. In a vast majority of patients, exocrine dysfunction occurs as part of a multisystemic disease, the most prevalent being cystic fibrosis and Shwachman-Bodian-Diamond syndrome. Recent fundamental studies have increased our understanding of the pathophysiology of these diseases. Exocrine pancreatic dysfunction should be considered in children with failure to thrive and fatty stools. Treatment is mainly supportive and consists of pancreatic enzyme replacement and liposoluble vitamins supplementation.
Collapse
Affiliation(s)
- Isabelle Scheers
- Department of Pediatrics, Pediatric Gastroenterology and Hepatology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Silvia Berardis
- Department of Pediatrics, Specialized Pediatrics, Pediatric Pneumology and Cystic Fibrosis Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
59
|
Angyal D, Bijvelds MJC, Bruno MJ, Peppelenbosch MP, de Jonge HR. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells 2021; 11:cells11010054. [PMID: 35011616 PMCID: PMC8750324 DOI: 10.3390/cells11010054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.
Collapse
|
60
|
Cystic Fibrosis Transmembrane Conductance Regulator Modulator Use Is Associated With Reduced Pancreatitis Hospitalizations in Patients With Cystic Fibrosis. Am J Gastroenterol 2021; 116:2446-2454. [PMID: 34665155 PMCID: PMC8900539 DOI: 10.14309/ajg.0000000000001527] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acute pancreatitis (AP) occurs among patients with pancreas-sufficient cystic fibrosis (PS-CF) but is reportedly less common among patients with pancreas-insufficient cystic fibrosis (PI-CF). The incidence of AP may be influenced by cystic fibrosis transmembrane conductance regulator (CFTR) modulator use. We hypothesized that CFTR modulators would reduce AP hospitalizations, with the greatest benefit in PS-CF. METHODS MarketScan (2012-2018) was queried for AP hospitalizations and CFTR modulator use among patients with CF. Multivariable Poisson models that enabled crossover between CFTR modulator treatment groups were used to analyze the rate of AP hospitalizations on and off therapy. Pancreas insufficiency was defined by the use of pancreas enzyme replacement therapy. RESULTS A total of 10,417 patients with CF were identified, including 1,795 who received a CFTR modulator. AP was more common in PS-CF than PI-CF (2.9% vs 0.9%, P = 0.007). Overall, the observed rate ratio of AP during CFTR modulator use was 0.33 (95% confidence interval [CI] 0.10, 1.11, P = 0.07) for PS-CF and 0.38 (95% CI 0.16, 0.89, P = 0.03) for PI-CF, indicating a 67% and 62% relative reduction in AP hospitalizations, respectively. In a subset analysis of 1,795 patients who all had some CFTR modulator use, the rate ratio of AP during CFTR modulator use was 0.36 (95% CI 0.13, 1.01, P = 0.05) for PS-CF and 0.53 (95% CI 0.18, 1.58, P = 0.26) for PI-CF. DISCUSSION CFTR modulator use is associated with a reduction in AP hospitalizations among patients with CF. These observational data support the prospective study of CFTR modulators to reduce AP hospitalizations among patients with CF.
Collapse
|
61
|
Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl−/HCO3− exchangers, Cl− channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
|
62
|
Chin M, Brennan AL, Bell SC. Emerging non-pulmonary complications for adults with cystic fibrosis. Chest 2021; 161:1211-1224. [PMID: 34774529 DOI: 10.1016/j.chest.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Improved treatments of cystic fibrosis (CF) related lung disease have resulted in increased longevity, but also increasing prevalence and severity of extrapulmonary manifestations of CF, treatment related complications, age-related conditions and psychosocial effects of longstanding chronic disease. Likewise, the recognition of mild CF phenotypes has changed the landscape of CF disease. This review outlines our current understanding of the common extrapulmonary complications of CF, as well as the changing landscape and future directions of the extrapulmonary complications experienced by patients with CF.
Collapse
Affiliation(s)
- Melanie Chin
- Department of Medicine and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Amanda L Brennan
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Scott C Bell
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
63
|
Mishra V, Bose A, Kiran S, Banerjee S, Shah IA, Chaukimath P, Reshi MM, Srinivas S, Barman A, Visweswariah SS. Gut-associated cGMP mediates colitis and dysbiosis in a mouse model of an activating mutation in GUCY2C. J Exp Med 2021; 218:212653. [PMID: 34546338 PMCID: PMC8480670 DOI: 10.1084/jem.20210479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Activating mutations in receptor guanylyl cyclase C (GC-C), the target of gastrointestinal peptide hormones guanylin and uroguanylin, and bacterial heat-stable enterotoxins cause early-onset diarrhea and chronic inflammatory bowel disease (IBD). GC-C regulates ion and fluid secretion in the gut via cGMP production and activation of cGMP-dependent protein kinase II. We characterize a novel mouse model harboring an activating mutation in Gucy2c equivalent to that seen in an affected Norwegian family. Mutant mice demonstrated elevated intestinal cGMP levels and enhanced fecal water and sodium content. Basal and linaclotide-mediated small intestinal transit was higher in mutant mice, and they were more susceptible to DSS-induced colitis. Fecal microbiome and gene expression analyses of colonic tissue revealed dysbiosis, up-regulation of IFN-stimulated genes, and misregulation of genes associated with human IBD and animal models of colitis. This novel mouse model thus provides molecular insights into the multiple roles of intestinal epithelial cell cGMP, which culminate in dysbiosis and the induction of inflammation in the gut.
Collapse
Affiliation(s)
- Vishwas Mishra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Shashi Kiran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sanghita Banerjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Idrees A Shah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Mudasir M Reshi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Swarna Srinivas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Anaxee Barman
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
64
|
Lee TH, Daly D, Su M, Lehane C. Colocolic intussusception mimicking distal intestinal obstruction syndrome in a young adult with cystic fibrosis. ANZ J Surg 2021; 92:1232-1234. [PMID: 34570398 DOI: 10.1111/ans.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Tae H Lee
- Department of Surgery, Prince of Wales Hospital and Community Health Services, Randwick, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Prince of Wales Clinical School, Randwick, New South Wales, Australia
| | - Daniel Daly
- Department of Surgery, Prince of Wales Hospital and Community Health Services, Randwick, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Prince of Wales Clinical School, Randwick, New South Wales, Australia
| | - Michael Su
- Department of Surgery, Prince of Wales Hospital and Community Health Services, Randwick, New South Wales, Australia
| | - Christopher Lehane
- Department of Surgery, Prince of Wales Hospital and Community Health Services, Randwick, New South Wales, Australia
| |
Collapse
|
65
|
Abstract
Cystic fibrosis (CF) is a heritable, multiorgan disease that impacts all tissues that normally express cystic fibrosis transmembrane conductance regulator (CFTR) protein. While the importance of the airway microbiota has long been recognized, the intestinal microbiota has only recently been recognized as an important player in both intestinal and lung health outcomes for persons with CF (pwCF). Here, we summarize current literature related to the gut-lung axis in CF, with a particular focus on three key ideas: (i) mechanisms through which microbes influence the gut-lung axis, (ii) drivers of microbiota alterations, and (iii) the potential for intestinal microbiota remediation.
