51
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
52
|
An Updated Review of Ciguatera Fish Poisoning: Clinical, Epidemiological, Environmental, and Public Health Management. Mar Drugs 2017; 15:md15030072. [PMID: 28335428 PMCID: PMC5367029 DOI: 10.3390/md15030072] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
Ciguatera Fish Poisoning (CFP) is the most frequently reported seafood-toxin illness in the world. It causes substantial human health, social, and economic impacts. The illness produces a complex array of gastrointestinal, neurological and neuropsychological, and cardiovascular symptoms, which may last days, weeks, or months. This paper is a general review of CFP including the human health effects of exposure to ciguatoxins (CTXs), diagnosis, human pathophysiology of CFP, treatment, detection of CTXs in fish, epidemiology of the illness, global dimensions, prevention, future directions, and recommendations for clinicians and patients. It updates and expands upon the previous review of CFP published by Friedman et al. (2008) and addresses new insights and relevant emerging global themes such as climate and environmental change, international market issues, and socioeconomic impacts of CFP. It also provides a proposed universal case definition for CFP designed to account for the variability in symptom presentation across different geographic regions. Information that is important but unchanged since the previous review has been reiterated. This article is intended for a broad audience, including resource and fishery managers, commercial and recreational fishers, public health officials, medical professionals, and other interested parties.
Collapse
|
53
|
Wang J, Cao B, Yang X, Wu J, Chan LL, Li Y. Chronic ciguatoxin poisoning causes emotional and cognitive dysfunctions in rats. Toxicol Res (Camb) 2017; 6:179-187. [PMID: 30090488 PMCID: PMC6062356 DOI: 10.1039/c5tx00475f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
Abstract
Ciguatoxins are marine biotoxins that induce the human poisoning syndrome known as ciguatera fish poisoning (CFP). In humans, different kinds of neurological symptoms have been reported after CFP, including anxiety, depression and memory loss. Repetitive exposures to sub-threshold levels of ciguatera toxins may cause irreversible sub-clinical damage, and eventually cause more severe illness. Our previous study has shown that an acute single dose of Pacific ciguatoxin-1 (P-CTX-1) induced synaptic facilitation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus-anterior cingulate cortex pathway. Reactive astrogliosis was detected in acute ciguatera poisoning. Despite the reports of complex and prolonged neurological symptoms in patients, few studies have been conducted in animal models to investigate the emotional and cognitive deficits after chronic exposure to ciguatoxin. In the present study, using a rat model with repeated exposures to low dosage of P-CTX-1, we observed development of anxiety-like behavior by open field test and elevated plus maze test, and learning and memory deficits by the Morris water maze; further, decision-making impairment was determined in the chronic P-CTX-1-treated rats by the rats gambling task. We conclude that chronic ciguatera poisoning leads to anxiety, and to impairment of spatial reference memory and decision-making behavior.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , P.R. China . ; ; Tel: +(852) 3442 2669
- Centre for Biosystems , Neuroscience , and Nanotechnology , City University of Hong Kong , Hong Kong , P.R. China
| | - Bing Cao
- Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , P.R. China . ; ; Tel: +(852) 3442 2669
- Centre for Biosystems , Neuroscience , and Nanotechnology , City University of Hong Kong , Hong Kong , P.R. China
| | - Xiangwei Yang
- Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , P.R. China . ; ; Tel: +(852) 3442 2669
- Centre for Biosystems , Neuroscience , and Nanotechnology , City University of Hong Kong , Hong Kong , P.R. China
| | - Jiajun Wu
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Hong Kong , P.R. China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity , Research Centre for the Oceans and Human Health , City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , P.R. China
| | - Leo Lai Chan
- Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , P.R. China . ; ; Tel: +(852) 3442 2669
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Hong Kong , P.R. China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity , Research Centre for the Oceans and Human Health , City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , P.R. China
| | - Ying Li
- Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , P.R. China . ; ; Tel: +(852) 3442 2669
- Centre for Biosystems , Neuroscience , and Nanotechnology , City University of Hong Kong , Hong Kong , P.R. China
| |
Collapse
|
54
|
Inserra MC, Israel MR, Caldwell A, Castro J, Deuis JR, Harrington AM, Keramidas A, Garcia-Caraballo S, Maddern J, Erickson A, Grundy L, Rychkov GY, Zimmermann K, Lewis RJ, Brierley SM, Vetter I. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Sci Rep 2017; 7:42810. [PMID: 28225079 PMCID: PMC5320492 DOI: 10.1038/srep42810] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
Abstract
Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation.