Collapse
Affiliation(s)
- Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover New Hampshire, USA
| |
Collapse
|
66
|
Gastrointestinal Factors Associated With Hospitalization in Infants With Cystic Fibrosis: Results From the Baby Observational and Nutrition Study. J Pediatr Gastroenterol Nutr 2021; 73:395-402. [PMID: 34016873 PMCID: PMC8780884 DOI: 10.1097/mpg.0000000000003173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To identify factors that increase the risk of gastrointestinal-related (GI-related) hospitalization of infants with cystic fibrosis (CF) during the first year of life. METHODS The Baby Observational and Nutrition Study was a longitudinal, observational cohort of 231 infants diagnosed with CF by newborn screening. We performed a post-hoc assessment of the frequency and indications for GI-related admissions during the first year of life. RESULTS Sixty-five participants had at least one admission in the first 12 months of life. High pancreatic enzyme replacement therapy (PERT) dosing (>2000 lipase units/kg per meal; hazard ratio [HR] = 14.75, P = 0.0005) and use of acid suppressive medications (HR = 4.94, P = 0.01) during the study period were positively associated with subsequent GI-related admissions. High levels of fecal calprotectin (fCP) (>200 μg/g) and higher relative abundance of fecal Klebsiella pneumoniae were also positively associated with subsequent GI-related admissions (HR = 2.64, P = 0.033 and HR = 4.49, P = 0.002, respectively). During the first 12 months of life, participants with any admission had lower weight-for-length z scores (WLZ) (P = 0.01). The impact of admission on WLZ was particularly evident in participants with a GI-related admission (P < 0.0001). CONCLUSIONS Factors associated with a higher risk for GI-related admission during the first 12 months include high PERT dosing, exposure to acid suppressive medications, higher fCP levels, and/or relative abundance of fecal K pneumoniae early in life. Infants with CF requiring GI-related hospitalization had lower WLZ at 12 months of age than those not admitted as well as those admitted for non-GI-related indications.
Collapse
|
67
|
The Intestinal Microbiome and Cystic Fibrosis Transmembrane Conductance Regulator Modulators: Emerging Themes in the Management of Gastrointestinal Manifestations of Cystic Fibrosis. Curr Gastroenterol Rep 2021; 23:17. [PMID: 34448955 DOI: 10.1007/s11894-021-00817-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW While commonly associated with pulmonary manifestations, cystic fibrosis (CF) is a systemic disease with wide-ranging effects on the gastrointestinal (GI) tract. This article reviews major recent updates in gastroenterological CF care and research. RECENT FINDINGS The high burden of GI symptoms in CF has led to recent studies assessing GI-specific symptom questionnaires and scoring systems. Intestinal dysbiosis potentially contributes to gastrointestinal symptoms in patients with CF and an increased risk of gastrointestinal cancers in CF. An increased incidence of colorectal cancer (CRC) has led to CF-specific CRC screening and surveillance recommendations. Pharmacologic therapies targeting specific cystic fibrosis transmembrane conductance regulator (CFTR) mutations have shown promise in treating GI manifestations of CF. New research has highlighted the importance of intestinal dysbiosis in CF. Future studies should assess whether CFTR modulators affect the gut microbiome and whether altering the gut microbiome will impact GI symptoms and GI cancer risk.
Collapse
|
68
|
Bass R, Brownell JN, Stallings VA. The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status. Nutrients 2021; 13:2907. [PMID: 34578785 PMCID: PMC8470943 DOI: 10.3390/nu13092907] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with cystic fibrosis (CF) are at increased risk of malnutrition and growth failure due to multiple factors as a result of suboptimal or absent function of the CFTR chloride channel protein. Dysfunctional CFTR contributes to increased energy expenditure, exocrine pancreatic insufficiency causing impaired dietary macronutrient digestion and absorption, intestinal dysbiosis, and impaired bile acid homeostasis. Poor nutritional status as a result of these mechanisms is associated with decreased lung function, worse clinical outcomes, and ultimately, increased mortality. Nutritional interventions addressing these mechanisms, such as pancreatic enzyme-replacement therapy and enteral caloric supplementation, have improved nutritional status and, by association, clinical outcomes. In the last decade, the advent of medications targeting defective CFTR proteins has revolutionized the care of patients with CF by reducing the overall impact of CFTR dysfunction. Below, we summarize the effects of highly effective CFTR modulators on nutritional status overall as well as specific factors including bile acid metabolism, pancreatic function, energy expenditure, and intestinal dysbiosis. The future of CF nutrition care will require a paradigm shift away from focusing on methods addressing CFTR dysfunction such as excess calorie provision and toward an individualized, holistic approach in the context of specific mutations and CFTR-directed therapy.
Collapse
Affiliation(s)
- Rosara Bass
- Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Jefferson N. Brownell
- School of Medicine, University of Pennsylvania Perelman, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (J.N.B.); (V.A.S.)
| | - Virginia A. Stallings
- School of Medicine, University of Pennsylvania Perelman, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (J.N.B.); (V.A.S.)