Collapse
Affiliation(s)
- Marco C Inserra
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Ashlee Caldwell
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Joel Castro
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Andrea M Harrington
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Jessica Maddern
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Luke Grundy
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Grigori Y Rychkov
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Katharina Zimmermann
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Stuart M Brierley
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia.,School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
55
|
Affiliation(s)
- Matthias Wjst
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, D-85764, Neuherberg, Deutschland.
| |
Collapse
|
56
|
Lolignier S, Gkika D, Andersson D, Leipold E, Vetter I, Viana F, Noël J, Busserolles J. New Insight in Cold Pain: Role of Ion Channels, Modulation, and Clinical Perspectives. J Neurosci 2016; 36:11435-11439. [PMID: 27911746 PMCID: PMC6601718 DOI: 10.1523/jneurosci.2327-16.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022] Open
Abstract
Cold temperature detection involves the process of sensory transduction in cutaneous primary sensory nerve terminals, which converts thermal stimuli into depolarizations of the membrane. This transformation into electrical signals is followed by the subsequent propagation of action potentials in cold-sensitive afferent nerve fibers. A large array of ion channels shapes this process; however, the precise contribution of specific ion channel subtypes to cold perception and cold pain remains elusive. This review aims at giving an update on our current understanding of the role played by TRPs, leak K+ and voltage-gated Na+ and K+ channels in the transduction of cold by nociceptors and in cold-induced pain.
Collapse
Affiliation(s)
- Stéphane Lolignier
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, 63000 Clermont-Ferrand, France
- Inserm, U 1107, Neuro-Dol, 63000 Clermont-Ferrand, France
| | - Dimitra Gkika
- Laboratoire de Physiologie cellulaire, Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, 59655 Villeneuve d'Ascq Cedex, France
| | - David Andersson
- King's College London, Wolfson Centre for Age-Related Diseases Wolfson Wing, SE1 1UL London, United Kingdom
| | - Enrico Leipold
- Institut für Biochemie und Biophysik, D-07745 Jena, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience and School of Pharmacy, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Felix Viana
- Instituto de Neurociencias de Alicante Universidad Miguel Hernandez/CSIC Avda. S. Ramón y Cajal s.n. San Juan de Alicante, 03550 Alicante, Spain
| | - Jacques Noël
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, France, and
- LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| | - Jérôme Busserolles
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, 63000 Clermont-Ferrand, France,
- Inserm, U 1107, Neuro-Dol, 63000 Clermont-Ferrand, France
| |
Collapse
|
57
|
Azimi I, Flanagan JU, Stevenson RJ, Inserra M, Vetter I, Monteith GR, Denny WA. Evaluation of known and novel inhibitors of Orai1-mediated store operated Ca 2+ entry in MDA-MB-231 breast cancer cells using a Fluorescence Imaging Plate Reader assay. Bioorg Med Chem 2016; 25:440-449. [PMID: 27856238 DOI: 10.1016/j.bmc.2016.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
The Orai1 Ca2+ permeable ion channel is an important component of store operated Ca2+ entry (SOCE) in cells. It's over-expression in basal molecular subtype breast cancers has been linked with poor prognosis, making it a potential target for drug development. We pharmacologically characterised a number of reported inhibitors of SOCE in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader (FLIPR) assay, and show that the rank order of their potencies in this assay is the same as those reported in a wide range of published assays. The assay was also used in a screening project seeking novel inhibitors. Following a broad literature survey of classes of calcium channel inhibitors we used simplified ligand structures to query the ZINC on-line database, and following two iterations of refinement selected a novel Orai1-selective dichlorophenyltriazole hit compound. Analogues of this were synthesized and evaluated in the FLIPR assay to develop structure-activity relationships (SAR) for the three domains of the hit; triazole (head), dichlorophenyl (body) and substituted phenyl (tail). For this series, the results suggested the need for a lipophilic tail domain and an out-of-plane twist between the body and tail domains.
Collapse
Affiliation(s)
- Iman Azimi
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ralph J Stevenson
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marco Inserra
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - William A Denny
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
58
|
Acute Exposure to Pacific Ciguatoxin Reduces Electroencephalogram Activity and Disrupts Neurotransmitter Metabolic Pathways in Motor Cortex. Mol Neurobiol 2016; 54:5590-5603. [PMID: 27613284 DOI: 10.1007/s12035-016-0093-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown. Here, we used CTX purified from ciguatera fish sourced in the Pacific Ocean (P-CTX-1). Delta and theta electroencephalography (EEG) activity was reduced remarkably in 2 h and returned to normal in 6 h after a single exposure. However, second exposure to P-CTX-1 induced not only a further reduction in EEG activities but also a 2-week delay in returning to baseline EEG values. Ciguatoxicity was detected in the brain hours after the first and second exposure by mouse neuroblastoma assay. The spontaneous firing rate of single motor cortex neuron was reduced significantly measured by single-unit recording with high spatial resolution. Expression profile study of neurotransmitters using targeted profiling approach based on liquid chromatography-tandem mass spectrometry revealed an imbalance between excitatory and inhibitory neurotransmitters in the motor cortex. Our study provides a possible link between the brain oscillations and neurotransmitter release after acute exposure to P-CTX-1. Identification of EEG signatures and major metabolic pathways affected by P-CTX-1 provides new insight into potential biomarker development and therapeutic interventions.