| |
Collapse
|
69
|
Smith S, Rowbotham N, Davies G, Gathercole K, Collins SJ, Elliott Z, Herbert S, Allen L, Ng C, Smyth A. How can we relieve gastrointestinal symptoms in people with cystic fibrosis? An international qualitative survey. BMJ Open Respir Res 2021; 7:7/1/e000614. [PMID: 32900780 PMCID: PMC7478045 DOI: 10.1136/bmjresp-2020-000614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Relieving gastrointestinal (GI) symptoms was identified as a 'top ten' priority by our James Lind Alliance Priority Setting Partnership in cystic fibrosis (CF). We conducted an online survey to find out more about the effect of GI symptoms in CF. METHODS We co-produced an online survey distributed to the CF community via web-based platforms. The survey consisted of open and closed questions designed to help us learn more about the effects of GI symptoms for people with CF (pwCF). We analysed the data using descriptive statistics and thematic analysis. We promoted the survey via social media and web-based platforms which allowed respondents from any country to take part. Our participants came from the CF community, including: adults and children with CF, parents and close family of pwCF and healthcare professionals (HCPs) working with pwCF. RESULTS There were 276 respondents: 90 (33%) pwCF, 79 (29%) family, 107 (39%) HCPs. The most commonly reported symptoms by lay respondents were stomach cramps/pain, bloating and a 'combination of symptoms'. The top three symptoms that HCPs said were reported to them were reduced appetite, bloating and constipation. Almost all (94% (85/90)) HCPs thought medications helped to relieve GI symptoms but only 58% (82/141) of lay respondents agreed. CONCLUSIONS Our survey has shown that GI symptoms among our participants are prevalent and intrude on daily lives of pwCF. There is a need for well-designed clinical studies to provide better evidence for management of GI symptoms and complications.
Collapse
Affiliation(s)
- Sherie Smith
- Child Health Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| | - Nicola Rowbotham
- Child Health Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| | | | | | - Sarah J Collins
- CF Department, Royal Brompton and Harefield NHS Trust, London, UK
| | | | - Sophie Herbert
- Child Health Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| | | | - Christabella Ng
- Child Health Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| | - Alan Smyth
- Child Health Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| |
Collapse
|
70
|
Gifford AH, Sanville JL, Sathe M, Heltshe SL, Goss CH. Use of proton pump inhibitors is associated with lower hemoglobin levels in people with cystic fibrosis. Pediatr Pulmonol 2021; 56:2048-2056. [PMID: 33860641 PMCID: PMC8217294 DOI: 10.1002/ppul.25431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) and histamine H2-receptor antagonists (H2RAs) are commonly prescribed to people with cystic fibrosis (PwCF) to treat gastroesophageal reflux disease (GERD) and/or protect pancreatic enzymes from degradation in the stomach. Acid suppressive medications (ASMs) could theoretically reduce hemoglobin (Hgb) levels by restricting enteral iron absorption, but evidence of an association between use of ASMs and lower Hgb levels is lacking in PwCF. METHODS We used unadjusted and covariate-adjusted generalized linear mixed models (GLMMs) to estimate the fixed effects of using versus never using ASMs on annual Hgb levels of PwCF in the U.S. Cystic Fibrosis Foundation Patient Registry (CFFPR) from 2011 to 2017. RESULTS There were 9850 users and 9007 never-users of ASMs from 2011 to 2017 who met inclusion criteria. Not adjusting for covariates, Hgb estimates were lower for male and female H2RA and/or PPI users versus never-users. Adjusting for covariates, mean Hgb was 0.1 g/dl (95% CI: 0.03, 0.17) lower for males that exclusively used PPIs than it was for male never-users of ASMs (p = .008). Adjusting for covariates, mean Hgb levels were 0.11 g/dl (95% CI: 0.04, 0.18) lower for females that exclusively used PPIs and 0.16 g/dl (95% CI: 0.05, 0.27) lower for females that used PPIs and H2RAs concurrently than it was for female never-users of ASMs (p = .005 and p = .002 for respective comparisons). CONCLUSIONS Males and females with cystic fibrosis (CF) who used PPIs and females with CF who concurrently used PPIs and H2RAs had lower Hgb levels than never-users of ASMs of the same sex in the CFFPR from 2011 to 2017.
Collapse
Affiliation(s)
- Alex H Gifford
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, New Hamshire, USA
| | - Julie L Sanville
- Pediatric Gastroenterology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hamshire, USA
| | - Meghana Sathe
- Pediatric Gastroenterology and Nutrition, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sonya L Heltshe
- CF Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Christopher H Goss
- CF Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
71
|
Miller MJ, Foroozan R. Papilledema and hypervitaminosis A after elexacaftor/tezacaftor/ivacaftor for cystic fibrosis. Can J Ophthalmol 2021; 57:e6-e10. [PMID: 34058144 DOI: 10.1016/j.jcjo.2021.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
|
72
|
J Burton S, Hachem C, Abraham JM. Luminal Gastrointestinal Manifestations of Cystic Fibrosis. Curr Gastroenterol Rep 2021; 23:4. [PMID: 33758994 DOI: 10.1007/s11894-021-00806-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW People with cystic fibrosis (CF) are living longer. General age-related and CF-specific gastrointestinal symptoms are increasingly recognized. In this article, we review the latest data on luminal gastrointestinal manifestations in CF. RECENT FINDINGS People with CF have increased incidence of gastroesophageal reflux disease symptoms and often prescribed proton-pump inhibitors (PPI). PPI use may increase risk of pulmonary exacerbations. Evidence to support gastric fundoplication to improve pulmonary outcomes is limited. Features of intestinal dysmotility are common. There are distinct differences in the gut microbiome in the CF population which may have clinical implications. CF is a possible hereditary digestive cancer syndrome, particularly in regard to colorectal cancer (CRC) with earlier incidence of CRC and advanced colonic neoplasia. Early screening colonoscopy is warranted in the CF population. Gastrointestinal manifestations in CF are prevalent across all digestive organs. More study on the effect of interventions for symptomatic treatment and cancer screening is needed.
Collapse
Affiliation(s)
- Samuel J Burton
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MI, USA
| | - Christine Hachem
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MI, USA
| | - James M Abraham
- Department of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
73
|
CFTR Modulator Therapy with Lumacaftor/Ivacaftor Alters Plasma Concentrations of Lipid-Soluble Vitamins A and E in Patients with Cystic Fibrosis. Antioxidants (Basel) 2021; 10:antiox10030483. [PMID: 33808590 PMCID: PMC8003491 DOI: 10.3390/antiox10030483] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leads to impaired pancreatic function and therefore reduced intestinal absorption of lipids and fat-soluble vitamins especially in patients with CF developing pancreatic insufficiency (PI). Previous studies showed that CFTR modulator therapy with lumacaftor-ivacaftor (LUM/IVA) in Phe508del-homozygous patients with CF results in improvement of pulmonary disease and thriving. However, the effects of LUM/IVA on plasma concentration of the lipid soluble vitamins A and E remain unknown. OBJECTIVES To investigate the course of plasma vitamin A and E in patients with CF under LUM/IVA therapy. METHODS Data from annual follow-up examinations of patients with CF were obtained to assess clinical outcomes including pulmonary function status, body mass index (BMI), and clinical chemistry as well as fat-soluble vitamins in Phe508del-homozygous CF patients before initiation and during LUM/IVA therapy. RESULTS Patients with CF receiving LUM/IVA improved substantially, including improvement in pulmonary inflammation, associated with a decrease in blood immunoglobulin G (IgG) from 9.4 to 8.2 g/L after two years (p < 0.001). During the same time, plasma vitamin A increased significantly from 1.2 to 1.6 µmol/L (p < 0.05), however, levels above the upper limit of normal were not detected in any of the patients. In contrast, plasma vitamin E as vitamin E/cholesterol ratio decreased moderately over the same time from 6.2 to 5.5 µmol/L (p < 0.01). CONCLUSIONS CFTR modulator therapy with LUM/IVA alters concentrations of vitamins A and vitamin E in plasma. The increase of vitamin A must be monitored critically to avoid hypervitaminosis A in patients with CF.
Collapse
|
74
|
PROMISE: Working with the CF community to understand emerging clinical and research needs for those treated with highly effective CFTR modulator therapy. J Cyst Fibros 2021; 20:205-212. [PMID: 33619012 DOI: 10.1016/j.jcf.2021.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Highly effective CFTR modulator drug therapy is increasingly available to those with cystic fibrosis. Multiple observational research studies are now being conducted to better understand the impacts of this important therapeutic milestone on long-term outcomes, patient care needs, and future research priorities. PROMISE is a large, multi-disciplinary academic study focused on the broad impacts of starting elexacaftor/tezacaftor/ivacaftor in the US population age 6 years and older. The many areas of investigation and rationale for each are discussed by organ systems, along with recognition of remaining important questions that will not be addressed by this study alone. Knowledge gained through this and multiple complementary studies around the world will help to understand important health outcomes, clinical care priorities, and research needs for a large majority of people treated with these or similarly effective medications targeting the primary cellular impairment in cystic fibrosis.
Collapse
|
75
|
The Extrapulmonary Effects of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Cystic Fibrosis. Ann Am Thorac Soc 2021; 17:147-154. [PMID: 31661636 PMCID: PMC6993798 DOI: 10.1513/annalsats.201909-671cme] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The effects of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators on lung function, pulmonary exacerbations, and quality of life have been well documented. However, CF is a multiorgan disease, and therefore an evidence base is emerging on the systemic effects of CFTR modulators beyond the pulmonary system. This is of great clinical importance, as many of these studies provide proof of concept that CFTR modulators might be used one day to prevent or treat extrapulmonary manifestations stemming from CFTR dysfunction. In this concise review of the literature, we summarize the results of key publications that have evaluated the effects of CFTR modulators on weight and growth, pancreatic function, the gastrointestinal and hepatobiliary systems, sinus disease, bone disease, exercise tolerance, fertility, mental health, and immunity. Although many of these studies have reported beneficial extrapulmonary effects related to the use of ivacaftor (IVA) in patients with CF with at least one gating mutation, most of the evidence is low or very low quality, given the limited number of patients evaluated and the lack of control groups. Based on an even smaller number of studies evaluating the extrapulmonary effects of lumacaftor-IVA, the benefits are less clear. Although limited, these studies may provide the basis for future clinical trials to evaluate CFTR modulators on the extrapulmonary manifestations of CF.
Collapse
|
76
|
Pan D, Liu G, Li B, Jiang J, Chen W, Li W, Zhang L, Hu Y, Xie S, Yang H. MicroRNA-1246 regulates proliferation, invasion, and differentiation in human vascular smooth muscle cells by targeting cystic fibrosis transmembrane conductance regulator (CFTR). Pflugers Arch 2021; 473:231-240. [PMID: 33420548 DOI: 10.1007/s00424-020-02498-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
MicroRNA (miRNA) plays a key role in the proliferation and invasion of vascular smooth muscle cells (VSMCs). However, the role and underlying mechanism of miRNAs in VSMCs are not fully understood. Therefore, this study was designed to investigate the role and mechanism of microRNA-1246 (miR-1246) in VSMCs. VSMCs were cultured, and the proliferation of VSMCs was stimulated by platelet-derived growth factor (PDGF-BB) or 15% fetal bovine serum (FBS). The quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression levels of miR-1246 and cystic fibrosis transmembrane conductance regulator (CFTR) in VSMCs. The CCK-8 assay and transwell assay were used to detect the proliferation and invasion of VSMCs. Target gene prediction and screening and luciferase reporter assays were used to verify downstream target genes of miR-1246. Western blotting was used to detect the protein expression levels of PCNA, α-SMA, SM-MHC, Collagen-1, and Cyclin D1 in VSMCs. PDGF-BB and FBS treatment induced VSMCs proliferation and the upregulation of miR-1246 expression. Overexpression of miR-1246 promoted VSMCs proliferation, invasion, and differentiation towards synthetic phenotype, while knockdown of miR-1246 had opposite effects. In addition, CFTR was found to be a direct target for miR-1246, and miR-1246 inhibited the expression of CFTR. Moreover, overexpression of CFTR inhibited VSMC proliferation and synthetic differentiation, while overexpression of miR-1246 partly abolished the effects of CFTR overexpression on VSMCs proliferation and differentiation. Our data suggest that MiR-1246 promotes VSMC proliferation, invasion, and differentiation to synthetic phenotype by regulating CFTR. MiR-1246 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Diguang Pan
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China.
| | - Guiyong Liu
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Bin Li
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Jingbo Jiang
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Wei Chen
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Wei Li
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Lin Zhang
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Yubao Hu
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Shuyun Xie
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| | - Huayun Yang
- Department of Cardiology, Guilin People's Hospital (Fifth Hospital of Clinical Medicine Attached to Guilin Medical College), No.12 Wenming Road, Guilin City, 541002, Guangxi Province, People's Republic of China
| |
Collapse
|
77
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
78
|
Munce D, Lim M, Akong K. Persistent recovery of pancreatic function in patients with cystic fibrosis after ivacaftor. Pediatr Pulmonol 2020; 55:3381-3383. [PMID: 32910556 DOI: 10.1002/ppul.25065] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Exocrine pancreatic insufficiency (EPI), which leads to malabsorption and poor weight gain, is seen in 85% of patients with cystic fibrosis (CF). EPI is treated with pancreatic enzyme replacement therapy taken with each meal. The highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator, ivacaftor, restores CFTR function in patients with responsive mutations. It is a widely held view that EPI in CF is irreversible due to the complete destruction of pancreatic ducts and acinar cells. We describe three pediatric CF patients with EPI who were started on ivacaftor, and subsequently showed evidence of restored exocrine pancreatic function with clinical and biochemical parameters.