Collapse
|
59
|
Lewis RJ, Inserra M, Vetter I, Holland WC, Hardison DR, Tester PA, Litaker RW. Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay. PLoS One 2016; 11:e0160006. [PMID: 27467390 PMCID: PMC4965106 DOI: 10.1371/journal.pone.0160006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background Ciguatera is a circumtropical disease produced by polyether sodium channel toxins (ciguatoxins) that enter the marine food chain and accumulate in otherwise edible fish. Ciguatoxins, as well as potent water-soluble polyethers known as maitotoxins, are produced by certain dinoflagellate species in the genus Gambierdiscus and Fukuyoa spp. in the Pacific but little is known of the potential of related Caribbean species to produce these toxins. Methods We established a simplified procedure for extracting polyether toxins from Gambierdiscus and Fukuyoa spp. based on the ciguatoxin rapid extraction method (CREM). Fractionated extracts from identified Pacific and Caribbean isolates were analysed using a functional bioassay that recorded intracellular calcium changes (Ca2+) in response to sample addition in SH-SY5Y cells. Maitotoxin directly elevated Ca2+i, while low levels of ciguatoxin-like toxins were detected using veratridine to enhance responses. Results We identified significant maitotoxin production in 11 of 12 isolates analysed, with 6 of 12 producing at least two forms of maitotoxin. In contrast, only 2 Caribbean isolates produced detectable levels of ciguatoxin-like activity despite a detection limit of >30 pM. Significant strain-dependent differences in the levels and types of ciguatoxins and maitotoxins produced by the same Gambierdiscus spp. were also identified. Conclusions The ability to rapidly identify polyether toxins produced by Gambierdiscus spp. in culture has the potential to distinguish ciguatoxin-producing species prior to large-scale culture and in naturally occurring blooms of Gambierdiscus and Fukuyoa spp. Our results have implications for the evaluation of ciguatera risk associated with Gambierdiscus and related species.
Collapse
Affiliation(s)
- Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
- * E-mail:
| | - Marco Inserra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - William C. Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| | - D. Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| | - Patricia A. Tester
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| | - R. Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| |
Collapse
|
60
|
Le Garrec R, L'herondelle K, Le Gall-Ianotto C, Lebonvallet N, Leschiera R, Buhe V, Talagas M, Vetter I, Lewis RJ, Misery L. Release of neuropeptides from a neuro-cutaneous co-culture model: A novel in vitro model for studying sensory effects of ciguatoxins. Toxicon 2016; 116:4-10. [DOI: 10.1016/j.toxicon.2015.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/24/2015] [Accepted: 11/04/2015] [Indexed: 12/17/2022]
|
61
|
Au NPB, Kumar G, Asthana P, Tin C, Mak YL, Chan LL, Lam PKS, Ma CHE. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury. Sci Rep 2016; 6:26809. [PMID: 27229176 PMCID: PMC4882531 DOI: 10.1038/srep26809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/10/2016] [Indexed: 01/03/2023] Open
Abstract
Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Pallavi Asthana
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Chung Tin
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Yim Ling Mak
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong.,Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Leo Lai Chan
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong.,Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Paul Kwan Sing Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong.,Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.,Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Chi Him Eddie Ma
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Tat Chee Avenue, Hong Kong.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| |
Collapse
|
62
|
Touska F, Winter Z, Mueller A, Vlachova V, Larsen J, Zimmermann K. Comprehensive thermal preference phenotyping in mice using a novel automated circular gradient assay. Temperature (Austin) 2016; 3:77-91. [PMID: 27227099 PMCID: PMC4861200 DOI: 10.1080/23328940.2015.1135689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/03/2022] Open
Abstract
Currently available behavioral assays to quantify normal cold sensitivity, cold hypersensitivity and cold hyperalgesia in mice have betimes created conflicting results in the literature. Some only capture a limited spectrum of thermal experiences, others are prone to experimenter bias or are not sensitive enough to detect the contribution of ion channels to cold sensing because in mice smaller alterations in cold nociception do not manifest as frank behavioral changes. To overcome current limitations we have designed a novel device that is automated, provides a high degree of freedom, i.e. thermal choice, and eliminates experimenter bias. The device represents a thermal gradient assay designed as a circular running track. It allows discerning exploratory behavior from thermal selection behavior and provides increased accuracy by providing measured values in duplicate and by removing edge artifacts. Our custom-designed automated offline analysis by a blob detection algorithm is devoid of movement artifacts, removes light reflection artifacts and provides an internal quality control parameter which we validated. The assay delivers discrete information on a large range of parameters extracted from the occupancy of thermally defined zones such as preference temperature and skew of the distribution. We demonstrate that the assay allows increasingly accurate phenotyping of thermal sensitivity in transgenic mice by disclosing yet unrecognized details on the phenotypes of TRPM8-, TRPA1- and TRPM8/A1-deficient mice.