Collapse
Affiliation(s)
- Danielle Munce
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Meerana Lim
- Department of Pediatrics, University of California, San Diego, California, USA.,Division of Pediatric Respiratory Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Kathryn Akong
- Department of Pediatrics, University of California, San Diego, California, USA.,Division of Pediatric Respiratory Medicine, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
79
|
Long term clinical effectiveness of ivacaftor in people with the G551D CFTR mutation. J Cyst Fibros 2020; 20:213-219. [PMID: 33249004 DOI: 10.1016/j.jcf.2020.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, ivacaftor, was first approved for people with CF and the G551D CFTR mutation. This study describes the long-term clinical effectiveness of ivacaftor in this population. METHODS We conducted a multicenter, prospective, longitudinal, observational study of people with CF ages ≥6 years with at least one copy of the G551D CFTR mutation. Measurements of lung function, growth, quality of life, and sweat chloride were performed after ivacaftor initiation (baseline, 1 month, 3 months, 6 months, and annually thereafter until 5.5 years). RESULTS Ninety-six participants were enrolled, with 81% completing all study measures through 5.5 years. This cohort experienced significant improvements in percent predicted forced expiratory volume in 1 second (ppFEV1) of 4.8 [2.6, 7.1] (p < 0.001) at 1.5 years, that diminished to 0.8 [-2.0, 3.6] (p = 0.57) at 5.5 years. Adults experienced larger improvements in ppFEV1 (7.4 [3.6, 11.3], p < 0.001 at 1.5 years and 4.3 [0.6, 8.1], p = 0.02 at 5.5 years) than children (2.8 [0.1, 5.6], p = 0.04 at 1.5 years and -2.0 [-5.9, 2.0], p = 0.32 at 5.5 years). Rate of lung function decline for the overall study cohort from 1 month after ivacaftor initiation through 5.5 years was estimated to be -1.22 pp/year [-1.70, -0.73]. Significant improvements in growth, quality of life measures, sweat chloride, Pseudomonas aeruginosa detection, and pulmonary exacerbation rates requiring antimicrobial therapy persisted through five years of therapy. CONCLUSIONS These findings demonstrate the long-term benefits and disease modifying effects of ivacaftor in children and adults with CF and the G551D mutation.
Collapse
|
80
|
Staufer K. Current Treatment Options for Cystic Fibrosis-Related Liver Disease. Int J Mol Sci 2020; 21:E8586. [PMID: 33202578 PMCID: PMC7696864 DOI: 10.3390/ijms21228586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic Fibrosis-related liver disease (CFLD) has become a leading cause of morbidity and mortality in patients with Cystic Fibrosis (CF), and affects children and adults. The understanding of the pathogenesis of CFLD is key in order to develop efficacious treatments. However, it remains complex, and has not been clarified to the last. The search for a drug might be additionally complicated due to the diverse clinical picture and lack of a unified definition of CFLD. Although ursodeoxycholic acid has been used for decades, its efficacy in CFLD is controversial, and the potential of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulators and targeted gene therapy in CFLD needs to be defined in the near future. This review focuses on the current knowledge on treatment strategies for CFLD based on pathomechanistic viewpoints.
Collapse
Affiliation(s)
- Katharina Staufer
- Department of Visceral Surgery and Medicine, Inselspital, University Hospital Bern, 3010 Bern, Switzerland; ; Tel.: +41-31-63-2-74-88
| |
Collapse
|
81
|
Bongiovanni A, Manti S, Parisi GF, Papale M, Mulè E, Rotolo N, Leonardi S. Focus on gastroesophageal reflux disease in patients with cystic fibrosis. World J Gastroenterol 2020; 26:6322-6334. [PMID: 33244195 PMCID: PMC7656210 DOI: 10.3748/wjg.v26.i41.6322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) is a common gastrointestinal disorder in cystic fibrosis (CF), and based on various studies, its prevalence is elevated since childhood. There are several pathogenetic mechanisms on the basis of association between CF and GERD. However, there are no specific guidelines for GERD in CF patients, so diagnosis is based on guidelines performed on patients not affected by CF. The aim of this review is to provide the pathophysiology, diagnostic and therapeutic options, complications, and future directions in the management of GERD patients with CF.
Collapse
Affiliation(s)
- Annarita Bongiovanni
- Department of Clinical and Experimental Medicine, Pediatric Respiratory Unit, San Marco Hospital, University of Catania, Catania 95123, Italy
| | - Sara Manti
- Department of Clinical and Experimental Medicine, Pediatric Respiratory Unit, San Marco Hospital, University of Catania, Catania 95123, Italy
| | - Giuseppe Fabio Parisi
- Department of Clinical and Experimental Medicine, Pediatric Respiratory Unit, San Marco Hospital, University of Catania, Catania 95123, Italy
| | - Maria Papale
- Department of Clinical and Experimental Medicine, Pediatric Respiratory Unit, San Marco Hospital, University of Catania, Catania 95123, Italy
| | - Enza Mulè
- Department of Clinical and Experimental Medicine, Pediatric Respiratory Unit, San Marco Hospital, University of Catania, Catania 95123, Italy
| | - Novella Rotolo
- Department of Clinical and Experimental Medicine, Pediatric Respiratory Unit, San Marco Hospital, University of Catania, Catania 95123, Italy
| | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, Pediatric Respiratory Unit, San Marco Hospital, University of Catania, Catania 95123, Italy
| |
Collapse
|
82
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
83
|
Mall MA, Mayer-Hamblett N, Rowe SM. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am J Respir Crit Care Med 2020; 201:1193-1208. [PMID: 31860331 DOI: 10.1164/rccm.201910-1943so] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) remains the most common life-shortening hereditary disease in white populations, with high morbidity and mortality related to chronic airway mucus obstruction, inflammation, infection, and progressive lung damage. In 1989, the discovery that CF is caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene that encodes a cAMP-dependent anion channel vital for proper Cl- and HCO3- transport across epithelial surfaces provided a solid foundation for unraveling underlying disease mechanisms and the development of therapeutics targeting the basic defect in people with CF. In this review, we focus on recent advances in our understanding of the molecular defects caused by different classes of CFTR mutations, implications for pharmacological rescue of mutant CFTR, and insights into how CFTR dysfunction impairs key host defense mechanisms, such as mucociliary clearance and bacterial killing in CF airways. Furthermore, we review the path that led to the recent breakthrough in the development of highly effective CFTR-directed therapeutics, now applicable for up to 90% of people with CF who carry responsive CFTR mutations, including those with just a single copy of the most common F508del mutation. Finally, we discuss the remaining challenges and strategies to develop highly effective targeted therapies for all patients and the unprecedented potential of these novel therapies to transform CF from a fatal to a treatable chronic condition.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Nicole Mayer-Hamblett
- Department of Pediatrics and.,Department of Biostatistics, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| | - Steven M Rowe
- Department of Medicine.,Department of Pediatrics, and.,Department of Cell, Developmental and Integrative Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
84
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) protein modulators have revolutionized care for individuals with cystic fibrosis (CF) with positive effects on the gastrointestinal (GI) tract. There is emerging evidence linking CFTR dysfunction to celiac disease (CD). We present 3 cases of patients with CF, genotype F508del/G551D, treated with CFTR modulator, ivacaftor, and diagnosed with CD. These patients tested for CD because they had persistent GI symptoms that had partially improved with ivacaftor. This case series highlights the importance of a better understanding of how CFTR modulators impact the GI tract, their possible link to CD, and the importance of considering CD when evaluating GI symptoms in individuals with CF.
Collapse
|
85
|
Scott P, Anderson K, Singhania M, Cormier R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int J Mol Sci 2020; 21:E2891. [PMID: 32326161 PMCID: PMC7215855 DOI: 10.3390/ijms21082891] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF), caused by biallelic inactivating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, has recently been categorized as a familial colorectal cancer (CRC) syndrome. CF patients are highly susceptible to early, aggressive colorectal tumor development. Endoscopic screening studies have revealed that by the age of forty 50% of CF patients will develop adenomas, with 25% developing aggressive advanced adenomas, some of which will have already advanced to adenocarcinomas. This enhanced risk has led to new CF colorectal cancer screening recommendations, lowering the initiation of endoscopic screening to age forty in CF patients, and to age thirty in organ transplant recipients. The enhanced risk for CRC also extends to the millions of people (more than 10 million in the US) who are heterozygous carriers of CFTR gene mutations. Further, lowered expression of CFTR is reported in sporadic CRC, where downregulation of CFTR is associated with poor survival. Mechanisms underlying the actions of CFTR as a tumor suppressor are not clearly understood. Dysregulation of Wnt/β-catenin signaling and disruption of intestinal stem cell homeostasis and intestinal barrier integrity, as well as intestinal dysbiosis, immune cell infiltration, stress responses, and intestinal inflammation have all been reported in human CF patients and in animal models. Notably, the development of new drug modalities to treat non-gastrointestinal pathologies in CF patients, especially pulmonary disease, offers hope that these drugs could be repurposed for gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | - Robert Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (P.S.); (K.A.); (M.S.)
| |
Collapse
|
86
|
Gastrointestinal Complications. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
87
|
Targeting the Underlying Defect in CFTR with Small Molecule Compounds. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
88
|
|
89
|
Shei RJ, Mackintosh KA, Peabody Lever JE, McNarry MA, Krick S. Exercise Physiology Across the Lifespan in Cystic Fibrosis. Front Physiol 2019; 10:1382. [PMID: 31780953 PMCID: PMC6856653 DOI: 10.3389/fphys.2019.01382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic fibrosis (CF), a severe life-limiting disease, is associated with multi-organ pathologies that contribute to a reduced exercise capacity. At present, the impact of, and interaction between, disease progression and other age-related physiological changes in CF on exercise capacity from child- to adult-hood is poorly understood. Indeed, the influences of disease progression and aging are inherently linked, leading to increasingly complex interactions. Thus, when interpreting age-related differences in exercise tolerance and devising exercise-based therapies for those with CF, it is critical to consider age-specific factors. Specifically, changes in lung function, chronic airway colonization by increasingly pathogenic and drug-resistant bacteria, the frequency and severity of pulmonary exacerbations, endocrine comorbidities, nutrition-related factors, and CFTR (cystic fibrosis transmembrane conductance regulator protein) modulator therapy, duration, and age of onset are important to consider. Accounting for how these factors ultimately influence the ability to exercise is central to understanding exercise impairments in individuals with CF, especially as the expected lifespan with CF continues to increase with advancements in therapies. Further studies are required that account for these factors and the changing landscape of CF in order to better understand how the evolution of CF disease impacts exercise (in)tolerance across the lifespan and thereby identify appropriate intervention targets and strategies.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelly A. Mackintosh
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, United Kingdom
| | - Jacelyn E. Peabody Lever
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Melitta A. McNarry
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, United Kingdom
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
90
|
Altman K, McDonald CM, Michel SH, Maguiness K. Nutrition in cystic fibrosis: From the past to the present and into the future. Pediatr Pulmonol 2019; 54 Suppl 3:S56-S73. [PMID: 31715089 DOI: 10.1002/ppul.24521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Nutritional management is an integral part of multidisciplinary care for persons with cystic fibrosis. This review will look at how nutrition care has evolved over time. In addition, we will look at how some newer therapies impact nutrition care.