Collapse
Affiliation(s)
- Filip Touska
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zoltán Winter
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Alexander Mueller
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | | | - Katharina Zimmermann
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
63
|
Abstract
The detection of temperature is one of the most fundamental sensory functions across all species, and is critical for animal survival. Animals have thus evolved a diversity of thermosensory mechanisms allowing them to sense and respond to temperature changes (thermoreception). A key process underlying thermoreception is the translation of thermal energy into electrical signals, a process mediated by thermal sensors (thermoreceptors) that are sensitive to a specific range of temperatures. In disease conditions, the temperature sensitivity of thermoreceptors is altered, leading to abnormal temperature sensation such as heat hyperalgesia. Therefore, the identification of thermal sensors and understanding their functions and regulation hold great potential for developing novel therapeutics against many medical conditions such as pain.
Collapse
Affiliation(s)
- Xuming Zhang
- a Rowett Institute of Nutrition and Health & Institute of Medical Sciences ; University of Aberdeen , Foresterhill , Aberdeen , UK
| |
Collapse
|
64
|
Patel R, Brice NL, Lewis RJ, Dickenson AH. Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera. Eur J Neurosci 2015; 42:3004-11. [PMID: 26454262 PMCID: PMC4744673 DOI: 10.1111/ejn.13098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/14/2015] [Accepted: 10/04/2015] [Indexed: 01/24/2023]
Abstract
Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non-sentient rats. Subcutaneous injection of 10 nm ciguatoxin-2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low-threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6-({2-[2-fluoro-6-(trifluoromethyl)phenoxy]-2-methylpropyl}carbamoyl)pyridine-3-carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co-injection with the Nav 1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | | | - Richard J. Lewis
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLDAustralia
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
65
|
Deuis JR, Whately E, Brust A, Inserra MC, Asvadi NH, Lewis RJ, Alewood PF, Cabot PJ, Vetter I. Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chem Neurosci 2015. [PMID: 26225903 DOI: 10.1021/acschemneuro.5b00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Selective activation of peripheral κ opioid receptors (KORs) may overcome the dose-limiting adverse effects of conventional opioid analgesics. We recently developed a vicinal disulfide-stabilized class of peptides with subnanomolar potency at the KOR. The aim of this study was to assess the analgesic effects of one of these peptides, named conorphin-1, in comparison with the prototypical KOR-selective small molecule agonist U-50488, in several rodent pain models. Surprisingly, neither conorphin-1 nor U-50488 were analgesic when delivered peripherally by intraplantar injection at local concentrations expected to fully activate the KOR at cutaneous nerve endings. While U-50488 was analgesic when delivered at high local concentrations, this effect could not be reversed by coadministration with the selective KOR antagonist ML190 or the nonselective opioid antagonist naloxone. Instead, U-50488 likely mediated its peripheral analgesic effect through nonselective inhibition of voltage-gated sodium channels, including peripheral sensory neuron isoforms NaV1.8 and NaV1.7. Our study suggests that targeting the KOR in peripheral sensory nerve endings innervating the skin is not an alternative analgesic approach.
Collapse
Affiliation(s)
- Jennifer R. Deuis
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ella Whately
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Marco C. Inserra
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Naghmeh H. Asvadi
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | | | - Peter J. Cabot
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Irina Vetter
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
66
|
Martín V, Vale C, Hirama M, Yamashita S, Rubiolo JA, Vieytes MR, Botana LM. Synthetic ciguatoxin CTX 3C induces a rapid imbalance in neuronal excitability. Chem Res Toxicol 2015; 28:1095-108. [PMID: 25945403 DOI: 10.1021/tx500503d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ciguatera is a human global disease caused by the consumption of contaminated fish that have accumulated ciguatoxins (CTXs), sodium channel activator toxins. Symptoms of ciguatera include neurological alterations such as paraesthesiae, dysaesthesiae, depression, and heightened nociperception, among others. An important issue to understand these long-term neurological alterations is to establish the role that changes in activity produced by CTX 3C represent to neurons. Here, the effects of synthetic ciguatoxin CTX 3C on membrane potential, spontaneous spiking, and properties of synaptic transmission in cultured cortical neurons of 11-18 days in vitro (DIV) were evaluated using electrophysiological approaches. CTX 3C induced a large depolarization that decreased neuronal firing and caused a rapid inward tonic current that was primarily GABAergic. Moreover, the toxin enhanced the amplitude of miniature postsynaptic inhibitory currents (mIPSCs), whereas it decreased the amplitude of miniature postsynaptic excitatory currents (mEPSCs). The frequency of mIPSCs increased, whereas the frequency of mEPSCs remained unaltered. We describe, for the first time, that a rapid membrane depolarization caused by CTX 3C in cortical neurons activates mechanisms that tend to suppress electrical activity by shifting the balance between excitatory and inhibitory synaptic transmission toward inhibition. Indeed, these results suggest that the acute effects of CTX on synaptic transmission could underlie some of the neurological symptoms caused by ciguatera in humans.