Collapse
Affiliation(s)
- Kimberly Altman
- Gunnar Esiason Adult Cystic Fibrosis and Lung Center, New York Presbyterian/Columbia University Medical Center, New York, New York, United States
| | | | - Suzanne H Michel
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Karen Maguiness
- Section of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana, United States
| |
Collapse
|
91
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
92
|
Litvin M, Yoon JC, Leey Casella J, Blackman SM, Brennan AL. Energy balance and obesity in individuals with cystic fibrosis. J Cyst Fibros 2019; 18 Suppl 2:S38-S47. [DOI: 10.1016/j.jcf.2019.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/30/2023]
|
93
|
Johns JD, Rowe SM. The effect of CFTR modulators on a cystic fibrosis patient presenting with recurrent pancreatitis in the absence of respiratory symptoms: a case report. BMC Gastroenterol 2019; 19:123. [PMID: 31296159 PMCID: PMC6624925 DOI: 10.1186/s12876-019-1044-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/07/2019] [Indexed: 01/30/2023] Open
Abstract
Background Cystic fibrosis (CF) is a genetic disorder of the epithelial CFTR apical chloride channel resulting in multi-organ manifestations, including pancreatic exocrine secretion. In the pancreas, CFTR abnormality results in abnormally viscous secretions that obstruct proximal ducts leading to fibrotic injury and ultimately pancreatic insufficiency in 85% of the CF population. CFTR modulators, including the potentiator ivacaftor, augment channel gating to restore 30–50% of CFTR-mediated anion transport. While CFTR modulation has been shown to alkalinize the pH of the alimentary tract and potentially augment pancreatic enzyme activity, the effect of ivacaftor on recurrent pancreatitis is emerging. Here we describe a case of a patient with CF (R117H/7 T/F508del) who presented with recurrent pancreatitis who was effectively treated with ivacaftor in the absence of respiratory symptoms. Case presentation A 24-year-old white male with past medical history of recurrent acute pancreatitis presented for evaluation following a referral from an outside hospital. The patient reported a lifetime of gastrointestinal symptoms requiring over 20 hospitalizations for pancreatitis in the last 10 years. Prior U/S and CT imaging for pancreatitis ruled out gallstones or anatomical etiologies. Family history included a brother with CF carrier status who suffered from recurrent acute pancreatitis. Sweat chloride testing was suggestive of CFTR dysfunction (57 mmol/L). Genetic testing demonstrated disease causing CFTR mutations: R1117H/7 T/F508del. Patient was prescribed pancrelipase, however, he reported worsened gas and diarrhea symptoms. Pancrelipase was discontinued and the patient was prescribed ivacaftor 150 mg BID. After 6 weeks of ivacaftor treatment, patient reported improved gastrointestinal symptoms. For an additional 19 months, patient reported no episodes of pancreatitis until he discontinued ivacaftor. Over the next 3 weeks, patient experienced progressive nausea and sharp epigastric pain and laboratory studies confirmed pancreatitis. Patient was subsequently lost to follow up. Conclusions These findings support a possible relationship between the use of CFTR modulators, such as ivacaftor, in the management of recurrent pancreatitis in the setting of patients with cystic fibrosis and a CFTR mutation with residual CFTR activity or otherwise known to be responsive in vitro. Ivacaftor may be useful for recurrent pancreatitis, even in the absence of respiratory morbidity.
Collapse
Affiliation(s)
- J Dixon Johns
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, 1918 University Blvd., MCLM 706, Birmingham, AL, 35294, USA
| | - Steven M Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, 1918 University Blvd., MCLM 706, Birmingham, AL, 35294, USA.
| |
Collapse
|
94
|
Rosenfeld M, Cunningham S, Harris WT, Lapey A, Regelmann WE, Sawicki GS, Southern KW, Chilvers M, Higgins M, Tian S, Cooke J, Davies JC. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB). J Cyst Fibros 2019; 18:838-843. [PMID: 31053538 DOI: 10.1016/j.jcf.2019.03.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND KIWI (NCT01705145) was a 24-week, single-arm, pharmacokinetics, safety, and efficacy study of ivacaftor in children aged 2 to 5 years with cystic fibrosis (CF) and a CFTR gating mutation. Here, we report the results of KLIMB (NCT01946412), an 84-week, open-label extension of KIWI. METHODS Children received age- and weight-based ivacaftor dosages for 84 weeks. The primary outcome was safety. Other outcomes included sweat chloride, growth parameters, and measures of pancreatic function. RESULTS All 33 children who completed KIWI enrolled in KLIMB; 28 completed 84 weeks of treatment. Most adverse events were consistent with those reported during KIWI. Ten (30%) children had transaminase elevations >3 × upper limit of normal (ULN), leading to 1 discontinuation in a child with alanine aminotransferase >8 × ULN. Improvements in sweat chloride, weight, and body mass index z scores and fecal elastase-1 observed during KIWI were maintained during KLIMB; there was no further improvement in these parameters. CONCLUSIONS Ivacaftor was generally well tolerated for up to 108 weeks in children aged 2 to 5 years with CF and a gating mutation, with safety consistent with the KIWI study. Improvements in sweat chloride and growth parameters during the initial 24 weeks of treatment were maintained for up to an additional 84 weeks of treatment. Prevalence of raised transaminases remained stable and did not increase with duration of exposure during the open-label extension.
Collapse
Affiliation(s)
- Margaret Rosenfeld
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| | - Steve Cunningham
- University of Edinburgh Centre for Inflammation Research and NHS Lothian, Edinburgh, UK.
| | - William T Harris
- University of Alabama at Birmingham, 1720 2nd Avenue S, Birmingham, AL 35294, USA.
| | - Allen Lapey
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | - Warren E Regelmann
- University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Gregory S Sawicki
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | - Mark Chilvers
- British Columbia Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3N1, Canada.
| | - Mark Higgins
- Vertex Pharmaceuticals (Europe) Limited, 2 Kingdom Street, London, W2 6BD, UK.
| | - Simon Tian
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| | - Jon Cooke
- Formerly of Vertex Pharmaceuticals (Europe) Limited, 2 Kingdom Street, London W2 6BD, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London & Royal Brompton Hospital, London SW3 6LR, UK.
| | | |
Collapse
|
95
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
96
|
Long-Term CFTR Modulators and Changes in Hemoglobin. Ann Am Thorac Soc 2019; 16:305-306. [PMID: 30821493 DOI: 10.1513/annalsats.201812-904ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
97
|
Stallings VA, Sainath N, Oberle M, Bertolaso C, Schall JI. Energy Balance and Mechanisms of Weight Gain with Ivacaftor Treatment of Cystic Fibrosis Gating Mutations. J Pediatr 2018; 201:229-237.e4. [PMID: 30029855 DOI: 10.1016/j.jpeds.2018.05.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine if ivacaftor treatment results in weight gain and improved pulmonary function in people with cystic fibrosis transmembrane conductance regulator gating mutations. STUDY DESIGN Children and adults with cystic fibrosis and at least 1 cystic fibrosis transmembrane conductance regulator gating mutation were evaluated in this observational study before and after 3 months of ivacaftor treatment. Body size and composition, total energy expenditure, resting energy expenditure (REE%) as percent predicted, coefficient of fat absorption (CFA%), fecal calprotectin, fecal elastase, and quality of life were assessed. Some outcomes were explored by pancreatic status. RESULTS There were 23 patients (5-61 years of age) who completed the study; 70% had pancreatic insufficiency (PI). Patients gained 2.5 ± 2.2 kg (P < .001) with increased (P < .05) fat-free mass (0.9 ± 1.9 kg) and fat mass (1.6 ± 1.5 kg). REE% decreased by 5.5 ± 12.0% (P < .05), fecal calprotectin decreased by 30 ± 40 µg/g stool (P < .01), and total energy expenditure was unchanged. Improvements were greater for PI than patients who were pancreatic-sufficient. CFA% increased significantly only with PI. The change (Δ) in weight was positively correlated with the percent change in forced expiratory volume at 1 second (r = 0.46; P = .028) and ΔCFA% (r = 0.47; P = .032) and negatively with ΔREE% (r = -0.50; P = .017). Together, ΔREE%, ΔCFA%, and the percent change in forced expiratory volume at 1 second explained 58% of the variance in weight gain (adjusted R2 = 0.579; P = .0007). Growth status and muscle strength improved, as did quality of life in several domains. Fecal elastase increased in most patients with pancreatic sufficiency, with no change in those with PI. CONCLUSIONS Mechanisms identified for ivacaftor-associated weight gain were decreased REE, gut inflammation, and fat malabsorption (CFA). TRIAL REGISTRATION ClinicalTrials.gov: NCT02141464.