Collapse
Affiliation(s)
- Victor Martín
- †Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Vale
- †Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Masahiro Hirama
- ‡Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shuji Yamashita
- ‡Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Juan Andrés Rubiolo
- †Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Mercedes R Vieytes
- §Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M Botana
- †Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
67
|
Yin K, Zimmermann K, Vetter I, Lewis RJ. Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol 2015; 93:125-40. [DOI: 10.1016/j.bcp.2014.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
|
68
|
Mattei C, Vetter I, Eisenblätter A, Krock B, Ebbecke M, Desel H, Zimmermann K. Ciguatera fish poisoning: A first epidemic in Germany highlights an increasing risk for European countries. Toxicon 2014; 91:76-83. [DOI: 10.1016/j.toxicon.2014.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
|
69
|
The voltage-gated sodium channel: a major target of marine neurotoxins. Toxicon 2014; 91:84-95. [PMID: 25305552 DOI: 10.1016/j.toxicon.2014.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022]
Abstract
Voltage-gated sodium channels (Nav) are key components for nerve excitability. They initiate and propagate the action potential in excitable cells, throughout the central and peripheral nervous system, thus enabling a variety of physiological functions to be achieved. The rising phase of the action potential is driven by the opening of Nav channels which activate rapidly and carry Na(+) ions in the intracellular medium, and ends with the Na(+) current inactivation. The biophysical properties of these channels have been elucidated, through the use of pharmacological agents that disrupt the molecular mechanism of the channel functioning. Among them, marine toxins produced by venomous animals or microorganisms have been crucial to map the different allosteric binding sites of the channels, understand their mode of action and represent an emerging source of therapeutic agents to alleviate or cure Na(+) channels-linked human diseases. In this article, we review recent discoveries on the molecular and biophysical properties of the Na(+) channel as a target for marine neurotoxins, and present the ongoing developments of pharmacological agents as therapeutic tools.
Collapse
|
70
|
Lauria G, Ziegler D, Malik R, Merkies ISJ, Waxman SG, Faber CG. The role of sodium channels in painful diabetic and idiopathic neuropathy. Curr Diab Rep 2014; 14:538. [PMID: 25142720 DOI: 10.1007/s11892-014-0538-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Painful neuropathies are frequently encountered in clinical practice as an early or late complication of several systemic disorders. Among them, diabetes is one of the most important due to its epidemiology and the relevance for regulatory agencies in the assessment of efficacy of new analgesics. However, the presentation and course of painful neuropathies, as well as the response to available drugs, are highly variable and unpredictable, posing significant challenges in the management of patients. Experimental and clinical studies have suggested that polymorphisms and mutations in pain-related genes are involved in the facilitation or inhibition of nociception, and might modulate neuropathic pain and the response to analgesics in patients. Voltage-gated sodium channel genes are among the most relevant, due to the key role of these membrane proteins in the physiology of nociception and their involvement in the pathogenesis of idiopathic painful small fiber neuropathies. These compelling features make sodium channel candidate targets for a novel approach to painful diabetic and idiopathic neuropathies, which will hopefully allow a new classification of patients and more effective targeted treatments.
Collapse
Affiliation(s)
- Giuseppe Lauria
- Neuroalgology and Headache Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria, 11, 20133, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
71
|
Weinkauf B, Obreja O, Schmelz M, Rukwied R. Differential time course of NGF-induced hyperalgesia to heat versus mechanical and electrical stimulation in human skin. Eur J Pain 2014; 19:789-96. [DOI: 10.1002/ejp.603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 01/24/2023]
Affiliation(s)
- B. Weinkauf
- Department of Anaesthesiology; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - O. Obreja
- Department of Anaesthesiology; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - M. Schmelz
- Department of Anaesthesiology; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - R. Rukwied
- Department of Anaesthesiology; Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
72
|
Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci 2014; 15:573-89. [PMID: 25053448 DOI: 10.1038/nrn3784] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors - such as types of transient receptor potential (TRP) cation channels - involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.
Collapse
Affiliation(s)
- Joris Vriens
- Laboratory of Experimental Gynaecology, KU Leuven, Herestraat 49 BOX 611, B-3000 Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| |
Collapse
|
73
|
Mattei C, Molgó J, Benoit E. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons. Neuropharmacology 2014; 85:417-26. [PMID: 24950451 DOI: 10.1016/j.neuropharm.2014.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
Abstract
Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment.
Collapse
Affiliation(s)
- César Mattei
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, 91198 Gif-sur-Yvette cedex, France; Laboratoire Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214 INSERM 1083, Université d'Angers, 49045 Angers cedex 01, France.
| | - Jordi Molgó
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, 91198 Gif-sur-Yvette cedex, France
| | - Evelyne Benoit
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
74
|
Abstract
Pruritus, also known as itch, is a very common, unpleasant sensation that elicits an urge to scratch. Its origin is not always in the skin, and neuropathic itch that is caused by neuronal or glial damage is common, but poorly understood by both dermatologists and neurologists. Although pruritus has not been considered as serious a symptom as pain, it is difficult to treat and--if chronic--can severely impair quality of life. Neuropathic itch is often associated with other clinical symptoms, most commonly neuropathic pain, and hypersensitization to stimuli is present in both pruritus and pain of neuropathic origin. The shared aetiology can aid in finding suitable treatment for itch in some cases, but more detailed knowledge of the mechanisms of itch, along with standardized, well-controlled trials, is needed. Pruritus research is an emerging but currently very active field, and our understanding of this sensation is rapidly increasing. Here, we review new discoveries regarding the role of the nervous system and the contribution of different pathways in pruritus, discuss the different aetiologies of neuropathic itch, and outline currently available and potential strategies for managing neuropathic pruritus.