Collapse
Affiliation(s)
- Virginia A Stallings
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| | - Nina Sainath
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Megan Oberle
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Joan I Schall
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
98
|
van de Peppel IP, Doktorova M, Berkers G, de Jonge HR, Houwen RHJ, Verkade HJ, Jonker JW, Bodewes FAJA. IVACAFTOR restores FGF19 regulated bile acid homeostasis in cystic fibrosis patients with an S1251N or a G551D gating mutation. J Cyst Fibros 2018; 18:286-293. [PMID: 30279125 DOI: 10.1016/j.jcf.2018.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Disruption of the enterohepatic circulation of bile acids (BAs) is part of the gastrointestinal phenotype of cystic fibrosis (CF). Ivacaftor (VX-770), a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, improves pulmonary function in CF patients with class III gating mutations. We studied the effect of ivacaftor on the enterohepatic circulation by assessing markers of BA homeostasis and their changes in CF patients. METHODS In CF patients with an S1251N mutation (N = 16; age 9-35 years S125N study/NTR4873) or a G551D mutation (N = 101; age 10-24 years; GOAL study/ NCT01521338) we analyzed plasma fibroblast growth factor 19 (FGF19) and 7α-hydroxy-4-cholesten-3-one (C4) levels, surrogate markers for intestinal BA absorption and hepatic synthesis, respectively, before and after treatment with ivacaftor. RESULTS At baseline, median FGF19 was lower (52% and 53%, P < .001) and median C4 higher (350% and 364%, P < .001), respectively, for the S1251 N and G551D mutation patient groups compared to healthy controls. Treatment with ivacaftor significantly increased FGF19 and reduced C4 levels towards normalization in both cohorts but this did not correlate with CFTR function in other organs, as measured by sweat chloride levels or pulmonary function. CONCLUSIONS We demonstrate that patients with CFTR gating mutations display interruption of the enterohepatic circulation of BAs reflected by lower FGF19 and elevated C4 levels. Treatment with ivacaftor partially restored this disruption of BA homeostasis. The improvement did not correlate with established outcome measures of CF, suggesting involvement of modulating factors of CFTR correction in different organs.
Collapse
Affiliation(s)
- Ivo P van de Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands; Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Marcela Doktorova
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands; Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Gitte Berkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roderick H J Houwen
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands; Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Frank A J A Bodewes
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
99
|
Alaiwa MHA, Launspach JL, Grogan B, Carter S, Zabner J, Stoltz DA, Singh PK, McKone EF, Welsh MJ. Ivacaftor-induced sweat chloride reductions correlate with increases in airway surface liquid pH in cystic fibrosis. JCI Insight 2018; 3:121468. [PMID: 30089726 PMCID: PMC6129116 DOI: 10.1172/jci.insight.121468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disruption of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF), and lung disease produces most of the mortality. Loss of CFTR-mediated HCO3- secretion reduces the pH of airway surface liquid (ASL) in vitro and in neonatal humans and pigs in vivo. However, we previously found that, in older children and adults, ASL pH does not differ between CF and non-CF. Here, we tested whether the pH of CF ASL increases with time after birth. Finding that it did suggested that adaptations by CF airways increase ASL pH. This conjecture predicted that increasing CFTR activity in CF airways would further increase ASL pH and also that increasing CFTR activity would correlate with increases in ASL pH. METHODS To test for longitudinal changes, we measured ASL pH in newborns and then at 3-month intervals. We also studied people with CF (bearing G551D or R117H mutations), in whom we could acutely stimulate CFTR activity with ivacaftor. To gauge changes in CFTR activity, we measured changes in sweat Cl- concentration immediately before and 48 hours after starting ivacaftor. RESULTS Compared with that in the newborn period, ASL pH increased by 6 months of age. In people with CF bearing G551D or R117H mutations, ivacaftor did not change the average ASL pH; however reductions in sweat Cl- concentration correlated with elevations of ASL pH. Reductions in sweat Cl- concentration also correlated with improvements in pulmonary function. CONCLUSIONS Our results suggest that CFTR-independent mechanisms increase ASL pH in people with CF. We speculate that CF airway disease, which begins soon after birth, is responsible for the adaptation. FUNDING Vertex Inc., the NIH (P30DK089507, 1K08HL135433, HL091842, HL136813, K24HL102246), the Cystic Fibrosis Foundation (SINGH17A0 and SINGH15R0), and the Burroughs Wellcome Fund.
Collapse
Affiliation(s)
- Mahmoud H. Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jan L. Launspach
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brenda Grogan
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent’s University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Suzanne Carter
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent’s University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Joseph Zabner
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David A. Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Pradeep K. Singh
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Edward F. McKone
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent’s University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Michael J. Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
100
|
Bacterial overgrowth, dysbiosis, inflammation, and dysmotility in the Cystic Fibrosis intestine. J Cyst Fibros 2018; 16 Suppl 2:S14-S23. [PMID: 28986022 DOI: 10.1016/j.jcf.2017.07.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
Gastrointestinal disease in Cystic Fibrosis (CF) is caused by defective chloride and bicarbonate transport in intestinal cells leading to reduced intraluminal fluidity, increased mucous viscosity and consequently development of intestinal inflammation, dysbiosis and often times dysmotility. This triad is also referred to as the "CF gut". A diagnosis is mainly based on clinical observation and treatment is often times decided empirically. This review of the literature should provide CF caregivers with some tools to identify intestinal inflammation, dysbiosis and dysmotility as possible cause for their patient's gastrointestinal complaints and provide an overview of our current approach to its management.
Collapse
|