Collapse
|
75
|
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 2014; 171:2474-507. [PMID: 24102319 PMCID: PMC4008995 DOI: 10.1111/bph.12414] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called 'TRP channelopathies') that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Discovery Research Alliance, Ono Pharmaceutical Co. LtdOsaka, Japan
| | - Arpad Szallasi
- Department of Pathology and Laboratory Medicine, Monmouth Medical CenterLong Branch, NJ, USA
| |
Collapse
|
76
|
Gaboriau M, Ponton D, Darius HT, Chinain M. Ciguatera fish toxicity in French Polynesia: size does not always matter. Toxicon 2014; 84:41-50. [PMID: 24699216 DOI: 10.1016/j.toxicon.2014.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/02/2014] [Accepted: 03/18/2014] [Indexed: 12/27/2022]
Abstract
Accumulation of ciguatoxins (CTXs) in tropical reef fish tissues during their life is responsible of the most prevalent human seafood intoxication in the South Pacific called Ciguatera Fish Poisoning (CFP). It has been assumed for a long time that CTXs are transferred and accumulated along the trophic food chain, and consequently that smaller individuals within a given fish species are safer to eat than larger ones. However, the relationship between toxicity and fish size has been studied for a limited number of species only and the conclusions are often contradictory. The toxicity of 856 fishes from 59 different species sampled in six islands in French Polynesia between 2003 and 2011 was assessed by Receptor Binding Assay. Among them, 45 species × island and 32 families × island for which the number of individuals was ≥6 allowed testing the relationship between toxicity and size. Except for six specimens of Lutjanus bohar caught in Fakarava (P < 0.01; R(2) = 0.854), the 44 remaining species × island showed no significant increase of CTXs concentration with fish total length (TL). Moreover, the proportion of toxic individuals decreased significantly for Epinephelus polyphekadion from Fakarava (n = 24; P < 0.05) and Kyphosus cinerascens from Raivavae (n = 29; P < 0.05), while no significant variation was detected for the other 43 species × island. At the family level, only three positive and three negative relationships between size and CTXs concentration were observed among the 32 family × island analyzed. No relationship between the proportion of toxic fish within a family and the relative total length of individuals were observed. The lack of relationship between toxicity and size observed for most of the species and families from the six islands suggests that fish size cannot be used as an efficient predictor of fish toxicity in French Polynesia. These results highlight the need for improving our knowledge about metabolic processes which may play a role in CTXs bio-accumulation and depuration among the different trophic levels of fishes.
Collapse
Affiliation(s)
- Matthias Gaboriau
- IRD, UR 227, Laboratoire d'excellence «CORAIL», Observatoire Océanologique de Banyuls, Av. de Fontaulé, BP44, 66650 Banyuls-sur-Mer, France.
| | - Dominique Ponton
- IRD, UR 227, Laboratoire d'excellence «CORAIL», Observatoire Océanologique de Banyuls, Av. de Fontaulé, BP44, 66650 Banyuls-sur-Mer, France; IRD, UR 227, Laboratoire d'excellence «CORAIL», Parc Technologique Universitaire, 2 rue Joseph Wetzell, CS 41095, 97495 Ste Clotilde cedex, La Réunion, France.
| | - H Taiana Darius
- UMR 241, EIO, Laboratoire de recherche sur les Microalgues Toxiques, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mireille Chinain
- UMR 241, EIO, Laboratoire de recherche sur les Microalgues Toxiques, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
77
|
Normal and abnormal coding of somatosensory stimuli causing pain. Nat Neurosci 2014; 17:183-91. [PMID: 24473266 DOI: 10.1038/nn.3629] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
Abstract
Noxious stimuli usually cause pain and pain usually arises from noxious stimuli, but exceptions to these apparent truisms are the basis for clinically important problems and provide valuable insight into the neural code for pain. In this Review, we discuss how painful sensations arise. We argue that, although primary somatosensory afferents are tuned to specific stimulus features, natural stimuli often activate more than one type of afferent. Manipulating coactivation patterns can alter perception in ways that argue against each type of afferent acting independently (as expected for strictly labeled lines), suggesting instead that signals conveyed by different types of afferents interact. Deciphering the central circuits that mediate those interactions is critical for explaining the generation and modulation of neural signals that ultimately elicit pain. The advent of genetic and optical dissection techniques promise to dramatically accelerate progress toward this goal, which will facilitate the rational design of future pain therapeutics.
Collapse
|
78
|
Abstract
The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.
Collapse
Affiliation(s)
- Peter M Zygmunt
- Clinical and Experimental Pharmacology, Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden,
| | | |
Collapse
|
79
|
Abstract
Venoms are evolutionarily fine-tuned mixtures of small molecules, peptides, and proteins-referred to as toxins-that have evolved to specifically modulate and interfere with the function of diverse molecular targets within the envenomated animal. Many of the identified toxin targets are membrane receptors and ion channels. Due to their high specificity, toxins have emerged as an invaluable tool set for the molecular characterization of ion channels, and a selected group of toxins even have been developed into therapeutics. More recently, TRP ion channels have been included as targets for venomous toxins. In particular, a number of apparently unrelated peptide toxins target the capsaicin receptor TRPV1 to produce inflammatory pain. These toxins have turned out to be invaluable for structural and functional characterizations of the capsaicin receptor. If toxins will serve similar roles for other TRP ion channels, only future will tell.
Collapse
Affiliation(s)
- Jan Siemens
- Department of Pharmacology, University Clinic Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | |
Collapse
|
80
|
Abstract
Topically applied camphor elicits a sensation of cool, but nothing is known about how it affects cold temperature sensing. We found that camphor sensitizes a subpopulation of menthol-sensitive native cutaneous nociceptors in the mouse to cold, but desensitizes and partially blocks heterologously expressed TRPM8 (transient receptor potential cation channel subfamily M member 8). In contrast, camphor reduces potassium outward currents in cultured sensory neurons and, in cold nociceptors, the cold-sensitizing effects of camphor and menthol are additive. Using a membrane potential dye-based screening assay and heterologously expressed potassium channels, we found that the effects of camphor are mediated by inhibition of Kv7.2/3 channels subtypes that generate the M-current in neurons. In line with this finding, the specific M-current blocker XE991 reproduced the cold-sensitizing effect of camphor in nociceptors. However, the M-channel blocking effects of XE991 and camphor are not sufficient to initiate cold transduction but require a cold-activated inward current generated by TRPM8. The cold-sensitizing effects of XE991 and camphor are largest in high-threshold cold nociceptors. Low-threshold corneal cold thermoreceptors that express high levels of TRPM8 and lack potassium channels are not affected by camphor. We also found that menthol--like camphor--potently inhibits Kv7.2/3 channels. The apparent functional synergism arising from TRPM8 activation and M-current block can improve the effectiveness of topical coolants and cooling lotions, and may also enhance TRPM8-mediated analgesia.
Collapse
|
81
|
Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G, Tegeder I. Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience 2013; 259:63-70. [PMID: 24321512 DOI: 10.1016/j.neuroscience.2013.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 01/06/2023]
Abstract
The amino acid taurine is required for development and functioning of the central and peripheral nervous system where it exerts osmoregulatory, neuromodulatory and anti-apoptotic actions. It is subject to cellular import by the taurine transporter slc6a6. Absence of the transporter and consequently, absence of taurine leads to several neurologic deficits and sensory losses. In a slc6a6 knock-out mouse model, consequences of congenital taurine deficiency were assessed in nociceptive sensory processes. The formalin assay, hot plate assay, and summated generator potentials in response to local nociceptive stimulation with gaseous CO2 were applied. Reduced responsiveness of slc6a6(-/-) mice to nociceptive stimulation was observed in particular to chemical nociceptive stimuli. Scl6a6 knock-out mice spent significantly less time licking the formalin injected paw and displayed smaller amplitudes of the nociceptive nasal mucosa potentials than wild-type mice (p=0.002 and 0.01 respectively). In contrast, withdrawal latencies on a hot plate did not significantly differ, suggesting that intracellular taurine deficits lead in particular to a hyposensitivity of nociceptive sensory neurons sensitive to noxious chemical stimulation. As hereditary absence of taurine affects biological processes of anatomical structure development, the altered nociceptive responses likely reflect consequences of compromised peripheral nervous system development.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - T Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Fetscherstr. 74, D-01307 Dresden, Germany
| | - U Warskulat
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - O Coste
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - D Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
82
|
Analgesic treatment of ciguatoxin-induced cold allodynia. Pain 2013; 154:1999-2006. [DOI: 10.1016/j.pain.2013.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 06/01/2013] [Accepted: 06/07/2013] [Indexed: 12/31/2022]
|
83
|
Weibel R, Reiss D, Karchewski L, Gardon O, Matifas A, Filliol D, Becker JAJ, Wood JN, Kieffer BL, Gaveriaux-Ruff C. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice. PLoS One 2013; 8:e74706. [PMID: 24069332 PMCID: PMC3771900 DOI: 10.1371/journal.pone.0074706] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/05/2013] [Indexed: 12/26/2022] Open
Abstract
Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.
Collapse
Affiliation(s)
- Raphaël Weibel
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - David Reiss
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Laurie Karchewski
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Olivier Gardon
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Audrey Matifas
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Dominique Filliol
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Jérôme A. J. Becker
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical research, University College London, London, United Kingdom
| | - Brigitte L. Kieffer
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Claire Gaveriaux-Ruff
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
- ESBS, École Supérieure de Biotechnologie de Strasbourg, UdS Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
84
|
Davis FM, Parsonage MT, Cabot PJ, Parat MO, Thompson EW, Roberts-Thomson SJ, Monteith GR. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int 2013; 13:76. [PMID: 23890218 PMCID: PMC3733826 DOI: 10.1186/1475-2867-13-76] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.
Collapse
Affiliation(s)
- Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
85
|
Min JW, Liu WH, He XH, Peng BW. Different types of toxins targeting TRPV1 in pain. Toxicon 2013; 71:66-75. [PMID: 23732125 DOI: 10.1016/j.toxicon.2013.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
Abstract
The transient receptor potential vanilloid 1(TRPV1) channels are members of the transient receptor potential (TRP) superfamily. Members of this family are expressed in primary sensory neurons and are best known for their role in nociception and sensory transmission. Multiple painful stimuli can activate these channels. In this review, we discussed the mechanisms of different types of venoms that target TRPV1, such as scorpion venom, botulinum neurotoxin, spider toxin, ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning (NSP). Some of these toxins activate TRPV1; however, some do not. Regardless of TRPV1 inhibition or activation, they occur through different pathways. For example, BoNT/A decreases TRPV1 expression levels by blocking TRPV1 trafficking to the plasma membrane, although the exact mechanism is still under debate. Vanillotoxins from tarantula (Psalmopoeus cambridgei) are proposed to activate TRPV1 via interaction with a region of TRPV1 that is homologous to voltage-dependent ion channels. Here, we offer a description of the present state of knowledge for this complex subject.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, PR China
| | | | | | | |
Collapse
|
86
|
An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 2013; 154:1749-1757. [PMID: 23711479 DOI: 10.1016/j.pain.2013.05.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022]
Abstract
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K(+)-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.
Collapse
|
87
|
Than JYXL, Li L, Hasan R, Zhang X. Excitation and modulation of TRPA1, TRPV1, and TRPM8 channel-expressing sensory neurons by the pruritogen chloroquine. J Biol Chem 2013; 288:12818-27. [PMID: 23508958 PMCID: PMC3642326 DOI: 10.1074/jbc.m113.450072] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/17/2013] [Indexed: 01/12/2023] Open
Abstract
The sensations of pain, itch, and cold often interact with each other. Pain inhibits itch, whereas cold inhibits both pain and itch. TRPV1 and TRPA1 channels transduce pain and itch, whereas TRPM8 transduces cold. The pruritogen chloroquine (CQ) was reported to excite TRPA1, leading to the sensation of itch. It is unclear how CQ excites and modulates TRPA1(+), TRPV1(+), and TRPM8(+) neurons and thus affects the sensations of pain, itch, and cold. Here, we show that only 43% of CQ-excited dorsal root ganglion neurons expressed TRPA1; as expected, the responses of these neurons were completely prevented by the TRPA1 antagonist HC-030031. The remaining 57% of CQ-excited neurons did not express TRPA1, and excitation was not prevented by either a TRPA1 or TRPV1 antagonist but was prevented by the general transient receptor potential canonical (TRPC) channel blocker BTP2 and the selective TRPC3 inhibitor Pyr3. Furthermore, CQ caused potent sensitization of TRPV1 in 51.9% of TRPV1(+) neurons and concomitant inhibition of TRPM8 in 48.8% of TRPM8(+) dorsal root ganglion neurons. Sensitization of TRPV1 is caused mainly by activation of the phospholipase C-PKC pathway following activation of the CQ receptor MrgprA3. By contrast, inhibition of TRPM8 is caused by a direct action of activated Gαq independent of the phospholipase C pathway. Our data suggest the involvement of the TRPC3 channel acting together with TRPA1 to mediate CQ-induced itch. CQ not only elicits itch by directly exciting itch-encoding neurons but also exerts previously unappreciated widespread actions on pain-, itch-, and cold-sensing neurons, leading to enhanced pain and itch.
Collapse
Affiliation(s)
- Jonathan Y.-X. L. Than
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Lin Li
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Raquibul Hasan
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Xuming Zhang
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
88
|
Zhang X, Cao B, Wang J, Liu J, Tung VOV, Lam PKS, Chan LL, Li Y. Neurotoxicity and Reactive Astrogliosis in the Anterior Cingulate Cortex in Acute Ciguatera Poisoning. Neuromolecular Med 2013; 15:310-23. [DOI: 10.1007/s12017-013-8220-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022]
|
89
|
Adler EM. Taking a translational turn. J Gen Physiol 2012; 140:455-6. [PMID: 23109713 PMCID: PMC3483118 DOI: 10.1085/jgp.201210911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
90
|
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine and TRP Research Platform Leuven (TRPLe), University of Leuven, Leuven, Belgium.
| |
Collapse
|